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1. A random variable Q has probability density function 
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 where M is a real constant. 

i) Show that the maximum value that the variable Q can take, 

exp(1)M e= =  

ii) Find the cumulative probability function of Q. 

 

2. The cumulative probability function of ~ ( , )Y Weibull λ k is given by  
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  for 0, 0k λ  . 

i) Show that the probability density function of Y is given by 
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ii) Calculate the inverse of the cumulative probability function, 1( )YF y− . 

iii) In your own words, clearly explain how the inverse of the cumulative 

probability function of Y can be used to generate realisations of Y. 

 

The distribution of observed wind speeds is often modelled by a Weibull 

variable. At a given location, the wind speed (in m/s) ~ (6,2)Weibull . 

 

iv) Given four independent realisations of ~ [0,1]U U ,  

1 2 3 4{ , , , } {0.503, 0.114, 0.760, 0.449}u u u u = , generate four  

independent realisations of ~ (6,2)Y Weibull . 

 

 

 



3. Let Z be a continuous uniform random variable, ~ [4,10]Z U . 

i) Write down the probability density function of Z. 

 

ii) Show that the cumulative probability function of Z, ( )F z is given by  
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iii) Given realisations 1 2 5{ , ,..., } {0.710,0.119,0.358,0.883,0.504}u u u  of 

a [0,1]U  variable, generate five realisations 1 2 5{ , ,..., }z z z of Z. 

Clearly explain your method and any calculations required. 


