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1. Let X and Y be independent random variables, ~ exp(1)X  and ~ exp(1)Y . 

 That is, for example, the density function of X is given by 
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 Consider the variables defined as S X Y= + and D X Y= − . 

 

i) What are the ranges of S and D? Justify your answers. 

ii) Find statements for X and Y in terms of S and D. 

iii) Hence show that the Jacobian is given by 
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iv) Hence find the joint density of S and D. 

v) Calculate the marginal density of S and hence show that  

~ (2,1)S gamma . 

vi) Calculate the marginal density of D and hence show that  

~ (1)D Laplace .. 

 

Note: A Laplace variable ~ ( )Z Laplace λ  has probability density function 
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2. Let X and Y be independent random variables with joint density function  
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i) Calculate (0 0.1 0.5)P X Y    . 

ii) Calculate ( 1)P X Y+  . 

iii) Calculate ( )P X Y . 

iv) Find the marginal density of X and the marginal density of Y. 

Consider the variables defined as.R X=  and P XY= . 

v) Show that the joint density of R and P is given by  

,

4
0 1

( , )

0 otherwise
P R

p
p r

f p r r


  

= 



. 

vi) Hence find the marginal density of R and the marginal density of P. 

 

 

 

  

  

 

  

  

 


