University of Technology Sydney School of Mathematical and Physical Sciences

Mathematical Statistics (37262) – Class 5 Preparation Work SOLUTIONS

1. i) One possible substitution is $y = 1 - e^{2-x}$ and hence $2 - \ln(1-y) = x$ and $\frac{dy}{dx} = e^{2-x} = 1 - y$. Given *N* independent realisations of $U \sim U[0,1]$ we could then estimate $\int_{2}^{\infty} \frac{3}{\ln(x)[\sin(x)+2]} dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{3}{(1-y)\ln(2-\ln(1-y))[\sin(2-\ln(1-y))+2]}$

ii) Setting $y = \frac{x+0.1}{1.1}$ gives $\int_{-0.1}^{1} e^{x^4} dx = \int_{0}^{1} 1.1 e^{(1.1y-0.1)^4} dy$. Applying the Monte Carlo method as described above gives $\int_{-0.1}^{1} e^{x^4} dx \approx \frac{1}{5} \Big[1.1 e^{(1.1\times0.654-0.1)^4} + ... + 1.1 e^{(1.1\times0.591-0.1)^4} \Big] \approx 1.072$.

iii) Setting
$$y = x + 6$$
 gives $\int_{-6}^{-5} \arctan(x) dx = \int_{0}^{1} \arctan(y - 6) dy$
Applying the Monte Carlo method as described above gives
 $\int_{-6}^{-5} \arctan(x) dx \approx \frac{1}{5} \left[\arctan(0.654 - 6) + ... + \arctan(0.591 - 6) \right] \approx -1.393$.

i) For $y = \frac{1}{1+x^2}$, $x = -\sqrt{\frac{1}{y}-1}$ since *x* only takes non-positive values. We

also have that
$$\frac{dx}{dy} = \frac{1}{2y^2\sqrt{\frac{1}{y}-1}}$$
 hence

$$\int_{-\infty}^{0} \left[\frac{10}{1+x^2} \right] dx = \int_{0}^{1} \left[10y \right] \frac{1}{2y^2 \sqrt{\frac{1}{y} - 1}} dy$$

Applying the Monte Carlo method, we obtain

$$\int_{-\infty}^{0} \left[\frac{10}{1+x^{2}} \right] dx$$

$$\approx \frac{1}{5} \left[\left[10 \times 0.654 \right] \frac{1}{2 \times 0.654^{2} \sqrt{\frac{1}{0.654} - 1}} + \dots + \left[10 \times 0.591 \right] \frac{1}{2 \times 0.591^{2} \sqrt{\frac{1}{0.591} - 1}} \right]$$

$$\approx 7.654$$

ii) We could also use, for example $y = e^x$, so $x = \ln(y)$ and $\frac{dy}{dx} = y$. This gives $\int_{-\infty}^{0} \left[\frac{10}{1+x^2} \right] dx = \int_{0}^{1} \left[\frac{10}{1+(\ln(y))^2} \right] \frac{1}{y} dy$ $\approx \frac{1}{5} \left[\left[\frac{10}{1+(\ln(0.654))^2} \right] \frac{1}{0.654} + \dots + \left[\frac{10}{1+(\ln(0.591))^2} \right] \frac{1}{0.591} \right] \approx 9.654$

3. Both the expectation and the variance of *X* are not finite, hence the Monte Carlo method cannot be used.

e.g.
$$E(X) = \int_{-\infty}^{-4} \frac{1}{x} dx + \int_{-4}^{4} \frac{x}{16} dx + \int_{4}^{\infty} \frac{1}{x} dx = \infty$$
.

2.