University of Technology Sydney School of Mathematical and Physical Sciences

Mathematical Statistics (37262) – Class 6 Preparation Work

- 1. Let $Y \sim Poi(\lambda)$ where the rate parameter λ is unknown and let $\{y_1, y_2, ..., y_n\}$ be independent realisations of *Y*.
 - i) Using the first sample moment, estimate the value of λ through the method of moments.
 - ii) Write down the likelihood function $L(\{y_1, y_2, ..., y_n\} | \lambda)$.
 - iii) Hence find the loglikelihood function $\ell(\{y_1, y_2, ..., y_n\} | \lambda)$.
 - iv) Show that the maximum likelihood estimate of λ is the same as that obtained via the method of moments in part i).
- 2. Let $\{z_1, z_2, z_3, z_4, z_5\} = \{1, 4, 3, 3, 3\}$ be independent realisations of $Z \sim Bin(n, p)$.
 - i) Calculate the first two sample moments.
 - ii) Hence use the method of moments to estimate the parameters *n* and *p*.

Assume now that it is known that n=5 but p is unknown..

iii) Showing all steps in your calculation, calculate the maximum likelihood estimate of *p*.

Assume now that it is known that p = 0.5 but *n* is unknown.

iv) Find the maximum likelihood estimate of *n*.