University of Technology Sydney School of Mathematical and Physical Sciences

Mathematical Statistics (37262) – Class 8 Preparation Work

1. Consider independent realisations of $Y \sim N(\mu, \sigma^2)$,

 $\{y_1, y_2, \dots, y_{10}\} = \{-1.5, 8.0, 3.6, 5.1, 1.1, 4.0, 5.3, 2.9, 2.0, 6.4\}.$

Assume that μ is unknown but you are told that $\sigma^2 = 2^2$.

- i) Calculate the sample mean.
- ii) Hence calculate an unbiased estimate of the population mean μ .
- iii) Calculate a 95% confidence interval for μ .
- iv) Show that a 95% prediction interval for an additional observation of Y is (to 2 decimal places) given by (-0.42, 7.80).

We are now told that the population variance may not be $\sigma^2 = 2^2$ as previously believed. We now assume that both μ and σ^2 are unknown.

v) Calculate the sample variance
$$s^2 = \frac{1}{10} \sum_{i=1}^{10} (y_i - \overline{y})^2$$
.

- vi) Show that $bias(s^2, \sigma^2) \neq 0$.
- vii) Would you expect confidence intervals for the population mean μ to be wider when assuming $Y \sim N(\mu, 2^2)$ or when assuming $Y \sim N(\mu, \sigma^2)$? Justify your answer.
- viii) Calculate a 95% confidence interval for μ .
- 2. Consider independent realisations $\{x_1, x_2, ..., x_n\}$ of a continuous uniform random variable $X \sim U[0, 2\theta]$ where $\theta > 0$ is unknown.
 - i) Calculate E(X).
 - ii) Write down the likelihood function for this set of observations and hence find an estimate $\hat{\theta}_{MLE}$ of θ by maximum likelihood estimation.
 - iii) Calculate $\hat{\theta}_{MM}$, an estimate of θ by using the first sample moment.
 - iv) Although $\hat{\theta}_{_{MM}}$ is unbiased, it can give estimates of θ which lie outside $[0,2\theta]$. Give an example of five observations $\{x_1, x_2, ..., x_5\}$ which would give such a nonsensical estimate for $\hat{\theta}_{_{MM}}$.