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ii) The sample mean is an unbiased estimator of the population mean 

hence ˆ 3.69μ = . 

iii) The 95% confidence interval for μ  is given by 
2

1.96
σ

y
n

  (since, for 

~ (0,1), ( 1.96 1.96) 0.95Z N P Z−    ) 

This gives an interval of 
3.92

3.69
10

  i.e. (2.45, 4.93) . 

iv) Given that we know the variance is 2 22σ = , our new observation 
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Our 95% prediction interval for newY is then given by 
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This is approximately ( 0.42, 7.80)−  
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vii) The confidence intervals for the population mean μ  would be wider 

when assuming  2~ ( , )Y N μ σ  rather than 2~ ( ,2 )Y N μ  since our 

uncertainty is greater when the variance is not known. 

 

vii) The 95% confidence interval for μ  is given by 
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  i.e. (1.99, 5.39) . 
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 ii) 
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. This is never zero. The likelihood is 

maximised when θ is as small as possible.  
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 iii) ( )E X θ=  so, by matching first moments, we obtain 
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iv) Consider 1 2 5{ , ,... } {1,  2,  3,  4,  90}x x x = .  

The sample mean is ( )
1
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x = + + + + = .  

This would give ˆ 20MMθ =  implying that [0,40]x  which we know is not 

true, as we have an observation 5 90x = . 

 

 

   

 

  

  

 


