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Random Experiments

• A random experiment is one whose outcome is not determined                                                         

in advance.

• Any action which may have more than one possible outcome can be                          

considered to be a random experiment.

• The set of all possible outcomes of a random experiment is called its sample space, usually  

denoted by S or     .    Ω
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Random Experiments

• For example, if the random experiment consists of rolling one 

die and recording the number shown, the sample space is 

• If the random experiment consists of rolling three dice and 

recording if the numbers shown are odd or even, the sample 

space is odd or even, the sample space is      

where, for example, OOE represents the first two dice showing     

an odd number and the third an even.

{1,2,3,4,5,6}.Ω =

{OOO,OOE,OEO,OEE,EOO,EOE,EEO,EEE}Ω =
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Discrete and Continuous Sample Spaces

• The examples on the previous slide (coin 

flipping and die rolling) have discrete sample 

spaces.

• That is, we can write a list of possible outcomes 

as separate points.

• For other experiments, this is not possible as 

we have a continuous sample space. 

• For example, if the experiment consists of measuring t, the time in seconds until the next train 

arrives is simply all non-negative values of t , { : 0}.Ω t t= 
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Discrete and Continuous Sample Spaces

• Both continuous and discrete sample spaces can be either finite or infinite.

• A discrete sample space is finite if it contains a finite number of points.

• An example of an infinite sample space would result from an experiment recording the 

mass of an object to the nearest gram                                     .

• A continuous finite sample space needs to have both an upper and lower bound. For 

example, if we wanted to measure the lifespan, L, to date or until failure (in years) of a 

lightbulb manufactured 10 years ago, then { : 0 10}.Ω L L=  

0{0,1,2,3,4,...}Ω = =
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Events

• A subset of a sample space is called an event.

• We say that event A occurs if and only if the outcome of                                                         

a random experiment is one of the points in A.

• For example if an experiment consists of rolling two dice,                                                                   

the sample space contains 36 elements:

• If we define the event A to correspond to “the two dice show the same number” then this is 

denoted by the subset of     given by

11 21 31 41 51 61

12 22 32 42 52 62

13 23 33 43 53 63

14 24 34 44 54 64

15 25 35 45 55 65

16 26 36 46 56 66

11 21 31 41 51 61

12 22 32 42 52 62

13 23 33 43 53 63

14 24 34 44 54 64

15 25 35 45 55 65

16 26 36 46 56 66

               {11,22,33,44,55,66}.Ω A =

{11,12,13,14,15,16,21,22,...,64,65,66}Ω =
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Events

• If an experiment consists of measuring how long, t (in minutes), until the next train arrives, 

the sample space is an infinite continuous interval                      .

• If we define the event B to correspond to “a train arrives within the next ten minutes”, this is 

denoted by the subset of       given by                             .

• Note that since sample spaces can be discrete or continuous and finite or infinite, subsets 

of these (i.e. events) can also be classified in the same way.

• There can sometimes be possible outcomes of a random experiment which fall into more 

than one event

{ : 0}Ω t t= 

{ : 0 10}B t t=       Ω

                                     10                                                0                                                                                                                           →



Probability
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• In order to fairly assess the chance of random events occurring, we need some absolute 

measure of chance.

• We can define a probability through relative frequencies. That is, if we can look at a large 

number of  “identical situations”,                                                                                           

• If we flipped a coin a million times and observed Tails on half a million flips, we might 

estimate

• This is known as the frequentist interpretation of probability.

Number of times event  occurs
Probability of ( ) .

Number of trials

A
A P A= 

1
( ) .

2
P Tails 



Random Variables
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• A random variable is a function which maps all possible outputs     of a random 

experiment to some subset of    . 

• In other words, it takes the outcome of a given experiment (which could be numerical, or 

could be a category e.g. “seven of clubs” or “Tails”) and assigns a real number to it.

• For experiments whose sample space is numerical values, a random variable can simply 

defined as the number of the event in the sample space.

    Ω
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Random Variables

• By convention, random variables tend to be denoted with capital letters.

• We can then define events corresponding to whether or not the variable takes a given 

numerical value.

• For example, if X is the number shown when rolling a regular fair six-sided die, we could 

have the event           which would correspond to the die showing the number 3.

• Where we are considering the random variable taking a value from a (non-random) sample 

space, this is usually denoted with a lower case letter. For example,

could define a random variable Y.

3X =

{1,2,3,4,5,6}
( ) 21

0 otherwise

k
k

P Y k




= = 

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Probability Mass Functions

• For a discrete random variable, the probability mass function gives, for all real numbers, the 

probability that the random variable gives that numerical value.

• For example, if we are rolling one regular fair six-sided die and defining the random 

variable X to be the number shown, then we have that all values 1,2,…,6 occur with 

probability 1/6 and that no other values can occur.

• This is

1/ 6 1

1/ 6 2

1/ 6 3

( ) 1/ 6 4

1/ 6 5

1/ 6 6

0 otherwise

k

k

k

P X k k

k

k

=


=

 =


= = =
 =


=





Probability Mass Functions
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• Consider now rolling one regular fair six-sided die and defining the random variable Y to be 

the number of letters in the name of the numbers shown (ONE, TWO, THREE, FOUR, 

FIVE or SIX).

• Three of the (equally probable outcomes) have 3 letters, so there is a 3/6 or 1/2 chance 

that Y will take the value 3.

• Similarly, there is a 1/3 chance of getting a number with four letters and a 1/6 chance of 

getting a five letter number.

• Overall, we get

1/ 2 3

1/ 3 4
( )

1/ 6 5

0 otherwise

k

k
P Y k

k

=


=
= = 

=

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Probability Density Functions

• Recall that, for a continuous variable X. instead of a probability mass function, we define a 

probability density function to be                                                               

• The probability density function f(x) gives a relative measure of how likely the random 

variable is to take a value in a given region. It is not, though, itself a probability.

• An intuitive interpretation of the density function is that, for very small          , 

• In other words, for very small         , the probability that            (with a margin of error no 

more than    centred around a is approximately         .

( ) such that ( ) ( ) .
b

a

f x P a X b f x dx  = 

0ε 

2

2

( ) ( )
2 2

ε
a

ε
a

ε ε
P a X a f x dx εf a

+

−

 
−   + =  

  

0ε  X a=

( )εf aε



• Maybe the simplest type of continuous 

random variable is the uniform variable.

• For                              then X takes a value 

between a and b such that X is equally 

likely to be any two intervals of equal width.

• That is 
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Uniform Random Variable

 if ~ [ , ]a b X U a b

1
[ , ]

( )

0 otherwise

x a b
f x b a




= −



( )f x

x

1

b a−

                    a b



• All major mathematical computer packages contain a random number generator which can 

generate realisations of a uniform random variable between 0 and 1.

• That is, it can be visualised as picking a point at random from the “block” of probability 

density such that any two regions of equal area are equally likely to be chosen.

• The realisation of                    can then be generated by measure how far along this interval 

the randomly selected point was chosen.

Simulating Discrete Events
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~ [0,1]X U

0              1                     x

             ( )f x

1 0.1u  2 0.75u x x



• Realisations of the outcome ofa random experiment with a discrete sample space can 

easily be generated using realisations of a                  variable.

• For example, if we wish to simulate flipping a fair coin once, then there are two possible 

outcomes (Head, Tails), each of which occurs with probability 0.5.

• We can do this by generating  realisations of                   and calling Heads if the random 

number             and calling Tails if the number is          .
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Simulating Discrete Events

~ [0,1]X U

0              1                     x

             ( )f x

x

0.5 0.5

~ [0,1]X U

x

Heads                   Tails→ 
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• Any random variable whose probability mass function can 

be written as

is known as a Bernoulli variable.           

• In this case, we write                     .

• This distribution has range         .

1 0

( ) 1  

0 otherwise

p k

P X k p k

− =


= = =



~ ( )X Bern p

{0,1}

Jacob Bernoulli 

(1655-1705) 

Bernoulli Distribution
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Bernoulli Distribution

• The distribution depends on one parameter, p, which 

gives the probability of obtaining a 1, rather than a zero.

• For example, the number of Tails from a single fair coin 

flip                    or, when selecting one person at random,  

the number of selected people born on a Saturday

• The expectation and variance of                     can easily 

be calculated.

•

Jacob Bernoulli 

(1655-1705) 

~ (0.5)Bern
1

~
7

Bern
 
 
 

~ ( )X Bern p

( ) ( )E X k p X k=  =    0 (1 ) 1p p=  − +     p=
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Bernoulli Distribution

Jacob Bernoulli 

(1655-1705) 

• Similarly,                                                                                    

• This therefore gives                                                                     .

• These values are perhaps intuitive. If we expect half of our 

experiments to give a 1 then, on average, each experiment  

gives the value 0.5.

• The variance is zero if                       . This is because there is no 

variability between realisations of this experiment – we already 

knew the outcome would either certainly happen (1) or certainly 

not happen (0).

2 2( ) ( )E X k p X k=  =
2 20 (1 ) 1p p p   =  − +  =   

2 2 2( ) ( ) ( ) (1 )Var X E X E X p p p p= − = − = −

0 or 1p p= =
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Bernoulli Distribution

Jacob Bernoulli 

(1655-1705) 

• Given realisations                     of a             variable, we can 

easily simulate realisations                     of                       through 

the rule

1 2 3{ , , ,...}u u u [0,1]U

~ ( )X Bern p1 2 3{ , , ,...}x x x

1 if 

0 if 

i

i

i

u p
x

u p


= 


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Binomial Distribution

• A generalisation of Bernoulli variables gives rise to another commonly seen variable.

• Adding the outcomes of n identical independent Bernoulli variables gives a Binomial variable.

• If                                                                       then                                                .

• Clearly                                                mean exactly the same thing.

• A binomial random variable requires two parameters: 

- n: The number of independent Bernoulli variables

- p: The probability of a 1 from each Bernoulli variable

1 2~ ( ), ~ ( ),..., ~ ( )nX Bern p X Bern p X Bern p  1 2 ... ~ ( , )nX X X Bin n p+ + +

~ ( ) and ~ (1, )Y Bern p Y Bin p
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Binomial Distribution

• For                      , the probability mass function is

• The easiest way to calculate the expectation or variance of this is through Bernoulli variables.

• We have that

~ ( , )X Bin n p

( )  and ( ) (1 )E X np Var X np p= = −

!
(1 ) {0,1,2,..., }

( )! !( )

0 otherwise

k n kn
p p k n

n k kP X k

−
− 

−= = 





Faculty of Science

Binomial Distribution

• Consider the problem of simulating realisations of 

• We can do this “directly” by noting that 

~ (2,0.5)X Bin

0.25 0

0.5 1
( )

0.25 2

0 otherwise

k

k
P X k

k

=


=
= = 

=

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Binomial Distribution

• One rule for simulation from                         would therefore be to use realisations

of a             variable and set 

~ (2,0.5)X Bin

1 2 3{ , , ,...}u u u [0,1]U

0 if 0.25

1 if 0.25 0.75

2 if >0.75

i

i i

i

u

x u

u




=  



0              1                     u

             ( )f u
0                   2x x= →  =

1

  

x =


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Simulating from a General Probability Mass Function

• Consider a random variable Z with probability mass function

• Realisations can be obtained from realisations    

of a uniform variable by the rule

1 1

2 2

3 3
1

( )  where 1
n

n

i

n n

p k s

p k s

P Z k pp k s

p k s

=

=


=


= = ==



=



   iu
1 1

2 1 1 2

3 1 2 1 2 3

1 2 1

if 

if 

if 

if ...

i

i

i i

n n i

s u p

s p u p p

z s p p u p p p

p p p p u
−




  +


= +   + +



+ + + 
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Convolutions

• An alternative (and probably simpler) way to simulate from a binomial distribution is through 

convolutions.

• We know that a                can be obtained by summing n independent               variables.

• Instead of working out a decision rule from a relatively complicated probability mass function

we can instead simply apply the much simpler Bernoulli decision rule n times and sum these.

( , )Bin n p ( )Bern p

!
(1 ) {0,1,2,..., }

( )! !( )

0 otherwise

k n kn
p p k n

n k kP X k

−
− 

−= = 


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Convolutions

• For example, we can use the realisations

to generate two realisations of                        .

• We can convert the uniform decimals into Bernoulli outcomes by the rule                                .

•

• Summing these gives two realisations of                         ,

~ (5,0.5)X Bin

1 2 5 6 7 10{ , ,..., } {0.114,0.763,0.906,0.300,0.476} and { , ,..., } {0.887,0.03,0.531,0.617,0.297}u u u u u u= =

0 if 0.5

1 if 0.5

i

i

i

u
y

u


= 



1 2 5 1 2 5

6 7 10 6 7 10

{ , ,..., } {0.114,0.763,0.906,0.300,0.476} hence { , ,..., } {0,1,1,0,0} and

{ , ,..., } {0.887,0.03,0.531,0.617,0.297} hence { , ,..., } {1,0,1,1,0}

u u u y y y

u u u y y y

= =

= =

~ (5,0.5)X Bin 1 1 2 5

2 6 7 10

... 2

... 3

x y y y

x y y y

= + + + =

= + + + =



Geometric Distribution
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• One other common random variable which can arise from independent Bernoulli trials is a 

Geometric variable.

• We write                     if X is the number of successive independent identical Bernoulli 

variables until the first 1 is obtained.

• For example, when flipping a fair coin repeatedly, the number of flips until the first Heads

• The range of                      is easily seen to be 

~ ( )X Geo p

~ (0.5).Geo

~ ( )X Geo p {1,2,3,...}.



Geometric Distribution
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• When considering a number of independent                variables, we obtain the first 1 on the kth 

variable if and only if the first           are 0s and the kth is a 1.

• That is,                                                               

• We can verify that this is a valid probability mass function since

• This is a geometric series, first term p, common ratio 

• The infinite sum is therefore

( )Bern p

( 1)k −

1(1 ) 1,2,3,...
( )

0 otherwise

kp p k
P X k

− − =
= = 



1

1 1

( ) (1 )k

k k

P X k p p
 

−

= =

= = −  2 3 4(1 ) (1 ) (1 ) (1 )p p p p p p p p p= + − + − + − + − +

(1 ).p−

1

( ) 1.
1 (1 )k

p
P X k

p



=

= = =
− −





Geometric Distribution
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• Again, rather than simulating from a geometric distribution directly, we can use its relation to a 

Bernoulli distribution for an easier method of simulating realisations.

• We do not need to calculate an assignment rule from 

• Instead, we can simply generate Bernoulli (0 or 1) variables and then count consecutively how 

many variables we observe until the first 1.

• Knowing the relationships between common standard distributions can make many 

simulations or calculations considerably easier.

1(1 ) 1,2,3,...
( )

0 otherwise

kp p k
P X k

− − =
= = 




