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Markov Chains

• Recall the definition of a Markov Chain.

• A sequence of random variables                     is a Markov Chain on the set of states S if   

    for all possible n and all possible 

• In plain language, this simplified to a sequence of observations such that the probabilities of 

all possible future states depended only on knowledge of the present state and not on any 

previous history as well.
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Markov Chains: Equilibrium Distributions

• Many Markov Chains (including all finite Markov Chains) will have an equilibrium 

distribution. That is, as the number of moves         , any further observations can be 

regarded as realisations of a random variable with a fixed distribution.

• This may be a single value (for example in a Snakes and Ladders game, the equilibrium 

distribution is simply being in the Finish square with probability 1) but, in general, will not be.

• In some cases, these distributions can be obtained visually without calculation.
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Markov Chains: Equilibrium Distributions

• Consider a Markov Chain on states A, B, C and D such that, if in a given                                           

position, the system moves to another state in the next with probability                                               

equal to the weight of the arrow in the diagram.

• In this case, it should be easy to see that the equilibrium distribution                                         

is that eventually the system is equally likely to be in each of the                                                

four states.
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Markov Chains: Equilibrium Distributions

• Other systems might have equilibrium distributions which perhaps 

not as easy to identify.

• For example consider the (similar) system on ABCD.

• The equilibrium distribution for this can be found through 

eigenvector-eigenvalue methods, but it is certainly more 

problematic to obtain than the simple symmetric case on the 

previous slide.
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Equilibrium Distributions Through Simulation

• Another alternative for finding the equilibrium distribution             

of a system is through simulation.

• By definition, the equilibrium distribution is the distribution of 

possible states for the system as the number of allowed            

moves          

• We can (under certain conditions) simply run the Markov         

Chain for a large number of moves and build up an idea of its 

possible states in future.

• If we pick one large value for n, then observe the position of the 

chain, we have generated one realisation from its equilibrium 

distribution.

• Repeating this multiple times builds up a picture of the distribution.
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Equilibrium Distributions Through Simulation

• We previously said that this method works under certain 

conditions.

• What problems could arise?

• The system could simply not have been running long enough to                                                                 

overcome its initial conditions and truly reach its equilibrium 

distribution.

• For example, consider the Markov Chain here.

• Beginning at time 0 in state A, running for only a few thousand 

moves would very likely still find it in state A or state B.

• The true equilibrium destruction is
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Equilibrium Distributions Through Simulation

• We previously said that this method works under certain 

conditions.

• What problems could arise?

• Consider running the Markov Chain here for 1000 moves each 

time, starting in state A.

• What is the chance that we observe the system in state B?

• This system is periodic, with period 2 since we can only observe 

state A or D after an even number of moves and only states B or 

C after an odd number.

• Observing after 1000 moves would imply                                             

when, in fact, 
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Ergodic and Aperiodic Markov Chains

• A Markov Chain is said to be ergodic if every state communicates with every other.

• That is, when leaving any state, it is possible (but not necessarily in a single move) to reach 

any other. 

• A state of a Markov Chain is periodic with period d if and only if it cannot be left and returned 

to unless the number of moves taken is divisible by d.

• If all states of the chain have period 1, then the chain is said to be aperiodic.

• In general, if we are to simulate a realisation from the equilibrium distribution of a chain by 

running the chain for a long time and picking an observation, then we want the chain to be both 

ergodic and aperiodic.

• The time to avoid being biased by initial conditions (“burn in” period)  varies depending on the 

chain.
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Markov Chain Monte Carlo (MCMC)

• The Markov Chain Monte Carlo (MCMC)  method is one of the most powerful and commonly 

used tools in machine learning and statistics.

• It builds on both the idea of obtaining an equilibrium distribution for a Markov Chain through 

repeated simulation and of generating realisations of a variable through Monte Carlo like 

approaches.

• If we have to simulate samples from a “difficult” distribution, MCMC can offer an alternative 

approach.

• The basic idea is to construct a Markov Chain whose equilibrium distribution is equal to the 

problematic distribution and simulating the chain until equilibrium.

• Like ordinary Monte Carlo, the exact distribution of the samples isn’t important, but the limit is. 
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MCMC: Metropolis-Hastings Algorithm

• The Metropolis-Hastings algorithm is one of the most common 

implementations of MCMC.

• Originally developed by nuclear physicists working at the Los 

Alamos National Laboratory in the 1950s.

• Originally named after Nicholas Metropolis (one of five authors 

on the original paper.)

• The Metropolis algorithm was later refined/improved by and co-

named after statistician W.K. Hastings. Nicholas Metropolis 

(1915-1999 )
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MCMC: Metropolis-Hastings Algorithm

• The algorithm relies on being able to sample from a (hopefully similar) and simpler distribution 

than the more difficult one, P(x), required. This distribution g(x) is the proposal distribution.

• The algorithm works by selecting possible moves from the proposal distribution, but only 

implementing them if they are accepted according to some rule. This ensures that the 

behaviour of the chain resembles samples from the required distribution.

• If the chain is currently in state x and the proposal distribution proposes a move to state    , 

    then this proposed move is only accepted with probability 
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MCMC: Metropolis-Hastings Algorithm

• A proposed move is only accepted with probability

• In other words, if the proposal distribution selects a move which is more likely than the current 

state, then the chain moves to it.

• If the chain selects a less likely move, it moves to it with a probability <1.
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MCMC: Metropolis-Hastings Algorithm

• The algorithm works as follows:

1) Select a starting state x at random.

2) Propose a possible move by simulating from 

3) Generate a realisation u of           .

4) If                                             , then accept the move and update the position of the system

5)   Record the move if accepted and return to step 2.
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MCMC: Metropolis-Hastings Algorithm

• The exact behaviour of the chain can vary quite a lot depending on the choice of proposal 

distribution g(x).

• For example, a poor choice of g(x) might lead to proposing a lot of moves which are rejected. 

This would lead to extremely slow running and convergence.

• The original Metropolis algorithm required the proposal distribution to be symmetric i.e. 

                                This simplifies the acceptance probability to

• In the extreme (but obviously not very useful) case when                    , we can see that we 

have the simple Markov Chain random walk rule that all proposed moves are accepted.
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MCMC: Metropolis-Hastings Algorithm

• The Markov Chain Monte Carlo method allows us to generate samples from a distribution         

by constructing a Markov Chain whose equilibrium distribution is          and sampling from its 

long-run distribution instead. 

• We start by constructing a Markov Chain which is reversible. That is, for every two states                     

     to x.

• This gives 

• However, if we sample from a separate proposal distribution g(x) and only accept moves 

according to some rule, we have that                                         where              is the probability 

that a proposed move from              is accepted.

( )π x

( )π x

 and , the probability of moving from    to  is equal to the probability of moving from p p px x x x x

( ) ( ) ( ) ( )p p pπ x π x x π x π x x=

( ) ( ) ( )p p pπ x x g x x A x x= ( )pA x x
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MCMC: Metropolis-Hastings Algorithm

• Substituting

• Rearranging gives

• Since A has to be a probability (i.e. cannot be larger than 1 or smaller than 0), we can choose

• This is the acceptance probability for the Metropolis-Hastings algorithm.

( ) ( ) ( ) into ( ) ( ) ( ) ( ) gives p p p p p pπ x x g x x A x x π x π x x π x π x x= =
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MCMC: Metropolis-Hastings Algorithm

• Consider the example of 

sampling from a “difficult” 

distribution (blue shading)  

through MCMC methods 

using the “easier” proposal 

distribution (red shading.) 

Accept proposed move 
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Never accept 

proposed move
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proposed move

Accept proposed 

move 80% of the time
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MCMC: Metropolis-Hastings Algorithm

• Consider the example of sampling from the discrete 

distribution with probability mass function                                                           

• At each step, the proposal distribution suggests moving 

the chain to one of the 4 possible states with all 4 

equally likely.

• Not every proposed move is accepted, however.
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MCMC: Metropolis-Hastings Algorithm

• If the chain is in state 1, all proposed moves are 

accepted, since whatever the proposed move       is

                                              

• Note, here all possible moves are proposed with 

    probability 0.25 hence
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MCMC: Metropolis-Hastings Algorithm

• By the same argument, if the chain is in state 2 or 4, all 

proposed moves are accepted.

• If the chain is in state 3, a proposed move      is

    so every time the chain proposes staying in state 3, it     

    does. Every time it proposes moving to another state, 
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MCMC: Metropolis-Hastings Algorithm

• This gives a transition matrix for the chain

• We can verify that this gives the correct equilibrium 

distribution (i.e. the probability mass function of X) for 

the chain by eigenvector-eigenvalue methods.

0

0.25

0.5

0.75

1

1 2 3 4

0

0.25

0.5

0.75

1

1 2 3 4

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 6.25 0.25

7 7 7 7

0.25 0.25 0.25 0.25

 
 
 
 
 
  
 



Faculty of Science

MCMC: Metropolis-Hastings Algorithm

•  
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Bayes’ Theorem

• In some contexts, we might know the conditional probability of 

one event given another but, in fact, we require the exact 

opposite.

• For example, with disease screening, we might know how likely 

a scan is to pick up a disease if the patient has it, but we really 

want to know the other way round – if the scan has “seen” the 

disease, how likely is the patient to be sick? (Or similarly, how 

likely is the “all clear” to be false hope?)

•                                                                                                           

• This is known as Bayes’ Theorem. 

( ) ( ) ( ) ( ) ( )P A B P A B P B P B A P A=  = 
( ) ( )

so ( ) .
( )

P B A P A
P A B

P B


=

Rev. Thomas Bayes 

(1701-1761)
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Bayes’ Theorem

• The continuous equivalent of this is                               .

• This, however, requires the calculation of the denominator, which may well be difficult to do 

• Using MCMC we can, however, still obtain simulated draws from this distribution without first 

working out this integral.

• The acceptance probability relies only on a ratio of probabilities and not the probabilities 

themselves, so we can ignore the (possibly problematic) denominator, since it will cancel out. 

The ratio of two fractions with equal denominators is simply equal to the ratio of the numerators.

• This simplification allows MCMC to be widely used in Bayesian statistics for machine learning.
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