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What Does a “Good” MCMC Simulation Look Like?

• The Markov Chain Monte Carlo method allows us to generate samples from a          

distribution         by constructing a Markov Chain whose equilibrium distribution is          

and sampling from its long-run distribution instead. 

• In a perfect world, we would have a Markov Chain which was aperiodic and ergodic and 

we would run the chain for a very long time before sampling each individual point, 

restarting the chain after each observation.

• Clearly this is hugely wasteful in terms of time and computer resources, so we prefer to 

be able to use all (or almost all) positions of the chain once we are content that it has 

reached equilibrium (i.e. after a “burn in” period.)
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MCMC Diagnostics

• If we want to generate independent samples from an 

equilibrium, we want to see that, ideally, every state is 

reachable immediately after every other state.

• A traceplot shows which state the chain is in at each iteration.

• We say a chain is mixing well if no obvious patterns                                                                            

are observable in the traceplot.

• If the samples from the equilibrium distribution were truly independent,                                

then there would be perfect mixing with all iterations having the same                                      

probability of showing a given state, irrespective of what position the                                           

chain was in at the previous iteration.
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MCMC Diagnostics

• A running mean plot can also be used to identify obvious 

flaws in the mixing.

• Plotting the mean of all iterations up to and including the 

current step should show no strong signal once the burn in 

period has passed.
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MCMC Diagnostics

• Problems with MCMC mixing can also show up in an autocorrelation plot.

• The kth autocorrelation for a sequence with mean and
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MCMC and Bayes’ Theorem

• Recall the Metropolis-Hastings algorithm. Given proposal distribution g(x), a realisation is 

generated from         by accepting the move proposed by g(x),      , with probability

• One of the main strengths of MCMC is that we do not need to be able to calculate         as the 

    acceptance probability only relies on the ratio           , which is often easier.

• As we will see, this allows us to sidestep one of the most difficult parts of Bayesian inference.

• Especially when we are dealing with multivariate probabilities, this property is extremely useful.
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Bayesian Inference

• Bayesian inference uses Bayes’ Theorem to update the belief around a                            

parameter as more evidence is gathered.

• Consider flipping a single coin repeatedly and recording its outcome. We                                                     

do not know what the probability     that the coin will lands Heads is, but                                                  

rather will have an initial belief which we update each time more                                               

evidence is observed. Call the outcome of the ith flip

• We have a prior distribution          which describes our belief in the parameter before any 

observations have been gathered.

• After observations                            have been gathered, we update our belief of the value of      

   θ

.ix
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. (Assume 1 if the coin lands Heads and 0 if it lands Tails.)iθ x =
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Bayesian Inference

• We call our initial belief the prior distribution         .

• From this, we calculate the likelihood of seeing the evidence which we did, assuming     

• Bayes’ Theorem then gives                                                        where             is the posterior 

distribution.

• The posterior density is equal to the prior multiplied by the likelihood, divided by the integral of 

this over all possible values of     

• Without knowing the denominator, this is sometimes said as
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“posterior  prior likelihood.” 
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Bayesian Inference

• Consider the problem of describing our uncertainty about the 

probability     that a coin will land Heads when flipped.

• Initially, the experimenter believes the coin is fair, or close to fair and 

will update this belief based on future observations.

• The prior belief on the probability is described by                         

where 

• (This is not a very good prior as does put some belief onto 

probabilities of below 0 or above 1, which is clearly not sensible.)

2~ (0.5, )Θ N σ
2  is some known constant.σ

   θ
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Bayesian Inference

• Bayes’ Theorem gives                                

• The probability that, say,                                             

• The numerator is trivial to calculate. If

• The denominator is, however, much more problematic 
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Bayesian Inference

• If, however, we wished to know what the posterior distribution of the parameter     was, we 

could sample from this easily by MCMC.

• We only need to know the ratio             and this is equal to 

• As more and more evidence becomes available, for a well-defined Bayesian framework, the 

posterior distribution should converge ever more closely to the information provided by the 

observations.
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Bayesian Inference

• As models (and resulting probability density functions or probability                                               

mass functions) increase in complexity, the advantages of using                                               

MCMC become ever greater.

• Consider drawing samples from                      where neither                                                             

are definitely known. 

• We might, though, know what these parameters should be, plus or                                                        

minus some uncertainties.

• For example, we might say 

• How would we update these beliefs as we observe more and more realisations of X? 

2~ ( , )X N μ σ 2 nor μ σ

2~ (10,0.5) and ~ (0.1,0.0001).μ N σ N



Faculty of Science

Bayesian Inference

• Given observations of X,                            , our posterior belief of  the values of                 is

• The denominator is hardly trivial to calculate…

• Using Metropolis-Hastings, however, we would only ever need to calculate the numerator, 

which requires no integration and into which proposed values for                 could simply be 

plugged.
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Bayesian Inference: Conjugate Priors

• In some cases, we can choose a prior which gives a simple form for the posterior distribution 

which can sidestep the need for MCMC (or similar) methods.

• Consider again our flipping of a coin which lands Heads with probability     for some unknown   .

• Given     , the likelihood of a given sequence of outcomes                             is                                  

                                   where k is the number of times Heads was observed.

• If we do not know    , but have no reason to believe (before any observations) that it is not close 

to 0.5, we may choose a prior distribution which has expectation 0.5.

   θ    θ

   θ
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Bayesian Inference: Conjugate Priors

• Recall the beta distribution, with density function                                                                          

which takes values on [0,1]. 

(Note                                                                                                                        and for 

all                              )

•  The expectation of this is easy to calculate
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Bayesian Inference: Conjugate Priors

• When examining Bernoulli trials (and hence Binomial distributions), it is often desirable to use a 

beta prior on the probability parameter.

• Since the likelihood is                                , then setting a prior of

    gives a posterior proportional to 

•  This therefore gives a posterior which is also beta distributed,                                             .

• This has expectation                 .

• If we set a large                , this is              , however as n and k get bigger, it is         .
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Bayesian Inference: Conjugate Priors

• We say that a distribution is a conjugate prior for a given likelihood function if it results in a 

posterior distribution which is of the same form (usually with updated parameters.)

• We have already seen that if                      then                         is a conjugate prior since we get 

a posterior distribution                                             (where X contains k 1s and n – k 0s.)

• Other conjugate priors include, for                     where     is known but     is uncertain,                     

.

• Although not simple to derive, this gives a posterior of 
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Conjugate Priors: Example

• Suppose that it is known that faults                                                                

arise in a system at the instants of a                                                                    

Poisson process where the rate of                                                                     

this process is not known.

• This means that the time between                                                             

successive arrivals are independent                                                           

realisations of an             variable                                                                        

for some unknown    .

• Initially, the prior belief is that                          i.e. it is thought that    is probably 

around 0.5, but that there is some uncertainty around this value. As 

observations become available, this belief is updated.
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Conjugate Priors: Example

• Suppose now that observations of the 

interarrival times                     are 

recorded.

• If     were known, we could work out 

the likelihood of obtaining the 

observations we did.

• Bayes’ theorem gives 
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Conjugate Priors: Example

•  

• This tells us that, building in the 

information from the observations, the 

posterior belief is 
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Conjugate Priors: Example

• Since the posterior distribution 

   is also of a form proportional to

   we note that our posterior  distribution after  

  observing the data is 
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Conjugate Priors: Example

• For example, if we had observations

                    

  our posterior belief about

• As the expectation of a                                     is       , our smaller than expected 

observations of w led to our belief in the rate parameter increasing.
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Conjugate Priors: Example

• A negative binomial variable with range                        can be considered as the sum of r 

independent identically distributed geometric random variables. It describes how many 

independent identically distributed Bernoulli variables must be observed until r successes (1s) 

have been observed.

• For                            , the probability mass function is

{ , 1, 2,...}r r r+ +

~ ( , )N NegBin r p

( 1)!
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( 1)!( )!( ) ( )
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r n rn
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Conjugate Priors: Example

• Consider a series of observations of 

• The likelihood of this sample (assuming r is known) would then be

                                                                     (assuming each                               )

• We now consider quantifying our uncertainty about the value of p. Initially, we place a prior 

belief on p,                        since this only takes values on [0,1].

•  

• We can show that this is, in fact, a conjugate prior.
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Conjugate Priors: Example

•                                  

•  

• This gives a posterior density of

• As both the prior and posterior distribution are beta distributed, the prior is a conjugate prior for 

negative binomial outcomes.
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