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Simulating Discrete Events

« We saw in Lecture 1 how we could use realisations of a U[0,]] variable to simulate
realisations of flipping a fair coin.

» Using a realisation, u, of a U[0,1]
variable, if we call the outcome
Heads if u<0.5 and Talils if f(x) | Heads — |

u > 0.5 then we have a random
experiment which returns Heads
or Tails, each with probability 0.5. 9 1 <

<« Talls

X ~U[0,1]

v .
'5;4 U Ts Faculty of Science



Cumulative Probability Functions

« For a discrete random variable X with probability mass function f(x) =P (X =Xx), the
cumulative probability function is defined as F(x) =P(X <x)=> P(X =k) .

 In other words, for any input, the function gives the value that the random variable takes a
value less than or equal to that input.

* For example, consider the random variable X which takes the value of the number shown

when rolling one regular fair six-sided die. (1/6 k=1
1/6 k=2
1/6 k=3
* The probability mass function is clearly P(X =k)=:1/6 k =4
1/6 k=5
1/6 k=6

O otherwise
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Cumulative Probability Functions

* When rolling a die, there is no chance of a result < 1.
« The chance of aresult <2 is 1/6.
 The chance of aresult <3is 2/6 (or 1/3.)

(1/6 k=1 [0 Kk e(—xl)
1/6 k=2 1/6 kell2)
1/6 k=3 1/3 ke[23)
e For P(X=k)=<1/6 k=4 ,wehave P(X<k)=41/2 kel[3,4)
1/6 k=5 213 ke[4,5)
1/6 k=6 5/6 ke[5,6)
| 0 otherwise | 1  ke[6,0)
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Cumulative Probability Functions

 Plotting up the cumulative probability function:

) 1.0 -
0 ke(-xl
1/6 ke[12) 0.8 -
1/3 ke[2,3)
P(X<k)={1/2 kel[3,4) 06
2/3 ke[4,5) 04 -
5/6 kel5,6)
| 1  ke[6,0) 0.2 -
2 a4 o0 7 8 9
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Cumulative Probability Functions

« We can generate realisations of a discrete random variable X from realisations of a U[0,]1]

variable and the cumulative probability function
1.0

 Given a realisation ,u. of U[0,]] 0.8 -
we generate a realisation x. of X
wherex. =min{k : P(X <k)>u.}
0.4 -
« For example, with the die example, 0.0

a realisation u, =0.571 would give
X =4. ‘
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Cumulative Probability Functions

« For a continuous random variable with probability density function f(x) , the cumulative
probability function F(x) is defined as P(X < x).

« Just as a cumulative probability function for a discrete random variable is obtained by
summing all probabilities up to and including a given value, the cumulative probability function
Involves integrating all probability density up to and including a point.

. This gives P(X gx):F(x):j f(t)dt .
+ Similarly, if we know F(x), we can easily obtain f(x) since E(x) = J f(t)dt implies that
dF(x)

f(x)= o
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Example: Uniform Random Variable

« Maybe the simplest type of continuous
random variable is the uniform variable. f(X)

« Fora<b if X ~UJ[a,b] then X takes a value
between a and b such that X is equally 1
likely to be any two intervals of equal width. b-a

1

 Thatis f(x)=<b X €la,b]

—a a b X
0 otherwise

L
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Example: Uniform Random Variable

« We can see that this is a valid density
function since f(x)

j f(x)dx = If(x)dx j—d _[

* The expectation of this is

& P C[° X HERS ’ (b*-a®)| b+a
ijf(X)dX_jaXf(x)dX_jab—adx_[Z(b—a)} {Z(b a)} 2




Example: Uniform Random Variable

F(x)
* The cumulative probability function of X
Is therefore
X<a 1
j fdt =4 [ —2-dt  xefab] b-a
—00 a b _a
1 X>Db
k F(X) a b X
1
0 Xx<a 0 X <a
:<|:L} Xel[a,b] =7 X~a X €[a,b]
b-a], b-a
1 X>Db 1 X>Db
a b X
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Simulating Continuous Random Variables

We can generate realisations of a discrete random variable X from realisations of a U[0,]]
variable and the cumulative probability function

: L F(X
 Given a realisation u, of U[0,]] , SE
we generate a realisation x. of X
_ ! 0.8 -
where u. =F(x.). J
S . 0.6 - :
« We do this via finding the inverse I
function for the cumulative 04 1
function. :
0.2 - l
« We set x =F(u. I -1
| ( I) I C [ \v XI -~ F (UI) [
-2 0 2 4 6 8
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Example: Exponential Random Variables

« Arandom variable W ~exp(A)is an exponential random variable if it has the density function
-Aw
Fw) = Ae We[O,f)o)
0 otherwise

|t is commonly used to model inter-event times, when events occur independently of each
other in time.

« For example, if hospital admissions occur independently of each other, but with an average
rate of A per hour, then the time between two successive admissions (in hours) ~exp(A) .

* Integration by parts gives the expectation of the variable as E(W ) = j wAe " dw =

0
o0 2 0 0 _ o0
_[WAe‘AWdW _| W o | je‘Ade _04+|-S —
0 2 0 A,

0
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Example: Exponential Random Variables

« The cumulative probability function of W ~exp(A) is therefore

Vj:of(t)dt :IAe‘”dt =[] =1-em FW)

0

 To generate realisations of W ~ exp(A) 0.8 -
from U[O,]] realisations, we need to invert 0.6 -
F(w). '
0.4 -
« F(w)=1-e ™ hence e™ =1-F(w). 0.2
) In(1-F W
« Taking the logarithm of both sides gives —Aw =In(1- F(w)) hence w =— ( _A (w)) :
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Example: Exponential Random Variables

* We have that F_l(w):_ln(l—w) :
A
« We therefore generate a realisation F(W)l :
of W by from a realisation of U[0,1], u,
0.8 -
IN(1—u)
by w =-—= 0.6

« For example, a realisation of W ~exp(3) 0.4 -
corresponding to u, =0.451 would be

w :-'”(1‘3'451) ~0.200. 0
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Example

 Let Z be a continuous random variable
with probability density function

f(z) 15
(z  z<[0]]

f(z2)=105 ze[3,4] -

| 0 otherwise 05 m

« Clearly, there is no probability that Z is_2

D

below O and it is certain that Z is no 0 2 4 7 ©
greater than 4 hence
0O z<0 . :
F(Z)=P(Z<2)= 1 4 We integrate to find the other values.
Z >
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Example

 For z<[0,]]

: . 1., 1
F(z)=|f(t)dt = [tdt =| =t? | = =72 f(z) 1.
o-fomfu-[3] 2 w0
1
1 1
e« Forze[13], F(z2)==2°| ==
2 |, 2 0.5 m
For z <[3,4] F(z)—1+jf(t)dt 8
or ’ ’ _2 ) _2 O 2 4 6
. Z
:£+jldt:£+|:£:| :l+ﬁ
2 32 2 2], 2 2
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Example

« Overall, this gives

F(z) 1

0 z<0 0.75
%22 z [0,1] 0.5
0.25

F(z)=P(Z<2)=1

N | =

z €[13]

P

N
I
N
1
N
o
N
I
o

Z €[3,4]

- |

Z>4

v
@ U Ts Faculty of Science



Example (0 z<0

12 e[0,1] { 17
2 V22 z 6[0,5
* Inverting F(z)=P(Z<2z)=" % z €[13] we obtain F(z) =+ 1 Z
_ 2Z+2 Z e[—,l
—— z¢€[3,4] - -
2
1 z>4

\

- We could therefore generate realisations of Z by simulating realisations {u,,u,,u,,...} of U[0,]1]

2U U €|0,—

and setting 4 =1 T
2U. +2 U e 5’1

.
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Pareto Distribution
* Aless commonly-seen variable is the Pareto variable.

« Named after the Italian economist Vilfredo Pareto, it is used to
characterise strongly skewed data i.e. ones where small values
are extremely likely and very large ones are extremely rare.

« Used in actuarial science and insurance modelling — for
example, minor scrapes and car accidents are very common but
low cost. Natural disasters (bushfires, earthquakes etc) are very
rare but hugely costly.

* |t also describes the size distribution of living organisms. For Vilfredo Pareto
example, in the oceans, there are many billions of zooplankton 1848-1923
for each fish and many billions of fish for each whale etc. ( ) )
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Pareto Distribution

f(y)
e |If Y ~Pareto(m,a) then (for m>0,a > 0)
Ty )
f(y) = ya+l !
| 0 otherwise
« We can verify that this is a valid density m y

0 0 o0 amd ama x ama
function, since j f(y)dy =I f(y)dy =j -ady = {— . } = O—L— . ) =1
—0 m m Y ay 0 am
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Example: Pareto Distribution

« The cumulative probability of Y ~ Pareto(m,a) is therefore

y y a y . y a
F)= | fwat= [ St - am" | 11dt:am"[ 1} —amt| L L m
—00 m mta+ ata m a ya

* Inverting F(y)= {1— ma } gives ma =[1-F(Y)] hence m® ye
y y [1-F(y)]
« We therefore have that the inverse functionis F(y) = m -
[1-y]e
m
« To generate realisations of a Pareto variable, we would simply evaluate F~'(u) = T
where u is drawn from a U[0,1] variable. [1—u]5

v
'5;4 U Ts Faculty of Science



Acceptance-Rejection Methods

* We have already seen the convolution method, which allows us to simulate realisations of one
random variable by summing other (easier to simulate) variables.

« We saw that a realisation of a binomial variable Bin(n,p) could be obtained by summing n
iIndependent realisations of a Bernoulli variable, Bern(p).

« Convolutions are used when summing a known number of variables.

* |In some cases, we instead wish to see how many variables need to be summed before some
criterion iIs reached.

 For example, counting how many independent realisations of a Bern(p) variable until the first
1 is seen would give a realisation of a geometric variable Geo(p).
 These are acceptance-rejection methods.
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Poisson Distribution
« A Poisson variable X ~Poi(A) is closely related to an exponential variable W ~ exp(A) .

« If events occur independently of each other, with expectation A per unit time, then X gives the
total number of events in unit time and W gives the time until the next event.

 We can therefore use simulated realisations of W to obtain realisations of X.

« We repeatedly simulate from W ~ exp(A) variables and “accept” the next arrival only if it does
not take the total time past 1. We stop this process when we first have to reject an arrival.

* This is considerably simpler than simulating directly (e K
from a Poisson probability mass function PN =k)={ ki ke{0123,..}
0 otherwise
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Poisson Distribution

« For example, consider realisations of X ~exp(4) which give
X, =0.0198,x, =0.4127,x, =0.2557,x, =0.1207,X, =0.4655

» This gives the first arrival after 0.0198, the second after 0.0198 + 0.4127 = 0.4325 and so
on...

» The fourth arrival comes after x, + X, +X; +x, =0.8089.

* The fifth comes after 0.8089 + x, =0.8089 +0.4655 =1.2744

« This implies only four events occur during unit time, hence our realisation of X ~Poi(4) is x = 4.
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