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• We saw in Lecture 1 how we could use realisations of a            variable to simulate 

realisations of flipping a fair coin.
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• Using a realisation, u,  of a           

variable, if we call the outcome 

Heads if               and Tails if               

, then we have a random 

experiment which returns Heads 

or Tails, each with probability 0.5. 

Simulating Discrete Events
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• For a discrete random variable X with probability mass function                          , the 

cumulative probability function is defined as                                                  .

• In other words, for any input, the function gives the value that the random variable takes a 

value less than or equal to that input.

• For example, consider the random variable X which takes the value of the number shown 

when rolling one regular fair six-sided die.

• The probability mass function is clearly
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• When rolling a die, there is no chance of a result < 1.

• The chance of a result  < 2 is 1/6.

• The chance of a result  < 3 is 2/6 (or 1/3.)

• For                                            , we have

Cumulative Probability Functions
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• Plotting up the cumulative probability function:

Cumulative Probability Functions
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• We can generate realisations of a discrete random variable X from realisations of a            

variable and the cumulative probability function                            .

• Given a realisation , 

we generate a realisation 

where

• For example, with the die example,

a realisation                   would give

Cumulative Probability Functions
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Cumulative Probability Functions

Faculty of Science

• For a continuous random variable with probability density function f(x) , the cumulative 

probability  function F(x) is defined as                .

• Just as a cumulative probability function for a discrete random variable is obtained by 

summing all probabilities up to and including a given value, the cumulative probability function 

involves integrating all probability density up to and including a point.

• This gives                                              .

• Similarly, if we know  
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Example: Uniform Random Variable
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• Maybe the simplest type of continuous 

random variable is the uniform variable.

• For                              then X takes a value 

between a and b such that X is equally 

likely to be any two intervals of equal width.

• That is 
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Example: Uniform Random Variable

Faculty of Science

• We can see that this is a valid density 

function since

• The expectation of this is
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Example: Uniform Random Variable
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• The cumulative probability function of X

is therefore
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Simulating Continuous Random Variables
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• We can generate realisations of a discrete random variable X from realisations of a            

variable and the cumulative probability function        

• Given a realisation                    , 

we generate a realisation     of X

where                  .

• We do this via finding the inverse 

function for the cumulative

function.

• We set
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• A random variable                    is an exponential random variable if it has the density function

• It is commonly used to model inter-event times, when events occur independently of each 

other in time.

• For example, if hospital admissions occur independently of each other, but with an average 

rate of     per hour, then the time between two successive admissions  (in hours)               .

• Integration by parts gives the expectation of the variable as

Example: Exponential Random Variables
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• The cumulative probability function of                     is therefore

• To generate realisations of                    

from           realisations, we need to invert

F(w).

• hence                         .

• Taking the logarithm of both sides gives                               hence                               .

Example: Exponential Random Variables
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• We have that                                 .

• We therefore generate  a realisation 

of W by from a realisation of U[0,1], u, 

by

• For example, a realisation of  

corresponding to                  would be 

Example: Exponential Random Variables
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Example

Faculty of Science

• Let Z be a continuous random variable 

with probability density function

• Clearly, there is no probability that Z is 

below 0 and it is certain that Z is no 

greater than 4 hence
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• Overall, this gives
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• Inverting

• We could therefore generate realisations of Z by simulating realisations                                 

and setting
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Pareto Distribution
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• A less commonly-seen variable is the Pareto variable.

• Named after the Italian economist Vilfredo Pareto, it is used to 

characterise strongly skewed data i.e. ones where small values 

are extremely likely and very large ones are extremely rare.

• Used in actuarial science and insurance modelling – for 

example, minor scrapes and car accidents are very common but 

low cost. Natural disasters (bushfires, earthquakes etc) are very 

rare but hugely costly.

• It also describes the size distribution of living organisms. For 

example, in the oceans, there are many billions of zooplankton 

for each fish and many billions of fish for each whale etc.

Vilfredo Pareto 

(1848-1923)



Pareto Distribution
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• If

• We can verify that this is a valid density

function, since
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Example: Pareto Distribution
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• The cumulative probability of

• Inverting                             gives 

• We therefore have that the inverse function is

• To generate realisations of a Pareto variable, we would simply evaluate                               

where u is drawn from a U[0,1] variable.
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Acceptance-Rejection Methods

• We have already seen the convolution method, which allows us to simulate realisations of one 

random variable by summing other (easier to simulate) variables.

• We saw that a realisation of a binomial variable                could be obtained by summing n

independent realisations of a Bernoulli variable,              .

• Convolutions are used when summing a known number of variables. 

• In some cases, we instead wish to see how many variables need to be summed before some 

criterion is reached.

• For example, counting how many independent realisations of  a               variable until the first 

1 is seen would give a realisation of a geometric variable

• These are acceptance-rejection methods.

( , )Bin n p

( )Bern p

( )Bern p
( ).Geo p
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Poisson Distribution

• A Poisson variable                   is closely related to an exponential variable                    .

• If events occur independently of each other, with expectation     per unit time, then X gives the 

total number of events in unit time and W gives the time until the next event.

• We can therefore use simulated realisations of W to obtain realisations of X.

• We repeatedly simulate from                    variables and “accept” the next arrival only if it does 

not take the total time past 1. We stop this process when we first have to reject an arrival.

• This is considerably simpler than simulating directly                                                               

from a Poisson probability mass function

~ ( )X Poi λ ~ exp( )W λ

    λ

~ exp( )W λ

{0,1,2,3,...}
( ) !

0 otherwise

λ ke λ
k

P N k k

−


= = 





Faculty of Science

Poisson Distribution

• For example, consider realisations of                    which give 

• This gives the first arrival after 0.0198, the second after 0.0198 + 0.4127 = 0.4325  and so 

on…

• The fourth arrival comes after                                         . 

• The fifth comes after

• This implies only four events occur during unit time, hence our realisation of           

~ exp(4)X

1 2 3 4 50.0198, 0.4127, 0.2557, 0.1207, 0.4655x x x x x= = = = =

1 2 3 4 0.8089x x x x+ + + =

50.8089 0.8089 0.4655 1.2744x+ = + =

~ (4) is 4.X Poi x =


