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• So far, we have only looked at distributions of a single random variable. These are 

univariate distributions.

• For a discrete random variable, we can define the distribution by its associated probability 

mass function.

• For a continuous random variable, we can define the distribution by its associated 

probability density function.

• In many situations, however, we have multiple variables defined from the same random 

experiment.

Univariate Distributions
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• Consider the random experiment of flipping three fair coins and recording the outcomes.

• Let X be the number of Tails observed on the first two flips.

• Let Y be the number of Tails observed on the first three flips.

• The joint distribution of X and Y is the probability distribution that the ordered pair (X,Y) 

takes a given pair of values.

• For the discrete case here, we have the joint probability mass function                              

over all possible pairs (m,n). 

Multivariate Distributions

(( , ) ( , ))P X Y m n=
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• For this experiment, the range of X is {0, 1, 2). 

• The range of Y is {0, 1, 2, 3}.

• Note, though, that not all pairs of (X,Y) are possible. For example                                  

since we cannot have one Tails in the first two flips but zero in the first three.

• Here, Y can only take values equal to X or one larger than it, since the third flip either adds 

zero Tails to the total or it adds one Tails to the total.

Multivariate Distributions

(( , ) (1,0)) 0P X Y = =



Faculty of Science

•

• Half of the time X and Y are the same,                                                                                    

and half of the time Y is one larger, hence

• Note, as with univariate cases that the probability masses                                                     

must be non-negative and must sum to one.

Multivariate Distributions
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• We can visualise a bivariate distribution 

(i.e. a multivariate distribution with two 

dimensions) with three dimensional plot, 

similar to how we visualise univariate 

distributions.

Multivariate Distributions
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• The conditional distribution of Y given 

X is defined as 

• We can visualise this by taking a slice 

through the joint density function at a 

fixed X value and renormalising 

Conditional Distributions
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•

Conditional Distributions
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•

Conditional Distributions
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•

Conditional Distributions
(( , ) ( , ))
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•

Conditional Distributions
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• The marginal distribution of X, from a joint probability mass function of X and Y is given by

• Unlike the marginal distribution, which assumes knowledge of one (or more) variable, this 

“averages over” our uncertainties in other variables.

• The marginal distribution there will have variance no lower than the conditional distribution.

• This can also be seen from the Law of Total Variance

Marginal Distributions

( ) (( , ) ( , ))
Y

P X m P X Y m n= = =

( ) ( ( | )) ( ( | ))Var Y E Var Y X Var E Y X= +



• We can visualise the marginal 

distribution by summing all probability 

masses along a given axis. 
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Marginal Distributions
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• We can extend the idea of joint probability functions to joint probability density functions

for continuous variables.

• For continuous variables X and Y, we can define                                            and hence we

have a joint probability density function

• As with univariate probability density functions, we have that                                  and 

Joint Density Functions
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• Extending the ideas from discrete variables, we can define the marginal density function

of X as                              .

• The conditional density of Y given X is then

• Both of these definitions extend to the joint densities of more than three continuous

variables as well e.g.                           

Marginal and Conditional Density Functions
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• Consider variables X and Y with joint density function

• We calculate the marginal density of X by integrating over all possible values for Y.

• We can verify that this is indeed a valid density function by integrating (by parts) to show 

that
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• This also gives us that the conditional density of Y given X is

Example
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• Two (or more) random variables are independent if and only if the joint probability density 

or probability mass function factorises into separate functions for each variable.

• For independent discrete variables X and Y, we have                                                             

for all m and n.

• For independent continuous variables X and Y we have that

• For independent variables, the marginal and conditional distributions are the same e.g. 

Independence

( ) ( | )f x f x y=

(( , ) ( , )) ( ) ( )P X Y m n P X m P Y n= = = =

, ( , ) ( ) ( ).X Y X Yf x y f x f y=



Faculty of Science

Distribution of a Function of a Random Variable

• For the discrete case, obtaining the probability mass function for a function of a discrete 

random variable is quite straightforward.

• For example, consider X with mass function                                                   and the 

distribution of            .

• As X is discrete,           is also discrete. 

• X can only take the values 1 and 3 hence           can only take the values 2 and 10.
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Distribution of a Function of a Random Variable

• implies that

• Note that, when the function transforming the variable is not 1-to-1, we sometimes have to 

combine masses.

• For example                                                   implies that
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• The situation was more complicated for a continuous random variable.

• If we consider integration by substitution, we have that, given a definite integral 

• This gives that the density function of Y(X) is given by                                .

• Note, this assumes that f is one-to-one and                   , but similar statements hold when 

these assumptions are not met.
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Distribution of a Function of a Random Variable
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• We can extend these ideas to two (or more) variables.

• Given continuous random variables X and Y and a continuous invertible function g such 

that                           then the joint distribution of S and T is given by

and J is the Jacobian matrix of this transformation, given by
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Distribution of a Function of Random Variables
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• Let X and Y be independent uniform random variables, 

•

• Since they are independent, the joint density function is just the product of the two density 

functions hence

• We can calculate the distribution of 
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Distribution of a Function of Random Variables
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• Inverting                                to make X and Y the subjects, we obtain

• We know the distributions of

• The Jacobian is

• The determinant of the Jacobian is therefore   
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Distribution of a Function of Random Variables
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• We now wish to calculate 

• Since                                  we have that the density function is only non-zero when 

•

• More fully, we have that
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Distribution of a Function of Random Variables
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• Just as we can extend the idea of a single Bernoulli variable to binomial variables by 

summing independent Bernoulli variables, we can sum exponential random variables to 

obtain gamma variables.

• That is, if we have                      each                 , then for integers 

• The density function of S is given by 

• Note that 
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Gamma Distribution
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• Depending on the parameters, the 

gamma distribution can have very 

different shapes.

• Additionally, the definition of a gamma 

distribution can be extended to non-

integer 

•
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Gamma Distribution
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• Consider two independent gamma variables,

• We can calculate the distributions of 

• Making X and Y the subjects of these equations, we obtain

• The Jacobian here is

• This gives 
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Distributions of Functions of Gamma Variables
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• The joint density function of X and Y is therefore

• This gives

• Rearranging , we see
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Distributions of Functions of Gamma Variables
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• factorises into a

function in S which does not depend on R and one in R which does not depend on S.

• R and S are therefore independent. 

• Furthermore, they each have a standard distribution.
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Distributions of Functions of Gamma Variables
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•

•
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Distributions of Functions of Gamma Variables
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•

•

• We will see more of the beta distribution later in the subject in the context of Bayesian 

statistics.

• Here, we have proven that it can be obtained by taking the ratio one gamma variable to the 

sum of itself and an independent gamma variable.
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Distributions of Functions of Gamma Variables
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