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Univariate Distributions

« So far, we have only looked at distributions of a single random variable. These are
univariate distributions.

« For a discrete random variable, we can define the distribution by its associated probability
mass function.

* For a continuous random variable, we can define the distribution by its associated
probability density function.

* |n many situations, however, we have multiple variables defined from the same random
experiment.
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Multivariate Distributions

« Consider the random experiment of flipping three fair coins and recording the outcomes.
« Let X be the number of Tails observed on the first two flips.
* LetY be the number of Tails observed on the first three flips.

« The joint distribution of X and Y is the probability distribution that the ordered pair (X,Y)
takes a given pair of values.

» For the discrete case here, we have the joint probability mass function P((X,Y)=(m,n))
over all possible pairs (m,n).
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Multivariate Distributions

« For this experiment, the range of X is {0, 1, 2).
« Therange of Yis {0, 1, 2, 3}.

* Note, though, that not all pairs of (X,Y) are possible. For example P((X,Y)=(10))=0
since we cannot have one Tails in the first two flips but zero in the first three.

« Here, Y can only take values equal to X or one larger than it, since the third flip either adds
zero Talls to the total or it adds one Tails to the total.
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Multivariate Distributions

(025 m=0
0.5 m=1
* X ~Bin(2,0.5) hence P(X =m) =+
025 m=2
| 0 otherwise

(0.125 (m,n)=(0,0)
0.125 (m,n)=(0,1)

« Half of the time X and Y are the same, 025 (m,n)=(11)
and half of the time Y is one larger, hence P((X,Y)=(m,n))=< 0.25 (m,n)=(12)

0.125 (m,n)=(22)

* Note, as with univariate cases that the probability masses 0.125 (m,n)=(2,3)
must be non-negative and must sum to one. . 0 otherwise
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Multivariate Distributions

 We can visualise a bivariate distribution
(i.e. a multivariate distribution with two

0.125 (m,n)=(0,1) 0
0.25 (m,n)=(11
P(X,Y)=(m,n))=4 0.25 (m,n)=(1,2) Y
0.125 (m,n)=(2,2)
0.125 (m,n)=(2,3)

0 otherwise
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dimensions) with three dimensional plot, ©-2 ,
similar to how we visualise univariate 0.15 yF =
distributions. 01 : . 5
(0.125 (m,n)=(0,0) (5 /
. X
0)




Conditional Distributions

« The conditional distribution of Y given
X Is defined as 0-25
0.2
P((X.Y)=(m,n)) |
PY=n|X=m)= 0.15 .
(Y | ) P(X — m) ﬁ z . :/:.;”,
0.1 , 2
« We can visualise this by taking a slice  0.05 %
. . . X
through the joint density function at a 0 ////
fixed X value and renormalising 0
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Conditional Distributions

P((X,Y)=(m,n))
0.25 0.25

* PY=n|X=0)=

===
0.6 01 . | 5
#7 005 / . 77 1 x
0.4 s D V227
0




Conditional Distributions
P((X,Y)=(m,n))

+ P(Y=n|X=1-=

0.5
0.6 2
0.4 X
0.2
Y
0
0 1 2 3
Y|X=1
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Conditional Distributions

. _ o P((X,Y)=(m,n))
PY=n|X=2)= 055 0.95
0.2
0.15
0.6 0.1 2
0.05
0.4 X
0
0.2
-
0 &
0 1 2 3
Y| X =2
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Conditional Distributions

P((X,Y)=(m,n))
* P(X=m|Y =2)=
( | ) 0.375 0.25
0.2 ,
015 =g
0.9 0.1 7/ 7 ,
0.05 / b
0.6 0 /4//4 ’/;///7/ X
’ 0
0.3 ,,O’ 1 2 3
2~ Y
0
0 1 2
XY =2

v
@ U Ts Faculty of Science



Marginal Distributions

 The marginal distribution of X, from a joint probability mass function of X and Y is given by

P(X=m)=> P((X,)Y)=(m,n))

« Unlike the marginal distribution, which assumes knowledge of one (or more) variable, this
“averages over’ our uncertainties in other variables.

« The marginal distribution there will have variance no lower than the conditional distribution.

* This can also be seen from the Law of Total Variance Var(Y)=ENar(Y | X))+Var(E(Y | X))
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Marginal Distributions

« We can visualise the marginal

distribution by summing all probability 0.25
masses along a given axis. 0.2
0.15
0.4
0.1 ,
0.3 0.05 «
0
0.2

1

N [
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Joint Density Functions

« We can extend the idea of joint probability functions to joint probability density functions
for continuous variables.

 For continuous variables X and Y, we can define F(x,y)=P(X <xY <y) and hence we

O°F(X,y)

have a joint probability density function f(x,y) =
OXoy

 As with univariate probability density functions, we have that j jf(x,y) dxdy =1 and

—00 —00

P(X c[a,b]NY <[c,d]) :”f(x,y) dxdy
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Marginal and Conditional Density Functions

« Extending the ideas from discrete variables, we can define the marginal density function

of X as f(x) = Jf(x,y) dy .

f(X,y)
f(x)

- The conditional density of Y given X is then f(y|x)=

« Both of these definitions extend to the joint densities of more than three continuous

variables as well e.g. f(x) = j jf(x,y,z) dydz and f(x,y | z) = f(?’(y;Z)
Z

—00 —00
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Example

2x°e”  (x,y)<€[0,2F

 Consider variables X and Y with joint density function f(x,y)= _
0 otherwise

« We calculate the marginal density of X by integrating over all possible values for Y.

X X

1 1 o Tt <1
100 = [0y =2¢° ey = ZXZ[e } _ 2x2£e j ox(e* 1)
0 0

0

« We can verify that this is indeed a valid density function by integrating (by parts) to show
1

that j (x)dxX = j 2x(e* ~Ddx =[ 2x(e" - x) | - [2(e* - x)dx

=[2x(e* -%)] - c:)ZeX -x2| =2(e-1)-(2e-1-2)=1
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Example

« This also gives us that the conditional density of Y given X is

f(x,y) 2x%®  xe¥
f(x) _2x(ex—1)_(ex—1)

f(y [x)=
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Independence

« Two (or more) random variables are independent if and only if the joint probability density
or probability mass function factorises into separate functions for each variable.

» For independent discrete variables X and Y, we have P((X,Y)=(m,n))=P(X =m)P(Y =n)
for all m and n.

« For independent continuous variables X and Y we have that fxy (X,y) =f, (X)f, ().

« For independent variables, the marginal and conditional distributions are the same e.g.
F(x)=1(x]y)
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Distribution of a Function of a Random Variable

« For the discrete case, obtaining the probability mass function for a function of a discrete

random variable is quite straightforward.

0.3 k=1
« For example, consider X with mass function P(X =k)={0.7 k=3 andthe
distribution of X% +1 . | 0 otherwise

 As X is discrete, X? +1 is also discrete.

- X can only take the values 1 and 3 hence X* +1can only take the values 2 and 10.
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Distribution of a Function of a Random Variable

(0.3 k=1
« P(X=k)=40.7 k=3
| 0 otherwise

(0.3 k=2
implies that P(X* +1=k)=40.7 k=10
| 0 otherwise

« Note that, when the function transforming the variable is not 1-to-1, we sometimes have to

combine masses.

» For example P(Y =k) =+

0.3
0.3
0.4
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| O

k=1
k=-1

2 implies that p(Y? +1=k) =+

otherwise

(0.6 k=2
0.4 k=10
| 0 otherwise



Distribution of a Function of a Random Variable

« The situation was more complicated for a continuous random variable.

* |If we consider integration by substitution, we have that, given a definite integral
y(b)

b b
| = jf(x) dx and a continuous differentiable function y(x) then | = _[f(x) dx = j f(y)d—x dy

y(a)

 This gives that the density function of Y(X) is given by g(y) =f(x(y))x'(y).
« Note, this assumes that f is one-to-one and y(b) > y(a), but similar statements hold when

these assumptions are not met.
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Distribution of a Function of Random Variables

« We can extend these ideas to two (or more) variables.

« Given continuous random variables X and Y and a continuous invertible function g such

that (X,Y)=g(S,T) then the joint distribution of S and T is given by

fs+(s,t) =1y, (gl(s,t),gz(s,t))|detJ| where g, and g, are the two spatial components of g

a9, 99,
and J is the Jacobian matrix of this transformation, given by J = 0s 08
a9, 99,
ot ot
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Distribution of a Function of Random Variables

« Let X and Y be independent uniform random variables, X ~UJ[0,1] and Y ~UJ0,1].

1 xe[0,]]
O otherwise

1 vyel[0]]
0 otherwise

. fx(x):{ and fY(y):{

« Since they are independent, the joint density function is just the product of the two density
1 (x,y)e[0,1°

functions hence fyxy (X,y)= |
O otherwise

« We can calculate the distribution of T = XY.
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Distribution of a Function of Random Variables

Inverting S = X and T = XY to make X and Y the subjects, we obtain X =S and Y = g

We know the distributionsof X =S and Y = 1§—

0 o(T

56 =ls)| [t e
e The Jacobianis J = _ )

0 o (T

— (S —| — 0o =

8T( ) oT \ S S

. o 1
The determinant of the Jacobian is therefore det(J) = S
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Distribution of a Function of Random Variables

We now wish to calculate f_(t)= j‘fs’T (s,t) ds = jfx,v (9.(s,1),9,(s,t))|detJ| ds.

—00

Since Y =g and 0 <Y <1 we have that the density function is only non-zero when T <S <1.

f(t)= foy (9,(s,1),9,(s,t))|det | ds = jlxlx% ds = [In(s)]t1 =—In(t)

—In(t) te(0,]
0 otherwise
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Gamma Distribution

« Just as we can extend the idea of a single Bernoulli variable to binomial variables by
summing independent Bernoulli variables, we can sum exponential random variables to
obtain gamma variables.

« That s, if we have W,,W,,W,,... each ~exp(B) , then for integers a > 0.

S= iwi ~Gamma(a, B)

a G 1
_ _ o 'B S €[0,)
* The density function of S is given by f(s)=< (a-1)!

0 otherwise

L

* Note that S ~Gamma(l,8) and S ~ exp(B) are equivalent.
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Gamma Distribution

1.6
« Depending on the parameters, the 1.4 Gammay(2,4)

gamma distribution can have very f(s) 1.2
different shapes. 1
« Additionally, the definition of a gamma 0.6 Gamma(l1)
distribution can be extended to non- 0.4 Gamma(2,1)
integer a 0.2 —_ — _
0
B0 s eow) e e O
- f(s)= [(a) ’ s © S - e NI S
0 otherwise

where (a) = _[s“‘le‘ﬁsds =(a -1)! when a is a positive integer.
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Distributions of Functions of Gamma Variables

- Consider two independent gamma variables, X ~gamma(a,,1) and Y ~ gamma(a, ,d).

 \We can calculate the distributionsof S= X +Y and R =

X+Y
« Making X and Y the subjects of these equations, we obtain X =RS and Y =(1-R)S.
0 0
—(RS) —((1-R)S
55 (RS) 55 (@-RS) :(R (1—R)]

0 0 S -5
(RS) (A-R)S)

 The Jacobian here is J =

+ This gives |detJ|=S.
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Distributions of Functions of Gamma Variables

forle!1

o | e Y F (xy)elw)
* The joint density function of X and Y is therefore f,,(x,y)=< l(a,) [I(a y)

| 0 otherwise
a, 1 -rs y_l —(1-r)s
- () e (@) s (s,1) € [0,)x[0,1
» This gives f . (s,r)=+ I(a,) I'(a,)
0 otherwise
( (ay+ay )- 1 _s I— a a
| > (@, +a,) rot1-r)»" | (s,r)e[0,)x[0,1]
- Rearranging , we see fsg(s,r)=4| I(a, +a,) /_(Gx)/_(ay)
0 otherwise




Distributions of Functions of Gamma Variables

( (ay+ay)-1_ —s I—
s e | 1O o pyt| sy e [0,00)x[0,1]
[(a,+a,) || '(a,)(a,) factorises into a

° fS,R(S,I')=<

0 otherwise

function in S which does not depend on R and one in R which does not depend on S.

R and S are therefore independent.

« Furthermore, they each have a standard distribution.
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Distributions of Functions of Gamma Variables

o« fsp(sir)=1| MNa, +a,)

« for(s:r)=15(s)fz(r) where f (s) =

and f,(r) =+

0

’ S(ax+ay)—1e—3 /_(GX +Gy) a1 a1
{ Hr(ax)r(ay)r L-r)*"| (sr)e0,%)x[0]

otherwise
[ <(@ray)-1 s
> © S €[0,)
[(a,+a,)
| 0 otherwise
[ Ma, +a
 +a,) rt1-r)>"|  rel0q
I(a,)(a,)

0 otherwise



Distributions of Functions of Gamma Variables

r[ S(ax+ay )—1e_s

[{a,+a,)

} S €[0,)

e fi(S)=+ hence S ~gamma(a, +a,,1).

0 otherwise

\

* Rk()=q (@)l (a,)

r [(a,+a,)
hence R ~Beta(a,,q, ).

- r)“yl} r [0,1]

0 otherwise

« We will see more of the beta distribution later in the subject in the context of Bayesian
statistics.

« Here, we have proven that it can be obtained by taking the ratio one gamma variable to the
sum of itself and an independent gamma variable.
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