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Normal Distribution

• The most commonly seen variables used in statistics 

are Normal or Gaussian variables. 

• This is the classic “bell curve” shape.

• If the variable                                             , then the 

density function of Z is

Karl Friedrich Gauss 

(1777 – 1855)
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Normal Distribution

• Although always “bell curve” shaped and 

symmetric about its mean value, the 

exact shape and position of the curve 

depends on two parameters.

• A larger     shifts the centre of the           

curve upwards. A larger       increases     

the variance or the spread of the 

observations, so widens the curve.

• is often called a standard 

normal variable.
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Central Limit Theorem

• The main reason that the normal distribution is so important to many statistical problems is the 

central limit theorem.

• The central limit theorem states that, if                     are independent variables, each drawn 

from the same distribution with                                                      , then the variable

• In other words, whatever distribution (with finite mean and variance) samples are drawn from, 

eventually the quantity                    is asymptotically normally distributed for large n.
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Central Limit Theorem

• A formal proof of the central limit theorem is beyond the scope of this subjecy, but we can see 

a few examples of why it works                                                                                               

for some distributions we have                                                                                               

already seen.

• Consider n independent variables

• For large n, the binomial histogram                                                                                                     

closely resembles a normal                                                                                                   

curve, centred around its                                                                                                    

expected value of 0.1n.
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• Consider the case where we have a standard normal variable                  .

• We consider the distribution of 

• Clearly     can only take non-negative values.

• Because the mode of X is at zero, the                                                                                 

mode of     is also at zero.

• The distribution of       is chi-squared with one degree of freedom

Functions of Normal Variables
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• We can now calculate the probability density function of                        .

• The density function of X is                           

• Our transformation             is not one-to-one, since, for example

• As the distribution is symmetric about 0, we can instead only consider positive values of X

and then double this up for the negative half of the distribution.

Chi-Squared Distribution
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• Our change of variable formula for one variable is

•

• This gives

• The density function of                is therefore

Chi-Squared Distribution
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• We can now show that the sum of the squares of n independent standard normal variables 

has a chi-squared distribution with n degrees of freedom.

• That is, if                                                            are independent, then

• We will justify that the density function of S is

Chi-Squared Distribution
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• We can already justify that                                                              for          since 

setting         simplifies this to the           density we have already seen (noting that 

• We now need to justify that the sum of                                                                      is itself 

chi-squared distributed with

• By induction, this will justify that this holds for all positive integers m and n.

Chi-Squared Distribution
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• Let                                          be independent random variables.

• Their joint density function is then

• Setting a change of variables                                         we obtain

• The Jacobian associated with this change of variables is therefore

Chi-Squared Distribution
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• Setting                                        and                   into the joint density of S and T,

we obtain  

Chi-Squared Distribution
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• This then simplifies to

• This separates to give two independent variables

Chi-Squared Distribution
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• The density function of

has a very different shape for different                                                                                     

degrees of freedom.

• For                 , the mode is at 0. For more degrees of freedom, the mode is at

• Since                  can be considered as the sum of n independent            variables, 

Chi-Squared Distribution
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• You may have seen a chi-squared variable before in the context of evaluating how well a 

proposed model fits a given dataset.

• This relies on both the central limit theorem and the fact that the square of n independent 

standard normal variables is a           variable.

• Consider the simple example of flipping a coin which we believe to be biased towards Heads. 

We have been told that it will land Heads each flip with probability 0.7. 

• We flip it 40 times and observe 20 Heads and 20 Tails. Should be reject the stated hypothesis 

that it lands Heads with probability 0.7?

Chi-Squared Goodness of Fit Tests

2( )χ n
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• In the most general case, if we hypothesise that a proportion p out of N flips will land Heads 

and we observe m Heads from the experiment, the central limit theorem tell us that the test 

• Note, for a binomial variable

• For  

• Expanding this gives

Chi-Squared Goodness of Fit Tests
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• is of the form 

• This is sometimes called the Pearson statistic, after Karl                                                   

Pearson.

• Provided the central limit approximation holds (usually assuming all                                       

expected counts are at least 5) the Pearson statistic is approximately chi-squared distributed.
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Chi-Squared Goodness of Fit Tests
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• For our example of 40 coin flips, under the null model of Heads with probability 0.7

• The observed counts were                                            

• Our Pearson statistic is therefore

• Comparing this with a chi-square distribution with one degree of freedom, we see that if

• If testing with significance level 0.05 (or even 0.01) we would reject the null hypothesis.

Chi-Squared Goodness of Fit Tests
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• Although a little harder to prove, the Pearson statistic extends to multi-category goodness of 

again summing                   over all possible cells with expectations calculated under the null    

hypothesis.

• In general, if the null hypothesis proposes n proportions which the dataset should fit, we 

have n – 1 degrees of freedom (since the total number of observations is constrained and 

hence all outcomes not included in the first n – 1 categories are surely in the final category.

Chi-Squared Goodness of Fit Tests
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• The other commonly seen null hypothesis for such datasets is that the row proportions and 

column proportions are independent. In this case, a table with r rows and c columns gives 

rise to a chi-squared variable with

• Consider an insurance company which looks at claims, sorted by colour of car.

Chi-Squared Goodness of Fit Tests: Contingency Tables

Red Black Blue

No Claim 320 500 380

Claim 80 100 120

Observed

( 1)( 1) degrees of freedom.r c− −
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• The proportions of each colour are

• The proportion of claim categories are

• Under the null model, for example,  

Chi-Squared Goodness of Fit Tests: Contingency Tables
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• Our Pearson statistic is then

• Comparing this with

• Again, with significance level 0.05 (or even 0.01) we would reject the null hypothesis.

Chi-Squared Goodness of Fit Tests: Contingency Tables

Red Black Blue

No Claim 320 500 380

Claim 80 100 120

2 2 2 2 2 2(320 320) (80 80) (500 480) (100 120) (380 400) (120 100)
9.167

320 80 480 120 400 100

− − − − − −
+ + + + + 

Red Black Blue

320 480 400

80 120 100

Observed Expected

2~ (2), then ( 9.167) 0.990.Y χ P Y  
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• Let us now consider two independent variables

• The joint density of these is therefore

• We now consider the change of variables 

Functions of Normal Variables
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•

• The Jacobian is therefore                      

Functions of Normal Variables

 and  gives  and Z .
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• We can simply this to 

Functions of Normal Variables
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• The marginal density

•

• With change of variables  

Functions of Normal Variables
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• We know that the gamma function is defined such that                             hence 

• Tidying this up, we obtain

Functions of Normal Variables
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• A variable           has a t-distribution or Student’s t-distribution 

with n degrees of freedom and probability density function

• This was developed by William Sealy Gosset, who was studying 

quality control issues at the Guinness brewery in Ireland. He 

published his work under the name “Student.”

• A realisation of a t-distribution can be simulated by taking the 

ratio of a standard normal variable to the square root of a 

t-Distribution
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• The distribution is symmetric about 0 

hence has expectation 0.

• It closely resembles a normal distribution 

curve, but with slightly heavier tails, 

making observations far away from 0 

slightly more likely than in a normal 

distribution.

• As the number of degrees of freedom 

tends to infinity, the distribution 

converges to that of a standard normal.

t-Distribution
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• Later in this subject, when we revisit the fundamentals of linear regression, we will see the t-

distribution.

• If we have a standard regression model                          where the residuals                        

with      unknown, when we estimate this via sample variance, we derive a test statistic for a 

null hypothesis of a given value for      which is calculated as the ratio of a normal variable to 

the square root of a chi-squared variable.

• The resulting test is therefore a t-test.

t-tests

i i iy α βx ε= + +
2~ (0, )iε N σ

2     σ

     β
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Functions of Normal Variables

• Finally, we consider the ratio of two chi-squared variables, each divided by degrees of freedom.

• Let.                                          be independent variables. Their joint density is therefore 

• We now consider the change of variables
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Functions of Normal Variables

• hence

• The joint density of X and Y is then
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Functions of Normal Variables

•

• We now integrate to obtain the marginal density of Y.
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Functions of Normal Variables

• With change of variable                                                                      we obtain
1
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Functions of Normal Variables

• Recognising the integral as evaluating to a gamma function, we see that
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• A variable                    has a F-distribution with m and n

degrees of freedom and probability density function

• This is sometimes called a Fisher distribution, after the 

statistician Ronald Fisher.

F-Distribution

~ ( , )Y F m n

Ronald Fisher

(1890 - 1962)
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F-Distribution

• As it is the ratio of two non-negatively-

valued variables, the F-distribution is 

only non-negatively valued.

• When           , its mode is at zero. For 

larger m, the mode is positive.

• For large m and n, the curve resembles a 

“bell curve” centred around 1. Note, 

though, that it is not symmetric as it can 

only take non-negative values.
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F-Distribution

• The F-distribution is probably best known for its use in ANOVA (analysis of variance), a 

technique developed by Ronald Fisher.

• Because it is used to compare the ratio of the variance between treatments to the variance 

within the same treatment, is it implemented as the ratio of two estimated variances, each of 

which is chi-squared distributed (assuming normality of residuals in the underlying linear 

model.)

• We have shown that the ratio of two chi-squared variables is an F-distributed variable.


