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How Predictable are Random Samples?

• Consider the problem of predicting what value a sample mean might take, given a sample 

size and the distribution from which independent realisations are drawn.

• Assuming that the variance of the distribution is non-zero, we cannot ever know for certain 

what value a sample mean can take.

• We can, though, put some bounds on which ranges of possible values are more or less 

probable.

• Intuitively, sample means from larger samples should be more predictable, as should samples 

from distributions with lower variance.
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How Predictable are Random Samples?

• Consider now a non-negative continuous random variable X with density function f(x) .

• For any          , we have that

• We therefore have that
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Markov’s Inequality

• implies that, for  

• This is Markov’s Inequality.

• This result also holds for discrete random variables.                                                               

The proof is essentially the same, with sums rather                                                                          

than integrals.
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A Related Result

• Let X be any random variable such that                    .

• Consider now the random variable defined as                           .

• By definition, we have that

• Applying Markov’s Inequality to the variable Y (which is non-negative valued, since it is the 

ratio of a squared value to a variance, neither of which can be negative) gives
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Chebyshev’s Inequality

• .

• Noting that                                                                                                                  

we get that                                                   .

• This is Chebyshev’s Inequality.
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(1821– 1894)
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Chebyshev’s Inequality

• Chebyshev’s Inequality                                                    tells    

us that, for variables drawn from any distribution, no more than            

of observations can be expected to lie more than k standard 

deviations above or below the mean.

• For example, no more than 25% of observations can be 

expected be more than two standard deviations away from the 

mean and no more than 6.25% of observations can be 

expected to be more than four standard deviations from the 

mean.
Pafnuty Chebyshev 

(1821– 1894)
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Cantelli’s Inequality

• There is a similar inequality to Chebyshev’s Inequality but only for one-sided differences 

between the a random variable and its expectation. 

• Let X be any random variable such that                          .

• Consider now the random variable                       . Clearly 
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Cantelli’s Inequality

• , since 

• This gives                                                   .

• Applying Markov’s Inequality to the right-hand side, we have that

• . We can establish a tighter bound by minimising as a function of t.
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Cantelli’s Inequality

•

• This is minimised when 

• We then obtain

• This therefore gives that                                            where 
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Cantelli’s Inequality

• This is Cantelli’s Inequality.

• One consequence of this is that, setting                into  

, we obtain that

•
Francesco Cantelli 

(1875 – 1966)
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Cantelli’s Inequality

• Applying the same argument to the variable        which, by 

definition has                                                   , we also obtain

• The median,        , of the distribution of X, by definition,  

satisfies

• Together, these give us that                       i.e. for any 

distribution, the mean and median cannot differ by more than 

one standard deviation.

Francesco Cantelli 
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A Note on Inequalities

• It should be noted that Markov’s, Chebyshev’s and Cantelli’s Inequalities provide bounds on 

probabilities and not estimates of them.

• For example, with a standard normal variable,                  . Chebyshev’s Inequality tells us that 

at least 75% of realisations of the variable are expected to lie no more than two standard 

deviations from the mean. In fact

• Although we know that for any distribution, the mean and median cannot differ by more than 

one standard deviation, for                  , they do not differ at all – both are zero.
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A Related Result

• Consider now a sequence of independent identically distributed variables                      each 

with

• We therefore have that                                    

•

(since the variables are independent, hence uncorrelated.)

• Applying Chebyshev’s Inequality, we get 
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A Related Result

• Setting                                                                                 gives

• Now, as the number of variables             then, for any fixed                      ,

• In other words, as the sample size gets extremely large, the probability that the average of 

the variables is anything other than     converges to zero.
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Weak Law of Large Numbers

• This is the Weak Law of Large Numbers,                                                                                 

where each      is independent and identically distributed with finite expectation     and finite       

variance.                         

• The long-run average of any sequence of random variables with finite expectation and finite 

variance converges to the expected value of those variables with probability 1.
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Monte Carlo Integration

• Consider now the problem of evaluating the definite integral

• Let                     be a sequence of independent variables such that each

• Now, since each                  , the density function of each is                                   .

• This therefore gives

• This tells us that, for                  , then           is a random variable (with unknown distribution) 

with expectation
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Monte Carlo Integration

• As we know that                                   is a sequence of independent random variables such 

that                                , we can apply the Weak Law of Large Numbers to obtain that

• We  know that, as             , the difference between the two sides in the approximation above 

tends to zero with probability 1.
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Monte Carlo Integration

• Consider evaluating the definite integral of a 

function 

• Assuming the associated area is finite, the 

value of the integral is equal to that of a 

rectangle with length 1 and height         where        

is the average value of the function over that 

region.
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Monte Carlo Integration: Example
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• Consider now estimating the value of           

by the Monte Carlo method.

• Columns A – E each contain 20                       

realisations of a U[0,1] variable.

• Columns G – K each contain 20

realisations  of             for the 

corresponding value in columns A – E.
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Monte Carlo Integration: Example

• Averaging the first 20 variables gives

• The estimates after 40, 60, 80 and 

100 are 0.7570, 0.7773 and 0.7879 

respectively.

• The exact value of 
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Monte Carlo Integration

• As originally formulated, the Monte Carlo method approximates only definite integrals 

evaluated between 0 and 1.

• We can, though, change the limits of a definite integral though an appropriate substitution.

• For example, to apply the Monte Carlo method to approximate the value of                , we first 

need to change the domain of integration to between 0 and 1.

• An appropriate substitution is therefore                 since when 

• This gives 
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Monte Carlo Integration

• Similarly, definite integrals across infinite domains can be evaluated with appropriate 

substitutions.

• Consider the problem of evaluating              . 

• We require a change of variables such that we have an integral with respect to               such 

that

• There are multiple choices for this, for example                 maps the whole real line             to        

[0,1] , but so do 

• There are “better” choices of substitution to give quicker convergence, but this is a more 

advanced topic 
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Monte Carlo Integration: Example

• Here, we will approximate the value of                by substituting                  .

• This gives

•

• Also,                                     .

• Substituting in gives 

• We can therefore obtain an estimate of this by averaging many realisations of                   
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Monte Carlo Integration: Example

• Averaging 100,000 realisations, the mean of these gave                              .

• We compare with the normal distribution function                                    , hence our initial 

integral is that of a normal density, with                       .

• The exact value of the integral is therefore    
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Possible Changes of Variable

• Below is a table of suggested substitutions for each of the four cases you may encounter:
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