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How Predictable are Random Samples?

« Consider the problem of predicting what value a sample mean might take, given a sample
size and the distribution from which independent realisations are drawn.

« Assuming that the variance of the distribution is non-zero, we cannot ever know for certain
what value a sample mean can take.

« We can, though, put some bounds on which ranges of possible values are more or less
probable.

* Intuitively, sample means from larger samples should be more predictable, as should samples
from distributions with lower variance.
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How Predictable are Random Samples?

« Consider now a non-negative continuous random variable X with density function f(x) .

+ Forany a >0, we have that E(X) = j xf (X)dx = j xf (X)dX + j xf (X )dx
0 0 a

> jxf(x)dx > jaf(x)dx since x €[a,x) implies x > a.

« We therefore have that E(X) > ajf(x)dx
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Markov's Inequality

* E(X) Zajf(x)dx implies that, for a > 0, we have E(X) >P(X >a).
d a

« This is Markov’s Inequality.

* This result also holds for discrete random variables.

The proof is essentially the same, with sums rather

than integrals.

Andrey Markov
(1856 — 1922)



A Related Result

« Let X be any random variable such that Var(X)>0 .

(X —E(X))*
Var (X)

e Consider now the random variable defined asy =

. _E| (X=ECOP ] 1 CE(X))_
By definition, we have that E(Y)_E{ Var (X) }_Var(X)E(X E(X)) =1

* Applying Markov's Inequality to the variable Y (which is non-negative valued, since it is the
ratio of a squared value to a variance, neither of which can be negative) gives

P(Y >k?)< (Y) SO P[(X E(X))° k2j<i2 for any real value k.
Var (X) Kk
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Chebyshev’s Inequality

, P((X—E(X»Z Zkzjgi
Var(X) k®

. Noti (X-E(X)" . 2] _ Nar (X)
Notmgthatp[ Var(X) zk]_P(|X—E(X)|2k ar(X))

1

we get that P(|x ~E(X)|> k«/\_/ar(X)) <

* This is Chebyshev’s Inequality.

Pafnuty Chebyshev
(1821- 1894)
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Chebyshev’s Inequality

« Chebyshev’s Inequality P (|X —-E(X)|2 k\/\_/ar(X)) < k_12 tells
us that, for variables drawn from any distribution, no more than K2
of observations can be expected to lie more than k standard
deviations above or below the mean.

« For example, no more than 25% of observations can be
expected be more than two standard deviations away from the
mean and no more than 6.25% of observations can be
expected to be more than four standard deviations from the
mean.

Pafnuty Chebyshev
(1821—- 1894)
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Cantelli’'s Inequality

* There is a similar inequality to Chebyshev’s Inequality but only for one-sided differences
between the a random variable and its expectation.

 Let X be any random variable such that Var(X) =0 > 0.
« Consider now the random variable Q = X —E(X). Clearly E(Q) =0 and Var(Q) = o”.

 Forany g,t >0, PQ>q)=P(Q+t>qg+t)
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Cantelli’'s Inequality
* P(Q+1)*2(q+1)* |<P[(Q+1)=(q+1)] , since [(Q +1) 2 (q+1)] implies that | (Q +1)* 2 (q +1)* |

but | (Q+1)* 2(q+1)* |does not imply that [(Q +t) > (q +1)]

 ThisgivesP(Q=>q)<P [(Q +1)* > (q +t)2} :

E[(Q+1)°|

 Applying Markov’s Inequality to the right-hand side, we have that P(Q > q) < Y
g+

g% +t?

* P(Q=>q)< . We can establish a tighter bound by minimising as a function of t.

(q+t)°




Cantelli’'s Inequality
_ a{o%tz} 2t (0% +t?) _2qt-20°

ol (@+t? | (@+t? " (@+t)®  (q+t)

2 2 2
+ This is minimisedwhen | 21 |_gie whent=2".
ot| (q+t) q

2

2
02+£ j 2 2 4 2
« We then obtain P(Q >q) < 9/ _9o0+0 __O©

q+[02j 2 [CI2+UZT 9’ +0?
q q

2

* This therefore gives that P(X —E(X)>q) < where Var(X) =0o°.

2 2

q +0
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Cantelli’s Inequality

« This is Cantelli’s Inequality.

« One consequence of this is that, setting 4 =v0~ into
2

P(X-E(X)>q)< , we obtain that

2

q°+0°
P(X —uZo)s% where E(X) = p.

-P(X20+u)§£. _
2 Francesco Cantelli

(1875 — 1966)



Cantelli’'s Inequality

« Applying the same argument to the variable —X which, by
definition has E(-X)=-u and Var(-X)=0?, we also obtain

P(=X >0 — ) s% which implies that P(X < ji— 0) < %

« The median,X __, , of the distribution of X, by definition,

satisfies P(X > Xmed)Z% and P(X <X )> %

- Together, these give us that |X ., — y|< 0 i.e. for any Francesco Cantelli
distribution, the mean and median cannot differ by more than (1875 — 1966)
one standard deviation.
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A Note on Inequalities

* |t should be noted that Markov’s, Chebyshev’s and Cantelli’s Inequalities provide bounds on
probabilities and not estimates of them.

* For example, with a standard normal variable, Z ~N(0,1) . Chebyshev’s Inequality tells us that
at least 75% of realisations of the variable are expected to lie no more than two standard
deviations from the mean. In fact

2 72
jie?dz ~0.9545>0.75 and j—e 2 dz 0.9973 >3
21T 9

o

 Although we know that for any distribution, the mean and median cannot differ by more than
one standard deviation, for Z ~N(0,1) , they do not differ at all — both are zero.
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A Related Result

 Consider now a sequence of independent identically distributed variables X, X.,,..., X each
with E(X,) =y <o and Var(X,)=0? < .

« We therefore have that E( -

X, + X, +...+X
1T A, T nj:%E(X1+X2+___—|—Xn)2%([J+/J+...+,U):/J.

1 2
. Var X+ X, +...+ X, :_ZVar(ler X, 4.+ xn) =i(02 + o2 +.__+02) _o°
n n n’ n

(since the variables are independent, hence uncorrelated.)

X+ X, +...+ X,
" —H
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A Related Result

« Setting gszO Into P(‘X1+X2+"'+X” — U zk}jsklz gives
n n n
2
P X1+X2+...+Xn_’u2£ L9
n ne’

« Now, as the number of variables n — o then, for any fixed y <©,0° <o,

Iimn%{P[‘xﬁ Xptot Xy Zgﬂzo_

n
 In other words, as the sample size gets extremely large, the probability that the average of
the variables is anything other than y converges to zero.
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Weak Law of Large Numbers

X+ X, +..+ X,

n
where each X. Is independent and identically distributed with finite expectation U and finite

variance.

* This is the Weak Law of Large Numbers, Iimn%[ } = u with probability 1

« The long-run average of any sequence of random variables with finite expectation and finite
variance converges to the expected value of those variables with probability 1.
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Monte Carlo Integration

1
« Consider now the problem of evaluating the definite integral IG(X)C’X-
0

 Let U,U,,...,U, be asequence of independent variables such that each uU. ~UJ[0,1].
1 u €[0]

 Now, since each U, ~UJ0,1], the density function of eachis f(u )= .
O otherwise

1 1 1
* This therefore gives Ig(x)dx = I[lx g(x)]dx = I[lx g(u,)]du, =E(g(U,)).
0 0 0
* This tells us that, for U ~U[0,1], then g(U,) is a random variable (with unknown distribution)

1
with expectation E(g(U,))= j g(x)dx.
0
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Monte Carlo Integration

* As we know that 9(U,),9(U,)....,9(U,) is a sequence of independent random variables such

that E(9(U,)) = j g(x)dx, we can apply the Weak Law of Large Numbers to obtain that

—Zg(U) jg(x)dx

« We know that, as n — oo, the difference between the two sides in the approximation above

tends to zero with probability 1.

. ¥
@ U Ts Faculty of Science



Monte Carlo Integration f(x)

« Consider evaluating the definite integral of a
function f(x) between 0 and 1.

f(x)

77

« Assuming the associated area is finite, the
value of the integral is equal to that of a
rectangle with length 1 and height f(x) where f(x)
IS the average value of the function over that
region.

N

NN
0 1 X

&

L

_

-

« An estimate of this area can be found simply by taking a large number of independent U[0,]]

variables, U;,Us....,U, , and averaging to find f (x) T(u)+1(U,) +... +1(uy)

n




1+0.935146°

| J kK |
0.533476 (Q)383772 0.838374 0.586555 0.910162
m98606r”0.753797 0.603578 0.851853 0.981419

Monte Carlo Integration: Example

' B C D E
« Consider now estimating the value of 62648 0.43%073 0839565 0314174
1 29123138 571505 0.810423 0.417027 0.137596 -
3 | 0.382501 0.347116 0.364187 0.135789 0.871119 0.872366 0.892467 0.882899 0981895 0.568554

izdx by the Monte Carlo methOd, 4 0300543 0.720004 0.415703 0.78995 0.724183 0.917157 0.658585 0.852654 0.615756 0.655978

1+ X 5 | 0.328152 0.241302 0.180209 0.06861 0.19947  0.902785 0.944977 0.968546 0.995315 0.961734
0 6  0.961071 0.784047 0.707974 0.598807 0.097218  0.519843 0.619299 0.666122 0.736068 0.990637
] 7  0.999031 0.938459 0.734723 0.437605 0.805962  0.500485 0.531716 0.649428 0.839279 0.606217
e Columns A - E each contain 20 2  0.516444 0.311315 0.535394 0.616934 0.638913  0.789444 0.911646 0.777214 0.724319 0.710121
. . . 9 | 0.763581 0.001963 0.610188 0.174166 0.764827  0.631689 0.999996 0.728688 0.970559 0.53093
realisations of a U[O’l] variable. 10 0.2831 0.339002 0.649126 0.248825 0.423268  0.925801 0.58688 0.703549 0.941696 0.848065
11 0.905064 0.77959 0.91391 0.621309 0.015811 0.54971 0.621983 0.544891 0.721488 0.99975
. 12 0.899732 0.266889 0.168596 0.49815 0.718692  0.552633 0.933506 0.972361 0.801184 0.659405

[ ] —
Columns G — K each contain 20 13 0.808893 0.354261 0.576185 0.963141 0.809653  0.504483 0.578114 0.750757 0.518769 0.604033
1 14 0.734345 0.367821 0.552804 0.008556 0.936555  0.649662 0.88083 0.765936 0.999927 0.532727
reahsat'()ns Of — for the 15 | 0.474311 0.528801 0.816346 ' 0.705412 0.781475
1+ ui 16 0.208938 0.878091  0.958171 0.6497f6 V23777 0.564639

T U.s35166 0.362848 0.589101 e .653142  0.883659
== Tooul3l (.399367 0.966035> 0.912173 0.974911

Corresponqu value-ta-eottaimins A — E. 18 o0.273049 - _
0.402979 0.201919 0.225738 0.709133  0.690534 0.360295 0.960826 0.951513 0.665393

20| 0.203085 0.2602821 0.140529 0.191407 0.099072 0.915268 0.936305 0.980634 0.964658 0.99028

0.973587

Faculty of Science



Monte Carlo Integration: Example

A B c D E F @ H | J kK |
0.935146 0.362648 0.439073 0.839565 0.314174  0.533476 0.883772 0.838374 0.586555 0.910162
0.123136 0.571505 0.810423 0.417027 0.137596  0.985064 0.753797 0.603578 0.851853 0.981419

« Averaging the first 20 variables gives
0.382501 0.347116 0.364187 0.135789 0.871119 0.872366 0.8924567 0.882899 0.981895 0.568554

1
2
1 1 1
1 + 4+ .4+ —— 4 0300543 0.720004 0.415703 0.78995 0.724183  0.917157 0.658585 0.852654 0.615756 0.655978
1 1+ u12 1+ U 22 1+ U202 5  0.328152 0.241302 0.180209 0.06861 0.19947  0.902785 0.944977 0.368546 0.995315 0.961734
[ 6
1+ X 7
0 8
9

X

0.961071 0.784047 0.707974 0.598807 0.097218 0.519843 0.619299 0.666122 0.736068 0.930637

20 0.999031 0.938459 0.734723 0.437605 0.805962 0.500485 0.531716 0.649428 0.839279 0.606217
0.216444 0.311315 0.535394 0.616934 0.638913 0.78%9444 0911646 0.777214 0.724319 0.710121
0.763581 0.001%963 0.610188 0.174166 0.764827 0.63168%9 0.9999%6 0.728688 0.970539 0.63093

10 0.2831 0.839002 0.649126 0.248825 0.423268 0.925801 0.58688 0.703349 0.941696 0.548065
11 | 0.505064 0.77959 0.91391 0.6213209 0.015811 0.54971 0.621983 0.544591 0.721488 0.99975

 The estimates after 40, 60, 80 and 12 0.899732 0.266889 0.168596 0.49815 0.718692  0.552633 0.933506 0.972361 0.301184 0.659405
13 0.808893 0.854261 0.576185 0.963141 0.809653  0.604483 0.578114 0.750757 0.518769 0.604033

100 are 0.7570, 0.7773 and 0.7879 14 0.734345 0.367321 0.552804 0.008556 0.936555  0.549662 0.88083 0.765936 0.999927 0.532727
respect|ve|y_ 15 0.474311 0.125894 0.506881 0.546228 0.528801  0.816346 0.984398 0.795591 0.705412 0.781475

16 0.208938 0.73416 0.164711 0.28725 0.878091  0.958171 0.649776 0.973587 0.923777 0.564639

17 0.835166 0.789319 0.153141 0.72874 0.362848  0.589101 0.616134 0.977085 0.653142 0.883659

1
° The exact Value Of I _de 18 0.273949 0.816553 0.187365 0.310286 0.160421 0.930191 0.599967 0.966085 0.912178 0.974911
1+ X
0

~0.7417

15 0.669444 0.402979 0.20191% 0.225738 0.709133 0.690534 0.860295 0.960826 0.951513 0.665393
20| 0.203085 0.260821 0.140529 0.191407 0.099072 0.915868 0.936305 0.980634 0.964658 0.99028

Isarctan(l) —arctan(0) = % ~0.7854.
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Monte Carlo Integration

 As originally formulated, the Monte Carlo method approximates only definite integrals
evaluated between 0 and 1.

« We can, though, change the limits of a definite integral though an appropriate substitution.

10

« For example, to apply the Monte Carlo method to approximate the value of | g(x)dx, we first
need to change the domain of integration to between 0 and 1. 7

« An appropriate substitution is therefore y = XTJ since whenx =7,y =0 and when x =10,y =1.

10 1 1
. dx .
» This gives jg(x)dx :Ig(By +7)Edy =j3g(3y +7)dy z% E 39(3u, +7)
7 0 0 i=1
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Monte Carlo Integration

« Similarly, definite integrals across infinite domains can be evaluated with appropriate
substitutions.

« Consider the problem of evaluating je—xzdx.

« We require a change of variables such that we have an integral with respectto y <[0,1] such
that lim y(x)=0and lim__ y(x)=1.

X—>—00

X

 There are multiple choices for this, for example y = € maps the whole real line (—oo,) to
1+e”
2X e3x
0,1],butsodoy = Yy = etc.
[0.1] Y Sy e YTy e’

* There are “better” choices of substitution to give quicker convergence, but this is a more
advanced topic
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Monte Carlo Integration: Example

X

 Here, we will approximate the value of je_xzdx by substituting y =

1+e”
 Thisgives y = - Soy+ye =e’ ore’ =[Lj
l+e 1-y
. x:ln[Lj.
1-y
dy §
* Also,—= =y(d-vy).
S0, R yd-y) .
. . . . h 2 ( e{ln[ﬁﬂ
« Substituting in glvesj‘e‘X dx :j dy
y(l-y)

— In| —=—
* We can therefore obtain an estimate of this by averaging many realisations of e { (1““ ﬂ

where each U, ~UJ0,1]. ul-u)
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Monte Carlo Integration: Example

o0

« Averaging 100,000 realisations, the mean of these gaveje—xzdx ~1.7729 .

—00

1 _(X_l—’)z
2 . -
\/726 20° dx =1, hence our initial
21O

integral is that of a normal density, with y =0,0? =0.5.

« We compare with the normal distribution function j

e 0]

« The exact value of the integral is therefore Ie‘xzdx =Jm ~1.7725.

—00
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Possible Changes of Variable

« Below is a table of suggested substitutions for each of the four cases you may encounter:

x domain y(X) x(Y) dy
dx
X €[a,b] y=2-2 X =a+(b-a)y dy __1
’ b-a dx b-a
a—X dy a—X
X € [a,) y=1-e X=a-In(1l-y) d—:e =1-y
X
. __ AX-b . d_Y_ Xx-b
X € (—oo,b] y=e X=b+In(y) r =e’ =Yy
X
e’ y dy e’
X € (—oo, = X=In| — = =y(1-
c(o) Y= (l—yj ix @rey Y4V
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