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Estimation

• In the field of probability, we tend to work from known (or assumed) distributions and then 

calculate how probable certain events or outcomes would be.

• With classical null hypothesis significance testing, we assume a distribution and then consider 

whether or not an observed dataset appears compatible with a hypothesised distribution, and 

hence whether or not the (null) hypothesis should be rejected, 

• With estimation, rather than simply considering whether or not a given hypothesis should be 

rejected given a dataset, we instead seek to make statements about what values we believe 

describe properties or parameters of a distribution, and how much uncertainty we have about 

these.
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Moments

• The kth moment of a random variable X is defined as

• In some contexts, it can be more helpful to consider central moments.

• The kth central moment of a random variable X is defined as

• You may recognise      as the mean of the distribution of X and     as its variance.

• While the first and second moments characterise the mean and variance, higher moments 

can capture other features of a distribution such as skew (third moment) and kurtosis (fourth 

moment.)
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Sample Moments

• Consider now drawing independent observations                   of a random variable X.

• The kth sample moment is defined as

• Similarly, the kth central sample moment is defined as

• We know (from the Weak Law of Large Numbers) that as the sample size n tends to infinity, 

the sample moments tend towards the true moments of the distribution of X.

• We can use this fact to estimate unknown properties of the distribution of X given a sample of 

observations.
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Method of Moments

• Using the method of moments, we estimate parameters of a distribution by matching the 

moments of a distribution to be equal to those of a sample drawn from it.

• Consider for example, flipping a (possibly unfair) coin 10 times and observing the number of 

times it lands Heads. If X is the number of Heads, then                        where p is the unknown 

probability of the coin landing Heads.

• Given a sample of realisations of X,                                              , we can obtain an estimate 

of the unknown parameter p.

• We do this by calculating a moment of X and a corresponding sample moment and equating 

these.
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Method of Moments

• It is easily shown that, for

• The first sample moment of 

• Equating                                gives an estimate of p (via the Method of Moments) of
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Method of Moments

• For two (or more) parameter distributions, we will need to calculate more than one moment.

• Note that the number of parameters we need to estimate is not always the same as the 

number in the distribution, since we can sometimes fix some of these as known, as we did 

with the earlier example of flipping 10 coins, leading to                       .

• Although the binomial is a two parameter distribution, the fact that we know that 10 coins were 

flipped reduces the estimation problem to just one unknown parameter, p.

~ (10, )X Bin p
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Method of Moments

• Consider now estimating the two parameters a

and b 

• The density function of Z is 
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Method of Moments

• The first two moments of Z are given by
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Method of Moments

• Given a set of observations of Z,

we calculate the first two sample moments as

• We match these to the moments of the distribution of Z. 
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Method of Moments

•

• We solve these simultaneously.

•

•
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Method of Moments

•

•

• Via the discriminant, we obtain that 
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Method of Moments

•

•

• We know, though, that                and that all of our 

observed values are greater than zero, so the negative 

root of the equation is not a reasonable estimate.

• We conclude that 
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A Note on Estimates

• We usually will obtain different estimates of the same parameters, given the same 

observations but a different choice of moments to match.

• For example, consider a Poisson variable                    with probability mass function

• The first moment of N is therefore                        and the second central moment of N is
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A Note on Estimates

• For                   , the mean and variance of N are both equal to the rate parameter

• Unless they are coincidentally equal, if we estimate    using the first moment, we will obtain 

one value and if we use the second moment, we will get a completely different estimate of the 

same parameter.

• Consider observations

• Using the first moment to estimate the rate would give                  and using the second 

moment would give 
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A Note on Estimates

• Estimates can sometimes give values which we know cannot be the true parameters of the 

underlying distribution.

• Consider that we knew that a fair coin was flipped an unknown number of times and that the 

variable Y was defined as the number of Heads observed. Clearly                         where n is 

an unknown positive integer.

• Given a sample                                                      , applying the method of moments would 

give                                                    even though we know that the true n is an integer.
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Likelihood Functions

• Let X be a variable with probability density function f(x) which depends on one or more 

parameter(s), 

• Given a set of independent observations of X,                             the likelihood function is

• That is, the likelihood function is the product of the probability densities of each observation 

given the true values of the parameters.

• A similar definition holds for discrete variables, only using the product of probability masses.
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Maximum Likelihood Estimation

• The likelihood function can be used to obtain estimates of the parameters                           .

• The maximum likelihood estimator (mle) of              is defined as                                 .

• In other words, the maximum likelihood estimator of the parameters is obtained by finding the 

parameter values for which the observed data have greatest likelihood.

• Note, using maximum likelihood estimation does not give the parameters which are most 

likely given the observations, rather gives the parameter values for which those observations 

were most likely.
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Maximum Likelihood Estimation

• To maximise                                    , we usually consider taking the logarithm of both sides.

• We define the loglikelihood function as                                 .

• Since the logarithm function is a one-to-one transformation, we know that                is 

maximised wherever              is maximised.

• That is ( ) ( )=Θ ΘX Θ X Θarg max ( | )  arg max ( | )L
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Loglikelihood Functions

• The reason we maximise the loglikelihood instead of the likelihood is that this turns the 

problem from one of differentiating a product of functions into one of differentiating a sum, 

which is much simpler.

• Consider the one parameter problem based on                                   .

• By the product rule, we have                                                                                       .

• This is clearly quite messy and so we instead consider taking logarithms first.
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Loglikelihood Functions

• hence                                   .

• The derivative is now much tidier,  
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Maximum Likelihood Estimation

• Consider now the problem of estimating the probability of 

a coin landing Heads.

• We say that the number of Heads on a given flip                

where p is an unknown parameter.

• Say we have observed ten flips and the number of Heads 

on each is                             .

• We know that the probability mass function of 
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• hence the likelihood of the 

• We therefore obtain the mle for p by finding the p which maximises

• The point at which the derivative of either of these is zero is clearly a maximum, not a 

minimum, since it is obvious that setting p too large or too small will give a smaller likelihood. 

For example,                          would both make the likelihood zero.
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Maximum Likelihood Estimation
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• Differentiation gives

• The maximum likelihood estimate is therefore

• This is the same as the estimate which we 

would obtain by matching the first moment –

the simple sample proportion.
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Maximum Likelihood Estimation
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• Consider a set                           of independent realisations of                     where both the 

mean and variance are unknown.

• The likelihood function associated with this sample is therefore 

• This gives a loglikelihood function of
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Maximum Likelihood Estimation
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• We can obtain the maximum likelihood estimates of the two parameters by maximising the

•

•

• Setting both of these derivatives to zero, we maximise the loglikelihood.
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Maximum Likelihood Estimation
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•

• This gives

•

• This gives 

• These are also equal to the first sample moment                  and second central sample 

moment 
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Maximum Likelihood Estimation
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• Recall the gamma distribution with density

• Given a sample of independent observations 

of S,                      we can obtain the maximum 

likelihood estimators for both parameters –
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Maximum Likelihood Estimation
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• The likelihood of a sample

•

• The loglikelihood is then
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Maximum Likelihood Estimation
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• Differentiating

gives
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Maximum Likelihood Estimation
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• Setting both derivatives to zero we simultaneously                         

solve

• The maximum likelihood estimators are therefore

• This nonlinear equation may need to be solved numerically.
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Maximum Likelihood Estimation
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