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Regression

• The process of estimating the value of one or more variable based on knowledge of the 

values of one or more other variables is regression.

• The variables of which we estimate the values are dependent variables or response

variables.

• The variables from which we estimate the dependent variables are independent variables or 

predictor variables.

• By convention, we will usually plot a response variable on the vertical (usually y) axis of a 

graph and a predictor variable on the horizontal (usually x) axis.
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Regression

• The term “regression” comes from the observations of Francis 

Galton who studied the heights of adults and the heights of their 

parents.

• He observed that people whose parents were taller than average 

were likely themselves to be taller than average, but by a smaller 

amount than their parents’ heights (and similarly with people 

whose parents were shorter than average.)

• As such, he observed that there was a connection between 

heights between generations but that, over generations, these 

deviations away from the average regressed towards the mean.

Francis Galton

(1822 – 1911)
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Simple Linear Regression

• The most basic regression model, often called 

simple linear regression involves estimating the 

relationship between one predictor variable and 

one response variable.

• Consider the following dataset and the problem of 

quantifying the relationship between observations 

of a predictor x and a response y. 

• Here, we might visually estimate the trend to be 

characterised by something like the dashed line.
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Simple Linear Regression

• Let                     be the values of a set of predictor variables corresponding to response 

variables                      with corresponding indexing i.e. when the predictor took the value     , 

the observed response was     etc. 

• Formally, we can define a simple linear regression model                         . This seeks to 

explain the response variable by a multiple of the predictor variable plus a fixed constant.

• The term     is sometimes called a slope coefficient and     is an intercept coefficient.

• The residual error term                          measures the difference between a simple linear 

predictor and the observed value of the response variable.

1 2{ , ,..., }nx x x

1 2{ , ,..., }ny y y 1x

1y

i i iy α βx ε= + +

β α

i i iε y α βx= − −
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Residuals

• We can visualise the residuals as the distances 

between the line used for prediction and the 

observed value in the dimension of the response 

variable.

• Mathematically, we seek a way of selecting the 

“best” prediction line such that the residual errors 

are not too large.

• Usually, we do this by first ensuring
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Ordinary Least Squares

• The most common technique for estimating the coefficients in a simple linear regression 

model is ordinary least squares.

• To do this, we choose               such that the sum of squared residuals is minimised.

• The squaring has two benefits

– positive and negative residuals of the same magnitude are treated equally;

– very large residuals are strongly penalised since a residual of 2 appears four times as 

large in the objective function (sum of squared residuals) as a residual of 1 does.

 and α β
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Ordinary Least Squares

•

•

• Our estimate of   

• We now seek
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Ordinary Least Squares

• We seek

•

•

• Solving this, we obtain  
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Ordinary Least Squares

• Consider the following      

dataset

• We calculate

• This gives 

0

2

4

6

0 5 10

0 5.6

1 5.5

2 5.9

3 3.2

4 3.9

5 3.9

6 1.9

7 2.4

8 3.1

9 1.4

10 1.7

x y

10 10

0 0

55 and 38.5.i i

i i

x y
= =

= = 

55
                5 

11

38.5
and 3.5.

11

x

y

= =

= =

          x

          y



Faculty of Science

Ordinary Least Squares

• Consider the following 

dataset:

• We calculate
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Ordinary Least Squares

• Putting these together, we obtain

• Our simple linear regression model is therefore
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Simple Linear Regression

• Linear regression only means that the model is linear in its terms. It can be used to examine 

nonlinear relationships. For example, a quadratic relationship                           can be 

considered as a linear regression model (as plotting                     would give a straight line.)

• Note that throughout the calculation we have seen, we have made no assumptions about the 

distribution of the residuals.

• It is, however, common to additionally assume that the residuals are independent and 

identically distributed realisations of a normal variable

• These additional assumptions allow for some further analyses of the regression model.

2 2~ (0, ) for some fixed . iε N σ σ

2

i i iy α βx ε= + +
2 against y x
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Multiple Linear Regression

• We now consider the case of having multiple predictor variables for a single response variable.

• With n observations of k predictors, we have a model

• The same procedures can be followed as with simple linear regression i.e. setting 

1 1 2 2 ... .i i i k k i iy α β x β x β x ε= + + + + +
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Multiple Linear Regression

• We can minimise                                                                     by differentiating with respect to 

each of                   and solving simultaneous for each 

• This can get quite messy, but we can exploit some relatively simple matrix algebra to keep the 

calculation much tidier.  
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Multiple Linear Regression: Matrix Form

•

• The column of 1s at the start of the data matrix X simply adds the     intercept parameter.

• Note that                       assumes that the residuals are all normally distributed and that they 

are all uncorrelated with each other. 
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2 12 22 2
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Multiple Linear Regression: Matrix Form

•

•

• This is optimised when

•

 so .t t t= + = +Y Xβ ε X Y X Xβ X ε

t t t− =X Y X ε X Xβ 1hence ( ) ( ) .t t t− − =X X X Y X ε β

 since the residuals are unrelated to  and each is mean zero.t =X ε 0 X

1ˆ ( ) ( ).t t−=β X X X Y
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Multiple Linear Regression: Matrix Form

• Consider fitting a model of the form                   to the following dataset:

• In matrix form, we define

•
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Multiple Linear Regression: Matrix Form

•

•

• Our least squares estimate for the model parameters is therefore 

• In this case (but not in general) we can easily verify this is the best fit, since all residuals are 

zero.
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   
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Generalised Least Squares

• We can also fit more complex models, such as time series models (where the observations 

have an inherent order in time) or multilevel models (where observations may belong to a 

group where there is some group-level effect.)

• This is done by fitting a model                                                    where the off-diagonal 

elements of      capture the covariances between residuals.

• We then simply multiply by           to obtain                                           which is of the form

• We can then solve as before via ordinary least squares.

2 where ~ ( , )nN σ= +Y Xβ ε ε 0 V

nV

0.5 0.5 0.5  n n n

− − −= +V Y V Xβ V ε0.5

n
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2 where ~ ( , ).nN σ= +Y Xβ ε ε 0 I
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Generalised Least Squares

•

•

• Together, these give

0.5 0.5 0.5 hence . Similarly .t t

n n n
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Coefficient of Variation (R-Squared)

• A common way to quantify how much of the variation in a response variable is explained by a 

regression model is the coefficient of variation, commonly written as R-squared or     . This 

is simply a proportion between 0 and 1.

• An R-squared of 1 implies that all residuals are zero and hence 100% of variation in the 

response variable is characterised by the model.

• An R-squared of 0 implies that the model captures none of the variability in the response 

variable.

• This is a measure of how much of the variability in the response captured by a model. It does 

not tell us whether or not variables should be in that model. A predictor may only explain a 

small proportion of response variable, but still be a necessary inclusion in the final model.

2R
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Coefficient of Variation (R-Squared)

• The total squared variation (about the 

mean) in a response variable y is

• The sum of the squared errors around the 

fitted value 

• The sum of the squared deviation to the 

regression line

•
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Coefficient of Variation (R-Squared)

• Some sources define the residual error not as                                but as  

• It is not instantly obvious that these definitions are equivalent. 

•

• We therefore have that                               only if 

2

1

ˆ( ) .
n

i

i

SSR y y
=

= − SSR SST SSE= −

2 2

1 1

ˆ( ) ( )
n n

i i i

i i

SST SSE y y y y
= =

− = − − − 
2 2

1 1

ˆ ˆ ˆ( ) ( )
n n

i i i i i

i i

y y y y y y
= =

= − + − − − 

2 2 2

1 1 1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 ( )( ) ( )
n n n n

i i i i i i i

i i i i

y y y y y y y y y y
= = = =

= − + − + − − − −   

 SSR SST SSE= −
1

ˆ ˆ( )( ) 0.
n

i i i

i

y y y y
=

− − =



• By definition, the parameters satisfy

•

•

•
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Assessing Model Fit

• Consider fitting a linear regression model with n observations of k predictors

• We wish to test the hypotheses

• We can consider the proportion of variation in the data explained by the null model.

•

•
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Assessing Model Fit

• Under the assumption that residuals are independent and normally distributed with equal 

variance

• The variation around the fitted line is

• The variation explained by the model is therefore

• We can therefore test, under the null hypothesis, whether the proportion of variation 

explained by the model is consistent with the hypothesis.
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Assessing Model Fit

• We know that the weighted ratio of two chi-squared variables is F-distributed.

• If                                                                    then

• We can then reject the null hypothesis if the (weighted) proportion of variation explained by 

the fitted regression line is greater than the critical value from the F-distribution.

• Note that unlike the simple least squares calculation, we do require the assumption of 

normality of residuals.

• With categorical variables, this is the basis of analysis of variance (ANOVA.)
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