

37262 Mathematical Statistics

Lecture 7

UTS CRICOS 00099F

Regression

- The process of estimating the value of one or more variable based on knowledge of the values of one or more other variables is **regression**.
- The variables of which we estimate the values are **dependent** variables or **response** variables.
- The variables from which we estimate the dependent variables are independent variables or predictor variables.
- By convention, we will usually plot a response variable on the vertical (usually y) axis of a graph and a predictor variable on the horizontal (usually x) axis.

Regression

- The term "regression" comes from the observations of Francis Galton who studied the heights of adults and the heights of their parents.
- He observed that people whose parents were taller than average were likely themselves to be taller than average, but by a smaller amount than their parents' heights (and similarly with people whose parents were shorter than average.)

 As such, he observed that there was a connection between heights between generations but that, over generations, these deviations away from the average regressed towards the mean.

Francis Galton (1822 – 1911)

Simple Linear Regression

- The most basic regression model, often called **simple linear regression** involves estimating the relationship between one predictor variable and one response variable.
- Consider the following dataset and the problem of quantifying the relationship between observations of a predictor *x* and a response *y*.
- Here, we might visually estimate the trend to be characterised by something like the dashed line.

Simple Linear Regression

- Let {x₁, x₂,..., x_n} be the values of a set of predictor variables corresponding to response variables {y₁, y₂,..., y_n} with corresponding indexing i.e. when the predictor took the value x₁, the observed response was y₁ etc.
- Formally, we can define a simple linear regression model $y_i = \alpha + \beta x_i + \varepsilon_i$. This seeks to explain the response variable by a multiple of the predictor variable plus a fixed constant.
- The term β is sometimes called a **slope** coefficient and α is an **intercept** coefficient.
- The **residual error** term $\varepsilon_i = y_i \alpha \beta x_i$ measures the difference between a simple linear predictor and the observed value of the response variable.

Residuals

- We can visualise the residuals as the distances between the line used for prediction and the observed value in the dimension of the response variable.
- Mathematically, we seek a way of selecting the "best" prediction line such that the residual errors are not too large.
- Usually, we do this by first ensuring $E(\varepsilon_i) = 0$ so $\sum_{i=1}^{n} \varepsilon_i = 0$.

- The most common technique for estimating the coefficients in a simple linear regression model is **ordinary least squares**.
- To do this, we choose α and β such that the sum of squared residuals is minimised.
- The squaring has two benefits
 - positive and negative residuals of the same magnitude are treated equally;
 - very large residuals are strongly penalised since a residual of 2 appears four times as large in the objective function (sum of squared residuals) as a residual of 1 does.

•
$$\sum_{i=1}^{n} \varepsilon_{i} = 0 \text{ hence } \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i}) = 0.$$

• This gives
$$\sum_{i=1}^{n} y_{i} - n\alpha - \sum_{i=1}^{n} \beta x_{i} = 0 \text{ so } \alpha = \frac{\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \beta x_{i}}{n}.$$

• Our estimate of α is therefore $\hat{\alpha} = \overline{y} - \beta \overline{x}$ where $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

• We now seek
$$\operatorname{argmin}_{\beta}\left(\sum_{i=1}^{n} \varepsilon_{i}^{2}\right) = \operatorname{argmin}_{\beta}\left(\sum_{i=1}^{n} (y_{i} - \hat{\alpha} - \beta x_{i})^{2}\right).$$

Ordinary Least Squares • We seek $\frac{\partial}{\partial \beta} \sum_{i=1}^{n} (y_i - \hat{\alpha} - \beta x_i)^2 = 0 = \frac{\partial}{\partial \beta} \sum_{i=1}^{n} (y_i - (\overline{y} - \beta \overline{x}) - \beta x_i)^2.$

•
$$\frac{\partial}{\partial\beta}\sum_{i=1}^{n}((y_i-\overline{y})-\beta(x_i-\overline{x}))^2 = \frac{\partial}{\partial\beta}\sum_{i=1}^{n}((y_i-\overline{y})^2-2\beta(x_i-\overline{x})(y_i-\overline{y})+\beta^2(x_i-\overline{x})^2).$$

•
$$\frac{\partial}{\partial\beta}\sum_{i=1}^{n}\left((y_i-\overline{y})^2-2\beta(x_i-\overline{x})(y_i-\overline{y})+\beta^2(x_i-\overline{x})^2\right)=\sum_{i=1}^{n}\left(-2(x_i-\overline{x})(y_i-\overline{y})+2\beta(x_i-\overline{x})^2\right)=0.$$

• Solving this, we obtain
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
.

- Consider the following dataset
- We calculate

$$\sum_{i=0}^{10} x_i = 55 \text{ and } \sum_{i=0}^{10} y_i = 38.5.$$

• This gives
$$\overline{x} = \frac{55}{11} = 5$$

and $\overline{y} = \frac{38.5}{11} = 3.5$.

Squares						
.5.	X	У				
	0	5.6				
	1	5.5				
	2	5.9				
	3	3.2				
	4	3.9				
	5	3.9				
	6	1.9				
	7	2.4				
	8	3.1				
	9	1.4				
	10	1.7				

- Consider the following dataset:
- We calculate

$$\sum_{i=0}^{10} (x_i - \overline{x})^2 =$$

$$(-5)^2 + (-4)^2 + \dots + (5)^2 = 110$$

and
$$\sum_{i=0}^{10} (x_i - \overline{x})(y - \overline{y}) =$$

(-5)(-2.1) + ... + (5)(-1.8) =

-47.9.

₿UTS

t S	Squares y					
	X	У	$X-\overline{X}$	$y - \overline{y}$	6	
)	0	5.6	-5	2.1		
	1	5.5	_4	2	4	•
	2	5.9	-3	2.4	•	
	3	3.2	-2	-0.3	2	
	4	3.9	-1	0.4		
0	5	3.9	0	0.4	0	
10	6	1.9	1	-1.6	0	5
	7	2.4	2	-1.1		
	8	3.1	3	-0.4		
=	9	1.4	4	-2.1		
	10	1.7	5	-1.8		

• Putting these together, we obtain

and
$$\hat{\alpha} = \overline{y} - \beta \overline{x}$$
 hence $\hat{\alpha} = 3.5 - 5\left(\frac{-47.9}{110}\right) \approx 5.68.$

• Our simple linear regression model is therefore $y_i = 5.68 - 0.436 x_i + \varepsilon_i$.

Simple Linear Regression

- Linear regression only means that the model is linear in its terms. It can be used to examine nonlinear relationships. For example, a quadratic relationship $y_i = \alpha + \beta x_i^2 + \varepsilon_i$ can be considered as a linear regression model (as plotting y against x^2 would give a straight line.)
- Note that throughout the calculation we have seen, we have made no assumptions about the distribution of the residuals.
- It is, however, common to additionally assume that the residuals are independent and identically distributed realisations of a normal variable $\varepsilon_i \sim N(0, \sigma^2)$ for some fixed σ^2 .
- These additional assumptions allow for some further analyses of the regression model.

Multiple Linear Regression

- We now consider the case of having multiple predictor variables for a single response variable.
- With *n* observations of *k* predictors, we have a model $y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_k x_{ki} + \varepsilon_i$.
- The same procedures can be followed as with simple linear regression i.e. setting

$$\sum_{i=1}^{n} \varepsilon_{i} = 0 \text{ hence } \sum_{i=1}^{n} (y_{i} - \alpha - \beta_{1} x_{1i} - \beta_{2} x_{2i} - \dots - \beta_{k} x_{ki}) = 0$$

and minmising
$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \alpha - \beta_{1} x_{1i} - \beta_{2} x_{2i} - \dots - \beta_{k} x_{ki})^{2}$$

Multiple Linear Regression

- We can minimise $\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i \alpha \beta_1 x_{1i} \beta_2 x_{2i} ... \beta_k x_{ki})^2$ by differentiating with respect to each of $\beta_1, \beta_2, ..., \beta_k$ and solving simultaneous for each $\frac{\partial}{\partial \beta_i} \sum_{i=1}^{n} \varepsilon_i^2 = 0$.
- This can get quite messy, but we can exploit some relatively simple matrix algebra to keep the calculation much tidier.

• Defining
$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
, $\boldsymbol{\beta} = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}$ and $\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \end{pmatrix}$

we can write the regression model as $\mathbf{Y} = \mathbf{X}\mathbf{\beta} + \boldsymbol{\varepsilon}$ where $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. (Here \mathbf{I}_n is the *n*-by-*n* identity matrix.)

- The column of 1s at the start of the data matrix **X** simply adds the α intercept parameter.
- Note that $\boldsymbol{\varepsilon} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_n)$ assumes that the residuals are all normally distributed and that they are all uncorrelated with each other.

- $\mathbf{Y} = \mathbf{X}\mathbf{\beta} + \boldsymbol{\varepsilon}$ so $\mathbf{X}^{t}\mathbf{Y} = \mathbf{X}^{t}\mathbf{X}\mathbf{\beta} + \mathbf{X}^{t}\boldsymbol{\varepsilon}$.
- $\mathbf{X}^{t}\mathbf{Y} \mathbf{X}^{t}\boldsymbol{\varepsilon} = \mathbf{X}^{t}\mathbf{X}\boldsymbol{\beta}$ hence $(\mathbf{X}^{t}\mathbf{X})^{-1}(\mathbf{X}^{t}\mathbf{Y} \mathbf{X}^{t}\boldsymbol{\varepsilon}) = \boldsymbol{\beta}.$
- This is optimised when $\mathbf{X}^t \boldsymbol{\varepsilon} = \mathbf{0}$ since the residuals are unrelated to \mathbf{X} and each is mean zero.
- $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{t}\boldsymbol{X})^{-1}(\boldsymbol{X}^{t}\boldsymbol{Y}).$

• Consider fitting a model of the form $\mathbf{Y} = \mathbf{X}\mathbf{\beta} + \boldsymbol{\varepsilon}$ to the following dataset:

• In matrix form, we define
$$\mathbf{Y} = \begin{pmatrix} 3\\6\\7\\10\\11 \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1&1&1\\1&1&0\\1&2&1\\1&2&0\\1&3&1 \end{pmatrix}$$
 and $\mathbf{\beta} = \begin{pmatrix} \alpha\\\beta_1\\\beta_2 \end{pmatrix}.$
• $\mathbf{X}^t \mathbf{Y} = \begin{pmatrix} 1&1&1&1\\1&1&1&1\\1&1&2&2&3\\1&0&1&0&1 \end{pmatrix} \begin{pmatrix} 3\\6\\7\\10\\11 \end{pmatrix} = \begin{pmatrix} 37\\76\\21 \end{pmatrix}$ and $\mathbf{X}^t \mathbf{X} = \begin{pmatrix} 1&1&1&1&1\\1&1&2&2&3\\1&0&1&0&1 \end{pmatrix} \begin{pmatrix} 1&1&1\\1&1&0\\1&1&2&2&3\\1&0&1&0&1 \end{pmatrix} \begin{pmatrix} 1&1&1\\1&1&0\\1&2&1\\1&2&0\\1&3&1 \end{pmatrix} = \begin{pmatrix} 5&9&3\\9&19&6\\3&6&3 \end{pmatrix}$

X₂

1

0

У

3

6

7

 X_1

1

1

2

•
$$\mathbf{X}^{t}\mathbf{X} = \begin{pmatrix} 5 & 9 & 3 \\ 9 & 19 & 6 \\ 3 & 6 & 3 \end{pmatrix}$$
 hence $(\mathbf{X}^{t}\mathbf{X})^{-1} = \frac{1}{15} \begin{pmatrix} 21 & -9 & 3 \\ -9 & 6 & -3 \\ -3 & -3 & 14 \end{pmatrix}$
• $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{t}\mathbf{X})^{-1}(\mathbf{X}^{t}\mathbf{Y}) = \frac{1}{15} \begin{pmatrix} 21 & -9 & 3 \\ -9 & 6 & -3 \\ -3 & -3 & 14 \end{pmatrix} \begin{pmatrix} 37 \\ 76 \\ 21 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 30 \\ 60 \\ -45 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix}.$

X ₁	X ₂	У
1	1	3
1	0	6
2	1	7
2	0	10
3	1	11

- Our least squares estimate for the model parameters is therefore $y_i = 2 + 4x_{1i} 3x_{2i} + \varepsilon_i$
- In this case (but not in general) we can easily verify this is the best fit, since all residuals are zero.

Generalised Least Squares

- We can also fit more complex models, such as time series models (where the observations have an inherent order in time) or multilevel models (where observations may belong to a group where there is some group-level effect.)
- This is done by fitting a model $\mathbf{Y} = \mathbf{X}\mathbf{\beta} + \mathbf{\varepsilon}$ where $\mathbf{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{V}_n)$ where the off-diagonal elements of \mathbf{V}_n capture the covariances between residuals.
- We then simply multiply by $V_n^{-0.5}$ to obtain $V_n^{-0.5} \mathbf{Y} = V_n^{-0.5} \mathbf{X} \mathbf{\beta} + V_n^{-0.5} \mathbf{\epsilon}$ which is of the form $\tilde{\mathbf{Y}} = \tilde{\mathbf{X}} \mathbf{\beta} + \tilde{\mathbf{\epsilon}}$ where $\tilde{\mathbf{\epsilon}} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$.
- We can then solve as before via ordinary least squares.

Generalised Least Squares

• $\tilde{\mathbf{Y}} = \tilde{\mathbf{X}}\boldsymbol{\beta} + \tilde{\boldsymbol{\varepsilon}}$ hence $\hat{\boldsymbol{\beta}} = (\tilde{\mathbf{X}}^{t}\tilde{\mathbf{X}})^{-1}(\tilde{\mathbf{X}}^{t}\tilde{\mathbf{Y}})$

•
$$\tilde{\boldsymbol{X}} = \boldsymbol{V}_n^{-0.5} \boldsymbol{X}$$
 hence $\tilde{\boldsymbol{X}}^t = \boldsymbol{X}^t \boldsymbol{V}_n^{-0.5}$. Similarly $\tilde{\boldsymbol{Y}} = \boldsymbol{V}_n^{-0.5} \boldsymbol{Y}$.

• Together, these give $\hat{\boldsymbol{\beta}} = (\tilde{\boldsymbol{X}}^t \tilde{\boldsymbol{X}})^{-1} (\tilde{\boldsymbol{X}}^t \tilde{\boldsymbol{Y}}) = (\boldsymbol{X}^t \boldsymbol{V}_n^{-0.5} \boldsymbol{V}_n^{-0.5} \boldsymbol{X})^{-1} (\boldsymbol{X}^t \boldsymbol{V}_n^{-0.5} \boldsymbol{Y}) = (\boldsymbol{X}^t \boldsymbol{V}_n^{-1} \boldsymbol{X})^{-1} (\boldsymbol{X}^t \boldsymbol{V}_n^{-1} \boldsymbol{Y}).$

- A common way to quantify how much of the variation in a response variable is explained by a
 regression model is the coefficient of variation, commonly written as *R*-squared or *R*². This
 is simply a proportion between 0 and 1.
- An *R*-squared of 1 implies that all residuals are zero and hence 100% of variation in the response variable is characterised by the model.
- An *R*-squared of 0 implies that the model captures none of the variability in the response variable.
- This is a measure of how much of the variability in the response captured by a model. It does not tell us whether or not variables should be in that model. A predictor may only explain a small proportion of response variable, but still be a necessary inclusion in the final model.

- The <u>total</u> squared variation (about the mean) in a response variable *y* is $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2.$
- The sum of the squared errors around the fitted value \hat{y} is $SSE = \sum_{i=1}^{n} (y_i \hat{y})^2$.
- The sum of the squared deviation to the regression line SSR = SST SSE.

•
$$R^2 = \frac{SSR}{SST} = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$$

- Some sources define the residual error not as SSR = SST SSE but as $SSR = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$.
- It is not instantly obvious that these definitions are equivalent.

•
$$SST - SSE = \sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \bar{y} + \hat{y}_i - \hat{y}_i)^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + 2\sum_{i=1}^{n} (\hat{y}_i - \bar{y})(y_i - \hat{y}_i) - \sum_{i=1}^{n} (y_i - \hat{y})^2$$

• We therefore have that SSR = SST - SSE only if $\sum_{i=1}^{n} (\hat{y}_i - \overline{y})(y_i - \hat{y}_i) = 0.$

• By definition, the parameters satisfy $\hat{\beta} = \operatorname{argmin}_{\beta} \left(\sum_{i=1}^{n} (y_i - \hat{\alpha} - \beta x_i)^2 \right)$ and $\sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i) = 0$.

•
$$\frac{\partial}{\partial\beta}\sum_{i=1}^{n}(y_i-\hat{\alpha}-\beta x_i)^2=\sum_{i=1}^{n}(y_i-\hat{\alpha}-\beta x_i)(-x_i)=0$$

•
$$\sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)(-x_i) = 0$$
 hence $\sum_{i=1}^{n} \hat{\beta}x_i(y_i - \hat{\alpha} - \hat{\beta}x_i) = 0$

•
$$\sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i) = 0$$
 gives $\sum_{i=1}^{n} (\hat{\alpha} - \overline{y})(y_i - \hat{\alpha} - \hat{\beta}x_i) = 0$.
 $\sum_{i=1}^{n} (\hat{\alpha} - \overline{y})(y_i - \hat{\alpha} - \hat{\beta}x_i) + \sum_{i=1}^{n} \hat{\beta}x_i(y_i - \hat{\alpha} - \hat{\beta}x_i) = 0 = \sum_{i=1}^{n} (\hat{\alpha} + \hat{\beta}x_i - \overline{y})(y_i - \hat{\alpha} - \hat{\beta}x_i) = 0$.
 $= \sum_{i=1}^{n} (\hat{y}_i - \overline{y})(y_i - \hat{y}_i) = 0$.

Assessing Model Fit

• Consider fitting a linear regression model with *n* observations of *k* predictors $y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_k x_{ki} + \varepsilon_i.$

• We wish to test the hypotheses $\begin{array}{l} H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0\\ H_1: \beta_i \neq 0 \text{ for some } i \in \{1, 2, \ldots, k\} \end{array}$

• We can consider the proportion of variation in the data explained by the null model.

•
$$SST = \sum_{i=1}^{n} (y_i - \alpha)^2 = \sum_{i=1}^{n} (y_i - \overline{y})^2.$$

• $SSE = \sum_{i=1}^{n} (y_i - \alpha - \beta_1 x_{1i} - \beta_2 x_{2i} - \dots - \beta_k x_{ki})^2$

Assessing Model Fit

- Under the assumption that residuals are independent and normally distributed with equal variance σ^2

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 \sim \sigma^2 \chi^2 (n-1)$$

- The variation around the fitted line is $SSE = \sum_{i=1}^{n} (y_i \alpha \beta_1 x_{1i} \beta_2 x_{2i} \dots \beta_k x_{ki})^2 \sim \sigma^2 \chi^2 (n k 1)$
- The variation explained by the model is therefore $SSR = (SST SSE) \sim \sigma^2 \chi^2(k)$
- We can therefore test, under the null hypothesis, whether the proportion of variation explained by the model is consistent with the hypothesis.

Assessing Model Fit

ÖUTS

• We know that the weighted ratio of two chi-squared variables is *F*-distributed.

• If
$$SSR \sim \sigma^2 \chi^2(k)$$
 and $SSE \sim \sigma^2 \chi^2(n-k-1)$ then $\frac{\left(\frac{SSR}{k}\right)}{\left(\frac{SSE}{n-k-1}\right)} \sim F(k, n-k-1).$

- We can then reject the null hypothesis if the (weighted) proportion of variation explained by the fitted regression line is greater than the critical value from the *F*-distribution.
- Note that unlike the simple least squares calculation, we do require the assumption of normality of residuals.
- With categorical variables, this is the basis of analysis of variance (ANOVA.)