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Regression

* The process of estimating the value of one or more variable based on knowledge of the
values of one or more other variables is regression.

« The variables of which we estimate the values are dependent variables or response
variables.

* The variables from which we estimate the dependent variables are independent variables or
predictor variables.

« By convention, we will usually plot a response variable on the vertical (usually y) axis of a
graph and a predictor variable on the horizontal (usually x) axis.
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Regression

* The term “regression” comes from the observations of Francis
Galton who studied the heights of adults and the heights of their
parents.

* He observed that people whose parents were taller than average
were likely themselves to be taller than average, but by a smaller
amount than their parents’ heights (and similarly with people
whose parents were shorter than average.)

« As such, he observed that there was a connection between Erancis Galton
heights between generations but that, over generations, these
deviations away from the average regressed towards the mean. (1822 —1911)
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Simple Linear Regression

Y 45 R
 The most basic regression model, often called R
. . . . . . *h o
simple linear regression involves estimating the 5 L .
relationship between one predictor variable and e e .
one response variable. e .
15 e S

““
““
.

« Consider the following dataset and the problem of
guantifying the relationship between observations 0
of a predictor x and a responsey. 0 0.25 0.5 0.75 2

* Here, we might visually estimate the trend to be
characterised by something like the dashed line.
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Simple Linear Regression

« Let {X;;X,,...,X,} be the values of a set of predictor variables corresponding to response
variables {y.Y,....,Y,,} with corresponding indexing i.e. when the predictor took the value X,
the observed response was vy, etc.

« Formally, we can define a simple linear regression model Y, = a + Bx; +&,. This seeks to
explain the response variable by a multiple of the predictor variable plus a fixed constant.

« The term B is sometimes called a slope coefficient and a is an intercept coefficient.

- The residual error term & =Yy, —a — Bx, measures the difference between a simple linear
predictor and the observed value of the response variable.
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Residuals

Y 45 AT
« We can visualise the residuals as the distances | Residuals | . .“: “““ :\ *
between the line used for prediction and the 3 \, L
observed value in the dimension of the response D e .
variable. N
15 T ® e |Not residualsl
““ 2
« Mathematically, we seek a way of selecting the | Not residuals |
“best” prediction line such that the residual errors 0
are not too large. 0 0.25 0.5 0.75 1
X

» Usually, we do this by first ensuring E(¢,) =0 so » ¢ =0.
=1
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Ordinary Least Squares

« The most common technigue for estimating the coefficients in a simple linear regression
model is ordinary least squares.

« To do this, we choose a and 8 such that the sum of squared residuals is minimised.
* The squaring has two benefits

— positive and negative residuals of the same magnitude are treated equally;

— very large residuals are strongly penalised since a residual of 2 appears four times as
large in the objective function (sum of squared residuals) as a residual of 1 does.
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Ordinary Least Squares
. ansi =0 hence Zn:(yi —a-Bx,)=0.
Sy, - Zﬁx

* Thi —~ =0 soa ="+ =L
is gives ZyI na - Z,Bx -

» Our estimate of a is therefore d = y — Bx where X = 1in and y = 1Zyi.
N4 i—1

* We now seek argmin, (Zs,zjzargminﬁ (Z(y, —o“r—,Bx,)zj.
i=1

i=1
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Ordinary Least Squares
+ We seek 25 3.(y, ~6~Bx ) =0 =25 3.(y, (7~ 60) - Bx "

(00,0 Bl =R =3 (3, =9 2606 =20y, -7+ B P )
52097 ~2Blx -0, -9+ B(x ~X0°) = X200~ X)y, - )+ 2Bx, ~1)°) =0,

Z(x -X)(y; —Y)

- Solving this, we obtain g =

Z(Xi o X)




Ordinary Least Squares y

. _ x|y ° | y
« Consider the following *
0| 5.6
dataset
1155 4 o o
2| 5.9 . o
« We calculate 3| 32 , oo
10 10 4309 .
> x;=55and > y, =38.5.
i=0 i=0 5 39
0
6| 1.9 0 5 10
. _ 95 X
« This gives X =—=5 7124
11
81 3.1
andy _38>5 =3.5
11 9. 911.4
10| 1.7
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Ordinary Least Squares y

Consider the followi |y X YOVERL L
1155 -4 2 4 « o
2|59 [ 3| 24 o .
10- We calculate 3| 32 2| 03| , oo
3 (x, - X)? = 4139 [ -1] 04 -
é—05)2+(—4)2+...+(5)2=110 (389 | 9] 941,
6| 1.9 1 | -1.6 0 5 L 10
and i(xi Ry —§) = 7124 | 2| 11
i—0 81 3.1 3 -0.4
(-9)(-2.D+...+(5)(-1.8) = 9114 | 4 | -21
—47.9. 10| 1.7 5 | -1.8
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Ordinary Least Squares y

6, .
- Putting these together, we obtain [
> 0% =X, - ) . T ...
B = - 479 L 0.436 . T, o
: —\2 0
Z(Xi —X) ° e,
. 2 o e .
and d =y — BX hence d=3.5-5 4791 _s5.6s8.
110 0
0 5 10

 Our simple linear regression model is therefore y, =5.68 —0.436X; +¢,.
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Simple Linear Regression

 Linear regression only means that the model is linear in its terms. It can be used to examine
nonlinear relationships. For example, a quadratic relationship y. = a + Bx,* + ¢, can be
considered as a linear regression model (as plotting y against x> would give a straight line.)

« Note that throughout the calculation we have seen, we have made no assumptions about the
distribution of the residuals.

* [tis, however, common to additionally assume that the residuals are independent and
identically distributed realisations of a normal variable € ~ N(0,0°) for some fixed .

« These additional assumptions allow for some further analyses of the regression model.
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Multiple Linear Regression

* We now consider the case of having multiple predictor variables for a single response variable.
« With n observations of k predictors, we have a modely, =a + Bx; + B,X,; +...+ B, X, + €.

 The same procedures can be followed as with simple linear regression i.e. setting

Y & =0hence ) (v, —a—Bx; —BoXy —...—BX;) =0

=1 i=1

and minmising > &% =) (¥, —a — BXy — BoXy —-.. = B X))
i=1 =1
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Multiple Linear Regression

. We can minimise ZS —Z(Y. a—BXy; —ByXy — - Bka.) by dlfferentlatlng with respect to

each of B,,8,.... ,Bk and solvmg simultaneous for each —Ze =
J i=1

« This can get quite messy, but we can exploit some relatively simple matrix algebra to keep the
calculation much tidier.
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Multiple Linear Regression: Matrix Form

a

Y1 ,B 1 X121 Xy 0 X

1
e Defining Y = y.z ,B=|B, |and X = : ;12 ;22 . i:(2
yn B 1 Xln X2n an

k

we can write the regression model as Y = X8+ & where € ~N(0,0°L).
(Here I is the n-by-n identity matrix.)

* The column of 1s at the start of the data matrix X simply adds the a intercept parameter.

- Note that &€ ~N(0,0°l ) assumes that the residuals are all normally distributed and that they
are all uncorrelated with each other.
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Multiple Linear Regression: Matrix Form

e Y =XB+esoX'Y=X'XB+X'e.
e XY —X'e=X'XB hence (X' X)*(X'Y - X'e)=gB.

 This is optimised when X 's = 0 since the residuals are unrelated to X and each is mean zero.

~n

¢ B=(X'X)'(X'Y).
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Multiple Linear Regression: Matrix Form X, [x; |y
11713
 Consider fitting a model of the form Y = X8 + £ to the following dataset: 110 |6
3 11 1 211 )7
6 110 a 210 110
* In matrix form, we definey =| 7 |, X =|1 2 1|andB=|pB, | 1111
10 120 B,
11 13 1
3 11 1
111 1 1)6 ) (37 1111 1\110| (5 9 3
+ XY =112 2 37 |=/76| gngx'x =|1 1 2 2 3[1 2 1]|=|9 19 6
1010 110} (21 1010 1)1 2 o| (3 6 3
1 13 1
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Multiple Linear Regression: Matrix Form X, [x; |y
11113
5 9 3 (393 10 16
« X'X =|9 19 6| hence (X'X)™ =1E 9 6 -3 SERE
3 6 3 -3 -3 14 > 1o 10
21 -9 3)(37 30 2 3|1]11

y ﬁ=(X‘X)‘1(XtY)=% 9 6 -3||76| =—| 60 |=| 4

15
-3 -3 14)( 21 —45 -3

- Our least squares estimate for the model parameters is therefore Y; =2+ 4X; —3X, +§

* |In this case (but not in general) we can easily verify this is the best fit, since all residuals are
Zero.
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Generalised Least Squares

* We can also fit more complex models, such as time series models (where the observations
have an inherent order in time) or multilevel models (where observations may belong to a
group where there is some group-level effect.)

* This is done by fitting a model Y = XB + & where &£ ~ N(0,0°V.) where the off-diagonal
elements of V_ capture the covariances between residuals.

 We then simply multiply by V_*° to obtain V_°°Y =V _*XB8+V °°¢ which is of the form
Y = XB + £ where £ ~N(0,0°I.).

« We can then solve as before via ordinary least squares.
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Generalised Least Squares

* Y = XB+£ hence B=(X'X) X'Y)
« X =V_°°X hence X' = X'V % Similarly Y =V_°°.

. Together, these give B‘ _ ()?t)“()—1()~(ty~) _ (Xtvn—o.5vn—0.5X)—1(Xtvn—o.5vn—o.5Y) _ (X tVn—1X )_1(X tVn_lY )
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Coefficient of Variation (R-Squared)

« A common way to quantify how much of the variation in a response variable is explained by a
regression model is the coefficient of variation, commonly written as R-squared or R*. This
IS simply a proportion between 0 and 1.

« An R-squared of 1 implies that all residuals are zero and hence 100% of variation in the
response variable is characterised by the model.

* An R-squared of O implies that the model captures none of the variability in the response
variable.

« This is a measure of how much of the variability in the response captured by a model. It does
not tell us whether or not variables should be in that model. A predictor may only explain a
small proportion of response variable, but still be a necessary inclusion in the final model.
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Coefficient of Variation (R-Squared) SSE =3(y, ~y)* = ¢/
o y =1 =1
* The total squared variation (about the 6 -,
mean) in a response variableyis T € n _
n O | ? SST =2 .(y,-¥)
SST => (y, -Y)" .ol T =
- 7y H (Y, V)
* The sum of the squared emrors around the ¢ [V 7Y) bt TT
fitted value y is SSE =) (y, -y)". 2 T (y,-V) B
= e [ Y, =Y)
* The sum of the squared deviation to the o g g
regression line SSR =SST —SSE. 0 5 X 10

(yi _9)2
,_SSR_,_ le
SST n -
Dy —-y)
i=1




Coefficient of Variation (R-Squared)

« Some sources define the residual error not as SSR =SST —SSE butas SSR = Zn:(yi ~y).
i=1

* |t is not instantly obvious that these definitions are equivalent.
« SST -SSE :Z(yi —)7)2 _Z(yi _yi)ZZZ(yi _y+yAi _yﬁi)2 _Z(yi _yAi)Z
i=1 i=1 i=1 i=1
=20, Y0+ 20 Y 2 G-~ - 2 -9
i=1 =1 i=1 =1

» We therefore have that SSR =SST —~SSEonly if > (¥, -Y)(y; —-¥:)=0.
i=1
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Coefficient of Variation (R-Squared)

- By definition, the parameters satisfy 8 = argmin,, (Zn:(yi G- Bxi)zj and Z”:(yi _Gg-— ,éx,.) =0.
i=1 i=1
0 < o n .
* _Z(y| _G_IBXi)Z :Z(yi —G—,BXi)(—Xi)ZO
oB ‘= =

. Zn:(yi —é—,éxi)(—xi)zO hence Zn:,éxi(yi —c“r—,éxi):o

Zn:(yi ~d-fx)=0 gives _Zn:(c“r—y)(yi ~d-Bx,)=0.

S (G- 7)Y, G- Br)+ D Br(y, -G - Bx) =0 = D(d+fx )y, ~d—fix)

i:]. n

— Z(yA| _Y)(yi _yAi) =0.




Assessing Model Fit

« Consider fitting a linear regression model with n observations of k predictors

Y. =a+Bx, +B,%X,; +...+ B X, +E&.

« We wish to test the hypotheses Hy B, =B,=...= 6 =0
H,:B #0 forsomeie{l2,...,k}

« We can consider the proportion of variation in the data explained by the null model.

¢ SST=Y(y,~a) =Y.(, - ¥

« SSE =) (Y, —a—B.X; — B,Xy —...— B X ).
i=1
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Assessing Model Fit

« Under the assumption that residuals are independent and normally distributed with equal
variance o

SST = (v, -¥)* ~0%x*(n-1)
i=1

» The variation around the fitted line iISSSE =) (y, —a — BX; — BoXy —...— B X )? ~ 0 x*(n—k 1)
i=1
 The variation explained by the model is therefore SSR = (SST —SSE) ~ 0° x*(k)

« We can therefore test, under the null hypothesis, whether the proportion of variation
explained by the model is consistent with the hypothesis.
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Assessing Model Fit

* We know that the weighted ratio of two chi-squared variables is F-distributed.
SSR
e
SSE
(n —k —1]

« We can then reject the null hypothesis if the (weighted) proportion of variation explained by
the fitted regression line is greater than the critical value from the F-distribution.

« If SSR ~0°x*(k) and SSE ~o°x*(n -k —1) then ~F(k,n -k -1).

* Note that unlike the simple least squares calculation, we do require the assumption of
normality of residuals.

« With categorical variables, this is the basis of analysis of variance (ANOVA.)
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