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Bias

• Let T be a statistic used to estimate the value of a parameter   .

• The bias of T in estimating    is defined as

• If the bias of an estimator for a parameter is zero, this is said to be unbiased. Otherwise, the 

estimator is said to be biased. 
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Bias

• Let X be a random variable with mean           and variance

• Recall now the method of moments, which matches the moments of the distribution to those 

of a sample drawn from it.

• For a sample of independent realisations                            , the method gives estimates of the 

mean and variance  

• We now show that one of these is an unbiased estimator, but the other is biased.
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Bias

• Trivially, we have that each    is a realisation of X for which                hence

• We therefore have that                     so the sample mean is an unbiased estimator of the 

population mean.
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Bias

• Consider now 

•  

•  
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Bias

•  

• The second (central) sample moment is therefore a biased estimator of the population  

• When estimating a population variance from a sample, we often use 
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Comparing Unbiased Estimators

• Although it may seem, intuitively obvious that an estimator with small (or zero) bias is “better” 

than a biased estimator, there are some surprising examples which might suggest otherwise.

• There are several famous examples in which we might favour a biased estimator over an 

unbiased one.

• Keep in mind that an unbiased estimator is only giving the true value on average. Some 

unbiased estimators can provide huge overestimates or huge underestimates on any single 

realisation, but still be unbiased.

• In such cases, a more stable estimate with small bias may well be preferable.
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Basu’s Elephant

• Maybe the most famous example of this is Basu’s elephant.

• This arises from a story whereby a circus which owns 50                                                 

elephants wishes to know the total mass of all of its elephants.

• When the circus owners conducted the same analysis previously,                                                          

they noted that one elephant – Sambo -  has a mass very close                                                     

to the mean of all 50 elephants. They therefore propose to save                                                    

time by simply measuring one elephant’s mass. Their initial idea is to measure only Sambo 

and estimate the total mass as                                     is Sambo’s mass.

• This, in fact, is not guaranteed to be an unbiased estimator.          

50  where sambo samboω ω
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Basu’s Elephant

• Instead, the circus calls in a statistician, who says they must                                                     

perform a random sample to select the elephant to be measured.

• The statistician knows that an unbiased estimator for this is 

• The circus owners think that selecting Sambo alone is the best idea, so conduct a random 

sample which selects Sambo with probability 99% and each of the other 49 elephants with 

equal probability.

=ˆ  where  is the mass of selected elephant  

and  is the probability that elephant  is the one selected.
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Basu’s Elephant

• Introducing the notation

    we can see that

• This tells us that the estimator is unbiased.
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Basu’s Elephant

• When this unbiased estimator is applied, the statistician estimates

• Even more absurd is the case when the heaviest elephant is 

selected.

• If the mass of the heaviest elephant is            and this elephant is

• The estimator is unbiased, but can be wildly inaccurate in either 

direction.
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(1924 - 2001)
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Comparing Unbiased Estimators

• Although it may seem, intuitively obvious that an estimator with small (or zero) bias is “better” 

than a strongly biased estimator, we should not consider that all unbiased estimators are 

equally good, especially for small sample sizes.

• Consider the case of independent samples                           drawn from                       where 

the population variance      is known and we estimate the population mean from samples.

• It is easily shown that            is unbiased.

• Other estimators such as                                                                                          are also 

unbiased.
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Comparing Unbiased Estimators

• Are any of these unbiased estimators “better” or “worse” than others?

• It seems reasonable to think that an estimator based on a larger sample of observations will 

give a better picture of the population than a smaller sample.

• For a normal variable, both the sample mean and the sample median can be calculated using 

the same number of observations, yet we may have reason to believe that one is a better 

estimator than the other.

• We first need to formalise what we mean here mathematically.
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Comparing Unbiased Estimators

• We can calculate the variance of an unbiased estimator around its true value. That is, for 

estimator           , we can calculate

• Intuition may tell us that we prefer lower variance estimators, since these will provide less 

uncertainty about the true parameter value.

• In all but the most trivial of cases, we will not be able to find estimators from finite samples 

which have zero variance.

• We can, though, put a lower bound on the possible variance of an estimator and look at how 

close to this bound an estimator is.

ˆ of θ θ ˆ( ).Var θ
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Score Function

• Consider a single parameter random variable X with probability density function             .

• Given an independent sample of observations                            , the associated loglikelihood 

function is

• We call the derivative of the loglikelihood with respect to the parameter as the score function.

• It is easily seen that the expected value of the score at the true parameter value of     is zero. 
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Score Function

• It is easily seen that the expected value of the score at the true parameter value of     is zero.

•  

• Since

• In the above calculation, all integrals are over the full n-dimensional range of X and we have 

assumed some regularity conditions to interchange the order of the derivative and integral.

• Although shown for continuous variables, the same argument holds with probability mass 

functions for discrete variables.
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Fisher Information

• The Fisher Information is defined as the variance of the score 

function.

•   

• When the Fisher Information is larger, changes with respect to     

have larger changes in the likelihood of a sample. 

• Informally, a larger Fisher Information tells us that our sample 

contains more information about the parameter value. 

Conversely, smaller Fisher Information implies a flatter likelihood 

function, hence less certainty about the parameter value.
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Cramér-Rao Bound

• The Fisher Information provides a bound on the                                                                          

minimum possible variance which an estimator                                                                           

can have.

• It is beyond the scope of 37262 to prove this formally,                                                                 

but we have that the variance of an estimator cannot                                                                   

be less than the reciprocal of the Fisher Information.

•                        where

•  This is the Cramér-Rao bound.
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Efficiency

• We define the efficiency of an estimator by what proportion of the Cramér-Rao bound its 

variance obtains.

•  

• Clearly the efficiency must be between 0 and 1. 

• You may sometimes see relative efficiency of two estimators

•                                 . Clearly this is non-negative but can take values above 1.
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Efficiency

• Consider the example of                       where n is known, but p is to be estimated.

• The loglikelihood of a sample                            is then

• Differentiating gives

• The maximum likelihood is 

~ ( , )X Bin n p

1 2{ , ,..., }kx x x=X

1

1 1 1 1

! !
( | ) ln (1 ) ln( ) ln(1 ) ( ) ln .

!( )! !( )!
i

k k k k
x n x

i i

i i i ii i i i

n n
p p p p x p n x

x n x x n x

−

= = = =

   
= − = + − − +   

− −   
   X

1 1

( )

( | ) .
(1 )

k k

i i

i i

x n x

p
p p p

= =

−


= −
 −

 
X

1ˆ .

k

i

i

x

p
kn
==




Faculty of Science

Efficiency

• We find the variance of the estimator

•  

• The Fisher Information is

•  

• The maximum likelihood estimator here therefore has efficiency of 1.
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Ordinary Least Squares

• Recall that, for a simple linear regression                          , the estimates of the intercept and 

slope parameters are

• Consider having a set of observations of X,                           .

•  
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Ordinary Least Squares

• Similarly, 

• The estimates of the slope and intercept parameters are therefore both unbiased.

• Note that no assumptions have been made here beyond that the residuals have zero 

expectation. No further distributional assumptions have been made.
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Ordinary Least Squares

• We now consider the variance of these estimates around the true unknown values.

•  

• Now, in the numerator, 

•  
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Ordinary Least Squares

• Note that the simplification of                                                              relies not only on the fact 

   

  that, for a constant k and variable Z,                                 but also on all of the residuals being 

   uncorrelated.

• That is, we require the assumption that                                      .

• Similarly, 
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Confidence Intervals

• A confidence interval is a range of values for the estimate of an unknown parameter.

• It is associated with a confidence level. Which represents the long-run proportion of 

confidence intervals generated which would contain the true value of the parameter.

• For example, if a sampling procedure is developed and associated 95% confidence intervals 

calculated, then if repeated independent samples are generated under the same procedure, 

then 95% of the resulting intervals will contain the true parameter value.

• Although widely used, confidence intervals are easily and often misunderstood.
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Confidence Intervals

• A confidence level of 95% does not mean that 95% of sample data will lie in the interval.

• A 95% confidence interval for a parameter does not imply that there is a 95% chance that the 

true value parameter for which the interval is calculated lies in the interval.
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Confidence Intervals

• Most commonly, we apply the central limit theorem to construct confidence intervals.

• The central limit theorem states that, if                     are independent realisations of the same 

variable X, with                                                      , then the variable

• A                    symmetric confidence interval for 
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Confidence Intervals

• In practice, we often do not know the population standard deviation       and instead have to 

estimate it from the same sample which is being used to estimate the mean.

• Consider the expectation of

•  

•                                               is therefore an unbiased estimator of 

2σ

2

2

1

1
( )

n

i

i

cs x x
n =

= −

2

2

1

1
( ) (( ) ( ))

n

i

i

E cs E x μ x μ
n =

 
= − − − 

 


1

1
( ) ( )

n

i

i

Var x Var x
n =

= −
2

2 σ
σ

n
= −

2.σ

2 1n
σ

n

− 
=  

 

2

2

1

1
( )

1 1

n

i

i

n
cs x x

n n =

 
= − 

− − 




Faculty of Science

Confidence Intervals

• Recall that, for a regression model                                                         , assuming that 

residuals are independent and normally distributed with equal variance

• Similarly, we have that

• If we are estimating                                              , we now note that 
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Confidence Intervals

• The ratio of a normal variable to the square root of a                 variable over its degrees of 

freedom follows a        distribution.

• If the population variance is unknown, our confidence interval for the mean, based on a 
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Confidence Intervals

• Recall that, for a regression model                                                         , assuming that 

residuals are independent and normally distributed with equal variance

• Considering now only the simple linear regression case,                                           we have 

• Taking the expectation of both sides, we obtain
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Confidence Intervals

•   

• We saw that 

• Our confidence intervals for these estimates are therefore 
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Prediction Intervals

• As we have already said, there are a number of common misinterpretations of confidence 

intervals. One of these is to confuse them with prediction intervals.

• A prediction interval is an estimate of an interval in which a future observation drawn from a 

known (or estimated) distribution may lie.
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Prediction Intervals

• Consider a regression model

• Given these observations, we can construct a prediction interval for the response value 

corresponding to predictor value

• Clearly, the prediction interval should be centred on                                 

• We can simply evaluate this with our unbiased estimates of the two regression parameters.

• The variance is less straightforward.

1 2 and observed predictors { , ,..., } withi i i ny α βx ε x x x= + +

1 2corresponding responses { , ,..., } respectively.ny y y

   ky

 ( {1,2,..., })  kx k n

( | ) .k k kE y x α βx= +
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Prediction Intervals

•    

• The variance of the future observation is 

• Again, assuming that the population variance is not known, we can replace it with an

ˆ ˆˆ ˆˆ ˆ hence ( ) ( )k k k ky α βx Var y Var α βx= + = + ˆ( ( ))kVar y β x x= − −
2 2 22
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Prediction Intervals vs Confidence Intervals

• In general, prediction intervals will always be wider than confidence intervals, since the 

confidence interval simply describes our uncertainty in estimating the parameters.

• On the other hand, prediction intervals capture our uncertainty in estimating the parameters 

and the random variation between realisations of the resulting distribution.
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