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Modelling Different Response Types

• A simple linear regression model of the form                         can (depending on what values x 

can take) return values for y which can be arbitrarily large, positively or negatively.

• This response type simply doesn’t suit many datasets. For example, if we are seeking to 

predict how many times a given outcome will be observed, the predicted response must be a 

count (i.e. a non-negative integer – 

• Alternatively, we might simply be trying to predict whether or not a given outcome will or will 

not occur given some predictor variables. In this case, we have a binary response (i.e. one of 

two possible responses.)

• Such models can be obtained through generalised linear models or GLMs.

i i iy α βx ε= + +

{0,1,2,3,...}
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Generalised Linear Models

• A generalised linear model applies a link function to a standard linear model to ensure that 

the response type is appropriate for the dataset.

• For example, if we are seeking a binary regression model, we seek to predict if a given 

outcome will (1) or will not (0) occur given predictor information.

• We do this by using a function which transforms the possible outcomes of a linear regression 

(which could, at least in theory, take any real values) and converting this to values between 0 

and 1.

• The two most common functions for binary regression are the logit and probit functions.



Faculty of Science

Binary Logistic Regression

• The logit of a probability p

• As p approaches zero, the logit function tends off                                                                              

towards minus infinity.

• As p approaches one, the logit function tends off                                                                              

towards positive infinity.

• We therefore run a regression model to predict                                                                               

the inverse of the logit function and convert this to a probability between 0 and 1.
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Binary Logistic Regression

• Fitting to an observed dataset, we already know the 0s and 1s (i.e. whether or not the 

outcome occurred) and want to work backwards to see which predictor values  are more 

associated with 1s than 0s.

• We therefore need the inverse of the logit function.

• If 

•  

• We then undertake a linear regression to find the value of y which best fits this curve.
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Binary Logistic Regression: Odds Ratio

• One of the strengths of the logit function for a generalised linear model is that it gives easily 

interpreted parameters.

• The odds ratio of an outcome occurring are defined as             where                                                      

p is the probability that it occurs.

• You can think of odds as being how many times more like an event                                                  

is to happen than not. For example, odds of 3 mean                                                                           

that an event has 75% chance of occurring and                                                                                

25% chance of not occurring (since 75/25 = 3.)

• An event has odds of 1 if is equally likely to happen as not (i.e. 50% chance.)
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Binary Logistic Regression: Odds Ratio and Interpretation

• When we fit use the logit function as the link function for a generalised linear model, we 

automatically get the log of the odds ratio.

• We effectively fit (for a simple linear model)                                     .

• We note that if the predictor variable x increases by 1, then the log of                                            

the odds ratio increases from                                         , which is                                             

an increase of    .

• This means that the odds of the event changes                                                                              

by a factor of      .
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Binary Regression

binary responses (i.e. 0s and 1s.)

logit( ) ln
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• The logit function                              is not the only possible function which can be used for 

• Other functions which take only values between 0 and 1 can also be used.

• Another (less commonly-used) function for binary responses is the                                          

probit function, based on a standard normal distribution.
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Exponential Family

• We have a general framework for fitting models to many of the most common distributions.

• A distribution which depends on a single parameter     is said to belong to the exponential 

family if its probability density or probability mass function can be written in the form

• A similar statement also applies for multiparameter distributions. In this case, the distribution 

belongs to the exponential family if, for parameter vector                       , it can be written in 

the form                                                   where . denotes the dot (or scalar) product ahd, 

again, the range of the variable does not depend on the parameter values.

   θ

( )( ) ( ) ( )exp ( ) ( )  and where the range of  does not depend on .f x a x b θ c θ d x x θ=

1( ,..., )nθ θ=Θ

( )( ) ( ) ( )exp ( ). ( )f x a x b x= Θ c Θ d
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Exponential Family

• All of the following distributions belong to the                                                                           

exponential family.

• Some of these are easily shown to be                                                                                         

expressible in the form of the exponential                                                                                   

family, other are more less obvious.

• Note that distributions such as the uniform variable                                       and the Pareto 

variable                                                   do not belong to the exponential family as their 

ranges depend on the parameters.

Normal Geometric

Exponential Poisson

Gamma Beta

Bernoulli Chi-squared

Binomial (if the number of trials is known)

Negative Binomial (if the number of required 

successes is known)

[ , ] with range [ , ]U a b a b

( , ) with range [ , )Pareto m α m 
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Exponential Family: Example

• Consider                      where n is known. 

• This has probability mass function

•  

•  
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Exponential Family: Canonical Form

• Every member of the exponential family can be expressed in canonical form or standard 

form.

• If, in the form                                                  then         is said to be the natural parameter.

• The canonical form is then                                              in terms of this natural parameter.

• For example, it is possible to define a Bernoulli variable with known number of trials, not by 

   the success probability p, but rather by the log-odds ratio
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Exponential Family: Example

• Consider

• This has probability mass function

•  

• This is in canonical form with natural parameter
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Exponential Family: Mean

• Consider the general form of the exponential family

• Let us first redefine this in terms of the natural parameter c. 

• We know that

•  

•  
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Exponential Family: Mean

•  

•  

•   

•  

• If               then   
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Exponential Family: Mean

•  For the Poisson distribution, our distribution was

•  This gave the natural parameter of 

• We also obtained 

• By the method on the previous slide, we obtain

• This gives 
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Exponential Family: Variance

• Although a little messier to justify, we also have the property that, for natural parameter c, 

the variance of a distribution defined by the exponential family                                             is

• For the Poisson, we therefore have
2 2 2
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Exponential Family: Variance

• Recall now

• This can be written as

~ ( , )X Bin n p
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Exponential Family: Variance

• The mean is therefore

• Similarly, the variance is  

•  
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Generalised Linear Models

• We return now to generalised linear models.

• A generalised linear model consists of three elements.

• Given an observation                 of n predictor variables, we have a linear predictor

• We also have an assumed distribution for modelling Y – usually a member of the exponential 

family.

• Finally, we have a link function g such that
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Generalised Linear Models

• Trivially, if we set the link function               then we obtain

• In general, for other types of regression model, we can select the natural parameter from the 

canonical form of the exponential family as the link function. For example, Poisson 

regression can be done using                             since the natural parameter for the Poisson 

distribution was the log of the mean.

• Similarly, we have that the logit function is a link function for binomial regression.

( )g μ μ=

1 1( | ) ...  i.e. the systematic (not random) 

component of a standard linear model.

i i i i i n niE y x μ η α β x β x= = = + + +

ln( )tη μ= =X β
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Generalised Linear Models

• Recall that we could use ordinary least squares to fit models where the residuals had some 

covariance structure (other than the usually-assumed structure of independent and 

identically distributed structure) via generalised least squares.

• It is beyond the scope of 37262, but we can similarly fit GLMs by an iterated weighted least 

squares approach. 

• This minimises a weighted sum of squared residuals for estimated parameters, then 

recalculates the weights and then is repeated until the parameters converge. Most modern 

statistical packages can do this very efficiently.
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Generalised Linear Models: Score Function

• Recall from Lecture 8 that, for a loglikelihood function                                 , we had the score 

function 

• We had that

• As 

• We further defined                                                        to be the Fisher information, a

   measure of information about the parameter 
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Generalised Linear Models: Score Function

• In the case of multiple parameters,               the score statistic is similarly defined

• With link function               , we obtain  

• Via the matrix chain rule, we obtain the Fisher information

1
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Newton-Raphson Method

• Recall the Newton-Raphson Method (or 

Newton’s Method), which involves 

repeatedly solving simpler functions which 

approximate to the original function.

• For example, consider the problem of 

finding a root of the equation

      y

      x( ) 0.f x =

( )f x

( ) 0f x =
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Newton-Raphson Method

• We start with a “guess” of the solution, hopefully near the actual 

solution. Call this point     .

• Expanding                    gives

• We solve this to find the solution which will                                               

be our next “guess”      .

•  

• This works by approximating our function to a straight line with the 

same gradient at each step and solving the much simpler linear 

function instead.
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Fisher Scoring

• Similarly, the weighted least squares problem                          is solved with an iterative 

approach similar to the Newton-Raphson method.

• We know that the likelihood is maximised when the expected value of the score function is 

zero, so it is simply an exercise in finding a root of the equation setting the expectation of the 

score function to zero.

• This approach is the Fisher Scoring algorithm which solves by weighted least squares, at 

each step of the algorithm, re-estimating the weights until the system converges to a 

solution.

( ) ( ) tI I=β X η X
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Fisher Scoring

• For a single variable with initial estimate     , this algorithm is simply 

• Where                                       are, respectively, the score function and Fisher information 

associated with the sample X.

0η

1
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Generalised Linear Models

• It should be noted, however, that this approach can produce some confusing outputs which 

require careful attention. 

• For example, although the iterated least squares procedure relies on the Fisher information 

(based on the second derivates of loglikelihood), it is essentially aiming to maximise 

likelihoods.
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Generalised Linear Models

•  If we seek to fit a Poisson                   model to a dataset of “observations”                                

it will produce an estimate based on the mean of these being 1.5.

• In reality, of course, the likelihood of these observations is zero, since we cannot observe a 

Poisson count of 1.5, which is not an integer.

• The likelihood of these observations given any possible parameter is also zero and hence 

the proposed solution is no less likely than that any other parameters.

• Caution should therefore be used when relying on modern efficient computational packages.

~ ( )Q Poi λ
1 2 3{ , , } {1,2,1.5}q q q =
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