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i) A conjugate prior is one such that, when combined with the likelihood
function, gives a posterior distribution of the same form/family, albeit
with different parameter values.
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The posterior is proportional to the prior multiplied by the likelihood
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Here, A ~Gamma(14,7)

iv) The prior mean was 2 and variance 1. The additional observations
seemed to confirm the prior belief, keeping the posterior mean at 2 but

shrinking the posterior variance to ; suggesting increased belief that

the rate is close to 2.



Let a set of observations be © =(6,,6,,...6,).
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Note now that the term e = can be considered constant with respect to
w hence
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This tells us that
Fw]©) = L(O | w)f (w) o« w™™™ exp[—w[,3+zn:ln(9i)—nln(m)ﬁ or,

simplifying this,

f(w]O)oc W exp[—w(,@ + iln(%)]}

This gives that the posterior density is a Gamma variable

Gamma{a +n,B+ iln(%)] .



ii)

1
X ~UJ0,6] therefore f(x)=1{6 x €[0,6]

0 otherwise
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L(X;, X,,..., X, |6) = {GMG} {9} ) :

0 otherwise
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0 otherwise

f(O|X, Xy, X,) ¢ L(Xy, Xy, X, |B) F(O) SO

f(9|X1’X2’"-’Xn)Oc{e_ln}{gzl}“ en}ml for x,x,,...,x,,m<8.

Since we need all x; to be no greater than 6 and also need m to be no
greater than 6, we have that M = max{x,,X,,...,X,,m} is the lower
bound on 6.

This gives that the posterior distribution for 6is a Pareto(M,a + n)
variable where M = max{x,, x,,...,X,,m} .

Yes. If the prior and posterior distributions are the same type of
variable (in this case, both Pareto distributed) then the prior distribution
is a conjugate prior for the likelihood function.



