University of Technology Sydney School of Mathematical and Physical Sciences

Mathematical Statistics (37262) – Tutorial 2 – Assessable Labwork

1. A realisation x_i of a random variable X is generated according the rule

If $u_i < 0.1$ then $x_i = 0.1$ If $u_i > 0.8$ then $x_i = 1$ Otherwise, $x_i = 0$

where u_i is a realisation of a uniform random variable $U \sim U[0,1]$.

- i) Calculate the probability mass function of *X*.
- ii) Hence show that E(X) = 0.21.

Let Y be a continuous random variable with probability density function

$$f(y) = \begin{cases} 1.5y^2 & y \in [-1,1] \\ 0 & \text{otherwise} \end{cases}$$

- iii) Write down E(Y). Justify your answer.
- iv) Find the cumulative distribution of Y, $F(y) = P(Y \le y)$.
- v) Hence show that $F^{-1}(y_i) = \sqrt[3]{2y-1}$.

A realisation of Y is generated by setting $y_i = F^{-1}(u_i)$ where u_i is a

realisation of $U \sim U[0,1]$.

Let $Z = \max{X,Y}$ be a random variable taking either the value of X or the value of Y, whichever is greater, when X and Y are generated as above, using the same uniform realisations.

- vi) Using the values $\{u_1, u_2, u_3\} = \{0.402, 0.009, 0.711\}$, generate realisations $\{z_1, z_2, z_3\}$ of *Z*.
- vii) Calculate P(Z > 0). Justify your answer.