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1. Let X, Y and Z be discrete random variables with joint probability mass 

function  
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i) Calculate the marginal distribution of X. 

 ii) Hence show that the variance of X is 0.24, 

iii) Calculate the joint marginal distribution of X and Y and hence show 

that X and Y are independent.  

That is, show that P X Y k l P X k P Y l(( , ) ( , )) ( ) ( )= = = =  for all possible 

values of k and l. 

 iv) Are X and Z independent? Justify your answer. 

 v)  Find the conditional distribution of X given X Z= . 

 

 

 

 

 

 

 

 

 

 

 

 



2. Three continuous random variables have joint density function 

X Y Zf x y z, , ( , , )  which is non-zero on the three dimensional interval  

x y z 3( , , ) [0, )  . 

 

Consider the change of variables R X 1= +  and S Y=  and T Z Y 2= − . 

 
i) Calculate X, Y and Z as functions of R, S and T. 

ii) What are the ranges of R, S and T.? 

iii) Hence show that the absolute value of the Jacobian matrix associated 

with this change of variables is given by  
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