University of Technology Sydney School of Mathematical and Physical Sciences

Mathematical Statistics (37262) – Tutorial 9

1. A negative binomial variable with range $\{r, r + 1, r + 2, ...\}$ can be considered as the sum of *r* independent identically distributed geometric random variable. It describes how many independent identically distributed Bernoulli variables must be observed until *r* successes (1s) have been observed.

For $N \sim NegBin(r, p)$, the probability mass function is

$$f(n) = P(N = n) = \begin{cases} \frac{(n-1)!}{(r-1)!(n-r)!} p^r (1-p)^{n-r} & n \in \{r, r+1, r+2, ...\} \\ 0 & \text{otherwise} \end{cases}$$

- i) Show that, if *r* is known, $N \sim NegBin(r, p)$ belongs to the exponential family.
- ii) Find the natural parameter for this distribution.
- iii) Hence calculate the mean and variance of $N \sim NegBin(r, p)$.
- 2. The density function of $Y \sim Weibull(\lambda, k)$ for k > 0, $\lambda > 0$ is given by

$$f_{Y}(y) = \begin{cases} \frac{ky^{k-1}e^{-\left(\frac{y}{\lambda}\right)^{k}}}{\lambda^{k}} & y \ge 0\\ 0 & y < 0 \end{cases}$$

Here, we assume that *k* is known, but λ is unknown.

- i) Show that $Y \sim Weibull(\lambda, k)$ belongs to the exponential family.
- ii) Hence show that we can take $c(\lambda) = -\frac{1}{\lambda^k}$ as the natural parameter for this distribution.

3. Consider independent realisations $\{u_1, u_2, ..., u_n\}$ of a continuous uniform random variable $U \sim U[0, b]$ where b > 0 is unknown.

That is, *U* has density function $f(u) = \begin{cases} \frac{1}{b} & u \in [0, b] \\ 0 & \text{otherwise} \end{cases}$.

- i) Justifying your answer, find E(U).
- ii) Using the Method of Moments applied to the first moment estimates b

by
$$\hat{b}_{MM} = 2 \frac{\sum_{i=1}^{n} u_i}{n}$$
.

Show that $\hat{b}_{_{MM}}$ is an unbiased estimator of *b*.

iii) Estimating *b* by maximum likelihood estimation gives an estimator $\hat{b}_{MLE} = \max\{u_1, u_2, ..., u_n\}$. Calculate the bias of this estimator when we just have a single observation u_1 of $U \sim U[0, b]$.