Chapter 3

Div, Grad and Curl

Vector Fields

One interesting quality of vectors is that they have no position - a vector by itself can always
be pictured as starting at the origin (This is in fact why you are allowed to add them by
placing the tip of one against the tail of another). In physics however we often find that a
vector quantity (such as force) will vary from place to place. A function which attributes a

unique vector to each point in space is called a vector field.

I’'ve drawn a couple of vector fields below. Clearly it is not possible to represent every vector
in the field, since there is a different vector at every point and so they are packed infinitely

densely.
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Vector fields are extremely useful in physics and can represent anything from the velocity of
fluids, the displacement caused by an elastic vibration, or an electric field.
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Differentiation of vector fields

Happily, differentiation of vectors follows the same set of rules which we use differentiation
of scalars. If a vector F depends on some parameter ¢, such that

~
.

F(t) = F.(t)i + F,(t)j + F.(t)k
then the derivative with respect to t is

dF  dF,. dF,, dF..

In this way we can see that vector differentiation inherits all the rules for scalar differentiation.
These are:

Addition: %(F + G):CZ—PI; + % (3.2)
The chain rule: %( (u( )))—%% (3.3)
Multiplication by a constant: %(CF):CC;—]: (3.4)
%(uF):i—?F + u%
Product rules: %(F : G):% -G+ F- % (3.5)
%(FXG):(Z—E x G+ F x %

Note that in the product rules we have specified the extra rules for using the dot () and
cross (x) products.
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The gradient

Differentiation describes the rate of change of a function with respect to a given parameter.
If this parameter is one of the coordinates x, y, or z, then the partial derivative 0f(z,y, z)/0z
denotes the slope of the function, as measured parallel to the x axis. That is, df(z,y, z)/0z
measures the rate of change of the function f in the z direction.

We will now introduce a generalization of differentiation to three dimensions. Because the
function f(x,y, z) depends on each of three coordinates, we require a vector field to describe
the slope of f in each of the three coordinate directions. The simplest way to contain all
this information is to put all the partial derivatives of the function into a vector. This vector
field is known as the gradient of the function.

Given a scalar function f(z,y, z), we define the gradient of f to be the vector

(o5 o o
vi= (8x’8y’8z>' (36)

The gradient has the following properties:

e Vf is a vector field

e V f measures the rate of increase of the scalar function f in each of the three coordinate
directions

e Vf points in the direction in which f increases the most.
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To illustrate the last point, we consider the (two-dimensional) scalar function above, which
has been represented both as a surface (left) and as a contour graph (right). Over the top
of the contour function have been drawn the vectors representing the scalar field V f. Each
vector points in the direction in which the function f increases the most, and the length of
each vector is proportional to the ‘steepness’ of the slope.
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Problems

1. Given a scalar field
flx)=r",

where r = 21 + yJ + zk and r = |r|, show that Vf = nr"2r.

2. Find the gradient of the field
q

fxayaz = )
( ) ’x2+y2+22

where ¢ is a constant.
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The operator V

The gradient Vf has the form of a vector multiplying a scalar function:
o o0 0
Vi=(=—,=—,=— )
/ <8x’ dy’ az> /

The object in parentheses is not in fact a vector, although behaves very much like one.
Instead it is an example of what is known as a wvector operator, and we can re-write it as

o o0 0
V= <a_a_ya_> : (3.7)
or, equivalently,
-0 .0 . 0

An operator is something which operates on a function to produce another function. In this
case V is perhaps best looked at as an instruction to differentiate a function in each of the
three coordinate directions.

As with an ordinary vector, we can use V to multiply in three different ways:

1. Multiplication by a scalar function f: the result is the vector V f (the gradient).

2. ‘Dot’ product with a vector function v: the result is a scalar V - v, known as the
divergence

3. ‘Cross’ product with a vector function v: the result is a vector V x v, known as the
curl

The Divergence of a vector field

For a vector field v = (v, v,,v,), the divergence of the field at any point is defined by the
number

o o0 0
V.v = (%a a_ya &) : (Uxavyvvz)
ov, N % N v,
oxr Oy 0z

Note that this is clearly a scalar quantity. You will often see the divergence written

divv=V-v .
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The divergence is essentially a measure of the expansion of a vector field at any given point.
That is, it gives the amount that the vector field spreads out (or diverges) from a particular
point.

Example:

Consider the vector function

v(z,y,2) = 21+ yj + 2k

The divergence of this function is
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by the figure above.
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The curl of a vector field

From the definition of the vector, or ‘cross’ product, we have:

i j k
Vxv = | &£ & & (3.10)
Uy Uy U
o {0v,  Ovyy 2 [ 0v,  Ov,
(3y _E) _J(ﬁx a 82:)
- [ Ov 0V,
+k (a—; — a_y) : (3.11)

The curl is a measure of how much (and in which direction) a vector field ‘curls about’ itself.
Vector functions which twist dramatically typically have large curls in the vicinity of the
twisting, whereas smooth, laminar functions tend to have small values of curl. To illustrate:

Example (i)

Consider the vector function

v(z,y,2) = —yi+zj+k

The curl of this function is
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i j k
Vxv = | & & &
-y x 1
_ (0 0@y (o ot
oy z ox 0z
o (0(x)  O(—y
i (83: Oy
= {(0—0)+j0—-0)+k(1+1) =2k

Example (ii)
By way of contrast, consider the vector function we looked at previously

v(z,y,2) =ai+yj+ 2k

The curl of this function is

1(52-9) 3 (52-%2)
(5 - %)

This function has zero curl. Vector fields of this type are known as irrotational



Problems

1. Find the gradients of the following functions:

(a) f(z,y,2) = 22% + y* + 32°
(b) f(z,y,2) = 2*y’2*
c) f(z,y,2) = e*sinxn(y)

2. Find (i) the divergence, and (ii) the curl of the following vector functions:

(a) v = 932iA+ 2xyi+ 327k
(b) v = zyi + 2yzj + 3zzk

3. Calculate the divergence of the function

where r = zi+ yj + 2k, and r = |r|.
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Second derivatives

We can form more complicated operations by combining the different permutations of gra-
dient, divergence and curl. If ¢ is a scalar field, and v = (v,, vy, v,) is a vector field, we
obtain:

1. The divergence of a gradient:

o 0 0 dp 0P 0¢
V(v¢) = a9 'a. )\ 9.9 4o
Ox’ dy’ 0z ox’ Jy’ 0z
0? 0? 0?
_ 2o P O
oxr?  OJy? 02?2
This operation is known as the Laplacian of ¢, and is usually written
Py %9  0°
2
=—4+—+— . 3.12
v'e ox? 0y * 072 (3.12)
This differential operation is one of the most widely used in the entire field of physics.
Important examples are:

V2p =0  Laplace’s equation

100 . o .
V30 = e Heat conduction, or ‘diffusion’ equation
K
1 0%u
2 .
U=——= Wave equation
c? ot? d

Note that the Laplacian is a scalar quantity.
2. The curl of a gradient:
(000 D0\ (000 00 - (009 00
Vx(Ve) =i <8y 0z 0z 6y) . (395 0z 0z 8:70) Tk <8:v dy 0Oy 890)

L (PPN [P0 Do [P0 P
N oydz  0z0y I\ 9282 ~ 9201 Jx0dy  Oyox

= 0i4+0j+0k=0 (3.13)

So this is in general true: the curl of a gradient is always zero. Vector fields for which the
curl is zero are called irrotational.
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3. The gradient of a divergence V(V - v):

This second derivative has no special name, but appears in the equations of elasticity.

4. The divergence of a curl:

V- (Vxv)=0 . (3.14)
The proof of this identity is along the same lines as that for calculating the curl of a gradient,
given above. Vector fields which have zero divergence everywhere are called solenoidal.

5. The curl of a curl:

Vx(Vxv)=V(V-v)- Vv (3.15)
The proof of this identity is left as an exercise. Note that the Laplacian operator V2 operates

on each of the three components of the vector v separately. The curl of a curl is a vector
quantity.

Example (i)

Calculate the Laplacian of the function f = z? + 2zy? + 423

Solution:
0*f  0*f  O*f
2,
Vif= oxr? 0y * 072
=2+ 4z + 24z
Example (ii)

Given r = /2% 4+ y? + 22, show that the scalar function

5ol
r
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obeys Laplace’s equation, given above.

Solution:
Pt ﬁ
0r2 Oz \ (2% + 2 +z2)1/2
- 1
B (7) 2+ y? + 22)3/2 N (332 +y? + Z2)1/2
- x? 1
o3y
Similarly,
Pty y_2 1
oy2 3
and
Fir ) 21
02?2 r3
Hence,
V24 =Y 9 (r Y *(rh




Problems

1. Calculate the Laplacian ( V2¢ ) of the following functions:

(a) ¢ =2 + (y +1)* + 22°
(b) ¢ = cosx cosycos z

2*. Prove the identity (3.14), i.e.

V- (Vxv)=0.

3*. From the definition of V, prove the product identity

V(oY) =vVo+ ¢V .

given that ¢ and 1 are both scalar fields.
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