
Chapter 6

Integral theorems and applications

There are three integral theorems which we consider in this course. In fact the first of them we
have already covered, within the context of conservative fields. I called it the ‘fundamental’
theorem and it is worth re-stating here:

The fundamental theorem of calculus in 3D:
Given a piecewise continuous path in three-dimensions C which begins at point a and ends
at point b, and given a scalar field f(x, y, z) which is continuous and has continuous partial
derivatives on C, then ∫

C
∇f · dr = f(a)− f(b) . (6.1)

It doesn’t matter how much the path wriggles around and changes course, the integral
depends only on where the path begins and ends. That is, the line integral of the gradient
of the function f depends only on the endpoints of the path.

This integral theorem tells us how to reduce a line integral, which is a one-dimensional
quantity, to the values of a function at the endpoints. The next integral theorem applies to
volume integrals, and is generally known as ‘the divergence theorem’ or ‘Gauss’s theorem’:
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The divergence theorem:
Given a volume V which is bounded by a piecewise continuous surface S, and a vector
function F which is continuous and has continuous partial derivatives in V , then

∫∫∫

V

∇ · FdV = ©
∫∫

S

F · dS . (6.2)

Notice that the surface integral S has been drawn with a circle around it, in order to indicate
that this surface is closed, i.e. that it entirely encompasses the volume V .

Just as the fundamental theorem relates the integral of a directional derivative along a path
to the values at the end points, the divergence theorem relates the integral of a divergence
over a volume to the values at the boundary of the volume.

Stokes’ theorem:
Given a surface S which is bounded by a piecewise continuous curve C, and a vector function
F which is continuous and has continuous partial derivatives on S, then

∫∫

S

(∇× F) · dS =

∮

C
F · dr (6.3)

Note first of all that there seems to be some sort of ambiguity in the above equation; The
line integral on the right-hand side definitely depends on the direction in which you traverse
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the path C. If you around in the opposite direction, then the line integral changes in sign.
Which is correct?

The way we get around this is by noting that the surface S also has an ambiguity in direction:
we can choose the normal to the surface S so that it points upwards (as in the above figure)
or downwards (as in the one below). Clearly either choice will define the same surface,
however the normal vector itself will be opposite in sign in both cases. In order to enforce
consistency, we adopt once again the right-hand rule. This states that the path C should
be chosen so that it traverses the surface S in the positive sense; that is, if your fingers of
your right hand are curled in the direction of the path, then your thumb should point in the
direction of the normal.

Examples

We now include some examples of the application of the divergence theorem and Stokes’
theorem.

Example 1:
Use the divergence theorem to calculate the surface integral of the vector function F = x̂i +
2y2ĵ+3zk̂ integrated over the rectangular box S with corners (±1,−2,−1), (±1,−2, 1), (±1, 2−
1) and (±1, 2, 1).

Solution:
By the divergence theorem, we know that

∫∫

S

F · dS =

∫∫∫

V

(∇ · F)dV

where V is the interior of S. Now

∇ · F = 1 + 4y + 3
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and so
∫∫

S

F · dS =

∫∫∫

V

(1 + 4y + 3)dV

=

∫ 1

−1

dx

∫ 2

−2

dy

∫ 1

−1

dz(4 + 4y)

=

∫ 1

−1

dx

∫ 2

−2

dy [(4 + 4y)z]1−1

=

∫ 1

−1

dx

∫ 2

−2

dy [8(1 + y)]

= 8

∫ 1

−1

dx

[
y +

y2

2

]2

−2

= 32

∫ 1

−1

dx

= 64 .

Example 2:
Verify Stokes’ theorem ∫∫

(∇× F) · dS =

∮

C
F · dr

where

F = xyî + y2ĵ + xz2k̂ ,

the surface S is the upwards-oriented triangle with corners at (0, 0, 1), (1, 0, 1) and (0, 1, 1),
and C is the anti-clockwise path around this surface.

Solution:
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Start with the surface integral. Note first that

∇× F = î(0− 0)− ĵ(0− z2) + k̂(0− x)

= −z2ĵ− xk̂

= −ĵ− xk̂ on S.

Also on S we have
dS = k̂dx dy .

So the surface integral is∫∫

S

∇× F · dS =

∫∫

S

(−ĵ− xk̂) · k̂dx dy

=

∫

S

dx dy(−x) .

=

∫ 1

0

dx

∫ 1−x

0

dy(−x)

=

∫ 1

0

dx(−x) [y]1−x
0

=

∫ 1

0

dx(−x + x2)

= −
[
x2

2
− x3

3

]1

0

= −1

6

Now looking at the line integral, we split it up into three sections:∮

C
F · dr =

∫

C1
+

∫

C2
+

∫

C3
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On the line segment C1, we have z = 1, x = 0 and y starts at 1 and ends at 0. Hence we
choose the parameters:

y = t

x = 0

z = 1 (6.4)

Hence

dr

dt
= î

dx

dt
+ ĵ

dy

dt
+ k̂

dz

dt

= ĵ

(6.5)

So,

F · dr

dt
= (y3ĵ) · ĵ
= t3 . (6.6)

Hence
∫

C1
F · dr

dt
dt =

∫ 0

1

t3dt

=

[
t4

4

]0

1

= −1

4

On the line segment C2, we have z = 1, y = 0 and x varies between 0 and 1. Hence we choose
x = t as our parameter, giving

dr

dt
= î

and hence

F · dr

dt
= tk̂ · î· = 0 .

and so ∫

C2
F · dr

dt
dt = 0 .

Therefore this line segment contributes nothing to the final integral.

On the line segment C3, we have z = 1, x+y = 1 and x starts at x = 1 and finishes at x = 0.
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Hence we chose the parameters

z = 1

x = t

y = 1− t

(6.7)

Thus we have

dr

dt
= î− ĵ

and so

F · dr

dt
= (xyî + y3ĵ + xz2k̂) · (̂i− ĵ)

= t(1− t)− (1− t)3

(6.8)

So the integral over the line segment is

∫

C3

F · dr

dt
dt =

∫ 0

1

(t− t2)− (1− t)3dt

=

[
t2

2
− t3

3
+

(1− t)4

4

]0

1

=
1

4
− (

1

2
− 1

3
) =

1

12

The final integral is then

∫

C
F · dS = −1

4
+ 0 +

1

12

= −1

6
(6.9)

And so Stokes theorem is verified.
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Example 3:
Use the divergence theorem to calculate the surface integral

∫∫

S

(x̂i + 2yĵ + zk̂) · dS ,

where S is the spherical surface defined by the equation

x2 + y2 + z2 = 4 .

Solution:
Now let F = x̂i + 2yĵ + zk̂. Then, by Gauss’s theorem,

∫∫

S

F · dS =

∫∫∫

V

∇ · F dV ,

where V is the interior of the sphere with bounding surface S. The divergence is readily
evaluated:

∇ · F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= 1 + 2 + 1

= 4 .

So the surface integral is
∫∫

S

F · dS =

∫∫∫

V

4 dV

= 4

∫∫∫

V

dV

= 4× (Volume of the sphere) = 4× 4π

3
× 23

=
128

3
π .


