
Paths in 3D
A path in three dimensions can be written in parametric form as

where  𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡1]
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E.g. A straight line through a point p, parallel to a vector a is



E.g. A circle at constant z = b with radius a:
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The infinitessimal displacement vector 
Is the vector differential

The infinitessimal arc-length is
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Tangents and normals

is always parallel to the curve, and so is a tangent vector

The unit tangent vector is 
then



We can define a normal to the 
curve by noting that  



Example: Find the unit tangent to the curve

For



Line integrals of scalar functions 
The line integral of a scalar function f(x,y,z) 
over a path C is

We define the symbol ds as the 
infinitessimal arc-length :
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Line integrals of scalar functions 
The line integral of a scalar function f(x,y,z) 
over a path C is

We the symbol ds is the infinitessimal arc-
length :

For a parametrised path, x

y

z



Example: Evaluate

where C is the path given by

with 



Example: Evaluate

Where C is the path given by

with 





The length of a path C is 

Example: Show that the diameter of a circle with radius R is 2 ¼R. 



Example: find the length of the curve

With x

y

z



Line integrals of vector fields 
The line integral of a vector field F(x,y,z)
over a path C is

dr is the infinitessimal displacement vector

which we can write as 
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For a parametrised path,

so 

If F represents a force, then                represents the work done by the force
along the path C. 







Example: Calculate                  where 
and C is the curve parametrised by   
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Method for doing vector line integrals:

1. Parametrise the curve (i.e. Find r(t) )

2. Write dr =  dr/dt dt

3. Substitute F(x,y,z) by F(x(t),y(t),z(t))

4. Integrate!



Example: Calculate                  

where 

and C is the straight line going from <2,-1,3> to <4,2,-1>.   x
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The fundamental theorem of calculus
Given a one dimensional function φ(x), the fundamental theorem states that



For a function Á(x,y,z), the fundamental theorem in 3D states that
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Example: For the scalar function

Calculate

Along the path from <1,1,1> to <2,2,2>. x

y

z



Example: For the scalar function 

Calculate

where C is the following path:
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Conservative fields
A vector field F is conservative if it can be written 

In this case, the line integral of the field
only ever depends on the endpoints:



If the line integral is along a closed path, then 
for a conservative field, 
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Conservative fields are irrotational, i.e.



Example: 
Calculate the curl of the field

Hence or otherwise calculate the integral 

where C is the circle of radius 2, centred on the z-axis and lying in the plane z = 57.





Finding the potential function
If a vector field is irrotational then 
we always find a potential function 
such that 

Example:









The circulation of a vector field
Consider a closed loop integral in a vector field F. 
What happens as the area goes to zero?





Alternative definition of the curl:

Where ¢ S is the area of the loop C and n is 
the unit normal vector to this area element.
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