So far we’ve looked at PDEs in Cartesian coordinates:

The heat equation:
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Laplace’s equation
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The wave equation:



We would also like to solve equations in different coordinate systems,
and in 3 dimensions. -
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The steps for solving using separation of variables
remain the same

1. Separate variables
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2. ldentify the Sturm-Liouville problem and compute the eigenfunctions
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3. Use an infinite series to match the boundary conditions.

However we often have to introduce Special
Functions to express the solution.

P




Before we begin, we will need to look at
Periodic boundary conditions for S-L problems
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Consider the 1-D eigenvalue problem defined on the

domainD = {x |0 < x <d} /\_}/\/\/
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with boundary conditions

¢(0) = ¢(d)
¢'(0) = ¢'(d)

This problem has all the properties of a Sturm-Liouville problem.

We find a countably infinite set of
» eigenfunctions and eigenvalues where the ...,
are all real and positive, and the
eigenfunctions are all orthogonal.
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Example: Consider the periodic S-L problem
— 0=

2+
defined on the domain |x|< d, with

¢(0) = ¢(2m) L
¢'(0) = ¢'(2m)
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We have two sets of eigenfunctions:

m —

By letting m take negative values as well as positive values, we can write the
general solution instead as

By, = plme where \r\n‘= ..—2,—-1,0,1,2,3, ..

This allows the solutions to be written more compactly.



It is straightforward to check orthogonality:

L&, &,

z

V)

\« 20 b ) bn

17
2~
- -t 4. w2
B (@ €. A=
o
2= o (wr-a\x
- \ ¢ — A= =







The 2D Laplacian in polar coordinates
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Consider the Laplacian operator V2 = —_ * A
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In polar coordinates, this is
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We would like to find the solution of problems of the type

V=0

in polar coordinates, in some 2D domain.




We first try to find the general solution to
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So we have separated the problem into
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We can put the problem for 8 in the form
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We also have that - A&

0(0) = O(2n) Nl
©'(0) = ©'(27)

Because ® must be single-valued if we go around a
full circle.




The eigenfunctions are
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with eigenvalues:

o

WA & Z-,
A =m
m

The problem for R(r) is then

Hq‘ '\§'<\\/ \g~‘

-~~~2
Al

N \
=7 2+ R = 0.
~(
: ‘2 .,,V L&L'V.-A'( k”] L
r ?—Q 4 C\E = 0O
v Av '
(’\ 1
. )
— ¥ CEE—& =N T
s dv 2
k éa . AQ A/‘
bo A7t eres
LA
foo— - 6 & (o.l_-,kﬁa“'
Av ?
T\t-(.n ‘LQ - @
;C’ s
=) Q - \ ?f_c\/
Ne
7




éct-’( w1
‘(ZQ“ + r I-’M/L/l = O _é/—
0(.4 N.a/v., (- ¥4
Sold .
2 () \
=\wn
LeN - %
T‘/‘/ ‘\\"f A-‘\h%l% i Q(J\ = J‘“
rv.\(J = <

< 3 1L
OC(,L—D( A X — wa (

1 X
&x(,c-( +oL—w |

v

“'7/ /"“’1 |

[< =]



So we have found:
@m(e) _ eime —

| Ap + Bolog|r| for m = 0
Ry (r) = { Arlml 4 Br=Iml for m #£ 0

The general solution to Laplace’s equation in polar coordinates is
therefore
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Example: Solve Laplace’s equation on the domain r < a, with
a Dirichlet condition ¥y = sin(26) defined on the boundary of the v

domain. /\
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The Helmholtz equation
Consider the 2D problem with the 2D Laplacian
as the differential operator:
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on the domain D, where D is a finite domain
in 2D, and with homogeneous Dirichlet

conditions

6 =0

on the boundary of D.

Although the operator is 2D, we can show that this

is also a Sturm-Liouville problem.
N

This form of the PDE is often known as the Helmholtz equation.
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We now attempt to solve this problem
using separation of variables:
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The problem for R(7) is /
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This is a special differential equation known as Bessel’s equation.

The solutions to this equation are known as Bessel functions, and
There are two types: —
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These functions are analogous to sine and cosine for polar coordinates.



Properties of Bessel functions:

e They are normally expressed as infinite series
* They oscillate, but decay slowly to zero

e J'sare finite at the origin, Y’s are singular
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Bessel’s equation is:
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We would like the solution to be a) non-singular at the origin, and b) have R(a) = 0.
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So the general expression for the eigenfunctions is
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We then obtain an infinite number of
eigenfunctions for each m and n:
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All of these functions satisfy the SL problem.
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Waves and the wave eguation

The wave equation for a function °(x,y,z) is
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where c is the phase velocity of the wave.

The wave equation can be separated using the ansatz
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Problem for time T(t):
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Problem for u(x,y,z):
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Example: Solve the wave equation
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