Differentials, the chain rule, and changing coordinate systems

Differentials

For a single variable function f(x), the *differential* df is the change in the function for a small change in x:

$$df = \frac{\partial f}{\partial x} \, dx$$

• The differentials *df* and *dx* can be thought of as changes in *f* and *x* taken *in the limit that both become very small*

• The differentials are not "proper numbers" and only really make sense when they appear in an integral.

• They are very useful for *changing coordinates*.

Can we do the same thing for functions of two variables?

For a small step dx in the x direction the function changes by

$$df_1 = \frac{\partial f}{\partial x} dx$$

For a small step dy in the y direction the function changes by

 $df_2 = \frac{\partial f}{\partial \gamma} d\gamma$

Therefore for a change in position in *both* dx and dy the function changes by

df = dt dx + dt dy

Definition:

For a differentiable function f(x,y), we define the *total differential* df as

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

where the quantities dx and dy represent infinitessimal changes in x and y.

In 3D, the differential is:

The function is:

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

$$= \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle \cdot \left\langle dx, dy, dz \right\rangle$$

$$= \sqrt{f \cdot dz}$$

<u>The chain rule with one independent variable</u> Suppose that z = f(x,y) is a differentiable function of x and y, and that x = x(t) and y = y(t) are both differentiable functions of t.

From the differential

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy -$$

we obtain the chain rule

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

(x,y) are called *intermediate variables*.

t is the only *independent variable*.

Note that df/dt is a *full derivative* because f is a function only of t.

Example: Let

$$z = f(x, y) = e^{-x^2 - y^2}$$

and let $x(t) = \cos t$, $y(t) = \sin t$. Compute dz/dt.

$$\frac{d^2}{dt} = \frac{df}{dt} = \frac{\partial f}{\partial z} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$
$$= (-2x e^{-x^2 - y^2}) \frac{d}{dt} (\cos t)$$
$$+ (-2y e^{-x^2 - y^2}) \frac{d}{dt} (\sin t)$$
$$= +2x e^{-x^2 - y^2} \sin t - 2y e^{-x^2 - y^2} \cosh t$$
$$= 2 \cosh t e^{-t} - 2 \sin t \cosh t e^{-t}$$

ĄΥ

y

x

+=T

= 0

We can remember the chain rule using a tree diagram:

Example: Let

$$z = f(x, y) = e^{xy}$$

and let $x(t) = t^2$, $y(t) = t^3$. Compute dz/dt.

$$dz = \partial f dx + \partial f dy$$

$$= \sqrt{e^{x}} + 2y dt$$

$$= \sqrt{e^{x}} + 2t + 2e^{x} + 3t^{2}$$

$$= t^{3} e^{t^{5}} + 2t + t^{2} e^{t^{5}} + 3t^{2}$$

$$= 2t^{4} e^{t^{5}} + 3t^{4} e^{t^{5}}$$

$$= 5t^{4} e^{t^{5}}$$

Changing coordinate systems

We usually represent a point in two dimensions by an ordered pair (x,y)

We can represent *the same point* using polar coordinates:

These two coordinate systems are related by *coordinate transformations*

x = 10000 Y = 15:00 **Cartesian to Polar:**

A function in one coordinate system can be changed to another by substituting:

$$f_{\text{cart}}(x,y) = f(r\cos\theta, r\sin\theta)$$

= $f_{\text{pol}}(r,\theta)$

How do derivatives transform? That is, if we know the slope of f in x and y, Can we work out the slope in r and θ ?

We now find expressions for
$$\frac{\partial f}{\partial r}$$
 and $\frac{\partial f}{\partial \theta}$.
Start with the differential of f: $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \frac{\partial f}{\partial r}dr + \frac{\partial f}{\partial \theta}d\theta$
Now x and y are also functions of r and θ , so:
 $\neg dx = \frac{\partial x}{\partial r}dr + \frac{\partial x}{\partial \theta}d\theta$
 $dy = \frac{\partial f}{\partial r}dr + \frac{\partial x}{\partial \theta}d\theta$
 $dy = \frac{\partial f}{\partial r}dr + \frac{\partial x}{\partial \theta}d\theta$
 $dy = \frac{\partial f}{\partial r}dr + \frac{\partial x}{\partial \theta}d\theta$
 $= (\frac{\partial f}{\partial x}dr + \frac{\partial f}{\partial \theta}dr) + \frac{\partial f}{\partial t}(\frac{\partial y}{\partial r}dr + \frac{\partial f}{\partial \theta}d\theta)$
 $= (\frac{\partial f}{\partial x}\partial x + \frac{\partial f}{\partial \theta}dy) dr + (\frac{\partial f}{\partial x}\partial x + \frac{\partial f}{\partial y}d\theta)$

This is the *chain rule* for functions of two variables:

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial r}$$
$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial \theta}$$

How to remember it:

1. It's like the chain rule for 1D, but you have to add an additional term because it's a function of two variables

Example 1:

For the function $f(x, y) = e^{-x^2 - y^2}$ compute ∂ f/ ∂ r, where x = r cos ,, y = r sin ,,

Example 2: For the function f(r, n) = 1/r, find $\partial f/\partial x$ $\partial f = \partial f \partial r$, $\partial f \partial \sigma$ $\partial x = \partial r \partial x$, $\chi = \chi = \chi$ =0 because office:0. = $\frac{-1}{\sqrt{2}}$ $\frac{\partial x}{\partial x}$ 0 = tai 1 Furt $\begin{aligned}
y &= \int \chi^2 + \chi^2 = \left(\chi^2 + \chi^2\right)^2 \qquad \text{for } 0 = \frac{\gamma}{\chi} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2} \\
\Rightarrow \quad \frac{\partial}{\partial x} \tan \theta = -\frac{\gamma}{\chi^2$ But $= \frac{1}{2} \begin{pmatrix} 2 & 4 & 7 \\ 2 & 7 \\ - & 7 \\ - & 7 \\ - & \sqrt{2^2 + \frac{2}{1}} = \frac{1}{2} \begin{pmatrix} con \theta \\ - & r \\ - &$ $\frac{2}{2} = \frac{1}{2} \cos \Theta$ $= \frac{1}{2} \frac{1}{5} \frac{$ (c) (i) Write out the tree diagram for the chain rule for

where

$$x = x(s, t)$$
$$y = y(s, t)$$

g = f(x, y)

(ii) Use the Chain to calculate the $\partial f/\partial s$ and $\partial f/\partial t$ for the function

(ii) Use the Chain to calculate the $\partial f/\partial s$ and $\partial f/\partial t$ for the function

whe

here

$$f(x,y) = (x+y)^{4}$$

$$x(s,t) = s^{3}t$$

$$y(s,t) = st^{3}$$

$$2f = 2f \frac{2\pi}{2\pi} - \frac{5f}{2\pi} \frac{2\pi}{2\pi} + \frac{5f}{2\pi} \frac{2\pi}{2\pi}$$

$$= 4(\pi^{2}y)^{3} 3t^{2} + 4(\pi^{2}y)^{3} t^{3}$$

$$= (2(s^{3}t + t^{3}s)^{3} t^{3} + 4t^{3}(s^{3}t + st^{3})^{3} + \frac{5}{2}(s^{3}t + st^{3}s)^{3} + \frac{5}{2}(s^{3}t$$

General formulation of the chain rule:

Suppose that u is a differentiable function of the n variables $x_1, x_2, x_3, \dots, x_n$ And each x_i is a differentiable function of the m variables t_1, t_2, \dots, t_m .

Then the derivative of u with respect to each of the t_i variables is

$$\frac{\partial f}{\partial t_i} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$
Note that we can write this in matrix form:
$$\begin{bmatrix} \frac{\partial f}{\partial t_1} \\ \frac{\partial f}{\partial t_2} \\ \frac{\partial f}{\partial t_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial x_1}{\partial x_2} & \frac{\partial x_2}{\partial t_2} & \dots & \dots \\ \frac{\partial f}{\partial t_n} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial t_n} & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Derivatives and differentials transform according to the <u>following rules</u>, which become important in higher-level physics:

$$dr = \frac{dr}{dx}dx + \frac{dr}{dy}dy$$
Contravariant transformation
$$\frac{\partial}{\partial r} = \frac{\partial x}{\partial r}\frac{\partial}{\partial x} + \frac{\partial y}{\partial r}\frac{\partial}{\partial y}$$
Covariant transformation

Different Coordinate systems

The Cartesian and polar are the most important systems in 2D, but there are an infinite number of possibilities: $$\uparrow $$

Polar coordinates

$$\begin{array}{ll} x &= r\cos\theta \\ y &= r\sin\theta \end{array}$$

Elliptic coordinates

- $x = a \cosh \mu \cos \nu$
- $y = a \sinh \mu \sin \nu$

Bipolar coordinates

$$x = a \frac{\sinh \tau}{\cosh \tau - \cos \sigma}, \qquad y = a \frac{\sin \sigma}{\cosh \tau - \cos \sigma}.$$

Parabolic coordinates

$$\begin{array}{rcl} x & = & \sigma\tau \\ y & = & \frac{1}{2}\left(\tau^2 - \sigma^2\right) \end{array}$$

Coordinate systems in three dimensions

The most important coordinate systems in 3D are the Cartesian, the Cylindrical and the Spherical polar coordinates:

Cylindrical coordinates:

 (r, θ, z)

Spherical coordinates:

$$(\rho, \theta, \varphi)$$

$$x = \rho \cos \varphi \sin \theta$$

$$y = \rho \sin \varphi \sin \theta$$

$$z = \rho \cos \theta$$

The inverse transformations are more complicated

(keyword search: "spherical coordinates"); the important one is Pythagorus' theorem

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

Example: Convert the function

$$f(x, y, z) = e^{-x^2 - y^2 + iz}$$

/

into a) cylindrical, and b) spherical coordinates.

a)
$$x = i \cos \theta$$

 $y = i \sin \theta$ $\Rightarrow f = e$
 $z = z$
b) $x^{2} + y^{2} = (p \cos e^{ix} \theta)^{2} + (p \sin e^{ix} \theta)^{2}$
 $= p^{2} \cos^{2} \theta \sin^{2} \theta + p^{2} \sin^{2} \theta \sin^{2} \theta$
 $= p^{2} \sin^{2} \theta + p^{2} \sin^{2} \theta + i\theta$
 $= p^{2} \sin^{2} \theta$
 $= p^{2} \sin^{2} \theta$

Changing coordinates of vectors

We can define unit vectors for polar coordinates: $\hat{\mathbf{r}}$ and $\hat{\theta}$

Note that these unit vectors *depend on position*.

To convert a vector from Polar to Cartesian coordinates we use Trigonometry:

In Cylindrical Coordinates, the transformations of vectors follow from 2D:

In Spherical Coordinates, the transformations get more complicated:

New coordinates:

 (r, θ, φ)

New unit vectors:

 $\widehat{\mathbf{r}}, \ \widehat{ heta}, \ ext{and} \ \widehat{arphi}$

<u>Divergence</u>, <u>Gradient and Curl in different coordinate systems</u> The form of the gradient, divergence and curl *changes* in different coordinate systems

In cylindrical cords the gradient is:

$$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

The *divergence* is:

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_z}{\partial z}$$

And the *curl* is:

$$\nabla \times \mathbf{A} = \left(\frac{1}{r}\frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z}\right)\hat{\mathbf{r}} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right)\hat{\theta} + \frac{1}{r}\left(\frac{\partial (rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta}\right)\hat{\mathbf{z}}$$

 $A = A_1 + A_0 +$

We can derive these using the *transformations of partial derivatives* that we did a few slides ago.

In spherical cords the *gradient* is:

$$\nabla \mathbf{f} = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \hat{\varphi} \quad \leftarrow \quad \mathbf{f}$$

The *divergence* is

$$\nabla \cdot \overset{\mathsf{A}}{\sim} = \frac{1}{r^2} \frac{\partial \left(r^2 A_r\right)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(A_\theta \sin \theta\right) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$$

And the *curl* is:

$$\frac{1}{r\sin\theta} \left(\frac{\partial}{\partial\theta} \left(A_{\varphi} \sin\theta \right) - \frac{\partial A_{\theta}}{\partial\varphi} \right) \hat{\mathbf{r}}$$

$$+ \frac{1}{r} \left(\frac{1}{\sin\theta} \frac{\partial A_{r}}{\partial\varphi} - \frac{\partial}{\partial r} \left(rA_{\varphi} \right) \right) \hat{\theta}$$

$$+ \frac{1}{r} \left(\frac{\partial}{\partial r} \left(rA_{\theta} \right) - \frac{\partial A_{r}}{\partial\theta} \right) \hat{\varphi}$$

In this subject you will not be tested on how to derive these, but you will need to know how to use them.

Coordinate transformations of divergence, gradient and curl are usually tabulated for you (here the internet is particularly useful):

Del formula [edit]

Table with the del operator in cartesian, cylindrical and spherical coordinates			
Operation	Cartesian coordinates (x, y, z)	Cylindrical coordinates ($ ho, arphi, z$)	Spherical coordinates (r, θ, φ) , where θ is the polar angle and φ is the azimuthal angle ^{α}
Vector field A	$A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$	$A_{ ho} \hat{oldsymbol{ ho}} + A_{arphi} \hat{oldsymbol{arphi}} + A_z \hat{oldsymbol{z}}$	$A_r \hat{\mathbf{r}} + A_ heta \hat{oldsymbol{ heta}} + A_arphi \hat{oldsymbol{ heta}}$
Gradient ∇ʃ ^[1]	$rac{\partial f}{\partial x} \hat{\mathbf{x}} + rac{\partial f}{\partial y} \hat{\mathbf{y}} + rac{\partial f}{\partial z} \hat{\mathbf{z}}$	$rac{\partial f}{\partial ho} \hat{oldsymbol{ ho}} + rac{1}{ ho} rac{\partial f}{\partial arphi} \hat{oldsymbol{arphi}} + rac{\partial f}{\partial z} \hat{f z}$	$rac{\partial f}{\partial r}\hat{f r}+rac{1}{r}rac{\partial f}{\partial heta}\hat{m heta}+rac{1}{r\sin heta}rac{\partial f}{\partialarphi}\hat{m arphi}$
$\begin{array}{c} \textbf{Divergence} \\ \nabla \cdot \mathbf{A}^{[1]} \end{array}$	$rac{\partial A_x}{\partial x}+rac{\partial A_y}{\partial y}+rac{\partial A_z}{\partial z}$	$rac{1}{ ho}rac{\partial\left(ho A_{ ho} ight)}{\partial ho}+rac{1}{ ho}rac{\partial A_{arphi}}{\partialarphi}+rac{\partial A_{z}}{\partial z}$	$rac{1}{r^2}rac{\partial\left(r^2A_r ight)}{\partial r}+rac{1}{r\sin heta}rac{\partial}{\partial heta}\left(A_ heta\sin heta ight)+rac{1}{r\sin heta}rac{\partial A_arphi}{\partialarphi}$
$\textbf{Curl} \nabla \times \mathbf{A}^{[1]}$	$egin{aligned} &\left(rac{\partial A_z}{\partial y}-rac{\partial A_y}{\partial z} ight)\hat{\mathbf{x}}\ &+\left(rac{\partial A_x}{\partial z}-rac{\partial A_z}{\partial x} ight)\hat{\mathbf{y}}\ &+\left(rac{\partial A_y}{\partial x}-rac{\partial A_x}{\partial y} ight)\hat{\mathbf{z}} \end{aligned}$	$egin{aligned} &\left(rac{1}{ ho}rac{\partial A_z}{\partial arphi}-rac{\partial A_arphi}{\partial z} ight)\hat{oldsymbol{ ho}}\ &+\left(rac{\partial A_ ho}{\partial z}-rac{\partial A_z}{\partial ho} ight)\hat{oldsymbol{arphi}}\ &+rac{1}{ ho}\left(rac{\partial\left(ho A_arphi ight)}{\partial ho}-rac{\partial A_ ho}{\partial arphi} ight)\hat{oldsymbol{z}} \end{aligned}$	$egin{aligned} &rac{1}{r\sin heta}\left(rac{\partial}{\partial heta}\left(A_arphi\sin heta ight)-rac{\partial A_ heta}{\partialarphi} ight)\hat{\mathbf{r}}\ &+rac{1}{r}\left(rac{1}{\sin heta}rac{\partial A_r}{\partialarphi}-rac{\partial}{\partial r}\left(rA_arphi ight) ight)\hat{m{ heta}}\ &+rac{1}{r}\left(rac{\partial}{\partial r}\left(rA_ heta ight)-rac{\partial A_r}{\partial heta} ight)\hat{m{arphi}} \end{aligned}$
Laplace operator $\nabla^2 f \equiv \Delta f^{[1]}$	$rac{\partial^2 f}{\partial x^2}+rac{\partial^2 f}{\partial y^2}+rac{\partial^2 f}{\partial z^2}$	$rac{1}{ ho}rac{\partial}{\partial ho}\left(horac{\partial f}{\partial ho} ight)+rac{1}{ ho^2}rac{\partial^2 f}{\partialarphi^2}+rac{\partial^2 f}{\partial z^2}$	$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial\varphi^2}$
Vector Laplacian $\nabla^2 \mathbf{A} \equiv \Delta \mathbf{A}^{[2]}$	$ abla^2 A_x \hat{\mathbf{x}} + abla^2 A_y \hat{\mathbf{y}} + abla^2 A_z \hat{\mathbf{z}}$	$egin{aligned} &\left(abla^2 A_ ho - rac{A_ ho}{ ho^2} - rac{2}{ ho^2}rac{\partial A_arphi}{\partial arphi} ight)\hat{oldsymbol{ ho}}\ &+ \left(abla^2 A_arphi - rac{A_arphi}{ ho^2} + rac{2}{ ho^2}rac{\partial A_ ho}{\partial arphi} ight)\hat{oldsymbol{arphi}}\ &+ abla^2 A_z \hat{oldsymbol{z}} \end{aligned}$	$egin{aligned} &\left(abla^2 A_r - rac{2A_r}{r^2} - rac{2}{r^2\sin heta}rac{\partial\left(A_ heta\sin heta ight)}{\partial heta} - rac{2}{r^2\sin heta}rac{\partial A_arphi}{\partialarphi} ight)\hat{\mathbf{r}} \ &+ \left(abla^2 A_ heta - rac{A_ heta}{r^2\sin^2 heta} + rac{2}{r^2}rac{\partial A_r}{\partial heta} - rac{2\cos heta}{r^2\sin^2 heta}rac{\partial A_arphi}{\partialarphi} ight)\hat{\mathbf{ ho}} \ &+ \left(abla^2 A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2}rac{\partial A_r}{\partial heta} - rac{2\cos heta}{r^2\sin^2 heta}rac{\partial A_arphi}{\partialarphi} ight)\hat{m{ heta}} \ &+ \left(abla^2 A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2}rac{\partial A_r}{\partial heta} ight)\hat{m{ heta}} \ &+ \left(abla^2 A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin heta}rac{\partial A_r}{\partialarphi} ight)\hat{m{ heta}} \ &+ \left(abla^2 A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin heta}rac{\partial A_r}{\partialarphi} ight)\hat{m{ heta}} \ &+ rac{2\cos heta}{r^2\sin^2 heta}rac{\partial A_arphi}{\partialarphi} + rac{2\cos heta}{r^2\sin^2 heta}rac{\partial A_arphi}{\partialarphi} ight)\hat{m{ heta}} \ &+ \left(abla^2 A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin^2 heta}rac{\partial A_r}{\partialarphi} + rac{2\cos heta}{r^2\sin^2 heta}rac{\partial A_arphi}{\partialarphi} ight)\hat{m{ heta}} \ &+ \left(abla^2 A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin^2 heta}rac{\partial A_r}{\partialarphi} + rac{2\cos heta}{r^2\sin^2 heta}rac{\partial A_arphi}{\partialarphi} ight)\hat{m{ heta}} \ &+ \left(abla^2 A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin^2 heta}rac{\partial A_r}{\partialarphi} + rac{2}{r^2\sin^2 heta}rac{\partial A_r}{\partialarphi} ight)\hat{m{ heta}} \ &+ \left(abla^2 A_arphi + rac{2}{r^2\sin^2 heta} + rac{2}$

Search term e.g.: "Vector calculus identities spherical coordinates"

Complicated, yet important example: the Laplacian of f is the quantity

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

In 2D polar coordinates, this transforms to

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial f}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \theta^2}$$

Example: Find the divergence in cylindrical coordinates of the Vector function Del formula [edit]

=	'	$\frac{\partial}{\partial r} \left(\frac{s}{r} \right)$	0	+	1	
	√	21/2	-)		•	

Ξ	- 9.10	$\left(\frac{-1}{\sqrt{2}}\right) + \left($		Sind	L (
	Y	12	-	53	T 1	•

		Table with the del operator in cartesian, cylindrical
Operation	Cartesian coordinates (x, y, z)	Cylindrical coordinates (ρ, φ, z)
Vector field A	$A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$	$A_{ ho} \hat{oldsymbol{ ho}} + A_{arphi} \hat{oldsymbol{arphi}} + A_z \hat{oldsymbol{z}}$
Gradient ∇ƒ ^[1]	$rac{\partial f}{\partial x}\hat{\mathbf{x}}+rac{\partial f}{\partial y}\hat{\mathbf{y}}+rac{\partial f}{\partial z}\hat{\mathbf{z}}$	$rac{\partial f}{\partial ho} \hat{oldsymbol{ ho}} + rac{1}{ ho} rac{\partial f}{\partial arphi} \hat{oldsymbol{arphi}} + rac{\partial f}{\partial z} \hat{f z}$
$\frac{\textbf{Divergence}}{\nabla \cdot \mathbf{A}^{[1]}}$	$rac{\partial A_x}{\partial x}+rac{\partial A_y}{\partial y}+rac{\partial A_z}{\partial z}$	$rac{1}{ ho}rac{\partial\left(ho A_{ ho} ight)}{\partial ho}+rac{1}{ ho}rac{\partial A_{arphi}}{\partialarphi}+rac{\partial A_{z}}{\partial z}$
Curl $ abla imes \mathbf{A}^{[1]}$	$egin{aligned} & \left(rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z} ight) \hat{\mathbf{x}} \ & + \left(rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x} ight) \hat{\mathbf{y}} \ & + \left(rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y} ight) \hat{\mathbf{z}} \end{aligned}$	$egin{aligned} &\left(rac{1}{ ho}rac{\partial A_z}{\partial arphi}-rac{\partial A_arphi}{\partial z} ight)\hat{oldsymbol{ ho}}\ &+\left(rac{\partial A_ ho}{\partial z}-rac{\partial A_z}{\partial ho} ight)\hat{oldsymbol{arphi}}\ &+rac{1}{ ho}\left(rac{\partial\left(ho A_arphi ight)}{\partial ho}-rac{\partial A_ ho}{\partial arphi} ight)\hat{oldsymbol{z}} \end{aligned}$
Laplace operator $\nabla^2 f \equiv \Delta f^{[1]}$	$rac{\partial^2 f}{\partial x^2}+rac{\partial^2 f}{\partial y^2}+rac{\partial^2 f}{\partial z^2}$	$rac{1}{ ho}rac{\partial}{\partial ho}\left(horac{\partial f}{\partial ho} ight)+rac{1}{ ho^2}rac{\partial^2 f}{\partialarphi^2}+rac{\partial^2 f}{\partial z^2}$
Vector Laplacian $\nabla^2 \mathbf{A} \equiv \Delta \mathbf{A}^{[2]}$	$ abla^2 A_x \hat{\mathbf{x}} + abla^2 A_y \hat{\mathbf{y}} + abla^2 A_z \hat{\mathbf{z}}$	$egin{aligned} &\left(abla^2 A_ ho - rac{A_ ho}{ ho^2} - rac{2}{ ho^2}rac{\partial A_arphi}{\partial arphi} ight)\hat{oldsymbol{ ho}}\ &+ \left(abla^2 A_arphi - rac{A_arphi}{ ho^2} + rac{2}{ ho^2}rac{\partial A_ ho}{\partial arphi} ight)\hat{oldsymbol{arphi}}\ &+ abla^2 A_z \hat{oldsymbol{z}} \end{aligned}$

Exercise: Find the Laplacian $abla^2$ in spherical coordinates of the scalar function

$$f(r, \theta, \varphi) = \frac{e^{ikr}}{r}$$

$$\nabla^{2} \left(= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{r}{\sqrt{2}} \right)^{\frac{1}{2}} \right)$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{r}{\sqrt{2}} \frac{1}{\sqrt{2}} e^{i(kr)} \right)$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{r}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} e^{i(kr)} \right] \right)$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{r}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} e^{i(kr)} \right] \right)$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{r}{\sqrt{2}} e^{i(kr)} \right) = \frac{1}{\sqrt{2}} \left(\frac{r}{\sqrt{2}} \frac{1}{\sqrt{2}} e^{i(kr)} + \frac{1}{\sqrt{2}} e^{i(kr)} \right)$$

$$= -k^{2} e^{i(kr)} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} e^{i(kr)}$$