Differentials, the chain rule,
and changing coordinate systems



Differentials

For a single variable function f(x), the
differential df is the change in the function
for a small change in x:

f(x)

df:%dx e

* The differentials df and dx can be thought of as
changes in f'and x taken in the limit that both become very small

* The differentials are not “proper numbers” and only really
make sense when they appear in an integral.

* They are very useful for changing coordinates.

Can we do the same thing for functions of two variables?




For a small step dx in the x direction
the function changes by

of
dfl = % dx

For a small step dy in the y direction
the function changes by

Therefore for a change in position
in both dx and dy the function changes by



Definition:
For a differentiable function f (x,y), we define
the total differential df as

df = fda: + ai

where the quantities dx and dy represent infinitessimal changes in
x and y.



In 3D, the differential is:

fdx+ fdy+f
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The chain rule with one independent variable
Suppose that z = f (x,y) is a differentiable function of x and v,
and that x = x(¢) and y = y(¢) are both differentiable functions of t.

From the differential
f f
d
f = ay
we obtain the chain rule

ﬁ_afderafdy
dt Oxdt Oy dt

dx—‘,—

(x,y) are called intermediate variables.

t is the only independent variable.

Note that df/dt is a full derivative because f is a function only of t.




Example: Let

2 2

Z = f(:l?,y) =e Y
and let x(t) = cos t, y(t) = sin t. Compute dz/dt.




We can remember the chain rule using a tree diagram:

f J
af of
is a function of (9/ \&y
xandy L Y
dx dy
which are functions of dt dt




Example: Let
z= f(z,y) ="

and let x(t) = t?, y(t) = t3. Compute dz/dt.

Ans: (2+3t)t3et5



Changing coordinate systems
We usually represent a point in two dimensions by an ordered pair (x,y)

Cartesian Coordinates

A

/ Lines of constant x
Lines of constant y




We can represent the same point using polar coordinates:

These two coordinate systems are related by coordinate
transformations

Polar to Cartesian: Cartesian to Polar:

How do the derivatives transform if we change coordinates?



A function in one coordinate system can be changed
to another by substituting:

feart(x,y) = f(rcosf,rsind)
— prl(T? 9)
e.g.

CC2—|—y2

How do derivatives transform? That is, if we know the slope of fin x and vy,
Can we work out the slope in »and 6°7?



of .4 9f

We now find expressions for —— and ——

or o0

fd:c+ f

Start with the differential of f:  df = 5 P
x y

Now x and y are also functions of » and &, so:




This is the chain rule for functions of two variables:

of _ofox  0f oy
or Oz Or Oy or
af _ Of Ox L 9 af 5J 2. Graphically:
00  Odxr 00 0Oy a0

How to remember it:

1. It’s like the chain rule for 1D, / \
but you have to add an
additional term because it’s a

function of two variables ox / \ dy / 8y
0s




Example 1:

For the function f(x,y) = e~ Y
compute 0 f/ Or, wherex=rcos b, y=rsinpu




Example 2: For the function f(1) = 1/r, find 0f/0x



General formulation of the chain rule:

Suppose that u is a differentiable function of the n variables x,, x,, x;, ...

And each x; is a differentiable function of the m variables ¢, 1,, ... ¢,.

Then the derivative of u with respect to each of the t, variables is

of  Of 01 Of O 9f o,
ot — oz, 0t, oz, ot TV ax. ot

Note that we can write this in matrix form:

of of
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at m
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Derivatives and differentials transform according to
the following rules, which become important in higher-level physics:

d d Contravariant transformation
dr = Z-dx + —dy </
dx dy

0 dx 0 0Oy 0

— |
Or Or Odx Or Oy \
Covariant transformation




Different Coordinate systems
The Cartesian and polar are the most important systems in 2D, but there
are an infinite number of possibilities:

Polar coordinates

xr =rcost Elliptic coordinates

y =rsind r =a coshpu cosv

y =a sinhpu sinv



Bipolar coordinates

Parabolic coordinates




Coordinate systems in three dimensions
The most important coordinate systems in 3D are the Cartesian, the Cylindrical and the
Spherical polar coordinates:

Cylindrical coordinates: (
r,0,2)

Vv




Spherical coordinates:

(p,0, )




Example: Convert the function

flz,y,z) = e @ ¥V iz

into a) cylindrical, and b) spherical coordinates.






Complicated, yet important example:
the Laplacian of f is the quantity

0 f N 0° f
ox?  Oy?
In 2D polar coordinates, this transforms to

02 02 02 1 1 02
ox?  0y?> 0p*> pdp p? 062







Changing coordinates of vectors

We can define unit vectors for
polar coordinates: T and 0

D>

>

Any vector a can be expanded in terms of r and 0

Note that these unit vectors depend on position.



To convert a vector from Polar to Cartesian coordinates

we use Trigonometry:




In Cylindrical Coordinates, the transformations
of vectors follow from 2D:

New coordinates:

(r,0, 2)

New unit vectors:

T, 0, and Z

|

by ¥




In Spherical Coordinates, the transformations
get more complicated:

&
New coordinates: ¥ (r. 6, p)
reo
(r,0,0) e !
0/
v :
New unit vectors: N |
¥, 0, and ¢ /q) o



Divergence, Gradient and Curl in different coordinate systems
The form of the gradient, divergence and curl changes in different coordinate systems

In cylindrical cords the gradient is:

6fA 18fA 8fA

VI= (97“ 7“ 09 (92

The divergence is:
10(rd,) | 104y 04,
r Or r 00 0z

(104 . BASD)A
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4+ (aAP 8Az ) ~
0z op i

1 (B(PAtp) 3Ap)i

V- A=

And the curl is:

P dp Op
We can derive these using the transformations of partial derivatives that we did
a few slides ago,



In spherical cords the gradient is:

1 0(r*4,) 1 9 1

DA,

Ay sin @
r2 or +7'sin9 89( LY

The divergence is

e O S
or r 06 rsinﬂacp(P

And the curl is:

1 0 0Ay
A s B .
7 sin 6 (80( o sinf) 0 )r
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In this subject you will not be tested on how to derive these, but you will

need to know how to use them.



Coordinate transformations of divergence, gradient and curl
are usually tabulated for you (here the internet is particularly useful):

Del formula [edit;

Table with the del operator in cartesian, cylindrical and spherical coordinates

. . . L i Spherical coordinates (r, 6, ¢),
Operation Cartesian coordinates (x, y, 7) Cylindrical coordinates (p, ¢, 2) . . ]
where @ is the polar angle and ¢ is the azimuthal angle®
Vi field N N ~ A ;. N Q
ect(;r el Ak + A§ + Az Ap+A,p+ Ak A, v+ Ag0 + Ay
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radient U/ 2z oy’ ' 92 2P T 09,7 52t o 796" " 7m0 B
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Search term e.g.: “Vector calculus identities spherical coordinates”



Example: Find the divergence in cylindrical coordinates of the

Vector function

Del formula [edit;

Operation Cartesian coordinates (x, y, 7)
Vect(: field Al e Ayy A
- 0
+ v/ Gradient Vil a—i 6;; + B_f
Divergence 0A, O0A, JA,
V- Al Oz Oy 0z
< aAz 6Ay > ~
—-— X%
dy 0z
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+ (% _ %4 >z
oz dy
Laplace 5 f 5 f 5 ¥
operator Se T e g
V2= AfT Ox oy 0z
Vector
Laplacian V2A,% + Vszjr + V2A4,%
V2A = AAL2

Table with the del operator in cartesian, cylindrical

Cylindrical coordinates (p, ¢, 7)

Ap+ A,p+ Az
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Exercise: Find the Laplacian V? in spherical coordinates of the scalar function

f(r,6,p) =er
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