An integral is extremely useful for computing aggregate quantities
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Examples:

Average over an area: — // dX dy
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Mass of a volume: M = ///‘@,y,z)daz dy dz

Other examples: centre of mass, moment of inertia, total charge, etc.
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To compute all these quantities for real applications
we have to be able to integrate in multiple dimensions.



1D definite integrals
We think of a one-dimensional definite integral
as the sum of an infinite number of rectangles:
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where

Ax = . x;=a+1iAzx

This is known as the Riemann sum of the integral.

As the number of rectangles increases, a better and better
approximation for the area under the curve is obtained.



NB: The integral is often thought of as the area under a graph.
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However, integrals can also be negative or zero (unlike areas).
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Double integrals c—d
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We can extend this definition to integrals of 2D functions 4 ’
over rectangular domains . Ar = b—a 7
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a signed volume under the 2D surface.
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To perform an integral in 2D, we use nested (or iterated)
integration: Y

For a rectangular domain, this means that we pick one
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Example: evaluate

//xydxdy




Unlike in 1D, the domain of integration

in 2D can be complicated.
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To integrate in 2D, we first have
to describe the domain of
integration.

The general form is:

D = {(z,y)|some inequalities involving = and y}
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Examples: - d

D ={(z,y)|lz > 1
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D={(z,y)| -1<2<2, y<z?}

D = {(z,y)|2® +y* < 4}




Integrating over more complicated domains:

First, write down and draw the domain in 2D, e.g.
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D={(z,y)|—-1<z<2,0<y<zx+1}
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Pick the inequalities and use them N
as the limits for you integral:
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(Important: make sure that the outer limits do not depend on x or y. If this happens,

swap the order of integration).

Then integrate, starting with the inner integral.



So far in 2D integration:

Given a function f(x,y) on a domain D,

D={(z,y)la<x<b , gz)<y<gu(r)} ’

the integral of a function f(x,y) over this domain is /
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Example:
Find the area of the domain between the curvesy = x? and y = x3.




The integral can be thought of as a weighted sum over the domain,
where the function f(x,y) gives the weighting.
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Integrating the function f = 1 over the domain D gives the area of the domain.
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Areas and averages
The area of aregion R is
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The average of a function f(x,y) over R is

zf> = i&\th\M

The average x-position (often called the 15t moment of Area) is
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The centroid is the average position vector
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Often the one can “guess” the values of first moment
integrals by using the symmetry of the region. E.g:
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Polar coordinates

We often want to integrate circular domains, or regions with round elements.

For this we need polar coordinates.
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To integrate, we also need to change

from dx dy to differentials involving r and O:
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The transformation from (x,y) to (r,,) is

T = 1rcosb

y =rsinf
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To integrate, we divide the domain into a large number of small sections,

each with area dA.
w
S S N

AA = AcxsAD
= ¢ As¢ A@.
Note: In polar coordinates, dA decreases as we approach the origin. dAh = rdedg .
T ——,
Length of small element ~ Avr
Width of small element ~ AY=

‘ The area of a small element ~



To go from (x,y) to (r,,,), we make the
transformation

And then integrate, picking one coordinate to
integrate over first: -
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Example: Integrate J /
// xdzr dy
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where A is the area shown: N\ 7/4
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Example: Integrate

// xdr dy
A

where A is the area shown:
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Example: evaluate
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General change of coordinates:
We can write a new coordinate system in terms of the old as

el
r = x(s,t)
y=1y(st)
2
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We would like a way of writing the area element dA = dx dy in terms of
the new coordinates.
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To change the area element from (x,y) to (s,t) we use the Jacobian:
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This is often written
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Example: Cartesian to polar coordinates:
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: Cartesian to Elliptic coordinates

I

a cosh u cos v

a sinh w sin v

dxdy = a*(sinh? @ + sin® v)dudy




The reciprocal theorem states that
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Why? The determinant gives the scaling factor of
the area for a coordinate transformation
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Example: Let R be the parallelogram with vertices

(-1,3), (1 -3), (3,-1), (1,5). Evaluate

j / )2dxdy
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Using the substitution u=x—-y,v=3x+y.
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Triple integrals
Often we would like to integrate a function over a volume, i.e.
over a region in three dimensions.

Recall:

Integrals in 1D are defined as the limit of a sum over
intervals of length Ax:
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Integrals in 2D are defined as the limit of a sum over
squares of area AA:
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We will define an integral in 3D as the limit of a sum over
boxes of volume AV
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Here,

AV = AxAyAz

is the volume of a small box.

As the number of boxes increases,

AV — dV =dz dy dz
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Another way of writing this is:
s

///V fz,y,z)dedydz = lim > flay2)AV
all boxes \
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That is, the integral is the weighted sum of
all volume elementsin V.
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Note that for f = 1,
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= the volume of the region V
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As in 2D, the integral can be computed iteratively.

A rectangular box in 3D is described by
V={(zy,2) | a<x<b,

A
/ c<y<d,
p<z<gq}
The integral is then
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(Fubini’s theorem says that the order of integration is not important.)




Example: Integrate

/ / / zy? zdrdydz
B

where B is the rectangular box with 1 <x<2, 1<y<3,0<z<1
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Describing more general regions in 3D

In 1D a region is described by “hard” inequalities

T \
In 2D we describe a region by a pair of “outer” and “inner”

inequalities:

D={@yla<z<b . g) <y < gule))
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In 3D we need an extra pair of inner inequalities to describe the domain:

D=A(z,y,2)la<z<b , giz)<y<gu(z) ,ui(z,y) <z <us(z,y) }
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A simple domain in 3D can be written

/
D=A{(x,y,2)|la<x<b ,

gg(a:') <y< gu(x> S
ul(a:,y) <z< u2(:1:,y) }

The integral in 3D over this domain is then
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Example: Evaluate
/// zdrdydz = V_ - 2
. =5

where E is the tetrahedron bound by the planes x=0,y =0, z=0 and the
plane x+y +z=1. KR
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Cylindrical coordinates
are a useful hybrid of Cartesian and polar coordinates: the x-y plane is
treated in polar coordinates but the z-axis is the same as in the (x,y,z) system.

- Cylindrical coordinates:
r = rcosf |

y = rsinf

(.0, 2) : = z |

Cylindrical volume element:

AV = dzdydz = rdrd@dj\z
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Example: A fuel tank has a circular cross section and consists of two sections: a cone of
height 4 metres and an inverted parabola of height 2 metres.
The maximum radius of the tank is 4 metres. Compute the volume of the tank.
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Spherical coordinates are essential for computing anything with 3D spherical symmetry

S

Spherical coordinates:

x = pcosfsing
y = psinfsing
(9,0, ) s = peose

Spherical volume element:

( dzdydz = p? sin gbdpd@dqﬁj

Important note:
Therange of fis © ¢ & <




Spherical coordinates:

x = pcosfsing
y = psinfsing
Z = pcoso

Spherical volume element:

dedydz = p? sin ¢dpdhde
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P = radius of sphere



Use spherical coordinates to find the volume of a sphere of radius R.




Applications: volume, mass and density

An integral is a weighted sum over a volume.
The meaning of the integral is determined
by the weighting.

E.g. the volume of a solid is given by

V:///Ededde:Alxlfn—lm Z AV
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Suppose that the function “(x,y,z) describes the
mass per unit volume of the solid. Then the total mass is

M:///E p(x,y, z)dedydz

Important note:
Do not get mixed up between the density ~ and the spherical coordinate “#!




