Integral theorems



Recall: We could define the curl of a vector
field as a line integral around a loop:

Alternative definition of the curl:
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Where AS is the area of the loop C and n:‘is
the unit normal vector to this area element.

(From the end of the week on line integrals)



We can define the divergence of a vector field as a surface integral over a volume:
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Consider a vector field F, and draw a small box 61
in 3D, with side-lengths Ax, Ay and Az.

The surface integral of F over the surface S o]
of the box is
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So, when the box is sufficiently small, )t
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In the limit as AV — 0, we have
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That is, the divergence at a point
is the limit of the flux integral over a small
surface surrounding that point.



The Divergence Theorem
(a.k.a. Gauss’s theorem)



field F in 3D...




We consider a vector field F in 3D,
defined in the interior and on the
boundary S of some volume V.




We consider a vector field F in 3D,
defined in the interior and on the
boundary S of some volume V.

The divergence of F is a scalar field,
which we can integrate over the V:
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We consider a vector field F in 3D,
defined in the interior and on the
boundary S of some volume V.

The divergence of F is a scalar field,
which we can integrate over the V:
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We can also integrate the flux of F
over the surface S:
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The divergence theorem states that these two quantities are equal.




The divergence theorem:
The integral of a divergence of a vector field over a volume is
equal to the flux integral over the bounding surface.
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Why does this work?

Recall the “alternative definition” of divergence:

In the limit as AV — 0, we have

lim f/F-dSzV-F
AV —=0JJS

That is, the divergence at a point
is the limit of the flux integral over a small
surface surrounding that point.
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The volume integral is the sum of the surface

fluxes over all the interior boxes
—————

The internal sides “cancel out”, leaving only the
contribution from the edges




Why does this work?

Recall the “alternative definition” of divergence:

In the limit as AV — 0, we have

lim fdes V.F
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is the limit of the flux integral over a small
surface surrounding that point.

The volume integral is the sum of the surface
fluxes over all the interior boxes

The internal sides “cancel out”, leaving only the
contribution from the edges




Example: Use the divergence
theorem to calculate the flux of

F = (1 + 2z, 3y, —z>/

out of the unit sphere centred
at the origin.
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Example: Use the divergence
theorem to calculate the flux of

F = <1 — 22, —y2,z>

out of the unit sphere centred
at the point <2, 1, 4>.







Example: Gravity
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Stokes’ theorem



field F in 3D...




We consider a vector field F in 3D,
and a surface S with a closed boundary C.




We consider a vector field F in 3D,
and a surface S with a closed boundary C. VX F

dS | —

The flux integral of the curl V X F through S is
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We consider a vector field F in 3D,
and a surface S with a closed boundary C. VX F

The flux integral of the curl V X F through S is
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The line integral around the boundary of S is
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Stoke’s theorem says that these two quantities are equal.
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Stokes theorem:
The integral of the curl of a vector field over a surface is equal to the line
integral around the edge of the surface.
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Why?

Recall that the curl is just the
Line integral around a loop:

Alternative definition of the curl:
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Where AS is the area of the loop C and nfis
the unit normal vector to this area element. _

In the integral over the surface, the interior loops cancel out,
leaving the line integral around the boundary.



Important thing to be aware of: Stokes’ theorem assumes that the
Surface and the Curve are both oriented in the same way.

That is: the normal to the surface must point in the same direction
as is traversed by the curve, according to the right-hand rule.
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Example: Use Stokes’ theorem to calculate the flux integral of the
curl of the field
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Example: Use Stokes’ theorem to calculate
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and C is the square with vertices <0,0,0>, <0,2,0>, <2,2,0>, <2,0,0>,
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Integral theorems overview

1. The divergence theorem
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2. Stokes’ theorem
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3. The fundamental theorem
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Green’s theorem in the plane \\
Recall Stokes’ theorem:
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When we project this theorem onto the x-y plane, we obtain
an important theorem called Green’s theorem.




On the plane,
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So we have \/
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fg dx + i /(8:{: 8y)a:dy

Since F, and F,, can be any function at all, we often
write this as
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Where P(x, y) and Q(x,y) are analytlc functions in
the x,y plane.

This identity is known as Green’s theorem in the plane, and it is
extremely important in, for example, complex analysis.
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