
Charge and the electric field



About 200 years ago, people noticed that charged objects
exerted a force on each other.

The force was observed to be:

1. Directed along a line between the two objects

2. Proportional to the product of the charges 𝑄𝑄𝑄𝑄

3. Proportional to the inverse square of the distance 
between them

+ -

We can write the force as a vector. In the coordinate system 
centred on the positive charge, we have

(positive) 
Charge 𝑄𝑄

(negative) 
Charge 𝑄𝑄

𝜀𝜀0 is an experimentally-measured
number, called the vacuum permittivity:

The electric charge is measured in Coulombs C.



The current understanding* is that small electric charges emit a vector 
field. This field in turn exerts a force on other charges. 

*of classical theory; quantum theory has its own fields!

+ +

The electric field from a charge Q is



In 3D the electric field can look a bit more 
complicated: 

+



Meanwhile, each of the other charges emits its own contribution to the field.

+ -



We consider a single “point charge” charge q, centred 
at the origin. The E field is

+
We now compute the flux integral of E over
a spherical surface of radius R: 



The resulting integral does not depend on the radius, or (it turns 
out) on the shape of the surface. In general we have

where S is any surface enclosing the charge.

What happens when we apply the 
divergence theorem?

+



So we have found 

But we can write the total enclosed charge in 
terms of the charge density 𝜌𝜌(𝒓𝒓):

The only way this works for any volume V is if

This is known as Coulomb’s law and it is the first of Maxwell’s equations.



What does Coulomb’s law tell us?

+ -

1. Positive charge is a source of electric 
field, while negative charge is a sink.

2. The flux integral 

only depends on the enclosed charge – charges outside the surface do not 
contribute anything.



Example: Compute the electric field for a sphere of radius R, having a
uniform charge density 𝜌𝜌.





Example: A continuous line of charge can be represented by a 
line charge density (charge per unit length) 𝜆𝜆(𝒓𝒓). Compute the 
Electric field for an infinite line charge aligned along the z axis. 





What about the curl of the electric field?

Consider the field from a point charge:



So the Electric field is irrotational: 

We can therefore express it as the gradient of a potential function:

By convention

where 𝑉𝑉 is known as the electrostatic potential. Taking the divergence 
leads to



Electric current and the magnetic field



Current 𝐼𝐼1

An electric current is a moving line of charges, in which 
positive and negative charges are moving continuously in opposite directions
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We can depict the current
as a vector 𝑰𝑰, which gives
the net flow of positive charge per second

Negative
charge 
flow

Positive
charge 
flow



Observation: electric currents exert forces on each other

Current 𝐼𝐼1 Current 𝐼𝐼2

The force per unit length is

1. Directed along a line between the two currents

2. Proportional to the product of the currents 𝐼𝐼1𝐼𝐼2

3. Inversely proportional to the distance 
between them



Each current emits a magnetic field B, which circles around the z-axis:

Current 𝐼𝐼1

And the resulting force per unit length
on another current is

The constant 𝜇𝜇0 can be measured experimentally, and is called the vacuum permeability



We now take the vector line integral of

along a loop of radius R enclosing the wire:

Current 𝐼𝐼1



So

Where 𝐼𝐼enc is the enclosed charge. Note
that this does not depend on the radius of the loop.

Current 𝐼𝐼1

By Stokes’ theorem

But we can also write the current in terms of the current density 𝑱𝑱 𝒓𝒓 :

Therefore:



We have found an expression for the curl of the magnetic field:

What about the divergence?

From the expression for a line current

The divergence is



We therefore have the following equations for the magnetic field:



Maxwell’s equations



What have we found so far?

For the electric field For the magnetic field

The constants 𝜀𝜀0 and 𝜇𝜇0 are well established from the measurement of optical forces
on charges and currents:



S

Experiments by Faraday showed that a changing magnetic field
Produced a force that acted in exactly the same way as an electric field.

N

This showed that the electric field and the magnetic field were coupled together:

That is: a changing magnetic field causes rotation of the electric field



These equations now look unbalanced.

In 1873, Maxwell proposed a modification of the curl equation for the magnetic field

What are the consequences of this?



Maxwell’s equations:



Consider an electric and magnetic field pair in free space,
So that 𝜌𝜌 = 0 and 𝑱𝑱 = 𝟎𝟎 everywhere. Maxwell’s equations are

Take the curl of the third equation:



So 

This is a wave equation (we will do this in a few weeks).

It has solutions which are waves with a velocity



Plot of E-field of an electromagnetic plane wave:
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