
Part 2: Partial Differential Equations



Most of our mathematical models in physics and engineering 
are built on Partial Differential Equations. 

Imagine there is some quantity 𝜓𝜓 that we would like to 
compute. Physical laws usually give us relationships for the 
derivatives of 𝜓𝜓, and it is up to us to compute what 𝜓𝜓 is.

E.g. Waves in water

Heat flow through a solid:

Wave function of an electron:



Before solving these, we begin by revisiting a 1D problem:
The Helmholtz equation in one dimension
(e.g. the vibration of a guitar string)

Find 𝑓𝑓 𝑥𝑥 on the domain 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿, where

and 𝑓𝑓(0) = 𝑓𝑓(𝐿𝐿) = 0.





The problem we have just solved, i.e.

is known as a Sturm-Liouville Boundary value problem. 

This week we will be going through the main points of S-L theory, so 
that we can use it to solve PDEs in higher dimensions.

Find 𝑓𝑓 𝑥𝑥 on the domain 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿, where

and 𝑓𝑓(0) = 𝑓𝑓(𝐿𝐿) = 0.

• The Inner Product for Functions

• Differential Operators

• The Sturm-Liouville Eigenvalue Problem

• Expansion in terms of eigenfunctions



The Inner Product for functions and Orthogonality



The inner product for vectors
Recall the dot product between two vectors:

This scalar quantity tells us how much two vectors are in alignment,
or, in other words, “how much” of one vector points in the direction of the other.

The dot product is an example of an inner product.

If                       then a and b are said to be orthogonal 



The inner product

has the following properties:

1. 

2.      

3.       

4. is real and positive, and is zero iff 𝒂𝒂 = 0

We call 𝑎𝑎 = 𝒂𝒂 ⋅ 𝒂𝒂 the vector norm of 𝒂𝒂.



The inner product for functions
Consider two functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥), defined on a
domain 𝐷𝐷 = 𝑥𝑥: 𝑥𝑥0 < 𝑥𝑥 < 𝑥𝑥1

We define the inner product between 𝑓𝑓 and 𝑔𝑔 as the scalar 
quantity

where 𝑤𝑤 𝑥𝑥 is a positive real function, known 
as the weight function. 𝑤𝑤(𝑥𝑥)

g(𝑥𝑥)

• The quantity 𝑓𝑓,𝑔𝑔 is a complex scalar 
(don’t get it confused with vector notation)

• The weight function is just there to make things more general:
Most of the time 𝑤𝑤 = 1.

𝑓𝑓(𝑥𝑥)



g(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

The inner product

has the following properties:

1.       𝑓𝑓,𝑔𝑔 = 𝑔𝑔, 𝑓𝑓 ∗

2.      𝑓𝑓, 𝑘𝑘𝑔𝑔 = 𝑘𝑘 𝑓𝑓,𝑔𝑔

3.       𝑓𝑓,𝑔𝑔 + ℎ = 𝑓𝑓,𝑔𝑔 + 𝑓𝑓, ℎ

4. 𝑓𝑓, 𝑓𝑓 is real and positive, and is zero iff 𝑓𝑓 = 0.

We call f ≔ 𝑓𝑓, 𝑓𝑓 the norm of f on D.



We say that 𝑓𝑓 and 𝑔𝑔 are orthogonal functions if

g(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

That is, if the integral of their product is zero:

Two functions 𝑓𝑓 and 𝑔𝑔 are orthogonal if, in some 
sense, there is “g”-ness in g and vice-versa.

g(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

g(𝑥𝑥)

𝑓𝑓(𝑥𝑥)
Formally, this says that f and g are
Linearly Independent



Example: Consider

𝑓𝑓 𝑥𝑥 = sin 𝑥𝑥

𝑔𝑔 𝑥𝑥 = cos𝑥𝑥

with 𝑤𝑤 𝑥𝑥 = 1 on 𝑥𝑥 ∈ [0,2𝜋𝜋]

g(𝑥𝑥)

𝑓𝑓(𝑥𝑥)



Example: Consider

𝑓𝑓 𝑥𝑥 = 𝑥𝑥

𝑔𝑔 𝑥𝑥 =
1
2

(3𝑥𝑥2 − 1)

with 𝑤𝑤 𝑥𝑥 = 1 on 𝑥𝑥 ∈ [−1,1]

g(𝑥𝑥)𝑓𝑓(𝑥𝑥)



Differential Operators



An operator is a device for turning one function 
into another. For the function u, we create a new 
function  

using the operator       . 𝑓𝑓(𝑥𝑥)

Examples:

The operator                        acts on a function 𝑓𝑓 to form



Note that the direction from which the 
operator is applied can be important.

E.g.

Applied on the left side of 𝑓𝑓 gives

But applied on the right side of 𝑓𝑓 gives another operator: 



There are three major properties that a lot of differential operators
have, and which are really useful if they do have them:

1. Linearity

2. Positivity

3. Self-Adjoint-ness

Once we have an operator, we can see how it behaves 
in conjunction with an inner product.



An operator is linear if, for any two functions f and g :

for any constant k. 



An operator is positive if, for any function f :

𝑓𝑓(𝑥𝑥)

ℒ 𝑓𝑓(𝑥𝑥)

E.g. consider 



An operator is self-adjoint if, for any functions
𝑓𝑓 and 𝑔𝑔, we have

𝑓𝑓(𝑥𝑥)

ℒ 𝑓𝑓(𝑥𝑥)

This looks complicated, but most interesting 
differential operators are self-adjoint.

E.g. You can prove that

is self-adjoint.



The Sturm-Liouville Eigenvalue Problem



The Sturm-Liouville Operator
We now introduce an important type of 2nd-order linear operator,
called the Sturm-Liouville operator. This operator is defined as

where 𝑝𝑝 𝑥𝑥 ,𝑤𝑤 𝑥𝑥 > 0 and 𝑞𝑞 𝑥𝑥 ≥ 0.

This looks complicated, but almost any 2nd-order DE can be put in this form. 

E.g. 



Any S-L operator is linear, self-adjoint, and positive.



The Sturm-Liouville eigenvalue problem
We consider the following problem on a
domain 𝐷𝐷 = 𝑥𝑥: 𝑥𝑥0 ≤ 𝑥𝑥 ≤ 𝑥𝑥1 :

where      is the S-L differential operator.

This type of problem is called an eigenvalue problem. The solutions
form a set:

The solution 𝜙𝜙𝑛𝑛is the eigenfunction corresponding to
the eigenvalue 𝑛𝑛. 

By convention: φ = 0, λ = 0
is always a solution, and we omit
this from the set.

Plus boundary conditions of either 𝜙𝜙 𝑥𝑥0 = 𝜙𝜙 𝑥𝑥1 = 0
or 𝜙𝜙′ 𝑥𝑥0 = 𝜙𝜙′ 𝑥𝑥1 = 0.



The “vibration of a guitar string” problem that we solved earlier

is a Sturm-Liouville problem.

Find 𝑓𝑓 𝑥𝑥 on the domain 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿, where

and 𝑓𝑓(0) = 𝑓𝑓(𝐿𝐿) = 0.

Other examples:
Wavefunction of an electron in a square well: 



Properties of Sturm-Liouville problems
S-L problems all have the following important properties:

1. There is an infinite set of eigenfunctions
and eigenvalues

3. Eigenfunctions are orthogonal

2. All Eigenvalues are real and positive

4. The Eigenfunctions form a complete set



Proof that eigenfunctions are orthogonal:



Proof that eigenvalues are real and positive:



Analytic solutions to the S-L problem
In general exact solutions are rare. 
Two important examples in 1D:

1. The Helmholtz equation



2. Bessel’s equation
This arises from the decomposition of the Laplacian into polar coordinates. 

Bessel functions can only be expressed as infinite series: e.g.

(To find the terms in this series we use the method of undetermined coefficients.) 

The general solutions to this equation are 
Bessel functions:



E.g. Solve the S-L problem

on the domain 0<x<2 with boundary conditions φ(0) = φ(2) = 0.





Expansion in terms of eigenfunctions



Properties of Sturm-Liouville problems
S-L problems all have the following important properties:

1. There is an infinite set of eigenfunctions
and eigenvalues

3. Eigenfunctions are orthogonal

2. All Eigenvalues are real and positive

4. The Eigenfunctions form a complete set



4. The Eigenfunctions form a complete set

This means that any function can be expanded in terms of the eigenfunctions
of the S-L operator.

Such an expansion in known as a 
generalised Fourier series.

To find the coefficients cm we take the inner product with an eigenfunction 𝜙𝜙𝑛𝑛 :



So

with

and hence 

The coefficients cm are known as the projection of f on the basis {𝜙𝜙𝑛𝑛}.



Example:
Expand the function 

in terms of the eigenfunctions of the S-L problem

with 𝜙𝜙(0) = 𝜙𝜙(2) = 0.







More complicated example:
Expand the function 

in a basis of solutions to 

with 𝜙𝜙(−1) = 𝜙𝜙(1) = 0.
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Representation of Functions as vectors 
(Intro to infinite-dimensional Hilbert Space)



We can visualise a function 𝑓𝑓 𝑥𝑥 as being a list of values,
Each one corresponding to a different point 𝑥𝑥: 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x f(x)

0.1 1.5

0.2 1.6

0.3 2.0

0.4 3.1

0.5 4.5

0.6 5.4

0.7 6.2

0.8 6.8

We can therefore list the values of the function as a “vector”:

𝑥𝑥



Note that we still have to specify the values of 𝑥𝑥 to get a full picture of 𝑓𝑓

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 𝑥𝑥

If f were only defined at 3 points, we could imagine f as a vector
in 3D space.

For a continuous function we have to specify 𝑓𝑓 at an
Infinite number of points, and so the vector representing 𝑓𝑓
would be infinite dimensional.



Hilbert spaces
We can think of f as a vector in an infinite dimensional space,
known as a Hilbert Space.

Properties of a Hilbert Space:

1. It has an inner product

2. The norm is defined and the space is complete
with respect to the norm.



In this vector picture, linear operators become matrices.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 𝑥𝑥

Self-Adjoint operators become Hermitian matrices.

ℒ𝑓𝑓 = 2𝑓𝑓(𝑥𝑥)= 



The inner product between two functions becomes very similar to the
vector inner product:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 𝑥𝑥



We also have a way of representing functions in terms of 
an infinite series of eigenfunctions

Again, we could list the coefficients 𝑐𝑐𝑚𝑚 as a vector,
and this would represent the function.

Again, an operator becomes a matrix multiplication
on the vector f:



In each case we can represent a function as a vector in infinite-dimensional space.

In each case self-adjoint operators become equivalent to self-adjoint matrices.

Given that each vector and each matrix represents the same thing, can we
abandon the particular basis that we are using, and represent functions
and operators more abstractly?



Ket notation
In Quantum mechanics, physical states are represented by 
abstract vectors in a Hilbert space, denoted 

| 𝜓𝜓 ⟩

The state 𝜓𝜓 represents, in abstract form, everything that can be 
known about the state, without specifying a particular basis.

Similarly, measurable quantities are represented by Hermitian Operators
which act on 𝜓𝜓 . 

This formulation allows us to make predictions that don’t rely 
on a particular basis.
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