Second order partial differential equations (in 2D)



A Partial Differential Equation expresses a relationship between
the derivatives of a multi-variable function on a domain. \/(q 1\
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E.g. The Laplace equation for the electric potential
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In 2D is

We can represent a PDE as an equation involving a
differential operator:
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To solve a PDE we need to fund a function that fits the PDE itself,

as well as any boundary conditions.
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Classification of 2"9 order PDEs
Partial differential equations can be linear or nonlinear.

A linear PDE has the property that you can add multiples of any two solutions

to get another solution.
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In two dimensions, the most general form of a linear Z“d;order PDE is
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where F is a linear function. We restrict ourselves for the moment
to the case of constant coefficients:
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Atyy + 2Bugy + Cuyy = F(2,y, u, Uy, Uy)

Depending on A, B and C, the PDE falls into one of three categories:

1. B2—4 AC>0: Hyperbolic

(€

2. B2—4AC<0: Elliptic
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3. B2-4AC=0: Parabolic
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“Canonical” Examples:

The wave equation:
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Laplace’s equation
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General characteristics of solutions to the different types of equations
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Hyperbolic:
Propagation of signals

Parabolic:
Spreading out




Boundary conditions for 2D PDEs
In two dimensions, a boundary line
can be parameterized

A boundary curve can be open or closed.

The unit normal vector to the boundary is
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The derivative of the solution ¥ (x, y) normal to the boundary is
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Types of boundary conditions:

1. Dirichlet conditions:
Specify the value of the solution on the boundary
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2. Neumann conditions:
Specify the normal derivative of the solution on the boundary l
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If the value or derivative is set to zero, these are known
as homogeneous Dirichlet or Neumann conditions.

v



3. Mixed conditions:
Specify some ratio of the value and
the derivative on the boundary
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4. | Cauchy conditions:
Specify both the normal derivative
and the value on the boundary
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The following table shows what boundary conditions are needed
for a given problem:

- N
A N

Boundary | Elliptic | Parabolic ‘ Hyperbolic
|
Dirichlet/ @ Insufficient Sufficient; Insufficient
Neumann/ unique
mixed BCs solution
(@ Sufficient, unique Overspecified Solution not
solution unique
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Cauchy BCs Open Sufficient, unique Overspecified Sufficient, unique
(but unstable)

Closed Overspecified Overspecified Overspecified



1. Find a series of functiornsthat fit the PDE in the

interior, then combine these to match the boundary
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conditions
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Methods of Solution

of PDEs
\ 2. Represent the entire solution as an integral

7 over the boundary

In the next section, we will use the Sturm-Liouville theory from last week
to construct a general approach to Method 1.




Solving Partial Differential Equations
using Separation of Variables




Canonical examples:

The heat equation:
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Laplace’s equation
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The wave equation:
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Consider Laplace’s equation in 2D:
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The solution is determined uniquely in some domain D

If we specify the value of i on the edge of the domain.
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Solutions to Laplace’s equation
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have no local maxima or minima. The solutions are
therefore “as smooth as possible, while still fitting the
boundary conditions”.
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We will now find the solution to
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Now we have found (ﬁ
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The only way this can be true is if both of these fractions
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are constant. That is: /
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So we have converted the PDE into two Ordinary Differential Equations:
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Two of the boundary conditions will be automatically

satisfied if
\
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Note that the problem
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So we have an infinite set of solutions for X (x): Y(x,y)

X,,(z) sin(yv/Anz) /
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(Aside: The general solution of

Y (y) = k*Y (y)
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The total solution is therefore >/ G*\ % B
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Does this fit all the boundary conditions?
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Solution: construct a series of these functions q
to satisfy the remaining boundary condition
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We construct the total solution as a sum WY(x,y)

of the eigenfunctions X,;:
v /

V(z,y) = bn X (7) Y0 (y)
2" P

We need ¢({,) =1, so:
%

o) L/ e ‘x/
| = 2 Y ><M(_;> \(“"(\X
Torlke Ko \:j( '(’acl-«csi g..‘.\«,.h\ X, ,L\ : Y(x,0) =0,
BCs lpgx' L% — 1"/

” 0,y) =0,
<><¢, \> = éxw’ Z\D“K“Y_'(I\B 3(1’§):0

- Z— bw\(" ((\Axv st

=1 ‘

s

= el (N US>

éo ‘ ' 4
I A0 A

v



So the solution is
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The Diffusion and Wave equations




Canonical examples:

The heat equation:
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Laplace’s equation
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The wave equation:
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The steps to solving the diffusion and wave equation are the same
as for Laplace’s equation, namely:

1. Separate variables

2. ldentify the Sturm-Liouville problem and compute the eigenfunctions

i

3. Use an infinite series to match the boundary conditions.




Diffusion equation example:

The temperature of a metal bar of at position x and time t

is given by
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With the boundary conditions
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Step 1: Separate the variables:
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Step 2: identify the S-L problem and find the eigenfunctions

We have found:
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3. Expand the solution in a series to match the boundary conditions

We have found | 45<L.,&> = Z‘c_ v T,(% X, XS
u(x,t) 7‘% |

with - . T@ 1N\
n =e =\
X,(x) =sin(—=x |
(z) = sin(-) | " r5 e
T _ _—(nm/L)*kt \”M = : l
n(t) =€ ,\ ) | @
N | W\ —
The remaining BC is |
Now ¢

u(x,0) = J{(z) UX/J\ \ P

4$<M‘§3 = X< Z\a \<J\Tw(\§

w=<



¥
wf> o L
\a 9;A(~*"::.~>
[
-;c,(\,-»
) d
i &

N




Wave equation example:
The z component of an electromagnetic wave travelling
along a square metal pipe is of width a is given by the equation

With the boundary conditions ?
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Step 1: Separate the variables:
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Step 2: identify the S-L problem and find the eigenfunctions

We have found:
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3. Expand the solution in a series to match the boundary conditions
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