
Surface Area of Implicitly Defined Surfaces
Math 311

When S is the graph of a differentiable function f (x, y) , we define the element
of surface area

dS =
q
f2x + f2y + 1dA, (1)

where dA denotes an element of plane area in the domain of f . When S is
implicitly defined by an equation g (x, y, z) = 0, where g is a diferentiable func-
tion, we compute the element of surface area dS by thinking of S (locally) as
the graph of an implicit function of two variables and use implicit differentiation
to find its partials. For example, when z is an implicit function of x and y, our
formulas for implicit differentiation give
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and it follows from the formula in (1) that
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Example: The sphere S of radius a is defined implicitly by

g (x, y, z) = x2 + y2 + z2 − a2 = 0.

The upper and lower hemispheres are graphs of implicit functions of x and y
given by g. Thus
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where we use + sign when z > 0; this gives the upper hemisphere. By sym-
metry, the upper and lower hemispheres have the same surface area SA. Thus
integrating over the upper hemisphere in polar coordinates and doubling our
answer we have
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Let u = a2 − r2; then du = −2rdr, u (0) = a2 and u (a) = 0. Then
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