Surface Area of Implicitly Defined Surfaces
Math 311

When S is the graph of a differentiable function f (z,y), we define the element

of surface area
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where dA denotes an element of plane area in the domain of f. When S is
implicitly defined by an equation g (x,y, z) = 0, where g is a diferentiable func-
tion, we compute the element of surface area dS by thinking of S (locally) as
the graph of an implicit function of two variables and use implicit differentiation
to find its partials. For example, when z is an implicit function of = and y, our
formulas for implicit differentiation give
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and it follows from the formula in (1) that
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Example: The sphere S of radius a is defined implicitly by
gy, 2) =22 +y*+22—a®>=0.

The upper and lower hemispheres are graphs of implicit functions of x and y
given by g. Thus
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where we use + sign when z > 0; this gives the upper hemisphere. By sym-
metry, the upper and lower hemispheres have the same surface area SA. Thus
integrating over the upper hemisphere in polar coordinates and doubling our
answer we have
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Let u = a? — r?; then du = —2rdr, u (0) = a® and u (a) = 0. Then
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