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1. A review of Elementary Calculus

1.1. Limits and Continuity. Calculus is primarily concerned with
the behaviour of continuous functions. So we begin by revising some
important ideas.

Definition 1.1. We define limit points and limits of functions as fol-
lows.

(1) A point x is a limit point of a set X ⊆ R if there is a sequence
{xn}∞n=1 ⊂ X such that xn → x. If there is no such sequence,
then x is an isolated point.

(2) Let X ⊆ R, f : X → R and x0 a limit point of X. Then L is
the limit of f as x→ x0 if and only if, given ε > 0, there exists
δ > 0 such that x ∈ X, |x− x0| < δ implies |f(x)− L| < ε.

Limits of functions satisfy the usual arithmetic properties.

Theorem 1.2. Let f, g : X → R be functions and c a constant. If
x0 is a limit point of X and limx→x0 f(x) = L and limx→x0 g(x) = M ,
then

lim
x→x0

cf(x) = cL (1.1)

lim
x→x0

(f(x) + g(x)) = L+M (1.2)

lim
x→x0

f(x)g(x) = LM (1.3)

lim
x→x0

f(x)/g(x) = L/M, (1.4)

provided M �= 0 and g is nonzero.

Proofs of these results are exercises with the triangle inequality and
are left to the reader. We can define right and left limits for functions.

Definition 1.3. Let f : X → R, where X ⊆ R. We say that

lim
x→a+

f(x) = L,

if for every ε > 0, there exists δ > 0 such that a < x < a + δ implies
|f(x)− L| < ε. Similarly we say

lim
x→a−

f(x) = L,

if for every ε > 0, there exists δ > 0 such that a − δ < x < a implies
|f(x)− L| < ε.

An easy result follows.

Proposition 1.4. Let f : X → R, where X ⊆ R. Then limx→a f(x) =
L if and only if limx→a+ f(x) = limx→a− f(x) = L.

The proof is an exercise. Finally we define the limit at infinity.
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Definition 1.5. Let f : R → R be a function. Then limx→∞ f(x) = L
if for every ε > 0 there exists an M > 0 such that x ≥ M implies
|f(x) − L| < ε. Similarly we say that limx→−∞ f(x) = L if for every
ε > 0 there exists M < 0 such that x ≤M implies |f(x)− L| < ε.

Having established the essentials about limits of functions, we intro-
duce the crucial idea of continuity.

Definition 1.6. A function f : X → R is said to be continuous at x if
for any sequence {xn}∞n=1 ⊂ X which converges to x, we have

lim
n→∞

f(xn) = f(x).

This can be recast in the following form.

Definition 1.7. A function f : X → R is continuous at x ∈ X if
for any ε > 0, we can find a δx > 0 such that |x − y| < δx implies
|f(x)− f(y)| < ε.

We write δx to emphasise the dependence on the point x. So for
each x we may require a different δ. If a function is continuous at every
point in its domain, we say that it is continuous. The two definitions
are clearly equivalent.

Theorem 1.8. The two definitions of continuity stated above are equiv-
alent.

Proof. First suppose that f satisfies Definition 1.7. Let {xn}∞n=1 be a
sequence in X with limit x. Pick ε > 0 and δx > 0 such that |x− x0| <
δ − x implies |f(x)− f(x0)| < ε. Since xn → x we may find an N ∈ N

such that n ≥ N implies |xn−x| < δx. Then |f(xn)−f(x)| < ε, but this
means that f(xn) → f(x), so f is continuous according to Definition
1.6.

Suppose that f does not satisfy Definition 1.7. Then we can find
ε > 0 such that for every δx > 0 with |x − x0| < δx we have |f(x) −
f(x0)| ≥ ε. Now choose a sequence {xn}∞n=1 in X with limit x ∈ X.
Then given δx > 0 we may find an N ∈ N such that |xn − x| < δx, but
|f(xn)− f(x)| ≥ ε. So {f(xn)}∞n=1 does not converge to f(x) and thus
f is not continuous by Definition 1.6. �

In practice we usually suppress the x subscript, taking it as read.
We can also consider functions which are right and left continuous.

Definition 1.9. We say that f is right continuous at x0 if limx→x+
0
f(x)

exists. If limx→x−
0
f(x) exists, then we say that f is left continuous.

A stronger form of continuity is needed when we consider the problem
of integration. This is uniform continuity.

Definition 1.10. A function f : X → R is said to be uniformly contin-
uous if given ε > 0 we can find a δ > 0 such that whenever |x− y| < δ
we have |f(x)− f(y)| < ε.
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The point here is that unlike ordinary continuity, δ does not depend
on x or y. Only on how far apart they are. Uniform continuity implies
continuity, but the converse is false. An arbitrary continuous function
on the real line need not be uniformly continuous. However, every
continuous function is uniformly continuous if we restrict it to a closed
and bounded interval. In order to prove this we introduce an equivalent
idea.

Definition 1.11. A function f : X ⊆ R → R is sequentially uniformly
continuous if given xn, yn ∈ X, yn−xn → 0 implies f(yn)−f(xn) → 0.

The proof of the following is straightforward and we omit it.

Theorem 1.12. A function f : X → R is sequentially uniformly con-
tinuous if and only if it is uniformly continuous.

Now we will prove our previous assertion. It is one of the most
important results in analysis and plays an important role in the theory
of the Riemann integral.

Theorem 1.13. A continuous function on a closed bounded interval
[a, b] is uniformly continuous.

Proof. Suppose that f is not uniformly continuous. It therefore cannot
be sequentially uniformly continuous. Choose r ≥ 0 such that for every
δ > 0 there exists x, y ∈ [a, b] such that |x−y| < δ and |f(x)−f(y)| > r.

For each N ∈ N, choose xn, yn ∈ [a, b] such that

|xn − yn| < 1

n
, and |f(xn)− f(yn)| ≥ r.

By the Bolzano-Weierstrass Theorem, {xn}∞n=1 has a convergent sub-
sequence {xnK

}∞K=1. Suppose that xnK
→ x. Since {xnK

− ynK
}∞K=1 is

a subsequence of {xn − yn}∞n=1 and xn − yn → 0, so xnK
− ynK

→ 0. So
we have

ynK
= xnK

− (xnK
− ynK

) → x− 0 = x.

But f is continuous on [a, b] and hence at x. So f(xnK
) → f(x). and

f(ynK
) → f(x) and so f(xnK

) − f(ynK
) → 0. But we have assumed

that

|f(xnK
)− f(ynK

)| ≥ r > 0, (1.5)

for all K > 0. We have a contradiction. So f is sequentially uniformly
continuous and hence uniformly continuous. �

The fact that continuous functions on closed and bounded intervals
are uniformly continuous is essential to many other results. For exam-
ple, the proof of Riemann’s theorem that every continuous function is
Riemann integrable requires it. So does the proof of the Fundamental
Theorem of Calculus.

We now turn to another of the big results about continuous functions.
This is about maxima and minima.
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Theorem 1.14. A continuous function on a closed, bounded interval
[a, b] is bounded. Moreover it attains its maximum and minimum values
on [a, b].

Proof. Suppose that f is unbounded. Then given n ∈ N, n is not a
bound for f and thus there exists xn ∈ [a, b] such that |f(xn)| > n.
However, we know that [a, b] is closed and bounded, and so the se-
quence {xn}∞n=1 has a convergent subsequence {xnK

}∞K=1. Suppose that
xnK

→ x as K → ∞. By continuity of f , f(xnK
) → f(x). But this

is impossible, since f(xnK
) > nK for each K and nK → ∞, so the

sequence {f(xnK
)}∞K=1 is not convergent, and hence f is not continu-

ous at x. This is a contradiction and we therefore conclude that f is
bounded.

Now suppose that M = supx∈[a,b] f(x). For each n ∈ N choose xn ∈
[a, b] such that f(xn) > M − 1/n. Then f(xn) → M. {xn}∞n=1 is con-
tained in [a, b], so is bounded and hence has a convergent subsequence
{xnK

}∞K=1. Suppose xnK
→ c ∈ [a, b]. By continuity, f(xnK

) → f(c).
But the sequence {f(xn)}∞n=1 is convergent, so the sequence {f(xnK

)}∞K=1

has the same limit. Thus f(c) = M, so f reaches its maximum. The
case for the minimum is similar. �

We also need to mention the intermediate value property. This is
the result which tells us that we can solve certain equations.

Theorem 1.15. Suppose f : [a, b] → R is continuous on [a, b] and
f(a)f(b) < 0. Then there is a c ∈ [a, b] such that f(c) = 0.

Proof. Without loss of generality, we suppose that f(a) < 0, f(b) > 0.
Let A = {x ∈ [a, b] : f(x) < 0}. Then a ∈ A and so A is nonempty
and bounded above. It therefore has a least upper bound, which we
we call c. Choose xn such that c− 1/n < xn ≤ c. Then f(xn) < 0. By
continuity, f(c) = limn→∞ f(xn) ≤ 0. Now take yn = c+(b−c)/n. Then
yn → c and by continuity f(c) = limn→∞ f(yn) ≥ 0. Hence f(c) = 0.
The case f(a) > 0 and f(b) < 0 is similar. �

Corollary 1.16. Let f be continuous on [a, b]. Suppose that f(a) �=
f(b) and that M lies between f(a) and f(b). Then there is a c ∈ [a, b]
such that f(c) =M.

Proof. Apply Theorem 1.15 to the function g(x) = f(x)−M. �

Definition 1.17. A function is said to be monotone increasing if for
each x ≥ y we have f(x) ≥ f(y).We say that f is monotone decreasing
if f(y) ≤ f(x).

1.2. The Derivative. The derivative is one of the two major tools of
calculus. It is the limit of the Newton quotient.
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Definition 1.18. A function f : X → R, where X is open, is said to
be differentiable at x if

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (1.6)

exists. We say that f ′(x) is the derivative of f at x. We also write df
dx

for f ′. The right hand side of (1.6) is called the Newton quotient for f .

An equivalent formulation is

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
. (1.7)

Derivatives are defined on open sets. So one talks about a function
being differentiable on an open interval (a, b) rather than on [a, b], be-
cause the limit in the definition is not necessarily defined at the end
points of an interval. The basic rules of differentiation are well known.

Theorem 1.19. Let c be constant and f, g be differentiable at x0. Then

(cf)′(x0) = cf ′(x0) (1.8)

(f + g)′(x0) = f ′(x0) + g′(x0) (1.9)

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0) (1.10)

Proof. Once more this an exercise manipulating limits. For example,
the product rule is proved as follows.

(fg)′(x0) = lim
x→x0

(fg)(x)− (fg)(x0)

x− x0

= lim
x→x0

[
f(x)g(x)− f(x)g(x0) + f(x)g(x0)− f(x0)g(x0)

x− x0

]
= lim

x→x0

f(x)
g(x)− g(x0)

x− x0
+ lim

x→x0

g(x0)
f(x)− f(x0)

x− x0
= f(x0)g

′(x0) + f ′(x0)g(x0).

�

For a function of two variables, we define the partial derivative in a
similar way.

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
. (1.11)

∂f

∂y
(x0, y0) = lim

h→0

f(x0, y0 + h)− f(x0, y0)

h
. (1.12)

In practice the partial derivative is computed by treating the other
variables as fixed and differentiating with respect to the given one.

The next result is easy to prove and will be used in the proof of the
chain rule.
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Theorem 1.20. If f is differentiable at a point x, then it is continuous
at x.

Proof. We can write

f(x) = (x− x0)

(
f(x)− f(x0)

x− x0

)
+ f(x0) (1.13)

Since f is differentiable at x0, we have

lim
x→x0

f(x) = lim
x→x0

(
(x− x0)

(
f(x)− f(x0)

x− x0

)
+ f(x0)

)
= lim

x→x0

(x− x0) lim
x→x0

f(x)− f(x0)

x− x0
+ f(x0)

= 0× f ′(x0) + f(x0) = f(x0).

So f is continuous at x0. �
Again the converse of this result is false. The function f(x) = |x| is

continuous at zero, but is not differentiable there. Indeed Weierstrass
proved that there are functions which are continuous everywhere, but
differentiable nowhere. We will see Weierstrass’ nowhere differentiable
function later.

The most important result about the derivative is the chain rule.

Theorem 1.21 (The Chain Rule). Suppose that g is differentiable at
x and f is differentiable at y = g(x). Then

(f ◦ g)′(x) = f ′(y)g′(x). (1.14)

Proof. Write k = g(x + h) − g(x). Since g is differentiable at x, it is
continuous there and so as h→ 0, k → 0. Now

f(g(x+ h))− f(g(x))

h
=
f(g(x+ h))− f(g(x))

g(x+ h)− g(x)

g(x+ h)− g(x)

h

=
f(y + k)− f(y)

k

g(x+ h)− g(x)

h
.

Suppose that at no value of h does k = 0. Then taking the limit as
h→ 0 gives the result. To take care of the case k = 0 we let

F (k) =

{
f(y+k)−f(y)

k
k �= 0

f ′(y) k = 0.
(1.15)

By differentiability of f , as k → 0, F (k) → f ′(y) and so F is continuous
at 0. Thus as h→ 0, F (k) → f ′(y). So for k �= 0

f(g(x+ h))− f(g(x))

h
= F (k)

g(x+ h)− g(x)

h
. (1.16)

This also holds when k = 0 since both sides will be zero. Consequently

f(g(x+ h))− f(g(x))

h
→ f ′(y)g′(x) (1.17)
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as h→ 0. �
Example 1.1. Let us compute the derivative of a reciprocal. We have
f(x) = 1/g(x) = h(g(x)), where h(u) = 1/u. Hence

d

dx
f(x) = g′(x)h′(u) = − g′(x)

(g(x))2
.

Example 1.2. The quotient rule is obtained by combining the chain rule
and the product rule:

d

dx

f(x)

g(x)
=
f ′(x)
g(x)

+ f(x)
d

dx

1

g(x)

=
f ′(x)
g(x)

− f(x)g′(x)
g(x)2

=
f ′(x)g(x)− f(x)g′(x)

g(x)2
.

The first application of differentiation that we see is usually to the
problem of obtaining maxima and minima.

Definition 1.22. A function f : X → R has a local maximum at
c ∈ X if there is a subset Y ⊆ X such that c ∈ Y and f(c) > f(x)
for all x ∈ Y. A point c is a local minimum for f if there is a subset
Y ⊆ X such that c ∈ Y and f(c) < f(x) for all x ∈ Y. If f has a
local maximum at c, then c is called a maximimiser. If f has a local
minimum at c, Then c is called a minimiser. In general c is called an
extreme point.

Theorem 1.23. Let I be an open interval in R, f : I → R be differ-
entiable at c ∈ I. If f attains a local maximum or minimum at c, then
f ′(c) = 0.

Proof. There are two cases to consider, which turn out to be very simi-
lar. So we only prove the case for a local maximum. The proof proceeds
by contradiction, so we assume that c is a point where f attains a local
maximum and that f ′(c) > 0. Choose δ > 0 such that for x ∈ I and
0 < |x− c| < δ we have∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < f ′(c).

Pick an x > c with |x− c| < δ. Then we have

−f ′(c) <
f(x)− f(c)

x− c
− f ′(c) < f ′(c).

Which implies
f(x)− f(c)

x− c
> 0

and hence f(x) > f(c), which is a contradiction. Thus f ′(c) ≤ 0.



COMPLEX ANALYSIS 9

Suppose then that f ′(c) < 0. Pick a δ > 0 such that for x ∈ I and
0 < |x− c| < δ we have∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < −f ′(c).

Pick an x < c with |x− c| < δ. Then

f ′(c) <
f(x)− f(c)

x− c
− f ′(c) < −f ′(c).

Which implies
f(x)− f(c)

x− c
< 0,

and hence f(x) > f(c), since x − c < 0, which is a contradiction once
more. Thus f ′(c) = 0. The proof for a local minimum is essentially the
same. �

A useful corollary of this is called Rolle’s Theorem.

Theorem 1.24 (Rolle’s Theorem). Let [a, b] be a closed interval in R

and suppose that f is continuous on [a, b] and differentiable on (a, b). If
f(a) = f(b) = 0 then then there is a point c ∈ (a, b) such that f ′(c) = 0.

Proof. Continuous functions attain their maximum and minimum val-
ues on closed bounded intervals. If c ∈ (a, b) is an extreme point, then
f ′(c) = 0. Suppose that both the maximum and minimum values occur
at [a, b]. Then since f(a) = f(b), it follows that f is constant and so
f ′(x) = 0 for all x ∈ (a, b). �

The main applications of Rolle’s Theorem are to prove the Mean
Value Theorem and Taylor’s Theorem, which are two of the most useful
results in analysis.

Theorem 1.25 (Mean Value Theorem). Let [a, b] be a closed and
bounded interval on R and f : [a, b] → R a continuous function which
is differentiable on (a, b). Then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. The proof is an application of Rolle’s Theorem. We consider
the function

g(x) = f(x)− f(a)−
(
f(b)− f(a)

b− a

)
(x− a).

Then g(a) = g(b) = 0 and

g′(x) = f ′(x)− f(b)− f(a)

b− a
.

By Rolle’s Theorem there is a c ∈ (a, b) with g′(c) = 0, which proves
the result. �
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The MVT is one of the most powerful results in calculus. Let us
consider some simple applications. Later we will see it used to prove a
result about the behaviour of limits for sequences of derivatives. One
can also use it to prove the Fundamental Theorem of Calculus. It is
quite ubiquitous.

Corollary 1.26. If [a, b] is a closed and bounded interval in R and f
is continuous on [a, b] and differentiable on (a, b), then f is Lipschitz
continuous on [a, b].

Proof. For any x, y ∈ (a, b) the MVT gives, |f(x)−f(y)| ≤ |f ′(c)||x−y|
for some c ∈ (x, y). �

The following result is well known from high school calculus, but
usually is not given a rigourous proof.

Corollary 1.27. If f is continuous on [a, b] and differentiable on (a, b),
and f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

Proof. For any x, y ∈ (a, b), f(x) − f(y) = f ′(c)(x − y) = 0. Hence
f(x) = f(y) for all x, y and so f is constant on (a, b). By continuity it
is also constant on [a, b]. �

Let us use this to prove uniqueness for the solution of a differential
equation.

Proposition 1.28. The equation y′ = ky, y(0) = y0 has a unique
solution.

Proof. We let y(x) = y0e
kx. Then this is clearly a solution of the dif-

ferential equation. Now suppose that f is any solution of the equation.
Consider h(x) = f(x)e−kx. Then

h′(x) = f ′(x)e−kx − ke−kxf(x) = e−kx(f ′(x)− kf(x)) = 0.

Thus h is constant. Hence f(x) = Cekx. The condition that f(0) = y0
completes the proof. �

There is a more general version of the MVT. It is due to Cauchy
and is often called the Cauchy Mean Value Theorem. We refer to it by
another common name.

Theorem 1.29 (Generalised Mean Value Theorem). Suppose that f
and g are continuous functions on [a, b], which are differentiable on
(a, b) and suppose that g′(x) �= 0 for all x ∈ (a, b). Then there exists a
point c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)
g′(c)

. (1.18)

Proof. This again relies upon Rolle’s Theorem. First, observe that if
g(b)−g(a) = 0, then the Mean Value Theorem tells us that there exists
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a point c ∈ (a, b) such that g′(c) = 0. However we have assumed that
g′ is nonzero, so g(b)− g(a) �= 0. Next introduce the function

h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

Then

h(a) = f(a)[g(b)− g(a)]− g(a)[f(b)− f(a)]

= f(a)g(b)− f(b)g(a) = h(b).

Rolle’s Theorem then tells us that there is a c ∈ (a, b) such that h′(c) =
0. Which means that

f ′(c)[g(b)− g(a)]− g′(c)[f(b)− f(a)] = 0. (1.19)

Rearranging gives the result. �

As an application of this result we prove L’Hôpital’s rule.

Theorem 1.30. Suppose that f and g are differentiable on (a, b) and
that g(x) �= 0 and g′(x) �= 0 for all x ∈ (a, b). Suppose further that
limx→a+ f(x) = limx→a+ g(x) = 0. Then,

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)
g′(x)

, (1.20)

provided the right side exists.

Proof. Suppose that

lim
x→a+

f ′(x)
g′(x)

= L.

Then given ε > 0 we can find δ > 0 such that if c ∈ (a, a+ δ) then∣∣∣∣f ′(c)
g′(c)

− L

∣∣∣∣ < ε.

However, by the generalised MVT, if x ∈ (a, a+ δ) then∣∣∣∣f(x)g(x)
− L

∣∣∣∣ = ∣∣∣∣f(x)− f(a)

g(x)− g(a)
− L

∣∣∣∣ < ε.

�

The extension of this result to the case when

lim
x→a

f(x) = lim
x→a

g(x) = ∞
can also be established using the generalised MVT.

Remark 1.31. L’Hôpital’s rule was actually discovered by the Swiss
mathematician Johann Bernoulli, who taught Euler and worked for
L’Hôpital. L’Hôpital published the rule in his textbook on calculus,
and it became known by his name.



12 MARK CRADDOCK

1.2.1. Inverse Functions. We first state our definitions.

Definition 1.32. A function f : X → Y is said to be one to one if for
each y ∈ Y there is at most one x ∈ X such that f(x) = y. We also
say that such an f is a bijection. If f : X → Y is one to one then it
has an inverse function f−1 : Y → X which satisfies

f(f−1(f)) = f−1(f(x)) = x

for all x ∈ X.

Suppose that f : X ⊆ R → R is strictly increasing (or decreasing).
Then f is clearly one to one, and hence it has an inverse. If f is
continuous, then the inverse function will also be continuous.

Theorem 1.33. Suppose that f : X ⊆ R → Y is a strictly increasing
(or decreasing) continuous function. Then the inverse function f−1

exists and is continuous and increasing (or decreasing) on f(X).

Proof. We only deal with the case when f is increasing. We show that
f−1 is increasing. Assume not. Then we can find y1, y2 ∈ Y with
y2 > y1 and f−1(y2) < f−1(y1). But f is increasing, so

f(f−1(y2)) < f(f−1(y1)),

so that y2 < y1 which is a contradiction.
To prove continuity, take y0 ∈ f(X). Then there exists x0 ∈ X with

f(x0) = y0. We suppose that y0 is not an endpoint, so x0 is not an
endpoint and we may find ε0 > 0 such that the interval

(f−1(y0)− ε0, f
−1(y0) + ε0) ⊂ X.

Pick ε < ε0. Then there exist y1, y2 ∈ f(X) such that f−1(y1) =
f−1(y0) − ε and f−1(y2) = f−1(y0) + ε. Because f is increasing y1 <
y0 < y2 and the inverse is increasing so for all y ∈ (y1, y2) we have the
inequality

f−1(y0)− ε < f−1(y) < f−1(y0) + ε.

Consequently, if δ = min{y2 − y0, y0 − y1}, then
|f−1(y0)− f−1(y)| < ε

whenever |y0 − y| < δ. So f−1 is continuous at y0.
We can also prove that if y0 is a left (or right) endpoint, then f−1 is

left (or right) continuous at y0. �
The most important result about inverse functions relates the deriv-

ative of f and that of f−1.

Theorem 1.34 (The Inverse Function Theorem). Suppose that f is
differentiable and one to one on an open interval I. If f ′(a) �= 0,
a ∈ I, then f−1 exists and is differentiable at f(a) and(

f−1
)′
(f(a)) =

1

f ′(a)
.
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Proof. Since f ′ is nonzero on I, it follows that f is either increasing or
decreasing on I, and hence f is invertible. The inverse is continuous.
Since f is decreasing or increasing, for x �= a it follows that f(x) �= f(a).
Now

lim
y→f(a)

f−1(y)− f−1(f(a))

y − f(a)
= lim

f(x)→f(a)

f−1(f(x))− f−1(f(a))

f(x)− f(a)

= lim
x→a

(
x− a

f(x)− f(a)

)−1

=
1

f ′(a)
.

�
1.3. Power Series and Taylor Expansions. A power series about
a point x0 is an expression of the form

f(x) =

∞∑
n=0

an(x− x0)
n.

By the ratio test such a series will converge if

lim
n→∞

∣∣∣∣an+1(x− x0)
n+1

an(x− x0)n

∣∣∣∣ = L < 1.

Upon rewriting this becomes

|x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1. (1.21)

We can think of this as determining the values of x for which the series
converges.

Definition 1.35. Suppose that for the series
∑∞

n=0 an(x− x0)
n

|x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1 (1.22)

for all |x− x0| < R. We call R the radius of convergence of the power
series.

Note a power series with radius of convergence R may converge or
diverge when |x − x0| = R. One has to check convergence at the end
points individually.

Example 1.3. The series 1 + x + x2 + · · · = ∑∞
n=0 x

n is convergent for
all |x| < 1. Hence the radius of convergence is 1.

For simplicity we will take x0 = 0 in what follows. All results can
be transferred to the more general case by making the replacement
x→ x− x0

Power series have very nice properties. In particular they converge
absolutely within their radius of convergence.
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Theorem 1.36. Let
∑∞

n=o anx
n be a power series with radius of con-

vergence R. Then the series converges absolutely for |x| < R and
diverges for |x| > R.

Proof. Let t ∈ (−R,R), then ∑∞
n=0 ant

n converges and the sequence
ant

n → 0 and is thus bounded. Let M be a bound. Now pick x with
|x| < |t|, then

|anxn| = |antn|
∣∣∣x
t

∣∣∣n ≤ Mrn

where r = |x/t| < 1. But
∑∞

n=0Mrn is a convergent geometric series,
and so

∑∞
n=0 |anxn| converges by the comparison test. The other result

is similar. �
Power series actually converge uniformly, a result we prove later. An

important fact is that we can differentiate power series term by term
and this does not change the radius of convergence.

Theorem 1.37. Let
∑∞

n=0 anx
n have radius of convergence R. Then

the power series
∑∞

n=1 nanx
n−1 has radius of convergence R.

Proof. Suppose that the series
∑∞

n=1 nanx
n−1 has radius of convergence

Rd < R. Choose r, s so that Rd < r < s < R. Clearly
∑∞

n=0 ans
n

converges which shows that ans
n → 0 and so is bounded by a constant

M . Then

|nanrn−1| = n|an|sn−1
(r
s

)n−1

≤ M

s
n
(r
s

)n−1

.

Now

lim
n→∞

(M/s)(n+ 1)(r/s)n

(M/s)n(r/s)n−1
=
r

s
< 1.

Thus the series
∑∞

n=1
M
s
n
(
r
s

)n−1
is convergent by the ratio test. Thus∑∞

n=1 nanr
n−1 is absolutely convergent, which is a contradiction since

r > Rd. Hence R ≤ Rd. Similarly we show that Rd > R leads to a
contradiction. (Exercise). Hence R = Rd. �

From this we can establish an important corollary.

Theorem 1.38. Let
∑∞

n=0 anx
n be a power series with radius of con-

vergence R > 0. Let f : (−R,R) → R be defined by

f(x) =

∞∑
n=0

anx
n.

Then f is differentiable on (−R,R) and

f ′(x) =
∞∑
n=1

nanx
n−1.
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To prove this result we actually need some more information about
the convergence of series. The key is that the series for f and f ′ both
converge uniformly. We will discuss uniform convergence later.

The most commonly encountered power series are functions given by
Taylor series expansions.

Definition 1.39. Let f be smooth in a neighbourhood X of a point
a. We let the Taylor series for f at a be given by

Tf (x) = f(a) + f ′(a)(x− a) + · · ·+ 1

n!
f (n)(a)(x− a)n + · · · .

If the series is convergent for all x ∈ X and |Tf(x) − f(x)| = 0 for
all x ∈ X, we say that f is analytic at a. If we truncate the Taylor
expansion after n terms, the resulting expression is known as the nth
Taylor polynomial.

Even if the Taylor series does not converge, smooth functions can be
approximated by Taylor polynomials.

Theorem 1.40 (Taylor’s Theorem). Let I be an open interval in R,
n ∈ N and f ∈ Cn+1(I). Let a ∈ I and x ∈ I, with x �= a. Then there
is a point ξ between a and x such that

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

+
f (n+1)(ξ)

n!
(x− a)n.

Proof. The proof uses Rolle’s Theorem and is conceptually similar to
the proof of the MVT. We define a function

F (t) = f(x)− f(t)− f ′(t)(x− t)− 1

2!
f ′(t)(x− t)2 − · · ·

− f (n)(t)

n!
(x− t)n. (1.23)

Plainly F (x) = 0. Since f ∈ C(n+1)(I) we see that F is differentiable.
Now

F ′(t) = −f ′(t)− f ′′(t)(x− t) + f ′(t)− f ′′′(t)
2!

(x− t)2 + 2
f ′′(t)
2!

(x− t)

− · · · − f (n+1)t

n!
(x− t)n + n

f (n)(t)

n!
(x− t)n−1

= −f
(n+1)

n!
(x− t)n.

Next we introduce the function

G(t) = F (t)−
(
x− t

x− a

)n+1

F (a).
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Obviously G(a) = 0 and G(x) = F (x) = 0. Then

G′(t) = F ′(t)

= −f
(n+1)(t)

n!
(x− t)n + (n + 1)

(x− t)n

(x− a)n+1
F (a).

By Rolle’s Theorem there is a point ξ between x and a such that
G′(ξ) = 0. That is

f (n+1)(ξ)

n!
(x− ξ)n = (n+ 1)

(x− ξ)n

(x− a)n+1
F (a).

Rearranging we get

F (a) =
f (n+1)(ξ)

(n + 1)!
(x− a)n+1.

If we substitute this into (1.23) we have Taylor’s Theorem.
�

The other major tool in analysis is the integral. Although the Funda-
mental Theorem of Calculus was first stated by Newton and Leibnitz,
the first rigorous theory of integration was developed by Cauchy, and
extended by Riemann. Let us briefly summarise Riemann’s theory.

1.4. The Riemann Integral. We take an interval [a, b] and partition
it as

P = {x0, x1, ..., xn},
where x0 = a, x0 < x1 < · · · < xn and xn = b.

Now let f be a bounded function on [a, b] then define

Mi = sup{f(x) : x ∈ [xi−1, xi)},
and

mi = inf{f(x) : x ∈ [xi−1, xi)}.
We then form the upper and lower Riemann sums

U(f,P) =
n∑

i=1

Mi(xi − xi−1) (1.24)

and

L(f,P) =

n∑
i=1

mi(xi − xi−1). (1.25)

The least upper bound axiom establishes that the upper and lower
integrals ∫ b

a

f = inf{U(f,P) : P a partition of [a, b]} (1.26)

and
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∫ b

a

f = sup{U(f,P) : P a partition of [a, b]} (1.27)

both exist. We then say that f is Riemann integrable on [a, b] if∫ b

a
f =

∫ b

a
f. The Riemann integral is then equal to the upper (or lower)

integral.
It is easy to prove the following results.

Proposition 1.41. The Riemann integral has the following properties.

(1) If c is a constant,
∫ b

a
cdx = c(b− a).

(2)
∣∣∣∫ b

a
f(x)dx

∣∣∣ ≤ ∫ b

a
|f(x)|dx.

The most important results about the Riemann integral are as fol-
lows.

Theorem 1.42 (Riemann’s Criterion). Let f be a bounded function on
the closed interval [a, b]. Then f is Riemann integrable on [a, b] if and
only if, given any ε > 0, there exists a partition P of [a, b] such that
U(f,P)− L(f,P) < ε.

From this one establishes the first major result.

Theorem 1.43. Every continuous function on a closed bounded inter-
val [a, b] is Riemann integrable.

Proof. The function f is continuous on [a, b] and so is bounded. Let
ε > 0. Since f is continuous it is uniformly continuous and so we
can choose δ > 0 such that x, y ∈ [a, b] with |x − y| < δ implies
|f(x)− f(y)| < ε/(b− a). Now choose N ∈ N such that N > (b− a)/δ.
For each i = 0, 1, ...N, let xi = a+(b−a)i/N. Then P = {x0, x1, ...xN}
is a partition of [a, b], with |xi − xi−1| < δ. By continuity, f attains
its maximum and minimum values on each closed subinterval [xi−1, xi].
Now let

f(ci) = inf{f(x) : x ∈ [xi−1, xi]}, (1.28)

f(di) = sup{f(x) : x ∈ [xi−1, xi]}. (1.29)

Obviously |di − ci| < δ and f(di) ≥ f(ci). By uniform continuity

f(di)− f(ci) <
ε

(b− a)
.
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So we have

U(f,P) − L(f,P) =

N∑
i=1

f(di)(xi − xi−1)−
N∑
i=1

f(ci)(xi − xi−1)

=
N∑
i=1

(f(di)− f(ci))(xi − xi−1)

<

N∑
i=1

ε

b− a
(xi − xi−1)

=
ε

b− a

N∑
i=1

(xi − xi−1) = ε.

Thus by Riemann’s criterion, f is integrable on [a, b].
�

1.4.1. Calculating Integrals By Riemann Sums. It is possible to explic-
itly compute a surprisingly large class of integrals by evaluating Rie-
mann sums. For monotone functions, the construction of upper and
lower sums is straightforward. One simply picks sample points at the
ends of each subinterval. We restrict our attention to [0, 1]. We can
extend to the interval [a, b] by a linear change of variable.

Example 1.4. We integrate f(x) = x2 on [0, 1] Since f is increasing we
can take P = {0, 1/n, 2/n, ..., n/n} and note that

n∑
i=1

i2 =
1

6
n(n+ 1)(2n+ 1). (1.30)

Now we observe that

mi(f,P) = inf{x2 : x ∈ [
i− 1

n
,
i

n
)}

=
(i− 1)2

n2

Mi(f,P) = sup{x2 : x ∈ [
i− 1

n
,
i

n
)}

=
i2

n2
.

Then

L(f,P) =

n∑
i=1

(i− 1)2

n2

(
i

n
− (i− 1)

n

)

=
1

n3

n∑
i=1

(i− 1)2.
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Also

U(f,P) =

n∑
i=1

i2

n2

(
i

n
− (i− 1)

n

)

=
1

n3

n∑
i=1

i2.

Using (1.30) we get

U(f,P)− L(f,P) =
1

6
n(n + 1)(2n+ 1)

1

n3
− (n− 1)n(2n− 1)

6n3
=

1

n
.

By Riemann’s Criterion, f is Riemann integrable if for any ε > 0 we
can find a partition P such that U(f,P)−L(f,P) < ε. Clearly we can
do this by taking n > 1/ε. So f is Riemann integrable. Further∫ 1

0

f(x)dx = sup{L(f,P),P a partition of [0, 1]}

= sup
n≥1

{
(n− 1)n(2n− 1)

6n3

}
= sup

n≥1

{
1

6n2
− 1

2n
+

1

3

}
=

1

3
.

Example 1.5. Let a �= 0 and consider f(x) = eax on [0, 1]. The function
is monotone and we take the same partition as in the previous example.
Then

mk(f,P) = inf

{
eax : x ∈

[
k − 1

n
,
k

n

)}
= e(k−1)a/n (1.31)

Mk(f,P) = sup

{
eax : x ∈

[
k − 1

n
,
k

n

)}
= eka/n (1.32)

Then

L(f,P) =
n∑

k=1

mk(f,P)(xk − xk−1)

=
1

n
(1 + ea/n + · · ·+ e(n−1)a/n)

and

U(f,P) =
n∑

k=1

Mk(f,P)(xk − xk−1)

=
1

n
(ea/n + e2a/n + · · ·+ ean/n).

So

U(f,P)− L(f,P) =
ea − 1

n
.
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This can be made smaller than ε by picking n > ε/(ea − 1). Thus by
Riemann’s Criterion, f is Riemann integrable on [0, 1]. We can explic-
itly evaluate the upper and lower sums by noticing that they are sums
of geometric progressions with common ratio ea. Hence

L(f,P) =
1

n
(1 + ea/n + · · ·+ e(n−1)a/n)

=
1

n

(1− ea)

(1− ea/n)
.

So we have ∫ 1

0

eaxdx = sup
n

{
1

n

(1− ea)

(1− ea/n)

}
= lim

u→0

u(1− ea)

1− eau

=
1

a
(ea − 1)

where we put u = 1/n and used L’Hôpital’s rule to evaluate the limit.

We can actually prove that bounded monotone functions are Rie-
mann integrable.

Theorem 1.44. Suppose that f : [0, 1] → R is a bounded monotone
increasing function. Then f is Riemann integrable on [0, 1].

Proof. With the previous partition of [0, 1] we have, using the mono-
tonicity of f ,

U(f,P)− L(f,P) =
1

n
(f(1)− f(0)). (1.33)

Since f is bounded, then f(0) and f(1) are finite, we can make this
smaller than any ε > 0 by suitable choice of n. So f is Riemann
integrable. �

It is possible to evaluate many integrals by means of Riemann sums-
in particular, we can integrate any polynomial- but it is clearly a la-
borious procedure. Fortunately we have a far more powerful means of
doing integration. The key is the following result, which is at the heart
of modern science.

Theorem 1.45 (Fundamental Theorem of Calculus). If f is a contin-
uous function on [a, b], then for all x ∈ [a, b]

d

dx

∫ x

a

f(t)dt = f(x).

Proof. We define the function F (x) =
∫ x

a
f(t)dt. Since f is continuous,

it is bounded. Thus there is an M > 0 such that |f(t)| ≤ M for all
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t ∈ [a, b]. Then

|F (x)− F (y)| =
∣∣∣∣∫ x

y

f(t)dt

∣∣∣∣
≤

∫ x

y

|f(t)|dt
≤M |x− y|.

Consequently, F is Lipschitz continuous on [a, b] and hence continuous.
Now

F (x)− F (y)

x− y
− f(y) =

1

x− y
(F (x)− F (y)− (x− y)f(y))

=
1

x− y

∫ x

y

(f(t)− f(y))dt.

By uniform continuity of f , given ε > 0, we may find δ > 0 such that
|x − y| < δ implies |f(x) − f(y)| < ε. We choose such an ε and δ to
obtain ∣∣∣∣F (x)− F (y)

x− y
− f(y)

∣∣∣∣ ≤ 1

|x− y|
∫ x

y

|f(t)− f(y)|dt

<
1

|x− y|ε(x− y) = ε

as x > y. Thus F is differentiable and F ′ = f. �
In other words, integration is essentially the inverse of differentia-

tion. From this we can establish the well known second form of the
fundamental theorem.

Corollary 1.46 (The Fundamental Theorem of Calculus II). Let f be
a Riemann integrable function on [a, b]. Then if F ′ = f on (a, b) the
integral is given by ∫ b

a

f(x)dx = F (b)− F (a). (1.34)

Proof. Suppose that G(x) =
∫ x

a
f(t)dt and F ′(x) = f(x). It follows that

G− F is a constant, since G′ = f. Hence G(b)− F (b) = G(a)− F (a).

But G(a) = 0. Hence G(b) =
∫ b

a
f(x)dx = F (b)− F (a). �

There is a mean value theorem for the Riemann integral which is
often useful.

Theorem 1.47 (Mean Value Theorem for Integrals). Suppose that f
and g are continuous on [a, b] and g(x) ≥ 0, for all x ∈ [a, b]. Then
there exists c ∈ [a, b] such that∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx. (1.35)
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Proof. By continuity f is bounded. Suppose that for all t ∈ [a, b]
m ≤ f(t) ≤M. Then

m

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤M

∫ b

a

g(x)dx.

Let F (t) = f(t)
∫ b

a
g(t)dt. By the Intermediate Value Theorem, there

is a c ∈ [a, b] such that

F (c) = f(c)

∫ b

a

g(t)dt =

∫ b

a

f(x)g(x)dx.

�

Notice that if g = 1 and F ′ = f then we have the existence of a
c ∈ [a, b] such that∫ b

a

f(x)dx = F (b)− F (a) = F ′(c)(b− a) (1.36)

which is the mean value theorem. Actually the mean value theorem
can be used to prove the fundamental theorem of calculus. This is an
exercise.

1.4.2. Integration Rules. Integration is intrinsically more difficult than
differentiation. Useful rules for evaluating integrals exist however. Inte-
gration by parts is simply the product rule of differentiation backwards.
Specifically

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

Integrating both sides gives the integration by parts rule∫ b

a

f(x)g′(x)dx = [f(x)g(x)]ba −
∫ b

a

f ′(x)g(x)dx. (1.37)

The most important technique for evaluating integrals is the use of
substitutions. This is the chain rule in reverse. The chain rule says
that (f ◦ g)′(x) = f ′(g(x))g′(x). Thus letting u = g(x) gives∫ b

a

f ′(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du. (1.38)

We can use integration by parts to show how Taylor’s Theorem fol-
lows from the Fundamental Theorem of Calculus. Assume that f is
continuously differentiable n+ 1 times. We know that

f(x)− f(a) =

∫ x

a

f ′(t)dt. (1.39)
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We are going to integrate by parts. Notice however that instead of
using the obvious anti-derivative of 1, we are going to use t− x, which
is also an anti-derivative of 1. So that

f(x)− f(a) = [(t− x)f ′(t)]xa −
∫ x

a

(t− x)f ′(t)dt

= (x− a)f ′(a) +
∫ x

a

(x− t)f ′(t)dt

= (x− a)f ′(a) +
(x− a)2

2
f ′′(x) +

1

2

∫ x

a

(x− t)2f ′′(t)dt.

Repeating this n times gives

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2
f ′′(x) + · · ·

+
1

n!
(x− a)nf (n)(a) +

1

n!

∫ x

a

(x− t)nf (n)(t)dt.

This gives us the useful form for the remainder in the Taylor series
expansion

Rn(a, x) =
1

n!

∫ x

a

(x− t)nf (n)(t)dt.

Using the mean value theorem for integrals we can show that this is
the same as the derivative form we found earlier.

1.4.3. Improper Riemann Integrals. It is often the case that we wish
to consider an integral of a function over a set where the function is
discontinuous.

Definition 1.48. Let f : [a, b] → R be continuous on (a, b], but f is
discontinuous at a. Then the improper Riemann integral of f over [a, b]
is define by ∫ b

a

f(x)dx = lim
X→a

∫ b

X

f(x)dx, (1.40)

provided the limit exists. Similarly, if the discontinuity is at x = b then∫ b

a

f(x)dx = lim
X→b

∫ X

a

f(x)dx, (1.41)

provided the limit exists.

Example 1.6. Consider f(x) = 1/
√
x on [0, 1]. Then f is continuous on

(0, 1] with a discontinuity at 0. Thus the improper Riemann integral
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of f over [0, 1] is ∫ 1

0

f(x)dx = lim
X→0

∫ 1

X

dx√
x

= lim
X→0

2
√
x]1X

= lim
X→0

(2
√
1−

√
X) = 2.

For integrals on unbounded domains we can use the same idea.

Definition 1.49. The improper Riemann integral of f over R is defined
by ∫ ∞

−∞
f(x)dx = lim

R→∞

∫ 0

−R

f(x)dx+ lim
T→∞

∫ T

0

f(x)dx, (1.42)

provided the limits exist.

One has to be careful to distinguish between Definition 1.49 and the
Cauchy Principal value.

Definition 1.50. The quantity

P.V.

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx,

is known as the Cauchy Principal value of the integral, provided that
the limit exists.

Example 1.7. The improper Riemann integral
∫∞
−∞ xdx does not exist,

but

P.V.

∫ ∞

−∞
xdx = lim

R→∞

[
x2

2

]R
−R

=
1

2
(R2 −R2) = 0.

1.5. Sequences of Functions. It is very common to have to deal
with a sequence of functions. For example, a power series with partial
sums fn(x) =

∑n
k=0 akx

k defines a sequence of functions. An important
question is what happens as n → ∞. Let us introduce the notion of
convergence of a sequence of functions.

Definition 1.51. We say that a sequence of functions {fn}∞n=1 con-
verges pointwise to a function f on a set X ⊆ R if limn→∞ fn(x) = f(x)
for all x ∈ X.

A much stronger type of convergence is uniform convergence.

Definition 1.52. A sequence of functions {fn}∞n=1 on a set X ⊆ R

converges uniformly to f on X if for any ε > 0 we can find N ∈ N such
that n ≥ N implies |fn(x)− f(x)| < ε for all x ∈ X.

The first result is a trivial exercise.



COMPLEX ANALYSIS 25

Lemma 1.53. If fn → f uniformly on X, then fn → f pointwise.

The converse of this result is false. Pointwise convergent sequences do
not have to converge uniformly. Uniformly convergent sequences have
nice properties. An important one is that they preserve continuity.
Pointwise convergence does not do this.

Theorem 1.54. If {fn}∞n=1 is a uniformly convergent sequence of con-
tinuous functions on X ⊆ R, with fn → f then f is continuous on
X.

Proof. Since fk is continuous at x ∈ X , given ε > 0, we may choose
δ > 0 such that for all y satisfying 0 < |x− y| < δ we have

|fk(x)− fk(y)| < ε/3.

By uniform convergence, we may choose N ∈ N such that k ≥ N
implies

|f(x)− fk(x)| < ε/3,

for all x ∈ X. Consequently, given x ∈ X, then for all y ∈ X satisfying
0 < |x− y| < δ we have

|f(x)− f(y)| = |f(x)− fk(x) + fk(x)− fk(y) + fk(y)− f(y)|
≤ |f(x)− fk(x)|+ |fk(x)− fk(y)|+ |fk(y)− f(y)|
< ε/3 + ε/3 + ε/3 = ε.

Thus f is continuous at x. �

There are various tests for uniform convergence. For series we have
the following powerful result.

Theorem 1.55 (Weierstrass M-Test). Let {fn}∞n=1 be a sequence of
functions on X such that |fn(x)| ≤Mn all x ∈ X and

∑∞
n=1Mn <∞.

Then the series
∑∞

n=1 fn(x) is uniformly convergent.

Proof. Let SN(x) =
∑∞

n=1 fn(x) and suppose that |fn(x)| ≤Mn. Then
for all N ≥M

|SN(x)− SM(x)| = |
N∑

n=M+1

fn(x)|

≤
N∑

n=M+1

|fn(x)|

≤
N∑

n=M+1

Mn → 0,

as N,M → ∞. So the series SN converges independently of x and
hence is uniformly convergent. �
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Example 1.8. The M test is generally easy to use. To illustrate, con-
sider the series

f(x) =

∞∑
n=1

cos(nx)

n2 + 1
. (1.43)

Letting fn(x) =
cos(nx)

n2 + 1
, we immediately see that

|fn(x)| ≤ 1

n2 + 1
, (1.44)

and by the comparison test
∑∞

n=1
1

n2+1
<∞. Hence the series (1.43) is

uniformly convergent and so f is a continuous function.

As an application we prove a result about power series.

Theorem 1.56. Let
∑∞

n=0 anx
n be a power series with radius of con-

vergence R. Let 0 < r < R. Then the series converges uniformly on
[−r, r].
Proof. Let

∑∞
n=0 anx

n be convergent for |x| < R. Then it is absolutely
convergent. Pick x = x0 > r and x0 < R and we have

∑∞
n=0 anx

n
0

is convergent, hence anx
n
0 → 0. So there is an M > 0 such that

|anxn0 | ≤M . Then

|anxn| ≤ |an|rn

= |anxn0 |
∣∣∣∣ rx0

∣∣∣∣n
≤M

∣∣∣∣ rx0
∣∣∣∣n .

Now
∑∞

n=0M
∣∣∣ r
x0

∣∣∣n converges and hence the power series converges uni-

formly by the Weierstrass M test. �
It is important to note that this theorem does not say that a power

series converges uniformly on (−R,R). Indeed the series
∑∞

n=0 x
n con-

verges on (−1, 1) but the convergence is not uniform. It does converge
uniformly on [−r, r] for r < 1. The point is we cannot necessarily ex-
tend the uniform convergence to the entire interval of convergence. We
will make use of the M-test later.
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2. The Origins of Complex Analysis

The purpose of these notes is to introduce the main ideas of complex
variable theory. Techniques for dealing with functions of a complex
variable are among the most important in mathematics.

The French mathematician Jacques Hadamard once said that the
shortest distance between two points on the real line often passes
through the complex plane. What he meant by that remark was that
introducing complex variables often makes problems with real variables
much easier to handle.

Complex variable theory is one of the most important branches in
mathematics. The range of applications is limitless. It is even essential
to such apparently unrelated areas as the study of prime numbers and
the design of electric circuits. It is therefore essential for any mathe-
matician to have at least a working knowledge of the subject.

2.1. The Solution of the Cubic. One often hears that complex num-
bers were introduced to allow us to solve equations like x2+1 = 0. There
are more than a few youtube videos in which this claim is made, but it
just isn’t true. It was only after complex numbers were discovered that
it occurred to anyone that you could solve that particular quadratic.
Prior to the 16th century, if you had asked a mathematician to solve
x2 + 1 = 0, they would have told you that it was a foolish question
because it has no solutions.

In a sense, complex numbers forced themselves into mathematics
through the solution not of quadratic but of cubic equations. Their
discovery was an inevitable accident that was waiting to happen. When
they were at last found, they simply would not go away, but it took
around two centuries for people to begin to fully understand them.

The solution of the general quadratic equation ax2 + bx + c = 0 is
very easy to obtain. We simply complete the square and take square
roots. The problem of obtaining the roots of a cubic equation is quite
a bit more difficult, but there is a formula for it, which we will now
derive. It is ultimately due to a mathematician named Scipione del
Ferro, though it is usually called Cardano’s formula. The quite bizarre
story of the solution of the cubic is explained in the appendix.

Suppose that we wish to find the roots of the cubic equation

ay3 + by2 + cy + d = 0.

Obviously the coefficient of y3 can always be made equal to one just
by dividing the equation by a, so we may as well take a = 1. The trick
is to reduce the problem to solving a quadratic equation and this is
accomplished by the following steps.

First we knock out the quadratic term to produce what is called a
depressed cubic. Given a polynomial of degree n it is always possible to
knock out the term of degree n− 1 by a linear substitution y = x− λ.
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One simply substitutes the term into the polynomial and chooses λ
such that the term of degree n − 1 disappears. To do this for a cubic
we set y = x − b/3. Observe that this substitution gives - after we
omit the rather tedious business of expanding terms and performing
the various cancellations - the expression

(x− b

3
)3 + b(x− b

3
)2 + c(x− b

3
) + d = x3 + (c− b2

3
)x+

2 b3

27
− b c

3
+ d

= x3 + px− q,

where p = c − b2

3
and q = −(2 b

3

27
− b c

3
+ d). Thus our cubic can be

expressed as
x3 + px = q.

This is the depressed cubic. Next we make the change of variables

x = w − p

3w
.

This produces

w3 − pw − p3

27w3
+

p2

3w
+ pw − p2

3w
= q,

which is of course

w3 − p3

27w3
= q. (2.1)

Multiplying through by w3 gives

w6 − qw3 − p3

27
= 0.

This is a quadratic equation for w3. The quadratic formula then pro-
duces the result

w3 =
q ±√

q2 + 4p3/27

2
. (2.2)

It is now an easy matter to extract the roots of the cubic by calculating
the values of w and then obtaining x then finally y. One has the nice
easy to remember formula for the roots of a cubic:

y =

⎛⎝−(2 b
3

27
− b c

3
+ d)±

√
(−(2b

3

27
− b c

3
+ d))2 + 4

27
(c− b2

3
)3

2

⎞⎠1/3

− b/3

− (c− b2

3
)3

27

×
⎛⎝−(2 b

3

27
− b c

3
+ d)±

√
(−(2 b

3

27
− b c

3
+ d))2 + 4

27
(c− b2

3
)3

2

⎞⎠−1/3

.
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Actually it takes a bit of work to show that this produces exactly
three roots for any cubic, but we will not go into that. The formula is
obviously too complicated for any reasonable person to remember, but
it is coded into Mathematica. The Solve command in Mathematica
will gives the roots of any cubic or quartic using what in effect the del
Ferro formula for the cubic and a formula due to Ferrari for the quartic.

There are some curious features of this formula which only make
sense when complex numbers are introduced. Remember that in the
sixteenth century, not only were complex numbers unknown, but nega-
tive numbers were not generally accepted either. However, years after
del Ferro had died, when Giralamo Cardano (see the appendix) applied
the formula to find the roots of a cubic which he knew had positive in-
tegers as solutions, something decidedly odd happened, or at least it
appeared that way to him.

Because negative numbers were not generally accepted, Cardano’s
classification of cubics looks peculiar to modern eyes. He considered
the problem of solving x3 = 15x + 4. Notice that this is the same as
x3 − 15x − 4 = 0, but Cardano would never have written it that way
because of the minus signs in front of 15 and 4. So what happened
when Cardano used his formula? It is easy to check that x = 4 is
a root of the given cubic. Yet Cardano’s application of del Ferro’s
formula returned the solution

x = (2 +
√−121)1/3 + (2−√−121)1/3.

This was greatly puzzling. To us, there is no difficulty because if
we perform the complex arithmetic, this simply reduces to x = 4 as
expected. To us

√−121 = 11i and it is easy to check that (2 ± i)3 =
2± 11i. So

x = (2 +
√−121)1/3 + (2−√−121)1/3 = 2 + i+ 2− i = 4.

To Cardano however, this was extremely strange. What was he to
make of an expression like

√−121? No matter how often he checked,
he always got the same result. After much thought he concluded that
the only thing he could do was to assume that the square root of a
negative number could be treated as an ordinary square root. He then
performed the algebraic reduction that we would do and extracted 4
as the answer.

He was leaping into the unknown. He hoped that the square roots
of negative quantities might be useful as an intermediate step in some
calculation, because he believed that such ‘unreal’ quantities should
always disappear at the end, leaving a real answer. In some sense this
is not a completely silly idea, because when complex numbers occur
in problems with real solutions, the imaginary terms will eventually
cancel. It’s just that not every problem is so nice as to have a real
valued answer.
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2.1.1. The solution of higher order polynomial equations. Before turn-
ing to our main subject, it would be remiss not to discuss the method
for finding the roots of a quartic. This problem was solved by Lodovico
Ferrari, who was a student of Cardano. As with the cubic, we start by
knocking out the term of degree n− 1. In this instance it is the cubic
term.

So we start with y4+ay3+by2+cy+d = 0 and set y = x−a/4. Then
after we do the simplifications, we end up with the quartic equation

x4 +

(
b− 3a2

8

)
x2 +

(
a3

8
− ab

2
+ c

)
x− 3a4

256
+
a2b

16
− ac

4
+ d

=def x4 + px2 + qx+ r = 0. (2.3)

This quartic can be reduced to a cubic equation by the following steps.
First we think of the two terms involving x4 and x2 as coming from

a quadratic in x2. So we complete the square. This gives

(x2 + p)2 − px2 − p2 + qx+ r = 0 (2.4)

Or

(x2 + p)2 = px2 + p2 − qx− r. (2.5)

Ideally we would like the right hand side of the expression to also be
a perfect square, so that we can simply take the square root of both
sides. Ferrari had the clever idea of introducing another term z into
the equation which he could use to cancel terms he didn’t want. The
trick is to consider not (x2 + p)2 but rather (x2 + p+ z)2. If (2.5) holds
then

(x2 + p+ z)2 = (x2 + p)2 + 2z(x2 + p) + z2

= px2 + p2 − qx− r + 2z(x2 + p) + z2

= (p+ 2z)x2 − qx+ p2 − r + 2zp + z2. (2.6)

What we want is to choose z so that

(p+ 2z)x2 − qx+ p2 − r + 2zp + z2 = (αx+ β)2 (2.7)

for some α and β. If we can do this then we have reduced the quartic
to the equation

(x2 + p + z)2 = (αx+ β)2. (2.8)

which is of course a quadratic equation, when we take the square root
of both sides. Notice a quadratic has two roots, and there are in fact
two quadratics, namely

x2 + p+ z = ±(αx+ β)

so we get four roots for our quartic.
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The problem remains how to choose z? A quadratic is a perfect
square if and only if it has a single repeated root. This happens pre-
cisely when the discriminant in the quadratic formula is equal to zero.
Thus we require the discriminant for the quadratic

(p+ 2z)x2 − qx+ p2 − r + 2zp+ z2 (2.9)

to equal zero. The discriminant of ax2 + bx+ c is b2 − 4ac. So if we set
the discriminant of (2.9) equal to zero we get

q2 − 4(p+ 2z)(p2 − r + 2zp + z2) = 0. (2.10)

Notice that (2.10) is a cubic equation in z! We can solve cubics by
means of del Ferro’s formula. Thus we can solve an arbitrary quartic
equation. The process requires us first to solve a cubic, then solve a
quadratic, but both of these can be done by the corresponding formulae.
Obviously the process is rather laborious. In practice if we want the
roots of a quartic we would use a package like Mathematica, or we
use trial and error or perhaps Newton’s method. We will not present
the actual formula for the roots of a quartic because it is horrendously
complicated.

It might be suspected that the general quintic would be solvable by
similar means. That is, to solve

x5 + ax4 + bx3 + cx2 + dx+ e = 0

we should knock out the x4 term (which can be done by setting x →
x− a/5) then reducing the problem to solving a quartic, then a cubic
then a quadratic.

Alas this is not the case. In 1798, Gauss conjectured that a gen-
eral solution of the quintic by radicals was impossible. A solution by
radicals is one that relies only upon the basic arithmetic operations of
addition, subtraction, multiplication and the extraction of nth roots.
For example the quadratic formula

x± =
−b ±√

b2 − 4ac

2a
, (2.11)

giving the roots of ax2 + bx + c = 0 uses only addition, subtraction,
mutiplication, division and the extraction of a square root. The cubic
formula uses the basic arithmetic operations as well as the extraction
of square roots and cube roots. The quartic formula involves the ex-
traction of fourth roots as well as the same operations used for a cubic.
Gauss suspected that for a general polynomial of degree 5 (or higher),
there could not be any formula for the roots using the same operations
as for a quartic, plus taking fifth (or indeed any other) roots.

The first serious attempt to prove this was by Paolo Ruffini in 1799.
Ruffini’s proof was criticised for being unreadably complicated and
for making assumptions about how the roots of the polynomial could
actually be expressed in terms of radicals, which he did not justify.
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Special cases of higher order polynomials can actually be solved by
radicals. For example x5 − x = 0 can be solved easily; the eighth
degree polynomial equation x8 + ax4 + b = 0 is just a quadratic in x4.
Ruffini basically ignored these special cases.

Niels Henrik Abel was the first to produce a complete proof, which
appeared in 1824. Evariste Galois (at the age of 18), produced a memoir
that presented a detailed theory of equations and their solution, which
greatly superseded all that went before it. However, in 1832 Galois
managed to get himself killed in a duel1 at the age of 20 and his work
was not published until 1846.

A Technical Digression.

The material that follows up to the section on complex numbers
can be safely ommited. It is intended to give a rough idea of why we
cannot find a general formula for the roots of polynomials using only
the standard operations. We also explain what we can do about it.

The reason why no method exists for an arbitrary quintic lies in
the theory of Galois groups. Technically, the reason is that the Galois
group of the splitting field for a polynomial of degree 5 is not solvable.
We cannot explain this in complete detail, but the outline is as follows.

A group is a nonempty set G which has a multiplication defined
on it. So given two elements g, h ∈ G, the product gh ∈ G. There
must also be an identity element e, such that eg = ge = g for every
element g ∈ G. Finally, every element g must have an inverse g−1. So
gg−1 = g−1g = e.

For example, the collection of all invertible n×n matrices is a group.
Multiplication is matrix multiplication. The identity matrix is the iden-
tity element and the matrix inverse is the group inverse. Group theory
is an enormous branch of mathematics with numerous applications.

Another example of a group is the set of positive real numbers R+.
The identity is 1, since 1× x = x× 1 = x for all x > 0. The inverse of
x is 1/x and obviously the product of two positive numbers is positive.

We recall that a Field is a set F together with two operations called
addition and multiplication, which we usually write as a + b and ab.
These operations are required to satisfy

(i) Associativity: a+ (b+ c) = (a+ b) + c, and a(bc) = (ab)c.

(ii) Commutativity: a + b = b+ a, and ab = ba.

(iii) There exist distinct elements 0 and 1 in F such that a + 0 = a
and 1a = a.

1The exact reason for the duel is not known. It appears to have had something
to do with a woman, Stéphanie-Félicie Poterin du Motel. Who the duel was fought
with is also not known.
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(iv) For every a in F, there exists an element in F, denoted −a,
called the additive inverse of a, such that a+ (−a) = 0.

(v) For every a �= 0 in F, there exists an element in F, denoted
by a−1 or 1/a, called the multiplicative inverse of a, such that
a(1/a) = 1.

(vi) Distributivity: a · (b+ c) = (a · b) + (a · c).

R and C are the most important examples of fields. Given a field, F
it is often possible to extend to a larger field E which contains F. This
is known as a field extension. The most familiar example is extending
R to C.

Loosely speaking, the Galois group of a field extension is the col-
lection of certain kinds of transformations (technically called automor-
phisms), of the field extension, that leave the original field elements
unchanged. In practice, these transformations turn out to be permu-
tations.

Think of a simple example. Take p(x) = x2 + 1. The coefficients of
the polynomial are real numbers, but the roots are not. The Splitting
Field of p is the smallest field extension in which p can be factorised into
linear terms. In our case we know p(x) = (x− i)(x+ i). So the splitting
field will be the real numbers with ±i appended to it somehow.

For a polynomial with coefficients in some field F, (which is usually
either the real numbers or the complex numbers), we construct the
splitting field of the polynomial by defining it to consist of numbers of
the form z = a0 +

∑n
i=1 aiyi where the numbers y1, ..., yn are the roots

of the polynomial and the ai are elements of the field F. One can prove
the splitting field is indeed a field extension. In the example above the
splitting field consists of number of the form z = a+ ib− ic where a, b, c
are real. (Do these look familiar?)

Now think of the number of ways that a set of five objects can be
rearranged. The collection of all permutations of a set of five elements
is an example of a symmetric group, which in this case is called S5.
This turns out to be the Galois group for the splitting field of a general
polynomial of degree 5.

In order to be able to solve the general equation by radicals, Galois
proved that we have to be able to find a chain of nested subgroups which
we label G1, G2,G3, G4, with G4 sitting inside G = S5, G

3 sitting inside
G4 etc. A subgroup of a group G is a subset which is also a group.

This chain should terminate with a subgroup consisting only of the
identity element e. Groups with this property are called solvable groups.
The name solvable comes from the connection between the existence
of these groups and our ability so solve an equation.
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Roughly speaking, it turns out that the existence of this chain cor-
responds to the process of reducing a quintic to a series of lower order
polynomials. Remember how the quartic was solved by reducing to a
cubic, which we solved by reducing to a quadratic.

If this chain of nested subgroups exists for a given polynomial p(x),
then it is possible to solve p(x) = 0 by radicals. The problem is that
one can show, (and Galois did), that no such chain of subgroups exists
for S5. So S5 is not a solvable group. This fact means that the general
quintic cannot be solved by radicals.

Since polynomials of degree five cannot be solved by radicals, it
follows that there is no formula for the solution of general higher degree
polynomials by radicals either, since sooner or later the procedure for
reducing the order of the polynomial will require us to solve a quintic.
So the nonsolubility of the quintic is a road block to the solution of the
higher order polynomials. However, as noted above, lots of special cases
can indeed be solved by radicals. It is just that there is no formula that
works for every possible polynomial of degree five, (or six, or seven,....).

This can all be summed up as follows.

Theorem 2.1. A polynomial equation is solvable by radicals if and
only if the Galois group of the splitting field is solvable.

Of course, to really understand what all of this actually means is
an entire subject in itself. Galois theory is a major branch of modern
algebra.

This is not the end of the story however. in 1858 Charles Hermite
showed that although it is not possible to solve the quintic by radicals,
it is possible to do so by other means. In particular the quintic can
be solved by using so called elliptic functions. This is a subject well
outside our scope.

There is even a general formula2 for the roots of a polynomial of
degree n in terms of what are called Theta functions, but the truth is
that this is usually of no real value because of its sheer complexity. It
requires the evaluation of what are called hyperelliptic integrals. It is
remarkable that such a formula exists, but most of the time it is easier
to just find the roots numerically.

2.2. Complex Numbers. So the del Ferro formula for the solution
of the cubic actually generated complex numbers. This is important to
understand historically. Cardano did not sit down and invent complex
numbers. Rather he used a formula for solving a real problem and it
gave him complex numbers.

The best that anyone could do was try to pretend that this was
just some strange quirk and these bizarre quantities could always be
dismissed. Whenever they appeared, the correct response was to just

2It is called Thomae’s formula, after Carl Thomae who published it in 1870.
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do the arithmetic and eventually they would go away. This viewpoint
took a long time to be overturned.

The first mathematician to make serious progress with Complex
numbers was Rafael Bombelli. We do not know the date of his birth,
but he was baptised on January 20, 1526 and died sometime in 1572.
He showed that real values could be consistently obtained from the
formula for the roots of a cubic by treating quantities like

√−121 as
actual numbers subject to straightforward rules. He introduced the
concept of what we call imaginary numbers in a book in 1572 and
showed considerable understanding of their properties. For example he
realised that

√−1 is neither positive, nor negative and stated the basic
rules of complex arithmetic. Yet even after Bombelli, mathematicians
continued to think of the

√−1 as being something that was convenient
for calculations, but did not actually exist in the same way that ordi-
nary numbers do. The fact that we call the square roots of negative
numbers imaginary (a term invented by René Descartes), is really an
historical artifact of this long held, but false, belief.

The key to accepting complex numbers ultimately lay in understand-
ing their geometry. From primary school the student is taught to
think of all numbers as lying on some infinitely long line. Mathe-
maticians still refer to the real numbers R as ‘the line.’ The insight
of Caspar Wessel(1745-1818), Jean-Robert Argand (1768-1822), Carl
Friedrich Gauss(1777-1855) and others was that complex numbers are
to be thought of as points on a plane. The real numbers are simply a
line through the middle of that plane, exactly as the x axis is a line
running through the Cartesian plane.

If we multiply a real number x by −1, the effect is to ‘rotate’ x
through 180 degrees. More precisely, if we think of the line connecting
0 with −x, then this is the line connecting 0 and x rotated through
180 degrees. Argand realised that multiplying a number z by i is to
effectively rotate z through 90 degrees. Caspar Wessel actually had
many of the same insights as Argand many years earlier, but he pub-
lished his work in Danish and it was largely ignored. Nevertheless, this
kind of geometrical thinking led to the ultimate acceptance of complex
numbers.

The complex numbers are formally constructed by considering pairs
of real numbers (a, b), a, b ∈ R and defining arithmetic operations as
follows.

(a, b) + (c, d) = (a+ c, b+ d), (a, b)(c, d) = (ac− bd, ad+ bc).

The real numbers are identified as a subset of the complex numbers
by the relation a ∈ R → (a, 0). This just means that the real numbers
lie on the x axis in the complex plane.

Following the definition of multiplication and the identification of a ∈
R with the complex number (a, 0), we make the following observation.
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(0, 1)2 = (0, 1)(0, 1) = (0− 1, 0 + 0) = (−1, 0).

Of course we identify (−1, 0) with the real number −1. This means
that (0, 1)2 = (−1, 0). In other words the complex number (0, 1) is the
square root of −1.

Traditionally we write a complex number (a, b) in the form z = a+ib.
This means that we are identifying the complex number (0, 1) with the
symbol i. More commonly we write i =

√−1.

Definition 2.2. For a complex number z = a+ib we have the following.

(1) Given any complex number z we define the real part of z to be
a and the imaginary part to be b. We write �(z) = Re(z) = a
and (z) = Im(z) = b.

(2) The complex conjugate z of a complex number z is defined by
z = a− ib.

(3) The modulus of a complex number z is |z| = √
a2 + b2.

2.2.1. The algebra of complex numbers. The algebra of complex num-
bers is quite straightforward. It is very similar to that of real numbers
with some important distinctions. Indeed in many ways it is easier.
There are some differences however. The most obvious is that it is
impossible to order the complex numbers.

Theorem 2.3. It is not possible to assign a consistent ordering to the
complex numbers as is done with the real numbers. That is, one cannot
say that a given complex number is greater or smaller than another
complex number.

Proof. Assume that we could order the complex numbers. Then either
i > 0 or i < 0. Let us assume that i > 0. Now multiply both sides of
this inequality by i. Since i > 0 the inequality sign remains the same.
Hence

i.i > i.0 =⇒ −1 > 0.

This is a contradiction, so i �> 0. If we assume that i < 0 then we
can derive a contradiction in the same manner. Since i < 0, then
multiplying by i will reverse the inequality sign. Hence

i < 0 =⇒ i.i > i.0 =⇒ −1 > 0.

We have another contradiction. Thus i �< 0 either. Clearly i �= 0. Our
conclusion follows. �

Manipulating complex numbers is often best achieved by introducing
the polar form and using Euler’s formula. Actually, we should call this
the Euler-Cotes formula, since nearly forty years before Euler, Roger
Cotes stated the relation

iθ = ln(cos θ + i sin θ),
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though he does not appear to have made use of it.
His proof was not completely rigorous by modern standards, but

his result is still clearly equivalent to the more common version eiθ =
cos θ + i sin θ. However at the time, neither the complex numbers nor
the connection between the natural logarithm and the exponential func-
tion were properly understood. Euler’s work dramatically altered the
status of complex variables.

Proposition 2.4 (Euler’s formula). Let θ be a real number. Then
eiθ = cos θ + i sin θ

Proof. There are a number of ways to do this. The simplest is to use
the fact that the equation dy

dθ
= iy, y(0) = 1 has a unique solution.

Now let y(θ) = eiθ. Then d
dθ
eiθ = ieiθ, so y′ = iy. Similarly, if h(θ) =

cos θ + i sin θ, then since

d

dθ
(cos θ + i sin θ) = − sin θ + i cos θ = i(cos θ + i sin θ),

we have h′ = ih. Since y(0) = 1 = h(0), and the solution of the ODE
is unique, it follows that y and h must be the same function. �

Since (eiθ)n = einθ we have an immediate corollary, namely the fa-
mous result attributed to De Moivre- despite the fact that it appears
nowhere in his writings.

Corollary 2.5 (De Moivre’s Theorem). For all real θ and any integer
n

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

If n is not an integer, one needs to be careful. We will see why
shortly.

Since we are dealing with points on a plane, we can convert from
Cartesian coordinate x, y to polar coordinates, r and θ. We let r =√
x2 + y2. Then for some angle θ

x = r cos θ, y = r sin θ. (2.12)

Thus
z = x+ iy = r(cos θ + i sin θ) = reiθ.

The choice of r is unambiguous. It is simply the modulus of the complex
number z. However we have not yet specified what the argument θ is.
This is an extremely important point. The trigonometric functions are
2π periodic, hence there is no unique value for θ. We have to make a
choice.

Definition 2.6. The principal value of the argument of a complex num-
ber z = x + iy is the unique value of θ ∈ (−π, π] which solves the
simultaneous equations

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

. (2.13)
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This choice of θ is denoted Arg(z). The set of all solutions of the
equations (2.13) is called the argument of the complex number z. That
is

arg(z) =

{
θ ∈ R : cos θ =

x√
x2 + y2

, sin θ =
y√

x2 + y2

}
. (2.14)

Every complex number z = x+ iy can be written in polar form

z = reiθ = r(cos θ + i sin θ),

where r = |z| = √
x2 + y2 and θ = Arg(z) ∈ (−π, π] is the princi-

ple value of the argument of z. This representation comes from the
equations

x = r cos θ, y = r sin θ.

2.3. Determining the Polar Form. To determine the polar form of
a complex number we have to solve these equations for r and θ. Finding
r is easy. To find θ we have to know what quadrant the number is in and
keep in mind what the signs of cos θ and sin θ are in those quadrants.
We should note that the command Arg[z] in Mathematica will produce
the principle value of the argument of any complex number.

Recall that in the first quadrant cos θ and sin θ are positive. In the
second quadrant sin θ is positive and cos θ is negative. In the third
quadrant sin θ and cos θ are both negative, whereas tan θ is positive
and in the fourth quadrant sin θ is negative and cos θ is positive.

Example 2.1. We find the polar form of z = 3 + 4i. This number is in
the first quadrant. We see r =

√
32 + 42 = 5. To find the argument

observe that we want θ ∈ [0, π/2] (we are in the first quadrant) such
that

3 = 5 cos θ, 4 = 5 sin θ. (2.15)

Clearly we require tan θ = 4/3. So we can take θ = tan−1(4/3) ≈
0.927295. Since π/2 ≈ 1.57, we see that this gives a value of θ in the
right range. So

z = 5ei tan
−1(4/3).

This suggests that if z = x+ iy is in the first quadrant, the principle
value of the argument is just

Arg(z) = tan−1(y/x).

Example 2.2. We find the polar form of z = 3 − 4i. This number is in
the fourth quadrant. As before we see that r =

√
32 + 42 = 5. To find

the argument observe that we want θ ∈ [−π/2, 0] (we are in the fourth
quadrant) such that

3 = 5 cos θ, −4 = 5 sin θ. (2.16)
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Clearly we require tan θ = −4/3. So we can take θ = − tan−1(4/3) ≈
−0.927295. Since −π/2 ≈ −1.57, we see that this gives a value of θ in
the right range. So

z = 5e−i tan−1(4/3).

(Note that since 3− 4i is the complex conjugate of 3 + 4i, discussed in
the previous example, the result we have just obtained could easily be
found just by taking the complex conjugate of the previous result).

If z = x+ iy is in the fourth quadrant, the argument is again just

Arg(z) = tan−1(y/x).

Example 2.3. Now we find the polar form of z = −3 + 4i. This is in
the second quadrant. Again |z| = √

32 + 42 = 5 and we want

−3 = 5 cos θ, 4 = 5 sin θ (2.17)

with θ ∈ [π/2, π]. Now taking θ = tan−1(y/x) = − tan−1(4/3) will not
give the right value of θ, as it does not return a value in the right range.
(See previous example). However tan θ is periodic with period π. i.e.
tan(θ + π) = tan θ. So let us take θ = π − tan−1(4/3). We will make
use of two very useful trigonometric identities.

cos(tan−1(x)) =
1√

x2 + 1
(2.18)

and

sin(tan−1(x)) =
x√
x2 + 1

. (2.19)

We use these to perform the following calculations.

5 cos(π − tan−1(4/3)) = 5 cos(π) cos(tan−1(4/3)) + sin π sin(tan−1(4/3))

= −5 cos(tan−1(4/3))

= −3

and

5 sin(π − tan−1(4/3) = 5 sin π cos(tan−1(4/3))− 5 cosπ sin(tan−1(4/3))

= 5 sin(tan−1(4/3))

= 4.

Thus this is the right choice of θ and we have

z = 5ei(π−tan−1(4/3)).

The lesson of this example is that if z = x+iy is in the second quadrant,
we find Arg(z) by

Arg(z) = π + tan−1(y/x).

What about a complex number in the third quadrant?
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Example 2.4. Now we find the polar form of z = −3 − 4i. This is in
the third quadrant. As before |z| = √

32 + 42 = 5 and we want

−3 = 5 cos θ, −4 = 5 sin θ (2.20)

with θ ∈ [−π,−π/2]. Now taking θ = tan−1(y/x) = tan−1(4/3) ≈
0.9273 does not give the right value of θ, because it does not return a
value in the right range. We use the periodicity of tan again.

5 cos(−π + tan−1(4/3)) = 5 cos(−π) cos(tan−1(4/3))

− sin(−π) sin(tan−1(4/3))

= −5 cos(tan−1(4/3))

= −3.

and

5 sin(−π + tan−1(4/3)) = 5 sin(−π) cos(tan−1(4/3))

+ 5 cos(−π) sin(tan−1(4/3))

= −5 sin(tan−1(4/3))

= −4.

Thus this is the right choice of θ and we have

z = 5ei(−π+tan−1(4/3)).

The lesson of this example is that if z = x+ iy is in the third quadrant,
we find Arg(z) by

Arg(z) = tan−1(y/x)− π.

So in the first and fourth quadrants, we have θ = tan−1(y/x), in the
second quadrant we add π and in the third quadrant we subtract π.

Exercise 2.1. As an exercise show that the following complex numbers
have the given polar forms.

(i) 2 + 2i = 2
√
2eiπ/4,

(ii) 2− 2i = 2
√
2e−iπ/4,

(iii) −1 +
√
3i = 2e2πi/3

(iv) −1 + 4i =
√
17ei(π−tan−1(4))

(v) −5 + 5i = 5
√
2e3πi/4

(vi) −√
6−√

2i = 2
√
2e−5πi/6.
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What if you forget the simple rule for finding the principle value of
the argument? Then use your calculator and the equations

x = r cos θ, y = r sin θ

to determine θ. See if θ = tan−1(y/x) satisfies both equations. If it
does, then you have the right value. If it doesn’t, then add and sub-
tract π from your answer, and see which one satisfies both equations.
Remember, the correct value of θ must satisfy both these equations,
not just one of them. Be aware that if you use a calculator, you might
get a bit of rounding error when you check the equations.

The choice of θ we have made here for the principle value is the most
common one made in the literature. It is obvious that the function
Arg(z) as a function of z is discontinuous. The choice we have made
means that for a real number z > 0 we have Arg(z) = 0. What about
numbers on the negative real axis? If z ∈ R and z < 0 then Arg(z) = π.
So far so good.

However what about a number in the third quadrant? That is a
number with both negative real part and negative imaginary part?
For such numbers −π < Arg(z) < −π

2
. As we approach the negative

real axis from below, Arg(z) → −π. But when we hit the negative
axis the argument becomes π. So the value of Arg(z) jumps by 2π.
Consequently the function Arg(z) has jump discontinuities. But the
jump discontinuities do not lie at a single point or an isolated set of
points. Every point on the negative real axis is a point of discontinuity
for Arg(z). The negative real axis is known as a branch cut for the
argument function. Some authors define the principal value of the
argument to lie between 0 and 2π. For this choice, the branch cut lies
on the positive real axis.

There is no way of avoiding this problem. We have to make some
choice for the argument and placing the branch cut on the negative
real axis is the most sensible choice we can make. However we do
need to be a little bit careful when dealing with arguments of complex
numbers. There are a number of subtleties which can cause problems
for the careless student.

Consider this very well known apparent conundrum. We know that
i =

√−1. So we can surely write

−1 = i2 =
√−1

√−1 =
√

(−1)(−1) =
√
1 = 1.

So apparently 1 = −1. Of course this is false. Seeming paradoxes like
this were one of the reasons mathematicians took so long to accept the
existence of complex numbers. So what exactly has gone wrong here?
To understand the problem we need to realise that the usual index laws
for real numbers don’t quite work the same way for complex numbers.
To see why, we have to ask what exactly an expression like zα where
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both z and α are complex, actually means? To answer this question
we have to define the complex logarithm.

So we let z = reiθ and we want to define ln z. By definition the
natural logarithm of z is a number ln z with the property that

eln z = z.

If we set

ln z = ln(reiθ) = ln r + iθ,

where θ is the principal value of the argument of z, then clearly

eln z = eln r+iθ = eln reiθ = reiθ = z.

So this choice for the natural logarithm works. But why should we use
the principal value of the argument? Obviously z = reiθ = rei(θ+2kπ)

for any integer k. Given this, why could we not define the logarithm
of z to be

ln z = ln(rei(θ+2π) = ln r + i(θ + 2π)

or

ln z = ln(rei(θ−26π) = ln r + i(θ − 26π)?

For example, using the second we would have

eln r+i(θ−26π) = reiθe−26iπ = reiθ = z,

since e−26iπ = cos(−26π) + sin(−26π) = 1. This works just as well as
using the principal value of the argument.

The fact is that a complex number z has infinitely many possible
choices for its logarithm, all of which are perfectly valid. This suggests
that something rather different is going on when we deal with certain
kinds of complex functions.

We have always thought of a function as being a rule which takes one
number for its argument and produces one number for its output. By
definition functions are single valued. We want to keep this definition,
because it works. Here we have a function which is naturally set valued.
That is, to each complex number z the logarithm is a set of numbers.

This is not so unfamiliar, when we realise that lots of real functions
are like this. For example the square root of a positive real number has
two possible real values. So does the fourth root. From our earliest
encounter with the square root we have become used to making a choice
as to which square root to take, depending on the particular problem we
are solving. With the argument of a complex number and the complex
logarithm, we are in exactly the same situation. We have to make a
choice of which argument and which logarithm we are going to take.

The notion of a set valued, or multi valued function is however rather
useful. So we make it formal.
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Definition 2.7. Let P(C) denote the set of all subsets of C. A set
valued, or alternatively a multi valued function on C is a mapping
from C to P(C). That is

f : C → P(C).

Many functions are actually set valued.

Example 2.5. The following are examples of set valued functions.

f(z) =
√
z, g(z) = z1/3.

Multi-valued functions can arise because of the periodicity of eiθ.
That is, because eiθ = ei(θ+2kπ) for all integers k. What we have to do
is choose a branch of a given function and work with that. This really
amounts to choosing a value for k and k = 0 is the most usual choice.
When k = 0 is chosen, we are working with the principal branch.

For example, with the square root of a positive real number, we may
choose one of two branches: +

√
z and −√

z. How does this correspond
to a choice of k? Let z = rei(θ+2kπ), for θ ∈ (−π, π]. Here we can take
k = 0 or k = 1. Other choices of k will give us the same values we get
from these.

If we take k = 0 we have

√
z = (reiθ)1/2 =

√
reiθ/2.

Conversely, if we take k = 1 we get√
z = (rei(θ+2π))1/2 =

√
reiθ/2eiπ = −√

reiθ/2.

Thus the two branches of the square root function correspond to dif-
ferent choice for the argument of z.

The apparent paradox where we showed that “− 1 = 1” can be re-
solved if we understand how to work with powers of a complex number.
As we just saw, an arbitrary power of a complex number itself turns
out to be a set valued function.

We will define the natural logarithm as a set of complex numbers and
also define a single valued branch of the natural logarithm function as
follows.

Definition 2.8. Let z = x + iy be a complex number. The natural
logarithm of z is a set valued function defined by

loge(z) = ln |z|+ i arg(z), (2.21)

where ln |z| is the natural logarithm of the modulus of |z|, (remember
|z| is real, so this is just the ordinary natural logarithm) and arg(z) is
the set of all arguments of z. The principal branch of the logarithm of
z is defined to be the choice of loge(z) obtained by taking the principal
branch of the argument of z. That is

ln z = ln |z| + iArg(z), (2.22)

where Arg(z) is the principal value of the argument of z.



44 MARK CRADDOCK

So for example, since i sits on the imaginary axis, which is at right
angles to the real axis, the argument can be taken to be π/2. Therefore
the natural logarithm of i is the set

loge(i) = ln |i|+ {(π/2 + 2kπ)i, k ∈ Z} = {(π/2 + 2kπ)i, k ∈ Z} .
For the principal value of the log we just take k = 0. Hence

ln i =
π

2
i.

When we write ln z we always mean the principal value of the natural
logarithm, so it is always single valued. An important point which is
often missed by those unfamiliar with the theory is that in general
ln(z1z2) �= ln z1 + log z2. The reason of course, is to do with the need
to use the ‘right’ argument.

Remember that if we compute ln z, the value is

ln z = ln |z|+ iArg(z),

where Arg(z) is the principle value of the argument of z. That is
Arg(z) ∈ (−π, π].

Now take z1 = z2 = e2πi/3. Clearly z1z2 = e4πi/3. But by the period-
icity of eix we observe that

z1z2 = e4πi/3 = e4πi/3−2πi = e−2πi/3.

By definition then, ln(z1z2) = −2πi
3

since we must use the principle
value of the argument. Consequently

ln(z1z2) = −2πi

3
�= ln z1 + ln z2 =

2πi

3
+

2πi

3
=

4πi

3
.

The problem is that adding the arguments together can give a result
that does not lie in (−π, π]. If we think in terms of sets however, we
can retain additivity for the logarithm. It is a straightforward exercise
to show that

loge(z1z2) = loge(z1) + loge(z2) (2.23)

as sets.
Differentiation kills constants however. Thus even though ln(f1f2)

is not additive, the derivative is, since

d

dz
ln(f1f2) =

(f1f2)
′

f1f2
=
f ′
1f2 + f1f

′
2

f1f2
=
f ′
1

f1
+
f ′
2

f2
=

d

dz
ln f1 +

d

dz
ln f2.

The fact that the log is a set valued function rather than a single
valued function is crucial when we come to define powers of a complex
number. Positive integral powers of complex numbers are uniquely
defined. For example if z = 1 + i, then

z2 = (1 + i)(1 + i) = 1 + 2i− 1 = 2i

and this answer is the only possible value of z2. Because positive integer
powers of complex numbers are uniquely defined, we have no problem
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in defining the exponential of a complex number, since we know how
to compute a complex exponential by means of a power series.

Definition 2.9. For any z ∈ C we have

ez =
∞∑
n=0

zn

n!
. (2.24)

This will give us a unique value for ez for any given z. Therefore,
the natural way to define zα is by z = eα ln z. But why do we have
to use the principal value of the logarithm? Will choosing a different
branch of the logarithm give a different answer? Yes, in general it will.
Therefore, in general a complex power is a set valued object.

Definition 2.10. Let α and z be complex numbers. Then zα is the
set of complex numbers defined by

zα = eα loge(z) = {eα ln |z|eiα(θ+2kπ), k ∈ Z}, (2.25)

where α is the principal value of the argument of z. The principal value
of zα is obtained by taking k = 0.

Let us ask the obvious question first. If α is an integer, what hap-
pens? Do we only get one possible value for the αth power of a com-
plex number z? Observe that if α = n is an integer, then n loge(z) =
n ln |z| + in arg(z). So let the principal value of the argument of z be
θ. Then

n arg(z) = {nθ + 2knπ, k ∈ Z}.
Thus according to our definition the set of powers zn is

zn =
{
exp(n ln |z|)einθe2knπi, k ∈ Z

}
.

But e2knπi = 1 for all n. Thus for each k ∈ Z, einθe2knπi = einθ. Hence

zn =
{
exp(n ln |z|)einθ} .

That is, the set of powers zn has only one element in it, since for each
choice of k we get exactly the same number. Thus our definition gives
us a unique value of zn if n is an integer. Which is a relief, because
we’d be in trouble if it didn’t.

However, if the power α is not an integer, we do not get a unique
answer.

Example 2.6. Calculate the principal value of ii. Also calculate the
value of ii as a set.
Solution. We write i = eπ/2i for the principal value. Then the principal
value is ii = ei(π/2)i = e−π/2.

For the set we know that i = ei(π/2+2kπ) for all k ∈ Z. Thus

ii = {e−π/2−2kπ, k ∈ Z}.
So we see that there are infinitely many possible values for ii, indexed
by integers k. Of course the principal value is obtained by setting
k = 0.
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What now can we say about the index laws for complex numbers?
With real numbers we have the familiar rules (ab)m = ambm and
(aα)β = aαβ . However for complex numbers it is not quite so straight-
forward, unless we think in terms of the rule as applying to sets. As sets
we can say that, for example, that if z, w and α are complex numbers
then

(zw)α = zαwα.

What this means is that the two sides of this relationship are equal,
if we interpret it as a statement about sets. All the elements of (zw)α

may be obtained by multiplying elements from the sets zα and wα.
Let us consider an example.

Example 2.7. Calculate ((−i)(i))i. Show that as sets ((−i)i)i = (−i)iii.
Solution. Clearly (−i)(i) = 1. So that ((−i)(i))i = 1i. But 1 = e2kπi

for all k ∈ Z. Thus
1i = {e−2kπ, k ∈ Z}.

Notice that if we take k = 0, then we see that the principal value of
1i = 1.

Now we also know that

ii = {e−π/2−2nπ, n ∈ Z}.
In addition, we can write −i = ei(−π/2+2jπ), j ∈ Z. Thus

(−i)i = {
e(i)i(−π/2+2jπ), j ∈ Z

}
=

{
eπ/2−2jπ, j ∈ Z

}
.

Consequently

(−i)iii = {
eπ/2−2jπ, j ∈ Z

} {e−π/2−2nπ, n ∈ Z} =
{
e2(n−j)π, n, j ∈ Z

}
.

Now for each k ∈ Z we can find n, j ∈ Z with k = j − n. So as sets

{e−2kπ, k ∈ Z} =
{
e2(n−j)π, n, j ∈ Z

}
.

That is, every element in the set on the left is also in the set on the
right. In other words as sets, ((−i)i)i = (−i)iii.

As long as we are consistent with our choice of branches, we will not
run into trouble. If we consider again the paradox

−1 = i2 =
√−1

√−1 =
√

(−1)(−1) =
√
1 = 1, (2.26)

we see now why this is wrong. Which
√−1 do we mean? There are

two, since (−i)2 = −1 also. So in (2.26) we are equating a number,
namely i2, with the product of two sets, namely

√−1
√−1, which of

course makes no sense.
However, if we are consistent with our choice of square roots, we

have no problem. Let us take i =
√−1 = eπ/2i and do this calculation

again. We get

−1 = (eπ/2i)2 = eπ/2ieπ/2i = eπi = cosπ + i sin π = −1
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and there is no contradiction. If instead we took −i = e−π/2i then

−1 = (e−π/2i)2 = e−π/2ie−π/2i = e−πi = cos(−π) + i sin(−π) = −1,

and again, the contradiction does not appear.
Although this may appear rather complicated, it rarely causes diffi-

culties in practice. As long as we make consistent choices when deciding
what arguments to use, we will avoid problems.

2.3.1. Roots of unity. One of the profound consequences of the discov-
ery of complex numbers is the fact that every polynomial of degree n
has n complex roots. Consequently the polynomial zn = 1 must have
n roots. These numbers are known as the nth roots of unity. They are
easy to find. We make use of our previous discussion to see what is
going on.

Example 2.1. Suppose we wish to find the 4th roots of unity. There
are of course 4 of them.

We happily write 1 = e2kπi, for k ∈ Z. Then the equation z4 = 1 is
the same as z4 = e2kπi. This plainly has a solution z = ekπi/2 for each
k. The key of course is that if we choose the values of k, then we get
different solutions. However because of the periodicity of eix we will
only get four solutions.

Let us label the solutions corresponding to a choice of k by zk. So
k = 0 gives z1 = e0 = 1. k = 1 gives z1 = eπi/2 = i. k = 2 gives
z2 = e−πi = −1 and k = 3 gives z3 = e3πi/2 = −i.

What happens if we take k = 4? Then z4 = e2πi = 1. We have
this root already. Increasing the value of k will just cycle through the
solutions we have already found, over and over again.

One interesting feature of the roots of unity comes from the fact that
the equation zn − 1 = 0 has a very simple factorisation. We know that

zn − 1 = (z − 1)(1 + z + z2 + · · ·+ zn−1).

Let us take ω to be an nth root of unity not equal to one. Then
ω − 1 �= 0. However ωn − 1 = 0 = (ω − 1)(1 + ω + ω2 + · · · + ωn−1).
Consequently, if ω is an nth root of unity and ω �= 1 then

1 + ω + ω2 + · · ·+ ωn−1 = 0.

This turns out to be quite a useful fact.

2.4. Some complex valued series. The convergence of complex val-
ued series is handled in exactly the same way as the convergence of real
valued series.

Definition 2.11. Let {zn}∞n=1 denote a sequence of complex numbers.

If the sequence of partial sums SN =
∑N

n=1 zn is convergent, then we
say that the series S =

∑∞
n=1 zn is convergent and S = limN→∞ SN .
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We may use the same tests for convergence of complex valued series
as we use for real valued series. For example, the ratio test works
exactly the same way.

Theorem 2.12. Let {zn}∞n=1 be a sequence of complex numbers. Sup-
pose that

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ < 1.

Then the series
∑∞

n=1 zn is convergent. Suppose conversely that

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ > 1.

Then the series
∑∞

n=1 zn is divergent. If however

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = 1

then no conclusion about the convergence of the series can be drawn.

The easiest complex functions to handle and indeed the most impor-
tant, turn out to be those given by power series. Power series involving
complex numbers behave exactly the same way as power series involv-
ing real numbers. Let us start with the simplest such series. Namely
the geometric series. Surprisingly perhaps, this turns out to be remark-
ably important.

We want to sum 1 + z + z2 + z3 + · · · for |z| < 1. We already know
that 1 + z + z2 + z3 + · · · = 1

1−z
. Now we also know that we can write

z = reiθ. So we have for 0 < r < 1

K(r, θ) =

∞∑
n=0

rneniθ = 1 + reiθ + r2e2iθ + r3e3iθ + · · · = 1

1− reiθ
.

Using Euler’s formula gives

1

1− reiθ
=

1

1− r cos θ − ir sin θ

=
1

1− r cos θ − ir sin θ

(
1− r cos θ + ir cos θ

1 − r cos θ + ir sin θ

)
=

1− r cos θ + ir sin θ

r2 − 2r cos θ + 1
. (2.27)

Let K1(r, θ) = 1−r cos θ
r2−2r cos θ+1

and K2(r, θ) = r sin θ
r2−2r cos θ+1

. The function
K1 will turn out to be very important for the problem of solving the
Laplace equation on the unit disc. We will investigate this shortly.

Other familiar series are those for ez, sin z and cos z. The series for
ez we have introduced. For the trigonometric functions we have the
following elementary result.
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Theorem 2.13. For all z ∈ C

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n + 1)!
(2.28)

cos z =

∞∑
n=0

(−1)n
z2n

(2n)!
(2.29)

Using this result we can give another proof of Euler’s formula.

eiz = 1 + iz − z2

2!
− i

z3

3!
+
z4

4!
+ i

z5

5!
− z6

6!
+ · · ·

= 1− z2

2!
+
z4

4!
− z6

6!
+ · · ·+ i(z − z3

3!
+
z5

5!
− · · · )

= cos z + i sin z.

As this true for all complex z, we have actually improved on our pre-
vious proof which only held for real values of z.

Functions defined by power series are the essence of complex variable
theory. We will see that they are the only ones which are differentiable.
Other important examples are cosh z and sinh z.

Theorem 2.14. For all z ∈ C

sinh z =

∞∑
n=0

z2n+1

(2n+ 1)!
(2.30)

cosh z =

∞∑
n=0

z2n

(2n)!
. (2.31)

This can be deduced from the definition

cosh z =
1

2
(ez + e−z), sinh z =

1

2
(ez − e−z) (2.32)

and the series for ez.
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3. Differentiation and the Cauchy-Riemann equations

We consider a function f : C → C and ask whether it is differentiable.
The derivative of f is defined in exactly the manner we would expect.

f ′(z) = lim
Δz→0

f(z +Δz)− f(z)

Δz
, (3.1)

provided the limit exists.
First we define what we mean by a limit. Actually the definition is

identical to the real case.

Definition 3.1. Let f : S ⊆ C → C. We say that limz→z0 f(z) = L
if given any ε > 0 we can find δ > 0 such that |z − z0| < δ implies
|f(z)− L| < ε.

The usual properties of limits hold. That is Theorem 1.2 holds with
x replaced by a complex variable z.

The familiar functions from analysis behave just as we would expect
with respect to differentiation. So for example

d

dz
ez = ez,

d

dz
ln z =

1

z
,

d

dz
sin z = cos z, (3.2)

etc. However differentiation for functions of a complex variable is in
a real sense, a stronger property than for functions of a real variable.
The fact that a function of a complex variable is differentiable implies
a good deal more about the function than is the case for functions of
a real variable.

It is possible to have a function of a real variable which is differen-
tiable once, but not twice. For example, the function

f(x) =

∞∑
n=1

1

2n
sin(3nx)

is continuous by the Weierstrass M-test. To see this note that each term
in the series is continuous and the series converges uniformly, since∣∣∣∣ 12n sin(3nx)

∣∣∣∣ < 1

2n

and
∞∑
n=1

1

2n
= 1 <∞. (3.3)

The sum of a uniformly convergent series of continuous functions is
continuous. However f is not differentiable anywhere. This is not
straightforward to prove, but essentially boils down to the fact that the
series for f ′ diverges. However f is continuous and hence integrable on
[a, x] and by the Fundamental Theorem of Calculus the function

F (x) =

∫ x

a

f(t)dt (3.4)
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is differentiable, with F ′(x) = f(x). But F ′′ does not exist because f
is not differentiable. So we have a function with one derivative but no
more.

In the complex plane this is not possible. A function f : S → C

which is differentiable once is automatically infinitely differentiable.
This requires quite a lot of work and new material to show. But the
reason, roughly speaking, is that it is harder for a function of a complex
variable to be differentiable than it is for a function of a real variable.
Why this should be the case is easy to understand. Consider the def-
inition of the derivative in (3.1). It involves the familiar limit. The
difference here is the number of ways we can approach the limit.

For a function of a real variable, a limit can be approached in only
two directions. From the left and the right. We know that limx→a f(x)
exists if and only if limx→a+ f(x) = limx→a− f(x). That is to say, the
left and right limits must both exist and be equal.

In the case of a complex variable, we have a lot more freedom to
move, because we are on a plane. There are infinitely many directions
that a given point in C can be approached. So the fact that a limit
limz→a f(z) exists in C is a much stronger property for a function to
have than is the case when we are working on the real line.

Fortunately there is a very straightforward test to decide whether
a given function of a complex variable is differentiable. Before we
introduce the result, we need to point out a rather important feature
of functions of a complex variable z = x + iy. Since we are dealing
with functions f : C → C, f itself has a real and imaginary part. Thus
for any complex function f there exist real valued functions u and v of
two real variables such that

f(z) = f(x+ iy) = u(x, y) + iv(x, y). (3.5)

The function u is called the real part of f and v is the imaginary
part of f.

Example 3.1. Let f(z) = z2. Then since z = x+ iy, z2 = x2−y2+2ixy.
Hence u(x, y) = x2 − y2 and v(x, y) = 2xy.

With this result in mind, we can state conditions on u and v which
guarantee that f is differentiable.

Theorem 3.2. If f(z) = f(x + iy) = u(x, y) + iv(x, y) where f is
a complex function defined on an open set S ⊆ C and at some point
z0 = x0 + iy0 ∈ S the partial derivatives ∂u

∂x
, ∂u
∂y
, ∂v
∂x

and ∂v
∂y

all exist, are
continuous and satisfy the Cauchy-Riemann equations at z0,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(3.6)

then f is differentiable at z0. Conversely, if f is differentiable at z0 then
the given partial derivatives exist and the Cauchy-Riemann equations
are satisfied at z = x+ iy.
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Proof. The proof of this result is in two parts. We prove the second
part first. Since f ′(z) exists, we calculate the limit in two different
ways. In the first, we approach the limit on real axis. In the second we
approach along the imaginary axis.

So we set z + h = x+ h+ iy. Then

f ′(z) = lim
h→0

f(z + h)− f(z)

h

= lim
h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h

= lim
h→0

u(x+ h, y)− u(x, y)

h
+ i lim

h→0

v(x+ h, y)− v(x, y)

h

=
∂u

∂x
+ i

∂v

∂x
.

The limit certainly exists because f is differentiable.
Now we approach the limit on the imaginary axis. So we set z+ ik =

x+ i(y + k). We then have

f ′(z) = lim
k→0

f(z + ik)− f(z)

ik

= lim
k→0

u(x, y + k) + iv(x, y + k)− u(x, y)− iv(x, y)

ik

= lim
k→0

u(x, y + k)− u(x, y)

ik
+ i lim

k→0

v(x, y + k)− v(x, y)

ik

= −i∂u
∂y

+
∂v

∂y
.

Since the two limits must be equal, we see that

∂u

∂x
+ i

∂v

∂x
= −i∂u

∂y
+
∂v

∂y
. (3.7)

Equating real and imaginary parts shows that u and v satisfy the
Cauchy-Riemann equations.

The proof of the other part is somewhat harder. We use a technical
lemma from multivariable calculus. Suppose that for a given function
u ∂u/∂x and ∂u/∂y exist at (x, y) and are continuous there. Then

u(x+ h, y + k) = u(x, y) + h

(
∂u

∂x
+ A(h, k)

)
+ k

(
∂u

∂y
+B(h, k)

)
,

(3.8)
where A(h, k), B(h, k) → 0 as h, k → 0. This result really only says
that u(x + h, y + k) is approximated by the first derivative terms of
its Taylor series when h and k are small. It is nothing more than the
two dimensional analogue of the statement that for h small f(x+h) ≈
f(x) + f ′(x)h.

We now wish to show that if the Cauchy-Riemann equations are
satisfied, then f ′(z) exists. Let z = z0 + h + ik. Then
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f(z)− f(z0) = u(x+ h, y + k) + iv(x+ h, y + k)− u(x0, y0)− iv(x0, y0)

= h

(
∂u

∂x
+ A(h, k)

)
+ k

(
∂u

∂y
+B(h, k)

)
+ ih

(
∂v

∂x
+ A1(h, k)

)
+ ik

(
∂v

∂y
+B1(h, k)

)
,

by our technical lemma applied to both u and v. The terms A,B,A1, B1

are the error terms from approximating u and v by their first partial
derivatives. Then we observe that using the Cauchy-Riemann equa-
tions we have

f(z)− f(z0) = (h+ ik)
∂u

∂x
+ i

∂v

∂x
+ θz

= (z − z0)

(
∂u

∂x
+ i

∂v

∂x

)
+ θz ,

in which θz denotes the remainder term. Because of the technical
lemma limz→z0 θz/(z − z0) = 0. (Check this!) Consequently

lim
z→z0

f(z)− f(z0)

z − z0
=
∂u

∂x
+ i

∂v

∂x
. (3.9)

In other words f ′(z) exists. This proves the theorem. �

3.1. Examples of Differentiable Functions. Let us show how the
Cauchy-Riemann equations work in practice.

Example 3.1. We consider f(z) = eiz. Then

f(x+ iy) = ei(x+iy) = e−yeix = e−y cos x+ ie−y sin x.

Then u(x, y) = e−y cosx, v(x, y) = e−y sin x. Then

ux = −e−y sin x = vy, uy = −e−y cos x = −vy.
These hold for all x, y, so f is differentiable everywhere.

Example 3.2. Let f(z) = z4. Then

f(x+ iy) = (x+ iy)4 = x4 − 6x2y2 + y4 + i(4x3y − 4xy3).

So

u(x, y) = x4 − 6x2y2 + y4

and

v(x, y) = 4x3y − 4xy3.

Then

ux = 4x3 − 12xy2 = vy

and

uy = 4y3 − 12x2y = −vx.
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So the Cauchy-Riemann equations are satisfied and hence f is differ-
entiable. In fact they are satisfied everywhere, so f is differentiable
everywhere.

We also note that we have

f ′(z) = ux + ivx = 4x3 − 12xy2 + i(12x2y − 4y3) = 4z3.

Example 3.3. Let f(z) = sin z. Then

f(x+ iy) = sin(x+ iy) = sin x cos(iy) + sin(iy) cosx.

Now

sin x =
eix − e−ix

2i

cosx =
eix + e−ix

2
.

So it follows that

sin(iy) = −e
y − e−y

2i
= i sinh y

and

cos(iy) =
ey + e−y

2
= cosh y.

So

f(x+ iy) = sin x cosh y + i cosx sinh y.

Hence

u(x, y) = sin x cosh y, v(x, y) = cosx sinh y.

Then

ux = cosx cosh y = vy

and

uy = sin x sinh y = −vx.
These hold for all x, y. Hence f(z) is differentiable everywhere.

It is also not hard to check that

f ′(z) = ux + ivx = cosx cosh y − i sin x sinh y = cos(x+ iy) = cos z.

Example 3.2. Let us consider the function f(z) = e−|z|2. Note that

|z|2 = x2 + y2. Thus e−|z|2 = e−x2−y2 . Hence u(x, y) = e−x2−y2 and
v(x, y) = 0. Thus

∂u

∂x
= −2xe−x2−y2 ,

∂u

∂y
= −2ye−x2−y2,

∂v

∂x
= 0,

∂v

∂y
= 0.

Thus at x = y = 0 we have ∂u
∂x

= ∂v
∂y

and ∂u
∂y

= −∂v
∂x
. But the Cauchy-

Riemann equations are satisfied nowhere else. So the function is not
differentiable anywhere else.
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3.2. Properties of Differentiable Functions. In real analysis a
function f is analytic in some domain D ⊆ R if it is equal to its Taylor
expansion throughout D. A function on R which is once differentiable
need not be twice differentiable, so a differentiable function which is
differentiable on R is is not in general analytic.

However, as noted above, if a complex valued function is differen-
tiable once in some region D ⊆ C, then it is differentiable infinitely
many times and is equal to its Taylor series expansion throughout D.
Thus in the complex plane, differentiable functions are automatically
analytic. This is actually a consequence of the Cauchy integral formula
for a differentiable function that we will prove later. So in complex
analysis, differentiable functions and analytic functions turn out to be
the same thing.

So how do we formally define the term analytic? We could use the
following definition from real analysis:
Definition A. A function f : Ω → C is said to be analytic in Ω if for
every z ∈ Ω we can write f(z) =

∑∞
n=0 an(z − z0)

n for some z0 ∈ Ω.
That is, f is equal to its Taylor expansion throughout Ω.

However many textbooks on complex variable theory use the follow-
ing definition.

Definition 3.3. A function f : Ω → C is said to be analytic in Ω if it
is differentiable throughout Ω.

There are problems with this, because it can be confusing to the
student, who is learning real and complex analysis at the same. In many
books the term holomorphic is preferred for a function of a complex
variable which is differentiable. But this now gives us three words
which in complex analysis refer to the same set of functions.

We will refer to differentiable functions and also use the term ana-
lytic, but will endeavour to be clear about precisely what is meant in
each context. What must be kept in mind is that by differentiable, we
mean a function whose real and imaginary parts satisfy the Cauchy-
Riemann equations.

The next two results are applications of the Cauchy-Riemann equa-
tions. The first is very familiar from one variable calculus.

Theorem 3.4. Let f be differentiable on the open set S and let f ′(z) =
0 on S. Then f is a constant throughout S.

Proof. Since f is differentiable and f ′(z) = 0, we have by the Cauchy-
Riemann equations ux = uy = 0 and v = vy = 0 and hence u and v are
constant. So f = u+ iv is constant. Here we use ux to denote ∂u/∂x
etc. �

We can also say the following. Recall that �(f) is the real part of f
and (f) is the imaginary part of f .
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Theorem 3.5. Suppose that f is differentiable on an open set S ⊆ C.
If any one of |f |, �(f) or (f) are constant on S, then f is constant.

Proof. We only do the second. The other two parts are exercises. Since
�(f) = u is a constant, ux = uy = 0. Thus by the Cauchy-Riemann
equations vx = −uy = 0, vy = ux = 0 So v is also a constant. �

We also note the following definition.

Definition 3.6. A function f which is differentiable for all z ∈ C is
said to be entire.

3.3. Analytic Functions and Laplace’s Equation. One of the ma-
jor consequences of the Cauchy-Riemann equations is the fact that the
real and imaginary parts of a differentiable function are solutions of
Laplace’s equation.

Theorem 3.7. Suppose that f(z) = u+ iv is a differentiable function
on an open set S ⊆ C. Then u and v are harmonic. That is, they
satisfy the two dimensional Laplace equation on S treated as a subset
of R2.

Proof. The proof of this is a very easy exercise. The Laplace equation

in two dimensions is Δφ = ∂2φ
∂x2 + ∂2φ

∂y2
= 0. We know that

∂u

∂x
=
∂v

∂y
So

therefore
∂2u

∂x2
=

∂2v

∂x∂y
=

∂

∂y

∂v

∂x
= −∂

2u

∂y2
, since

∂v

∂x
= −∂u

∂y
. Thus

∂2u

∂x2
+
∂2u

∂y2
= 0.

The proof for v is identical. �
We thus have a way of generating infinitely many solutions of the

Laplace equation.

Example 3.4. It is easy to see that f(z) = zn is differentiable. So that
the real and imaginary parts of zn are harmonic. Taking n = 2 we see
that z2 = x2 − y2 + 2ixy. So u = x2 − y2 and v = 2xy are harmonic.
This is easy to check. uxx = 2, uyy = −2. So uxx + uyy = 0. The
calculation for v is similar.

Given a harmonic function u, a harmonic function v with the prop-
erty that f = u + iv is an analytic function, is said to be a harmonic
conjugate of u. Similarly, if v is harmonic, a a harmonic function u
such that f = u+ iv is analytic is said to be a harmonic conjugate of v.
Harmonic conjugates are not unique, since, if v is a harmonic conjugate
of u, then v + c is also a harmonic conjugate, for any constant c.

Example 3.3. Let u(x, y) = x2 − y2. Suppose that

f(x+ iy) = u(x, y) + iv(x, y)



COMPLEX ANALYSIS 57

is differentiable. What is v? Well we know that ux = vy and uy = −vx.
Since ux = 2x and uy = −2y, it follows that vy = 2x. Integrating
with respect to y gives v(x, y) = 2xy + k(x), where k is an arbitrary
function of x. Now vx = 2y + k′(x) = −uy = 2y. So that k′ = 0 and k
is a constant.

Hence v(x, y) = 2xy + C where C is a constant. Thus

f(x+ iy) = x2 − y2 + 2ixy + iC = (x+ iy)2 + iC.

Thus f(z) = z2 + iC.

We saw earlier that if we take z = reiθ then
1

1− z
=

1

1− reiθ
=

1− r cos θ + ir sin θ

r2 − 2r cos θ + 1
. (3.10)

Notice that 1/(1 − z) is differentiable. So the real and imaginary
parts must be harmonic. Here however we have written the function
in terms of polar coordinates.

Lemma 3.8. The two dimensional Laplace equation when expressed in
polar coordinates x = r cos θ and y = r sin θ is

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0. (3.11)

Proof. We set x = r cos θ and y = r sin θ. Applying the chain rule to
calculate the derivatives ∂2/∂x2 and ∂2/∂y2 in terms of ∂2/∂r2, ∂2/∂θ2

and ∂/∂r gives the result. �
We therefore deduce the following.

Proposition 3.9. The functions

K1(r, θ) =
1− r cos θ

r2 − 2r cos θ + 1
, (3.12)

K2(r, θ) =
r sin θ

r2 − 2r cos θ + 1
, (3.13)

are solutions of the two dimensional Laplace’s equation in polar coor-
dinates.

The function K1 is essentially what is known as the Poisson kernel
on the disc. The Poisson kernel allows us to solve a very important
class of boundary value problems for the Laplace equation. This is
discussed in Differential Equations.
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4. Integration in the Complex Plane

We begin with the straightforward remark that if h1, h2 : [a, b] → R

are integrable functions then the integral of h(t) = h1(t) + ih2(t) is
defined by setting∫ b

a

h(t)dt =

∫ b

a

h1(t)dt+ i

∫ b

a

h2(t)dt.

This is not surprising, but it is important in what follows.
When studying complex integration we are primarily interested in

integration along paths, or contours. A contour integral is an integral
along some contour in the complex plane. In particular we will be
interested in contour integrals taken around closed paths. For such
integrals the most important result is the Cauchy Theorem. This is
also probably the most important result in complex analysis. In this
section however, we will introduce some of the basic facts about contour
integrals.

We start with the definition of a contour.

Definition 4.1. A simple, smooth contour between two points z0, z1 ∈
C, is a parameterised curve γ : [a, b] → C such that

(1) γ′(t) exists and is continuous for all t ∈ [a, b]

(2) γ(a) = z0, γ(b) = z1.

(3) γ does not pass through any point twice.

An integral of a complex function can be defined by analogy with the
theory of Riemann integrals. However we will sidestep this and define
our integral in such a way that it does the job we want it to do. The
motivation as we shall see, comes from physics.

Definition 4.2. Let f : D ⊆ C → C be a continuous function. Sup-
pose that z0, z1 ∈ D. Let γ : [a, b] → S be a simple smooth contour,
with γ(a) = z0 and γ(b) = z1. Then the contour integral

∫
γ
f(z)dz is

defined by ∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt. (4.1)

Where does this idea come from? In physics, the work done on a
body by a force F over a total displacement d is

W = F · d.
Roughly we can think of it as the total energy expended. If a body
is moved around a closed curve however, the total work done might
actually be zero, but the physics need not concern us.
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Now let the force at time t acting at the point x(t) be F(x(t)). The
change in total work done in moving from x(t) to x(t +Δt) is

W (t+Δt)−W (t) ≈ F(x(t)) · [x(t+Δt)− x(t)].

So that
W (t+Δt)−W (t)

Δt
≈ F(x(t)) · [x(t+Δt)− x(t)]

Δt
.

Taking the limit of both sides as Δt → 0 gives

W ′(t) = F(x(t)) · x′(t).

Thus the total work done moving from x(a) to x(b) is

W =

∫ b

a

F(x(t)) · x′(t)dt.

This is known as a line integral. This definition is for vectors F and
curves x(t) on Rn. The definition of a contour integral is taken from
this. It turns out to be an extremely useful idea.

An important observation is that there is more than one path be-
tween z0 and z1. Thus in general there should be more than one possible
value for the integral of f between two points in the complex plane.
Integration along two different paths should give different values for the
integrals. This is correct. However there is an important case when
this is not true.

It turns out that if f has an anti-derivative F , then the value of the
contour integral of f from z0 to z1, does not depend upon the path we
take. It is said to be path independent. If the integral between z0 and
z1 is path independent then for any contour γ between z0 and z1 we
can write ∫

γ

f(z)dz =

∫ z1

z0

f(z)dz.

Thus our usual idea of an integral is actually a contour integral, where
the contour is γ(t) = t.

Example 4.1. Consider the function f(z) = z2. Take z0 = 0 and z1 =
1 + i. Take the path γ(t) = (1 + i)t, t ∈ [0, 1]. Clearly γ(0) = 0 and
γ(1) = 1 + i. We have f(γ(t)) = ((1 + i)t)2. Also γ′(t) = 1 + i. So by
definition ∫

γ

z2dz =

∫ 1

0

f(γ(t))γ′(t)dt

=

∫ 1

0

(1 + i)2t2(1 + i)dt

= (1 + i)3
∫ 1

0

t2dt =
(1 + i)3

3
= −2

3
+

2

3
i.

We will see below that this integral can be obtained in a rather easier
manner since it is in fact path independent.
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Exercise. Show that if f(z) = z2 and γ(t) = t2 + it, t ∈ [0, 1], then∫ 1

0

f(γ(t))γ′(t)dt = −2

3
+

2

3
i.

Example 4.1. Let f(z) = z2 and take the contour γ(t) = eit, t ∈ [0, π].
Then by our definition∫

γ

f(z)dz =

∫ π

0

f(γ(t))γ′(t)dt

=

∫ π

0

(eit)2ieitdt,

since γ′(t) = ieit. Hence∫
γ

f(z)dz = i

∫ π

0

e3itdt

= i
1

3i

[
e3it

]π
0

=
1

3
(e3πi − 1)

= −2

3
.

4.0.1. Properties of Contour Integrals. A result from one dimensional
calculus which is often useful gives the length of a contour.

Proposition 4.3. Let γ : [a, b] → C be a simple smooth contour in C.
Then the length L(γ) of the contour between t = a and t = b is

L(γ) =

∫ b

a

|γ′(t)|dt (4.2)

where |z| is the modulus of z.

Proof. The length of a curve (x(t), y(t)), t ∈ [a, b] in R2 is

L =

∫ b

a

√
(x′(t))2 + (y′(t))2dt.

This is essentially an application of Pythagoras’ Theorem and the
method of Riemann sums. Applying this to the contour γ gives the
result. �

Another technical lemma which is extremely useful is the so called
ML inequality.

Lemma 4.4 (TheML inequality). Suppose that a complex valued func-
tion f : D ⊆ C → C has a maximum value of M on the contour γ.
Suppose also that the length of γ is L. Then∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ML. (4.3)
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Proof. We have∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ = ∣∣∣∣∫ b

a

f(γ(t))γ′(t)dt

∣∣∣∣
≤ max |f(γ(t))|t∈[a,b]

∫ b

a

|γ′(t)|dt
=ML.

�
As with integration of functions of a real variable, there is a funda-

mental theorem of contour integration. However unlike the real variable
version of the theorem, it is not used as often. The most important
result about contour integration is in fact Cauchy’s theorem, which we
discuss in the next chapter. Nevertheless, the Fundamental Theorem
does have important consequences.

4.1. The Fundamental Theorem of Contour Integration.

Theorem 4.5 (The fundamental theorem of contour integration). Sup-
pose that F ′ = f , D ⊆ C is open and f : D ⊆ C is continuous and γ
is a contour in D with end points z0 and z1. Then∫

γ

f(z)dz = F (z1)− F (z0) (4.4)

Proof. Suppose that γ(t), t ∈ [a, b] is a smooth contour which connects
z0 and z1. So that γ(a) = z0 and γ(b) = z1. Then by the chain rule

d

dt
F (z(t)) =

dF

dz

dz

dt
= f(γ(t))γ′(t), (4.5)

since F ′ = f and z(t) = γ(t). From the definition of a contour integral
we see that ∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

=

∫ b

a

d

dt
F (γ(t))dt

= [F (γ(t))]ba = F (γ(a))− F (γ(b))

= F (z1)− F (z0). (4.6)

This is true for any contour γ and hence the result is proven. �
Example 4.2. If we use the Fundamental Theorem to redo the integral
of f(z) = z2 between 0 and 1 + i we find that F (z) = z3/3 so that∫ 1+i

0

f(z)dz =

[
z3

3

]1+i

0

=
(1 + i)3

3
,

which is the same answer we found before.
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Example 4.3. Let f(z) = zez , γ(t) = t + it2, t ∈ [0, 1]. We set up the
integral

∫
γ
f(z)dz.

Since f(γ(t)) = (t+ it2)et+it2 and γ′(t) = 1 + it, by the definition∫
γ

f(z)dz =

∫ 1

0

f(t+ it2)(1 + it)dt

=

∫ 1

0

(1 + it)(t + it2)et+it2dt.

In principle we can evaluate this integral, but it is easier to use the
Fundamental Theorem. Since γ(0) = 0, γ(1) = 1 + i and

zez =
d

dz
(z − 1)ez, (4.7)

we have ∫
γ

f(z)dz =

∫ 1+i

0

zezdz

= [(z − 1)ez]1+i
0

= 1 + ie1+i.

4.2. Integration Along Several Contours. A very useful idea when
dealing with contour integrals is that of integrating along a series of
contours in succession. Suppose that γ1(t), t ∈ [a, b] and γ2(t), t ∈ [b, c]
define contours with γ1(b) = γ2(a). Then γ = γ1 + γ2 defines a contour
and it is not hard to show that∫

γ

f =

∫
γ1

f +

∫
γ2

f.

In fact we make this notion more general. If γ1, ..., γk, are contours,
then γ = γ1 + · · ·+ γk is a contour and we define∫

γ

f =

∫
γ1

f + · · ·+
∫
γk

f.

Example 4.4. A very important contour is the one which runs along the
real axis from z = −R to z = R and then moves in the semi- circular
arc of radius R back to its starting point at z = −R.

The contour along the real axis can be parameterised by setting
γ1(t) = t, −R ≤ t ≤ R. The semicircle part of the contour can be
parameterised by γ2(t) = Reit, 0 ≤ t ≤ π. Then by definition if
γ = γ1 + γ2 we have∫

γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz

=

∫ R

−R

f(t)dt+

∫ π

0

f(Reit)Rieitdt. (4.8)
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This particular contour is one of the most commonly used in complex
analysis.

An important result which flows from the fundamental theorem is
the following.

Theorem 4.6. Let f : D ⊆ C → C be a continuous differentiable
function. Then the following statements are equivalent.

(1) There exists a differentiable function F : D → C such that
F ′ = f throughout D.

(2)
∫
γ
f = 0 for every closed contour γ contained in D.

(3) The integral
∫
γ
f depends only on the endpoints of γ for any

contour γ in D.

Proof. First we prove that (1) implies (2). Let γ be a closed contour
connecting z0 to itself. Then by the existence of an antiderivative F
for f we get

∫
γ
f = F (z0)− F (z0) = 0.

To show that (2) implies (3) we let γ1 and γ2 be two contours con-
necting z0 and z1. Let γ = γ1− γ2. Then γ is a contour which starts at
z0 and moves along γ1 to z1 then moves back to z0 along γ2. Hence it
is a closed contour. By part (2) we have∫

γ

f = 0 =

∫
γ1

f −
∫
γ2

f.

Which tells us that
∫
γ1
f =

∫
γ2
f. This tells us that the contour integral

connecting z0 and z1 is independent of the path we take, which is the
content of (3).

Now we have to show that (3) implies (1). Fix some point z0 ∈ D
and take a second point z1 ∈ D. We wish to prove that there is an F
such that F ′(z1) = f(z1). We do this by constructing the function. Fix
some contour γ connecting z0 and z1. Then define

F (z1) =

∫
γ

f.

Now consider another point z1+h contained within D.We can connect
z1 and z1 + h by means of a line segment λ(t) = z1 + ht, for t ∈ [0, 1].
We must have

F (z1 + h) =

∫
γ

f +

∫
λ

f.

Thus

F (z1 + h)− F (z1) =

∫
γ

f +

∫
λ

f −
∫
γ

=

∫
λ

f.

This tells us that
F (z1 + h)− F (z1)

h
=

1

h

∫
λ

f.
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From the definition of a contour integral we can write∫
λ

g(z)dz =

∫ 1

0

g(λ(t))λ′(t)dt =
∫ 1

0

g(z1 + ht)hdt.

Now take g(z) = f(z1). Since z1 is fixed, f(z1) is a constant, so we
have ∫

λ

f(z1)

h
dz =

∫ 1

0

h
f(z1)

h
dt = f(z1).

Thus

F (z1 + h)− F (z1)

h
− f(z1) =

1

h

∫
λ

(f(z)− f(z1))dz.

Now f is continuous. So given ε there exists a δ > 0 such that

|z − z1| < δ =⇒ |f(z)− f(z1)| < ε.

We therefore choose |h| < δ, so that∣∣∣∣f(z)− f(z1)

h

∣∣∣∣ < ε

|h| .

By the ML inequality since the length of the contour λ is |h|, we
obtain ∣∣∣∣∫

λ

(f(z1)− f(z1))dz

∣∣∣∣ ≤ |h| ε|h| = ε.

This shows that for |h| < δ∣∣∣∣F (z1 + h)− F (z1)

h
− f(z1)

∣∣∣∣ < ε.

Since ε is arbitrary we deduce that

lim
h→0

F (z1 + h)− F (z1)

h
= f(z1).

Therefore F ′(z1) = f(z1). Which is of course (1). So (3) implies (1)
and the proof is complete.

�
Notice that the second part of the theorem tells us that if f has an

antiderivative, then
∫
γ
f = 0 for any closed contour γ. This is a special

case of Cauchy’s Theorem, which will be discussed in detail below.
However, it is not always the case that an antiderivative can be found

that is valid throughout the entire region. The next example turns out
to be crucial, though it looks innocuous.

Example 4.5. Integrate the function f(z) =
1

z
around a circular contour

of radius R centered at the origin.
Solution. Although ln z is an antiderivative for f , neither f nor the
logarithm are continuous at z = 0, which is a point contained with the
circle of radius R. So we cannot conclude that the integral around the
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closed circle is equal to zero. In fact is is not. To calculate the integral
we have to parameterise the contour. Handling circles is easy. We just
set γ(t) = Reit, 0 ≤ t < 2π. Then by definition for any f the contour

integral is
∫
γ
f(z)dz =

∫ 2π

0
f(Reit)Rieitdt. So the value of the integral

is ∫
γ

dz

z
=

∫ 2π

0

1

Reit
Rieitdt

= i

∫ 2π

0

dt = 2πi. (4.9)

Of interest in this example is that fact that the function 1/z has a
very special kind of singularity at z = 0. It is a pole and this function
actually plays a crucial part in the theory of integration of functions
of a complex variable. More precisely, this is a simple example of
the Cauchy residue theorem. The residue theorem is a consequence of
Cauchy’s theorem. So Cauchy’s Theorem and its consequences will be
the subject of the next chapter.
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5. Cauchy’s Theorem and its Consequences

In many ways, the real heart of complex analysis lies in Cauchy’s
integral theorem, its extensions and applications. This profound and
beautiful result displays the power of complex variables. It tells us
that the integral of a differentiable function around a closed simple
path is always equal to zero. This seemingly simple observation has
profound consequences. For one, it gives us an explicit formula for the
computation of contour integrals, which in turn allows us to evaluate
many real integrals.

Actually, the consequences of Cauchy’s Theorem go way beyond
merely evaluating integrals. We will be able to show that a func-
tion which is once differentiable in some Ω ⊆ C is actually infinitely
differentiable in Ω and equal to its Taylor series expansion through-
out Ω. We will be able to prove Liouville’s theorem, which says that a
bounded everywhere complex differentiable function is a constant. This
in turn leads to the fundamental theorem of algebra. There are many
more applications, which will hopefully justify to the reader the rather
grandiose claim that Cauchy’s Theorem is one of the most profound in
mathematics.

The full version of Cauchy’s Theorem is actually very difficult to
prove. Proofs of the theorem for Discs and rectangular regions, or
for more general so called star shaped domains may be obtained with
a considerable amount of work. The general result on an arbitrary
simply connected domain, however, is highly non trivial to prove. We
refer the reader to any advanced text on complex analysis for the result,
which we merely state. We will however prove a simple version of the
theorem.

Theorem 5.1 (Cauchy’s Theorem). Let f be differentiable in a simply
connected region D. Then for any simple closed contour γ in D,∫

γ

f(z)dz = 0. (5.1)

The full result is often called the Cauchy-Goursat theorem, since
Goursat established a proof under less stringent assumptions than
Cauchy did. We however will use the term Cauchy’s Theorem.

A version of Cauchy’s theorem for a triangle is relatively straight-
forward to prove and from this we can prove a version of the Cauchy
theorem on any star domain.

Definition 5.2. A simply connected open subset D ⊆ C is said to be
a star domain or star shaped domain with star centre z∗ if given any
point z ∈ D the line segment connecting z∗ and z is contained wholly
within D.

There are many examples of star domains. The simplest is an open
disc. The star centre in this case is just the centre of the disc. The
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interior on an ellipse is also a star domain. So is a rectangular region,
or a region bounded by a triangle. With this in mind we can now state
the following.

Theorem 5.3 (Cauchy’s Theorem for a triangle). Let f be a differ-
entiable function in a domain D. Let T be a triangle contained wholly
within D. Suppose that the boundary of T is denoted by ∂T . Then∫
∂T
f = 0.

Proof. See the book by Stewart and Tall [5] for the details. The basic
idea is rather ingenious and is due to E.H. Moore. The procedure is to
divide the triangle up into n subtriangles and use the ML Inequality
to estimate the size of the contour integral on each subtriangle. This
allows one to estimate

∣∣∫
∂T
f
∣∣. In particular if |∂T | is the length of the

outer triangle, then one can show that for any ε > 0 the estimate∣∣∣∣∫
∂T

f

∣∣∣∣ ≤ (
1

4
)nε|∂T |2 (5.2)

holds. Since this holds for all ε > 0 we must have
∫
∂T
f = 0. �

Theorem 5.4. If f is differentiable in any star shaped domain D with
star centre z∗, the function F (z) =

∫ z

z∗ f(u)du is an antiderivative for
f .

Proof. We have to show that F is differentiable and F ′(z) = f(z).
Consider a triangle with vertices z∗, z1 and z1 + h, where h is small
enough so that all points lie in D. Now consider the contour consisting
of the straight edges of the triangle, traverses from z∗ to z1 then to
z1 + h then back to z∗. Since this is a closed contour and f is analytic,
the Cauchy theorem for a triangle tells us that∫ z1

z∗
f +

∫ z1+h

z1

f +

∫ z∗

z1+h

f = 0.

Now observe that∫ z1

z∗
f +

∫ z1+h

z1

f +

∫ z∗

z1+h

f = F (z1) +

∫ z1+h

z1

f −
∫ z1+h

z∗
f

= F (z1)− F (z1 + h) +

∫ z1+h

z1

f = 0 (5.3)

Or

F (z1 + h)− F (z1) =

∫ z1+h

z1

f,

which implies that

F (z1 + h)− F (z1)

h
=

1

h

∫ z1+h

z1

f. (5.4)
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We now calculate the limit as h → 0 to show that F ′ = f. The calcu-
lation of this limit is in fact exactly the same argument as in the last
part of the proof of 4.6 so we omit it. �

The consequence of this result is the following version of Cauchy’s
Theorem.

Theorem 5.5 (Cauchy’s Theorem on a star domain). If f is a differ-
entiable function in a star domain D, then for all closed contours γ in
D the integral

∫
γ
f = 0. Moreover, the integral of f between any two

points in D is independent of path.

Proof. This is a straightforward corollary to the previous theorem and
theorem 4.6. �

5.1. Double Integrals and Green’s Theorem. Another proof uses
Green’s Theorem in the plane from multi-variable calculus. Before
presenting this, we revise some material on double integrals.

Let f(x, y) be a continuous function defined over some region

D = {(x, y) ⊆ R
2, a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}.

Then

∫ ∫
D

f(x, y)dydx =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dydx

=

∫ b

a

(∫ g2(x)

g1(x)

f(x, y)dy

)
dx.

Equally, if we can write

D = {(x, y) ⊆ R
2, h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d},

then ∫ ∫
D

f(x, y)dydx =

∫ d

c

∫ h2(y)

h1(y)

f(x, y)dxdy

=

∫ d

c

(∫ h2(y)

h1(y)

f(x, y)dx

)
dy.

The point is that if f is continuous and hence integrable, the order of
integration does not matter.

Example 5.1. Evaluate
∫ 4

1

∫ 2

−1
(2x+ 6x2y)dydx.
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Solution Using the definition we have∫ 4

1

∫ 2

−1

(2x+ 6x2y)dydx =

∫ 4

1

(∫ 2

−1

(2x+ 6x2y)dy

)
dx

=

∫ 4

1

[
2xy + 3x2y2

]2
−1
dx

=

∫ 4

1

(6x+ 9x2)dx

=
[
3x2 + 3x3

]4
1
= 234.

As an exercise, show that evaluating
∫ 2

−1

∫ 4

1
(2x+6x2y)dxdy produces

the same answer.

Example 5.2. Evaluate I =
∫ 2

0

∫ 2x

x2 (x
3 + 4y)dydx.

Solution. Again we use the definition as an iterated integral to obtain

I =

∫ 2

0

∫ 2x

x2

(x3 + 4y)dydx =

∫ 2

0

(∫ 2x

x2

(x3 + 4y)dy

)
dx

=

∫ 2

0

[
x3y + 2y2

]2x
x2 dx

=

∫ 2

0

(8x2 − x5)dx

=

[
8

3
x3 − 1

6
x6

]2
0

=
32

3
.

We can reverse the order of integration and the result will be the
same. We notice that if x2 = 2x then x = 0 or 2 and y = 2x implies
x = 1/2y and y = x2 gives x =

√
y. So the integral is

I =

∫ 4

0

∫ √
y

1/2y

(x3 + 4y)dxdy

=

∫ 4

0

[
1

4
x4 + 4xy

]√y

1/2y

dy

=

∫ 4

0

(
4y3/2 − y4

64
− 7y2

4

)
dy

=
32

3
.

For certain regions we can work with different coordinate systems.
Circular regions are best described by polar coordinates. We set

x = r cos θ, y = r sin θ, 0 ≤ a ≤ r ≤ b <∞, 0 ≤ θ1 ≤ θ ≤ θ2 ≤ 2π.

The most important thing to remember when doing integration in polar
coordinates is that

dxdy = rdrdθ.
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In general if we make a change of variables x = x(u, v), y = y(u, v)
then in the new coordinates

dxdy =

∣∣∣∣∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣ dudv = ∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u

∣∣∣∣ dudv. (5.5)

Taking the absolute value means that the result is not changed if we
swap the columns of the matrix. The matrix appearing in the deter-
minant,

J(u, v) =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
(5.6)

is called the Jacobian (after Carl Jacobi, 1804-1851). So

dxdy = |detJ(u, v)|dudv.
The Jacobian represents the derivative of a function from R2 → R2.

More precisely, if

f(x, y) =

(
f1(x, y)
f2(x, y)

)
,

then the function

L(h) =

(
f1(a, b)
f2(a, b)

)
+

(
∂f1
∂x

(a, b) ∂f1
∂y

(a, b)
∂f2
∂x

(a, b) ∂f2
∂y

(a, b)

)(
h1
h2

)
, (5.7)

is the best linear approximation to

f(a+ h) =

(
f1(a+ h1, b+ h2)
f2(a+ h1, b+ h2)

)
,

when ‖h‖ is small. Here
∂f1
∂x

(a, b) is
∂f1
∂x

evaluated at the point (a, b)

etc.
This idea for the meaning of the derivative is actually the same as

we use in the one variable case, where

f(a+ h) ≈ f(a) + f ′(a)h,

when h is small. We think of the derivative in this way in higher
dimensions because the one dimensional definition

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

does not make sense in the case when f and h are vectors.
As an example, consider the case when we change variables by letting

x = u+ v and y = u− v. Then

J(u, v) =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=

(
1 1
1 −1

)
,

so that |det(J(u, v))| = 2 and dxdy = 2dudv.
Exercise. Use the relations x = r cos θ and y = r sin θ and the Jacobian
to show that dxdy = rdrdθ.
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Solution

J(r, θ) =

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
.

Thus |det(J(r, θ))| = r cos2 θ + r sin2 θ = r. Hence dxdy = rdrdθ.

Example 5.3. Integrate the function f(x, y) =
√
x2 + y2 over the semi-

circle of radius 1 with centre (0, 0).
Solution
We work in polar coordinates. The semi-circle is the region 0 ≤ r ≤ 1

and 0 ≤ θ ≤ π. We also have f(x, y) =
√
x2 + y2 = r. So that if D

denotes the semi-circle we have∫ ∫
D

f(x, y)dxdy =

∫ 1

0

∫ π

0

r2drdθ

=

∫ 1

0

πr2dr

=

[
1

3
πr3

]1
0

=
1

3
π.

It should be clear that the area of the region D is given by

A =

∫ ∫
D

dxdy. (5.8)

We also define the average value of a function f over a region D by

f̄ =
1

A

∫ ∫
D

f(x, y)dxdy.

These concepts are important in physics and engineering, where we
often need to calculate quantities like the centre of mass for some body,
but we will not discuss these problems.

An important result in multi-variable calculus relates a line integral
to a double integral. It is known as Green’s Theorem in the plane.
There are also versions which holds in three dimensions, but we will
not discuss them.

We can integrate a function f(x, y) over a curve in the plane in the
following way. We suppose the curve C is given by y = g(x), x ∈ [a, b].
Then we define

∫
C

f(x, y)dx =

∫ b

a

f(x, g(x))dx.

Example 5.4. Integrate f(x, y) = y2 over the curve y = cosx, for
x ∈ [0, π/2].

Solution
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The definition gives∫
C

f(x, y)dx =

∫ π/2

0

cos2 xdx

=

∫ π/2

0

1

2
(1 + cos(2x))dx

=

[
x

2
+

1

4
sin(2x)

]π/2
0

=
π

4
.

As in the case of the contour integral, these so called line integrals are
often taken over closed curves. Typically we think of this as integrating
over a curve g1(x) and a second curve g2(x) where the curves satisfy
g1(a) = g2(a) and g1(b) = g2(b). Suppose that the curve is traversed
from right to left along g1 and then from left to right along g2 in order
to get back to the starting point, then we would have∮

C

f(x, y)dx =

∫ b

a

f(x, g1(x))dx−
∫ b

a

f(x, g2(x))dx. (5.9)

The minus sign in front of the second integral is because we are moving
backwards to arrive back at the start point. If the curve is traversed
anti-clockwise, we say that the orientation is positive.

The following result was proved by George Green in 1828 in a paper
on the theory of electricity and magnetism. Green was an important
mathematician and physicist who was almost entirely self taught before
entering university, having only completed a year at school.

Theorem 5.6 (Green’s Theorem). Let D be a simply connected region
in R2 and let C be its piecewise smooth boundary, which is traversed
counterclockwise. Let P and Q be continuous with continuous first
partial derivatives in a disk containing D. Then∮

C

Pdx+Qdy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy. (5.10)

Proof. Our proof is taken from Grossman [1], p941. We suppose that
D can be described by D = {(x, y) : a ≤ x ≤ b, g1(x) ≤ g2(x)} or
D = {(x, y) : h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d}. Then∫ ∫

D

∂P

∂y
dxdy =

∫ b

a

(∫ g2(x)

g1(x)

∂P

∂y
dy

)
dx

=

∫ b

a

[P (x, y)]
g2(x)
g1(x)

=

∫ b

a

[P (x, g2(x))− P (x, g1(x))]dx



COMPLEX ANALYSIS 73

Comparing this to (5.9) we have∮
C

Pdx = −
∫ b

a

[P (x, g2(x))− P (x, g1(x))]dx

so that ∫ ∫
D

(
−∂P
∂y

)
dxdy =

∮
C

Pdx.

Repeating this calculation with the second description of the region D
gives ∫ ∫

D

∂Q

∂x
dxdy =

∮
C

Qdy.

Combining these gives the result. �

Example 5.1. Evaluate the line integral
∮
C
(xydx+ (x− y)dy) where C

is the boundary of the rectangle {(x, y) : 0 ≤ x ≤ 1, 1 ≤ y ≤ 3}.
Solution We let P (x, y) = xy,Q(x, y) = x − y. Then ∂Q

∂x
= 1 and

∂P
∂y

= x. So

∮
C

(xydx+ (x− y)dy) =

∫ 1

0

∫ 3

1

(1− x)dydx

=

∫ 1

0

(1− x)y
∣∣3
1
dx

=

∫ 1

0

2(1− x)dx

= 1.

Example 5.2. Evaluate
∮
C
((x3 + y3)dx+ (2y3 − x3)dy) where C is the

unit circle.
Solution We compute the partial derivatives

∂P

∂y
= 3y2,

∂Q

∂x
= −3x2. (5.11)

So that

∮
C

((x3 + y3)dx+ (2y3 − x3)dy) = −3

∫ ∫
x2+y2≤1

(x2 + y2)dxdy

= −3

∫ 2π

0

∫ 1

0

r3drdθ
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since dxdy = rdrdθ. So we have∮
C

((x3 + y3)dx+ (2y3 − x3)dy) = −3

∫ 2π

0

r4

4

∣∣1
0
dθ

= −3

4

∫ 2π

0

dθ

= −3π

2
.

With Green’s Theorem we can prove the following version of Cauchy’s
Theorem.

Theorem 5.7 (Cauchy). Let D be a simply connected domain in C,
and let f(z) be a differentiable function on D. Then for any simple,
closed, piecewise smooth curve γ in D∫

γ

f(z)dz = 0.

Proof. The idea is to set up the integral
∫
γ
f(z)dz in terms of u and v.

Since z = x+ iy then dz = dx+ idy. Thus∫
γ

f(z)dz =

∫
γ

(u+ iv)(dx+ idy)

=

∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy). (5.12)

To this last expression we can now apply Green’s Theorem. If Ω denotes
the interior of γ then by Green’s Theorem∫

γ

(udx− vdy) =

∫ ∫
Ω

(
−∂v
∂x

− ∂u

∂y

)
dxdy (5.13)

But −∂v
∂x

= ∂u
∂y

by the Cauchy Riemman equations. So that∫
γ

(udx− vdy) = 0. (5.14)

We also have ∫
γ

(vdx+ udy) =

∫ ∫
Ω

(
∂u

∂x
− ∂y

∂y

)
dxdy, (5.15)

Since ∂u
∂x

= ∂y
∂y

by the Cauchy-Riemann equations it is clear that∫
γ

(vdx+ udy) = 0. (5.16)

Thus
∫
γ
f(z)dz = 0. �

More general versions of Cauchy’s Theorem require more sophisti-
cated methods and make use of the Jordan curve theorem. The reader
is advised to consult a more advanced text if she wishes to learn more.
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Chapters 8 and 9 of Stewart and Tall provides a good starting point for
more advanced work. We will conclude this section with an important
generalisation of the Cauchy Theorem. This is Cauchy’s Theorem for
a system of contours.

Theorem 5.8 (Cauchy’s integral theorem for a system of contours).
Let D be an arbitrary domain in the complex plain and let f be a
differentiable function on D. Let C, γ1, ..., γn be a system of n + 1
closed contours contained in D which satisfy the following conditions:

(1) The interior of C contains every contour γ1, ..., γn.

(2) For every k = 1, ..., n the exterior of γk contains γj, j �= k.

(3) D contains the multiply connected domain

Ω = I(C)− I(γ1)− · · · − I(γn)

with boundary C ∪ γ1 ∪ · · · ∪ γn.
Then ∫

C

f(z)dz =

∫
γ1

f(z)dz + · · ·+
∫
γn

f(z)dz

where all the contours are taken in the same direction. (e.g. all coun-
terclockwise).

Note. The technical conditions here are not difficult to understand.
The first says that each smaller contour γi is wholly contained in the
larger, outer contour C. The second condition just means that no two
of the interior contours overlap each other. The third just means that
the domain D actually contains the entire set of curves, with no bits
missing. This will always be true if D is simply connected.

A proof of this result can be found in Silverman [2].
We however are more interested in what can be done with this most

remarkable theorem.

5.2. Applications of Cauchy’s Theorem. As a first application of
the theorem, we will establish the values of the so called Fresnel inte-
grals.

Example 5.3. Evaluate the Fresnel integrals. That is, show that∫ ∞

0

cos(t2)dt =

∫ ∞

0

sin(t2)dt =

√
π

2
√
2
. (5.17)

Example 5.4. Solution. We consider the function f(z) = eiz
2
. This is

entire, so we may certainly use Cauchy’s Theorem. As always with a
contour integral, the trick is to choose the right contour. In this case
we consider γ = γ1 + γ2 − γ3 where

(1) γ1(t) = t 0 ≤ t ≤ R,
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γ1π

4

γ2γ3

R

Figure 1. A wedge shaped Contour.

(2) γ2(t) = Reit 0 ≤ t ≤ π
4
,

(3) γ3(t) = tei
π
4 0 ≤ t ≤ R.

This contour runs along the real axis to z = R, then moves in a
circular arc from z = R through an angle of π/4 radians (45 degrees).
Then it moves along the straight line segment from z = Reiπ/4 back to
the origin. See Figure 1.

By Cauchy’s theorem
∫
γ
f = 0. At first glance this does not appear

to be terribly useful. However we observe the following. For all R > 0∫
γ

f =

∫
γ1

f +

∫
γ2

f −
∫
γ3

f

=

∫ R

0

eit
2

dt+

∫ π/4

0

eiR
2e2itRieitdt−

∫ R

0

eit
2eiπ/2

eiπ/4dt = 0.

Since eiπ/2 = i and eiπ/4 = 1/
√
2 + i/

√
2 Cauchy’s Theorem tells us

that for all R > 0∫ R

0

eit
2

dt+

∫ π/4

0

eiR
2e2itRieitdt = (

1√
2
+

i√
2
)

∫ R

0

e−t2dt. (5.18)

Now we examine the middle integral.∣∣∣∣∣
∫ π/4

0

eiR
2e2itRieitdt

∣∣∣∣∣ ≤
∫ π/4

0

∣∣∣eiR2e2itRieit
∣∣∣ dt

= R

∫ π/4

0

∣∣∣eiR2e2it
∣∣∣ dt

= R

∫ π/4

0

e−R2 sin 2tdt ≤ π

4R
(1− e−R2

). (5.19)

Where we have used the well known estimate that sin t ≥ 2t/π for 0 <
t < π/2. The evaluation of the last integral in (5.19) is straightforward.
Hence
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0 ≤
∣∣∣∣∣ limR→∞

∫ π/4

0

eiR
2e2itRieitdt

∣∣∣∣∣ ≤ lim
R→∞

π

4R
(1− e−R2

) = 0.

So limR→∞
∫ π/4

0
eiR

2e2itRieitdt = 0.
So we take the limit as R → ∞ in (5.18) to obtain

lim
R→∞

(∫ R

0

eit
2

dt+

∫ π/4

0

e−R2e2itRieitdt

)
= lim

R→∞
(
1√
2
+

i√
2
)

∫ R

0

e−t2dt.

(5.20)

Which gives ∫ ∞

0

eit
2

dt = (
1√
2
+

i√
2
)

∫ ∞

0

e−t2dt. (5.21)

Since
∫∞
0
e−t2dt = 1

2

√
π this implies∫ ∞

0

(
cos(t2) + i sin(t2)

)
dt = (

1√
2
+

i√
2
)
1

2

√
π.

Equating the real and imaginary parts gives∫ ∞

0

cos(t2)dt =

√
π

2
√
2∫ ∞

0

sin(t2)dt =

√
π

2
√
2
.

Observe that since cos(t2) is even, then
∫∞
−∞ cos(t2)dt = 2

∫∞
0

cos(t2)dt.

The same is true for sin(t2). With a change of variables we therefore
obtain the more general result that for a > 0∫ ∞

−∞
cos(at2)dt =

∫ ∞

−∞
sin(at2)dt =

√
π

2a
. (5.22)

These integrals play a role in a number of areas, especially optics.

Example 5.5. Use Cauchy’s Theorem to show that∫ ∞

−∞

1− cos t

t2
dt = π.

Solution. For this integral we consider the function f(z) = (1−eiz)/z2.
The motivation for this is that for real z the real part of f is the
integrand we are interested in. This is actually an interesting example
to consider, because of what happens with the imaginary part of the
integral. We proceed as follows.

Here the contour we choose is in four parts. The problem is that f
has an obvious singularity at z = 0. However the singularity is isolated
and so we choose a contour which does not include z = 0. Our contour
is defined as follows. γ = γ1 − γε + γ2 + γR where
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γ1 γ2
γϵ

γ3

R-R

Figure 2. An indented Semicircular Contour.

(1) γ1(t) = t −R ≤ t < ε

(2) γε(t) = εeit 0 ≤ t ≤ π

(3) γ2(t) = t ε ≤ t ≤ R

(4) γR(t) = Reit 0 ≤ t ≤ π.

This contour starts at z = −R moves along the real axis to z = −ε,
then moves in a circular arc to z = ε (thus missing the singularity at
z = 0, then moves along the real axis to z = R then moves in a circular
arc from z = R back to z = R. So it consists of a line segment, a
semi-circle, another line segment, then another semi-circle. It is closed
and f is analytic inside and on the contour, since the singularity at
z = 0 is excluded. See Figure 2

Cauchy’s Theorem gives∫ −ε

−R

1− eit

t2
dt−

∫
γε

1− eiz

z2
dz +

∫ R

ε

1− eit

t2
dt+

∫
γR

1− eiz

z2
dz = 0.

First we consider the integral over the contour γR. We easily obtain
the estimate ∣∣∣∣1− eiz

z2

∣∣∣∣ ≤ 1 + |eiz|
|z|2 =

2

|z|2 ,
by the triangle inequality. On the semicircle of radius R |z| = R, so
that ∣∣∣∣1− eiz

z2

∣∣∣∣ ≤ 2

R2
.

Now since the length of the semi circle of radius R is πR, the ML
inequality gives ∣∣∣∣∫

γR

1− eiz

z2
dz

∣∣∣∣ ≤ 2π

R
. (5.23)
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So

∫
γR

1− eiz

z2
dz → 0 as R → ∞.

From this we can conclude that∫ −ε

−∞

1− eit

t2
dt+

∫ ∞

ε

1− eit

t2
dt = −

∫
γε

1− eiz

z2
dz.

By Taylor’s Theorem, eiz = 1+ iz − z2

2!
− iz

3

3!
+ eξz z4

4!
for some ξz. As

z → 0 it is clear that ξz → 0, since e0 = 1. Therefore the function

f(z) = − i

z
+

1

2
+ i

z

3!
− eξz

z2

4!
= − i

z
+ A(z)

where A(z) =
1

2
+ i

z

3!
− eξz

z2

4!
is an analytic function. So

∫
γε

1− eiz

z2
dz =

∫
γε

(
− i

z
+ A(z)

)
dz

= −i
∫ π

0

iεeit

εeit
dt+

∫ π

0

A(εeit)iεeitdt

= π −
∫ π

0

A(εeit)iεeitdt. (5.24)

Now ∫ π

0

A(εeit)iεeitdt = ε

∫ π

0

(
1

2
+ i

εeit

3!
− eξεeit

ε2e2it

4!

)
ieitdt.

So

lim
ε→0

∫ π

0

A(εeit)iεeitdt = lim
ε→0

ε

∫ π

0

(
1

2
+ i

εeit

3!
− eξεeit

ε2e2it

4!

)
ieitdt

= lim
ε→0

ε

∫ π

0

1

2
dt+ lim

ε→0
ε2

∫ π

0

ieit

3!
dt

− lim
ε→0

ε3
∫ π

0

eξεeite2it

4!
dt = 0, (5.25)

since all three integrals are finite and bounded. The first two integrals
can be computed directly. For the final, observe that ξz is the error
term in the approximation of eiz on the interval [0, π] by a Taylor
polynomial. So by Taylor’s Theorem |eξz | ≤ e0 = 1. This gives∣∣∣∣∫ π

0

eξεeite2it

4!
dt

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣eξεeite2it4!

∣∣∣∣ dt
≤

∫ π

0

dt

4!
=

1

24
.

This is all we need to do the integral because
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lim
ε→0

(∫ −ε

−∞

1− eit

t2
dt+

∫ ∞

ε

1− eit

t2
dt

)
= lim

ε→0

∫
γε

1− eiz

z2
dz.

So ∫ ∞

−∞

1− eit

t2
dt =

∫ ∞

−∞

1− cos t− i sin t

t2
dt = π. (5.26)

Equating the real parts gives the result. What about the imaginary
parts? Can we conclude that∫ ∞

−∞

sin t

t2
dt = 0? (5.27)

Actually no, because the integral does not exist. The singularity at
zero is not integrable. In fact what we have computed is the Cauchy
Principle Value of the integral. In fact we have also computed the
Cauchy Principle Value of the integral we set out to determine as well.
It just so happens that this integral actually exists, whereas the second
does not. We will discuss this in more detail below.

The reader may observe that even though we are able to evaluate
the integrals in question, there is quite a lot of work involved in each
one. It would be nice if there was an easier way to do integrals. In fact
there is. For our next application of Cauchy’s Theorem we introduce
a method of evaluating an enormous range of integrals. This is the
famous Cauchy integral formula.

5.3. The Cauchy Integral Formula.

Theorem 5.9. Let f be differentiable in an open set Ω which contains
a closed disc DR = {z ∈ C : |z − z0| ≤ R}. If CR is the boundary of
D where the path is assumed to be traversed counterclockwise then for
|z − z0| < R

f(z) =
1

2πi

∫
CR

f(ξ)

ξ − z
dξ. (5.28)

Proof. We define the function

F (ξ) =
f(ξ)− f(z)

ξ − z

and observe that it is differentiable in the domainDR−{z}.We consider
a circle Sε of radius ε about the point z, traversed counterclockwise.
The circle Sε is contained inside CR. The key to the proof lies in the
fact that ∫

CR

F (ξ)dξ =

∫
Sε

F (ξ)dξ. (5.29)
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This is a simple consequence of Cauchy’s Theorem for a system of
contours applied to the contours CR and Sε, since Sε is wholly contained
within CR.

Since limξ→z F (ξ) = f ′(z) it follows that F is bounded inside Sε.
That is, there is an M > 0 such that |F (ξ)| ≤ M for all ξ. We observe
that the length of the circle Sε is 2πε. So the ML Inequality gives∣∣∣∣∫

Sε

F (ξ)dξ

∣∣∣∣ ≤M(2πε). (5.30)

Now because ∣∣∣∣∫
CR

F (ξ)dξ

∣∣∣∣ = ∣∣∣∣∫
Sε

F (ξ)dξ

∣∣∣∣ ≤ 2Mπε, (5.31)

for all ε > 0 and ε is arbitrary, it follows that∫
CR

F (ξ)dξ = 0. (5.32)

Next we will show that∫
CR

1

ξ − z
dξ = 2πi. (5.33)

To this end let CR be parameterised by γ(t) = z + Reit, 0 ≤ t ≤ 2π.
Then

∫
CR

1

ξ − z
dξ =

∫ 2π

0

1

z +Reit − z
Rieitdt

= i

∫ 2π

0

dt = 2πi.

Next observe that∫
CR

F (ξ)dξ =

∫
CR

f(ξ)− f(z)

ξ − z
dξ = 0.

Hence ∫
CR

f(ξ)

ξ − z
dξ =

∫
CR

f(z)

ξ − z
dξ = f(z)

∫
CR

1

ξ − z
dξ

= 2πif(z).

This of course says that

f(z) =
1

2πi

∫
CR

f(ξ)

ξ − z
dξ.

This establishs the result.
�
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The consequences of this result are very important. Properly under-
stood, complex analysis is actually a good deal easier than real analysis.
The reasons are not hard to understand. Recall our discussion of the
term analytic: In real variable theory an analytic function is one which
is equal to its Taylor series expansion. That is, a real function f(x)
which is analytic at x0, must be infinitely differentiable at x0 and must
be equal to the power series Tf (x) =

∑∞
n=0 f

(n)(x − x0)
n/n! in some

interval of positive length containing x = x0.
There are many examples of functions of a real variable which are

once differentiable, but not twice. There are also functions which are
infinitely differentiable, but not analytic. For example the function
defined by f(x) = exp(−1/x2) for x �= 0 and f(x) = 0 for x = 0, is
infinitely differentiable at x = 0. In fact it is not hard to show that
f (n)(0) = 0 for all n. Thus the Taylor series expansion of f about 0 is
Tf(x) = 0 for all x. Clearly the Taylor series for f is equal to f only
at x = 0 and not at any other point. So there is no interval containing
x = 0 on which f equals its Taylor expansion. Therefore, although f
is infinitely differentiable, it is not analytic.

So for real functions, being analytic is a very strong property. A real
valued function can be once differentiable, but not twice differentiable.
However for complex differentiable functions, this is not possible. If
f(z) is a function of a complex variable, and f ′(z) exists, then it must
be infinitely differentiable and it must equal its Taylor series. To see
why this is so, we need to study the Cauchy integral formula.

We know that if f is differentiable and C is a circle containing z then

f(z) =
1

2πi

∫
C

f(ξ)

ξ − z
dξ.

If we can differentiate the integral, then we get

f ′(z) =
1

2πi

∫
C

f(ξ)

(ξ − z)2
dξ.

Differentiating n times would give

f (n)(z) =
n!

2πi

∫
C

f(ξ)

(ξ − z)n+1
dξ.

Thus if the integral can be differentiated, then we obtain an expres-
sion for the nth derivative of f for all n. This is exactly what happens.

Corollary 5.10. If f is differentiable in an open set D, then f has in-
finitely many derivatives in D. Moreover if C ⊂ D is a circle contained
in D whose interior is also contained in D then

f (n)(z) =
n!

2πi

∫
C

f(ξ)

(ξ − z)n+1
dξ,

for all z in the interior of C. We assume that C is traversed counter-
clockwise.
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Proof. The proof is by induction. We assume that f has n− 1 deriva-
tives and that

f (n−1)(z) =
(n− 1)!

2πi

∫
C

f(ξ)

(ξ − z)n
dξ.

We then consider the derivative quotient. Namely

f (n−1)(z + h)− f (n−1)(z)

h
=

=
(n− 1)!

2πi

∫
C

f(ξ)
1

h

[
1

(ξ − z − h)n
− 1

(ξ − z)n

]
dξ. (5.34)

The key is to show that

lim
h→0

1

h

[
1

(ξ − z − h)n
− 1

(ξ − z)n

]
=

n

(ξ − z)n+1
− (∗)

as h→ 0. This limit is simply

d

dz

1

(ξ − z)n−1
=

n

(ξ − z)n+1
.

However let us calculate the limit directly. We recall the factorisation

an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1).

We take a =
1

(ξ − z − h)
and b =

1

(ξ − z)
. We see that

a− b =
h

(ξ − z − h)(ξ − z)
.

Which gives the expression

1

h

[
1

(ξ − z − h)n
− 1

(ξ − z)n

]
=

1

h

h

(ξ − z − h)(ξ − z)
(an−1 + an−2b+ · · ·+ abn−2 + bn−1)

=
1

(ξ − z − h)(ξ − z)
(an−1 + an−2b+ · · ·+ abn−2 + bn−1).

The limit as h→ 0 of (*) is now easy to calculate.

lim
h→0

(
1

(ξ − z − h)

)k

=
1

(ξ − z)k
,

for all k = 0, 1, 2, ... and

1

(ξ − z − h)(ξ − z)
→ 1

(ξ − z)2
.
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So that

1

(ξ − z − h)(ξ − z)
(an−1 + an−2b+ · · ·+ abn−2 + bn−1)

→ 1

(ξ − z)n+1
+ · · ·+ 1

(ξ − z)n+1
.

In other words

1

h

[
1

(ξ − z − h)n
− 1

(ξ − z)n

]
→ n

(ξ − z)n+1
,

as claimed. Thus

lim
h→0

f (n−1)(z + h)− f (n−1)(z)

h
= f (n)(z) =

n!

2πi

∫
C

f(ξ)

(ξ − z)n+1
dξ.

Since the result holds in the n = 1 case, it holds for all n by induction.
�

As our first application of this result we will prove that every differ-
entiable complex function is equal to its Taylor series.

Theorem 5.11. Let f be a differentiable function in an open set D.
If S is a disc centered at z0 with closure contained in D then f has a
power series expansion in S centered at z0. That is

f(z) =

∞∑
n=0

an(z − z0)
n,

for all z ∈ S with the coefficients of (z − z0)
n given by

an =
1

n!
f (n)(z0).

Proof. We begin with the Cauchy integral formula. Let C be the
boundary of the disc S. Then

f(z) =
1

2πi

∫
C

f(ξ)

ξ − z
dξ.

Observe that

1

ξ − z
=

1

ξ − z0 − (z − z0)
=

1

ξ − z0

1

1−
(

z−z0
ξ−z0

) .
We now expand in a geometric series. Since z and z0 are in the interior

of the disc and ξ is on the boundary of the disc, is clear that
∣∣∣ z−z0
ξ−z0

∣∣∣ < 1.

Therefore, since for |r| < 1 we have 1/(1− r) = 1+ r+ r2+ · · · we can
write

1

1−
(

z−z0
ξ−z0

) = 1 +

(
z − z0
ξ − z0

)
+

(
z − z0
ξ − z0

)2

+ · · · =
∞∑
n=0

(
z − z0
ξ − z0

)n

.
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This gives the expression for f

f(z) =
1

2πi

∫
C

f(ξ)

ξ − z
dξ

=
1

2πi

∫
C

f(ξ)

ξ − z0

∞∑
n=0

(
z − z0
ξ − z0

)n

dξ

=
∞∑
n=0

(
1

2πi

∫
C

f(ξ)

(ξ − z0)n+1

)
(z − z0)

ndξ

=
∞∑
n=0

1

n!
f (n)(z0)(z − z0)

n,

by the Cauchy integral formula for f (n)(z0). We can swap the integral
and sum since the geometric series converges uniformly. �

Thus a complex function which is differentiable once is automatically
differentiable infinitely often and is equal to its Taylor series expansion!
This appears to be miraculous. It justifies using of the term ‘analytic’
to describe a function of a complex variable which has one derivative,
because such a function is analytic in the same sense of the word that
we gave for real valued functions. From this point on we will use the
term ‘analytic function’ more freely, particularly in cases where we the
existence of a Taylor series expansion is important.

To restate a point made previously, a complex valued function is

differentiable if limh→0
f(z+h)−f(z)

h
, exists. Now however, the origin can

be approached from infinitely many directions. Thus it is harder for a
function of a complex variable to be differentiable than for a function
of a real variable. It turns out that the only functions of a complex
variable which are differentiable even once, are precisely those given
by a power series expansion. If a function of a complex variable is not
given by a power series expansion, it cannot be differentiable. That
is what we have shown. So our apparent miracle is not really all that
surprising. Because differentiability is such a restrictive property for
functions of a complex variable, those functions which are differentiable
have much nicer properties than is the case for differentiable real valued
functions.

Another useful corollary of the Cauchy formula is the following. We
will use it in our proof of Liouville’s Theorem. We remark that the
closure of a region D is the union of D and its boundary. So if for
example D = {z ∈ C : |z − z0| < R}, the closure of D is

D = {z ∈ C : |z − z0| ≤ R}.
Corollary 5.12 (The Cauchy inequalities). Suppose that f is differ-
entiable in an open set that contains the closure of an open disc D of
radius R centered at z0. Denote the boundary of D by C. Then f (n)
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satisfies the inequality

|f (n)(z0)| ≤ n!||f ||C
Rn

, (5.35)

in which ||f ||C = supz∈C |f(z)| is the supremum of f on the circle C.

Proof. We parameterise the circle C by C(t) = z0+Reit for t ∈ [0, 2π].
Then by the Cauchy integral formula for the nth derivative

|f (n)(z)| =
∣∣∣∣ n!2πi

∫
C

f(ξ)

(ξ − z)n+1
dξ

∣∣∣∣
≤ n!

2π

∫
C

∣∣∣∣ f(ξ)

(ξ − z)n+1

∣∣∣∣ dξ
=
n!

2π

∫ 2π

0

∣∣∣∣f(z0 +Reit)

Rn+1
Rieit

∣∣∣∣ dt
=

n!

2πRn

∫ 2π

0

∣∣f(z0 +Reit)
∣∣ dt

≤ n!

2πRn

∫ 2π

0

||f ||Cdt = n!||f ||C
Rn

.

�
This is a technical result which we use to prove another very im-

portant property of differentiable functions. We recall that function
complex function f(z) which is differentiable for all z ∈ C is said to be
entire.

One of the differences between infinitely differentiable functions on
the real line and entire functions on C is given by Liouville’s Theorem.

Theorem 5.13 (Liouville’s Theorem). If f is an entire bounded func-
tion then it is constant.

Proof. The proof of this is a consequence of the Cauchy inequalities.
We take n = 1. Suppose that f is bounded. Then there is a realM > 0
such that |f(z)| ≤ M for all z ∈ C. Let z0 be the centre of a circle of
radius R. By the Cauchy inequality with n = 1 we have

|f ′(z0)| ≤ M

R
. (5.36)

This holds for any R and any z0. Letting R → ∞ we get f ′(z0) = 0.
Since this holds for all z0 we conclude that f must be a constant, since
the only functions whose derivative is everywhere zero are the constant
functions. �

This has some interesting applications. One is to answer an impor-
tant question about polynomials. This question goes back centuries.
Consider a polynomial pn(x) = a0 + a1x+ · · · anxn where a1, ..., an are
possibly complex numbers and an is not zero. How many solutions
does the equation pn(x) = 0 have? The answer is n and this was
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first proved by Argand in 1806, though Gauss had given an incomplete
proof in 1799. (The gap in Gauss’ proof is extremely subtle and was
not noticed at the time). Euler had failed to prove it and Leibniz and
Nicholas Bernoulli thought it was false. Since Argand, many different
proofs have been presented. The proof we give here is quite simple.

Theorem 5.14 (The fundamental theorem of algebra). Every polyno-
mial of degree n has exactly n complex roots.

Proof. We suppose that a polynomial Pn(z) is a polynomial of degree
n with no zeroes. Since Pn(z) is entire, then 1/Pn(z) must be an
entire function as well, since Pn(z) is never zero. But |1/Pn(z)| → 0
as |z| → ∞. Thus 1/Pn(z) is a bounded entire function. But 1/Pn(z)
is not a constant, so this contradicts Liouville’s Theorem. Thus Pn(z)
must have at least one zero, z1. Now define Pn−1(z) = Pn(z)/(z − z1).
This is a polynomial of degree n−1. Now repeat the previous argument
with Pn(z) replaced by Pn−1(z).We see that Pn−1(z) must have at least
one zero z2. Repeating the argument n times proves the result. �

It is worth noting that the roots of a polynomial with real coeffi-
cients have the following property. Suppose p(z) = anz

n + · · ·+ a0 and
a0, a1, ...an are real numbers. If z1 is a root of the polynomial, then so is
z̄1, the complex conjugate of z1. This is because of the easily verifiable
fact that for every complex number z, (z̄)n = z̄n. So that

p(z̄1) = p(z1) = 0.

Thus the complex roots come in pairs. This means that a real poly-
nomial of odd degree must have at least one real root, a fact which is
obvious anyway.

Liouville’s Theorem means that certain familiar functions have quite
different properties when we allow complex arguments. For example,
| cosx| ≤ 1 for real x, but this is no longer true if we let x be complex
number. In fact cos z = w always has a solution for all w ∈ C. The
same is true for sin z. Yet it is still true that cos2 z + sin2 z = 1.

5.4. Analytic Continuation. Complex differentiable functions have
more remarkable properties. In fact so strong is the notion of differ-
entiability that it gives rise to the concept of analytic continuation.
Specifically if two functions f and g agree on a small set, where they
are differentiable, then they must be the same function. This is the con-
tent of the next two results. Since this section relies on the existence
of a Taylor expansion, we will use the term analytic here.

Theorem 5.15. Suppose that f is analytic in a region Ω and that f
vanishes on a sequence of distinct points with a limit point contained
in Ω. Then f is identically 0.

Proof. The key is to use the fact that f has a Taylor series expansion.
We let the sequence on which f vanishes be {ξk}∞k=1 and suppose that
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the limit point of the sequence is z0. Next pick a disc D centered at
z = z0 and let

f(z) =

∞∑
n=0

an(z − z0)
n.

Since f is non zero, there is a smallest value of m for which am �= 0.
We thus write

f(z) =
∞∑

n=m

an(z − z0)
n

= am(z − z0)
m

∞∑
n=0

an+m

am
(z − z0)

n

= am(z − z0)
m (1 + g(z − z0)) .

The function g(z − z0) → 0 as z → z0.
Now we have assumed that f(ξk) = 0 for all k = 1, 2, 3, .... However

am(z − z0)
m has exactly one root of order m. Namely z = z0. So if

am(ξk − z0)
m �= 0 for all k then am = 0. Further 1 + g(ξ − z0)

n �= 0
for all k. But this means that f = 0. The remainder of the proof is to
extend this to the whole of Ω. We let U be the set of points in Ω for
which f(z) = 0. Then define V to be the complement of U. Clearly U
is nonempty since it contains z0. U is also closed. Since Ω = U ∪V and
Ω is connected, it follows that either U is empty or V is empty. But U
is not empty. So V must be. Thus Ω = U . In other words, f is zero
on the whole of Ω. �

The corollary of this result which we are interested in is the following.

Corollary 5.16. Suppose that f and g are analytic in a region Ω and
f(z) = g(z) for all z in some non-empty subset of Ω (or for a distinct
sequence of points with limit in Ω). Then f(z) = g(z) throughout Ω.

Proof. We apply the previous theorem to the function h = f − g. �

Analytic continuation is very useful and it has surprising conse-
quences. The idea is to take an analytic function defined on some
domain and extend it in a natural way to a larger domain. The point
of this theorem is that the analytic continuation is unique under cer-
tain reasonable conditions. The analytic continuation of a function can
reveal information that the original version of the function does not.
This is best illustrated by the Riemann zeta function, which we will
discuss shortly.

Consider as a simple example the two functions defined by

f(z) = 1− z2 + z4 − z6 + · · · , g(z) = 1

1 + z2
.



COMPLEX ANALYSIS 89

It is clear that for |z| < 1

f(z) =
1

1 + z2
.

Hence for all z in the interior of the unit disc, f and g are identical.
However g is defined for all z ∈ C except z = ±i. We may thus view
g as an analytic continuation of f to the whole of the complex plane,
except z = ±i.

There exist functions which cannot be analytically continued. A
classic example of this is the function defined by the power series

f(z) =

∞∑
n=0

zn!.

This function is defined on the unit disc where the series converges
absolutely. However it cannot be extended to any analytic function
defined outside the disc. The reason for this is that the boundary of
the disc is a natural barrier to the continuation of the function. If n ≥ q
then for any zpq = eiπp/q, which is a point on the boundary of the disc,
we have zn!pq = 1. From this it is not hard to show that for such a zpq,
f(z) → ∞ as z → zpq.

What is important here is that the points of the form eiπp/q are dense
on the boundary of the disc. What this means is that any point on
the boundary can be approximated arbitrarily closely by a point of the
form zpq. We assume that there is an analytic continuation of f which
we denote by F . The function F is to be defined on some region Ω
which overlaps in some part with the unit disc on which f is defined.
Since the points of the form zpq are dense on the boundary of the disc,
no matter how Ω is chosen it must contain at least one point of the
form zpq. Call this point z0. F is assumed to be analytic in Ω and hence
continuous. F (z0) must therefore be finite. Now there must be some set
of points around z0 on which F and f agree. So we can find an r with
0 < r < 1 for which F (rz0) = f(rz0). By continuity F (rz0) → F (z0) as
r → 1. But F (rz0) = f(rz0) for all r so F (rz0) → ∞ as r → 1. Hence
F (z0) = ∞. Which is a contradiction. So no such function F can exist
and f does not have an analytic continuation.

Exercise. Show that if we define f(z) =
∑∞

n=0 z
2n for |z| < 1 then f

has no analytic continuation past the unit disc.
We will conclude this section with two theorems on extending func-

tions. We will use the following in both theorems.

Definition 5.17. Let Ω+ be a region in the complex plane with the
property that for all z ∈ Ω+, �(z) > 0. That is, every element in
Ω+ sits above the real axis or on the real axis. Assume further that
there is an interval I on the real axis which forms a lower boundary
for Ω+. Then Ω− is the reflection of Ω+ in the real axis. That is
Ω− = {z ∈ C | z̄ ∈ Ω+}. We set Ω = Ω+ ∪ I ∪ Ω−.
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The proof of the next theorem may be found in Stein and Shakarchi
[3]. Our formulation is taken from there.

Theorem 5.18 (Symmetry principle). If f+ and f− are analytic func-
tions on Ω+ and Ω− respectively, that extend continuously to I and
f+(x) = f−(x) for all x ∈ I, then the function defined on Ω by

f(z) =

⎧⎪⎨⎪⎩
f+(z) if z ∈ Ω+

f±(z) if z ∈ I

f−(z) if z ∈ Ω−,

is analytic in Ω.

The main application of this result is the famous Schwarz reflection
principle. Again the formulation is taken from Stein and Shakarchi.

Theorem 5.19 (Schwarz reflection principle). Suppose that f is an
analytic function in Ω+ that extends continuously to I and such that f
is real valued on I. Then there exists a function F analytic in all of Ω
such that F = f on Ω+.

Proof. The proof is really an application of the symmetry principle,
which depends on actually constructing F by an obvious method. We
wish to define a function which is extends f to values of z below the
imaginary axis. So we define it to be the complex conjugate of f . That
is, for z ∈ Ω+ we set

F (z) = f(z̄).

To understand this construction, recall that elements of Ω− are the
complex conjugate of elements of Ω+. So that if z ∈ Ω− then z̄ ∈ Ω+.
Thus for z ∈ Ω−, it is clear that f(z̄) exists because z̄ is above the axis.
We then take the complex conjugate of this so that we don’t obtain
the same values for F twice. (F (z) = f(z) for z above the real axis.
So if we just set F (z) = f(z̄) for z below the axis, we would get the
same values twice. Taking the conjugate reflects the values about the
real axis).

We now have to show that F is analytic. Take two points z, z0 ∈ Ω−.
Then z̄, z̄0 ∈ Ω+. We know that f is analytic so it has a power series
expansion which we write

f(z) =

∞∑
n=0

an(z − z0)
n.

Thus

f(z̄) =
∞∑
n=0

an(z̄ − z̄0)
n.
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Which means that

F (z) = f(z̄) =

∞∑
n=0

an(z̄ − z̄0)n (5.37)

=

∞∑
n=0

an(z − z0)
n. (5.38)

Since F has a power series expansion in Ω− it is analytic in Ω−. Finally
we note that since f is real valued on I, then F extends continuously
onto I. Application of the symmetry principle tells us that F is analytic
on the whole of Ω and this completes the proof. �

5.4.1. The Riemann Zeta Function. One of the most important exam-
ples of analytic continuation arises from the Riemann Zeta function,
which is usually written as

ζ(z) =
∞∑
n=1

1

nz
.

This series is easily seen to converge for all z > 1 when z is real.
Euler studied this function and was able to relate it to the prime

numbers in the Euler product formula, which is one of the most famous
formulas in mathematics. Euler was a master at the manipulation of
infinite series and many of his proofs rely upon such manipulations.
This result uses one of the best examples of this style of proof.

Theorem 5.20 (Euler). Let z > 1. Then

ζ(z) =
∏

p prime

(
1− 1

pz

)−1

=
1(

1− 1
2z

) 1(
1− 1

3z

) 1(
1− 1

5z

) 1(
1− 1

7z

) 1(
1− 1

11z

) · · · .
Proof. This uses the Fundamental Theorem of Arithmetic: Every inte-
ger is either prime or can be written as a product of primes which is
unique up to order. We write each term 1

(1− 1
pz )

as the sum of a geomet-

ric series and multiply out the terms. By the Fundamental Theorem
of Arithmetic, for every n

1

nz
=

1

pz1 · · · pzk
,
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for some set of primes p1, ...., pk. Since the product is over all primes
we can write∏
p prime

(
1− 1

pz

)−1

=

(
1 +

1

2z
+

1

22z
+ · · ·

)(
1 +

1

3z
+

1

32z
+ · · ·

)
×

(
1 +

1

5z
+

1

52z
+ · · ·

)(
1 +

1

7z
+

1

72z
+ · · ·

)
· · ·

= 1 +
1

2z
+

1

3z
+

1

22z
+

1

5z
+

1

2z3z
+

1

7z
+ · · ·

= 1 +
1

2z
+

1

3z
+

1

4z
+

1

5z
+

1

6z
+

1

7z
+ · · ·

= ζ(z).

�
Euler’s product formula came to provide a link between analysis and

the theory of prime numbers. The distribution of the primes seems
almost random. Although Euclid’s Elements contain a proof that there
are infinitely many of them, little could actually be said about the
primes for the next two thousand years. Gauss at the age of 14 made a
conjecture about the actual number of primes less than a given number.
Legendre made the same conjecture a little later and actually published
it in 1792. If π(x) is the number of primes less than x, the conjecture
was that

lim
x→∞

π(x) ln x

x
= 1. (5.39)

In other words, the number of primes less than x is roughly x/ ln x.
Gauss later improved on this by arguing that π(x) is actually better
estimated by

∫ x

2
dt
ln t
. That is Gauss claimed

lim
x→∞

π(x)∫ x

2
dt
ln t

= 1. (5.40)

The Russian mathematician Chebyshev made an enormous contri-
bution to the problem, using only algebraic methods. He showed that
the result is at least “nearly” true. Meaning that the limit in (5.39) is
at least close to 1. The proof that equation (5.39) is true took over a
hundred years from Legendre’s initial paper. It is now called the Prime
Number Theorem and was proved independently in 1898 by Jacques
Hadamard and Charles de la Vallée Poussin. It turns out that both
(5.39) and (5.40) are true, but Gauss was right and the second gives a
much better estimate than the first. The first arises from the second
using integration by parts:∫ x

2

dt

ln t
=

x

ln x
− 2

ln 2
+

∫ x

2

1

(ln t)2
dt.
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There are 168 primes less than 1000 and
∫ 1000

2
dt
ln t

= 176.56. This is

not too bad. There are 9592 primes less than 100000 and
∫ 100000

2
dt
ln t

=
9628.76. Now the absolute error of this estimate is larger than for x =
100, but the relative error is smaller: |168−176.56| = 8.56 and |9592−
9628.76| = 36.76. However 169/176.56 = .952 and 9592/9628.76 =
.996.

As x grows, the relative error gets smaller, but the absolute error
increases. That is

∣∣π(x)− ∫ x

2
dt
ln t

∣∣ increases, but π(x)/ ∫ x

2
dt
ln t

gets closer
and closer to 1. The error in the approximation is believed to grow as√
x ln x but this is unproven. In fact this can be shown to be equivalent

to the Riemann Hypothesis.
Riemann founded the branch of mathematics which lead to the proof

of the Prime Number Theorem in an 8 page paper published in 1859.
He used complex analysis to study the Zeta function. His first step
was to establish an analytic continuation of the function. As Euler had
already done, he turned the sum into an integral.

Define the Gamma function

Γ(z) =

∫ ∞

0

e−ttz−1dt, (5.41)

which was first introduced by Euler. This is itself an analytic continu-
ation of the factorial, since Γ(n + 1) = n!. Now let t = nx to get

Γ(z) =

∫ ∞

0

nzxz−1e−nxdx. (5.42)

This can be rearranged to give

1

nz
=

1

Γ(z)

∫ ∞

0

xz−1e−nxdx, (5.43)

from which we have

ζ(z) =

∞∑
n=1

1

Γ(z)

∫ ∞

0

xz−1e−nxdx

=
1

Γ(z)

∫ ∞

0

xz−1
∞∑
n=1

(e−x)ndx

=
1

Γ(z)

∫ ∞

0

xz−1 e−x

1− e−xdx

=
1

Γ(z)

∫ ∞

0

xz−1

ex − 1
dx.

Riemann then went much further than Euler had and turned this
integral for ζ(z) into a contour integral. His contour is rather odd. It
starts at +∞, moves along at a height ε above the positive real axis,
circles zero and moves back to +∞ at a distance ε beneath the real axis.
This contour we call Cε. It can also be defined as coming from −∞,
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circling the origin and moving back to −∞ again. Riemann proved
that

2 sin(πz)Γ(z)ζ(z) = i lim
ε→0

∮
Cε

(−x)z−1

ex − 1
dx.

Starting with this, he was able to establish that ζ is an analytic
function with one singularity at the point z = 1 (in fact the singularity
is a pole or order one. Poles will be discussed later), and that it satisfies
a remarkable formula. He proved that

ζ(z) = 2zπz−1Γ(1− z) sin
(πz
2

)
ζ(1− z). (5.44)

This is called the functional equation for the Riemann zeta function.
Euler had conjectured that something like this was true. It is clear
from the functional equation that ζ(−2n) = 0 for all n = 0, 1, 2, ...,
because the term sin

(
πz
2

)
is zero at these points and Γ(1+2n) = (2n)!.

These are called the trivial zeroes. At the positive even integers this
argument fails because of the Γ(1− 2n) term. Specifically

lim
z→2n

sin
(πz
2

)
Γ(1− z) �= 0.

To see this we use a remarkable property of the Gamma function,
known as the reflection formula which is due to Euler.

Γ(z)Γ(1 − z) =
π

sin(πz)
.

So

sin
(πz
2

)
Γ(1− z) =

π sin
(
πz
2

)
Γ(z) sin(πz)

.

Since this limit is of the form 0/0 we use L’Hôpital’s rule to see that

lim
z→2n

sin
(πz
2

)
Γ(1− z) = lim

z→2n

π sin
(
πz
2

)
Γ(z) sin(πz)

= lim
z→2n

π2 cos
(
πz
2

)
2πΓ(z) cos(πz) + Γ′(z) sin(πz)

=
(−1)nπ

2Γ(2n)
.

So ζ(2n) is non-zero. Riemann conjectured that there should be
other zeroes in the complex plane and found the first examples. The
first non trivial zeroes are approximately,

1

2
± 14.1347i,

1

2
± 21.022i,

1

2
± 25.011i, ...

Notice that the real part of each of these is 1/2. Riemann believed that
every one of the so called non-trivial zero had real part equal to 1

2
. This

became known as the Riemann Hypothesis and it remains unproven.
It is considered to be one of the most important unsolved problems in
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mathematics. If it is true, it has profound consequences, but that is
well beyond the scope of our discussion.

Using Riemann’s ideas, Hadamard and de la Vallée Poussin were
able to prove the Prime Number Theorem. It turns out to be enough
to show that ζ(z) has no zeroes with real part equal to 1, but that
requires a considerable amount of work to prove. The point we want
to emphasise is that complex variable theory now plays a fundamental
role in the study of prime numbers.
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5.5. The Converse of Cauchy’s Theorem. The converse of Cauchy’s
Theorem is true. This is known as Morera’s theorem.

Theorem 5.21 (Morera’s Theorem). Suppose that f is a complex in-
tegrable function such that

∫
γ
f = 0 for all simple, closed contours γ

contained in a simply connected domain D. Then f is analytic in D.

Proof. This is a consequence of Theorem 4.6. This result tells us that
if

∫
γ
f = 0 for all contours γ then f has an antiderivative F . That

is F ′ = f. However we now know that if F is differentiable, then it is
infinitely differentiable. This means that F ′′ = d

dz
F ′ = d

dz
f = f ′ exists.

So f is analytic. �

This result contains another quite remarkable fact about complex
differentiable functions. If a function f is not differentiable, it can-
not have an antiderivative! This is not true in the real case. In the
real case, every continuous function g on a closed interval [a, b] has an
antiderivative defined by

G(x) =

∫ x

a

g(t)dt.

This is the content of the fundamental theorem of calculus.
Notice that if we pick g so that it is everywhere continuous but

nowhere differentiable, then G′ exists and in fact G′ = g, but G′′ does
not exist.

In the world of differentiable functions of a complex variable, this
behaviour is impossible. If F ′ exists, then F (n) must exist for all n. So
if F is an antiderivative for f , then F ′ = f exists, which implies that
F ′′ = f ′ exists. So if f has an antiderivative, then f must itself be
differentiable.

5.5.1. Sequences of Analytic Functions. Another way in which real val-
ued functions differ from complex valued functions is in the behaviour
of limits of sequence. In the theory of real variables, the behaviour of
sequences of functions is of great importance. There is considerable
subtlety involved in the subject, because limits of sequences of func-
tions don’t necessarily have the properties that we would wish. For
example, suppose that {fn} is a sequence of real, differentiable func-
tions that converge uniformly to the function f . It does not follow that
f is differentiable. The limit must be continuous, uniform convergence
guarantees that, but there is no reason why it has to be differentiable.
For example, if fn(x) =

√
x2 + 1/n2, then fn(x) → |x| uniformly, but

the limit function is not differentiable.
We do however have the following result which also holds for complex

valued functions. We will use it in the next theorem.
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Theorem 5.22. Let {fn}∞n=1 be a sequence of functions which con-
verges uniformly to a function f on some domain D. Then∫

D

fn →
∫
D

f.

The proof of this may be found in any standard real analysis text
such as Stein and Shakarchi’s book on real analysis [4].

With analytic functions of a complex variable, this problem does not
exist. If a sequence of analytic functions {fn}∞n=1 converges uniformly
then the limit function has to be analytic. We have the following result.

Theorem 5.23. Suppose that {fn}∞n=1 is a sequence of analytic func-
tions that converges uniformly on every compact subset of Ω to a func-
tion f . Then f is analytic in Ω.

Proof. This is an application of Morera’s Theorem. Suppose that D is
a disc contained in the closure of Ω and that T is any contour contained
in D. Observe that D is compact and that we can cover Ω with an
arbitrary collection of discs. By Cauchy’s Theorem

∫
T
fn = 0 for all n.

Since fn → f uniformly in D, then f is continuous and by Theorem
5.22 ∫

T

fn →
∫
T

f.

Since
∫
T
fn = 0 for all n, it follows that

∫
T
fn → 0 and so

∫
T
f = 0.

Since this is true for any T in D, it follows from Morera’s theorem that
f is analytic. Since we can perform this for any disc contained in Ω, it
follows that f is analytic in Ω. �

More than this is true. We can also say the following.

Theorem 5.24. Under the hypothesis of Theorem 5.23, the sequence of
derivatives {f ′

n}∞n=1 converges uniformly to f ′ on every compact subset
of Ω.

Proof. See Stein and Shakarchi, [3]. �

We conclude this section with a discussion of the behaviour of inte-
grals. This next result is extremely useful. The proof is not difficult
and may also be found in [3].

Theorem 5.25. Suppose that Ω ⊆ C is an open set and F (z, s) is a
function defined on the set Ω × [0, 1]. Suppose that F (z, s) is analytic
in z for each fixed value of s and that F is continuous on Ω × [0, 1].
Then the function defined by

f(z) =

∫ 1

0

F (z, s)ds

is analytic on Ω.
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There is nothing particularly special about the interval [0, 1].We can
use any compact interval [a, b], by a simple change of variables. As an
example, consider the function F (z) = g(s)e−2iπzs, where g is a real
valued, continuous function. Then F satisfies the conditions of the
theorem. So

f(z) =

∫ 1

0

g(s)e−2iπzsds

is an analytic function of z. But this is simply the Fourier coefficient of
g. Thus the Fourier coefficients of a continuous function g are analytic.

5.6. The Cauchy Integral Formula and the Poisson Kernel. We
show in 35231 that a solution of the Laplace equation on the disc DR

centered at 0 of radius R, with boundary value g is given by

u(r, θ) =
1

2π

∫ 2π

0

g(ϕ)(R2 − r2)

R2 − 2rR cos(θ − ϕ) + r2
dϕ.

This expression is easily seen to be a consequence of the Cauchy
integral formula. We know that for f differentiable,

f(z) =
1

2πi

∫
C

f(ξ)

ξ − z
dξ.

We will write the real and imaginary parts of f in terms of polar
coordinates, r, θ.( i.e f(z) = u(r, θ)+iv(r, θ)) and set ξ = Reiϕ, z = reiθ

for ϕ, θ ∈ [0, 2π]. Now observe that the point R2/z̄ lies outside the circle
C and so by the Cauchy integral formula

1

2πi

∫
C

f(ξ)

ξ − R2/z̄
dξ = 0. (5.45)

So we can write

f(z) =
1

2πi

∫
C

f(ξ)

(
1

ξ − z
− 1

ξ − R2/z̄

)
dξ

=
1

2πi

∫
C

f(ξ)
z −R2/z̄

(ξ − z)(w − R2/z̄)
dξ.

Using ξ = Reiϕ, z = reiθ we get

f(reiθ) =
1

2πi

∫ 2π

0

f(Reiϕ)
[reiθ − (R2/r)eiθ]iReiϕdϕ

[Reiϕ − reiθ][Reiϕ − (R2/r)eiθ]

=
1

2π

∫ 2π

0

f(Reiϕ)
R2 − r2

R2 − 2Rr cos(θ − ϕ) + r2
dϕ,

after some rather tedious messing about with Euler’s formula for eix.
Thus

u(r, θ) + iv(r, θ) =
1

2π

∫ 2π

0

(u(R,ϕ) + iv(R,ϕ))(R2 − r2)

R2 − 2Rr cos(θ − ϕ) + r2
dϕ,
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If R is fixed, we can consider u(R,ϕ) and v(R,ϕ) as functions of ϕ
only. Equating the real and imaginary parts we obtain

u(r, θ) =
1

2π

∫ 2π

0

ũ(ϕ)(R2 − r2)

R2 − 2rR cos(θ − ϕ) + r2
dϕ (5.46)

and

v(r, θ) =
1

2π

∫ 2π

0

ṽ(ϕ)(R2 − r2)

R2 − 2rR cos(θ − ϕ) + r2
dϕ, (5.47)

where ũ(ϕ) = u(R,ϕ) and ṽ(ϕ) = v(R,ϕ).
We know that the real and imaginary parts of f are harmonic. Thus

(5.47) and (5.46) are harmonic. Hence the Poisson kernel solution of
the Laplace equation is nothing more than a restatement of the Cauchy
integral formula. There is a great deal more that can be said about the
connection between Laplace’s equation and analytic functions. This is
a subject known as potential theory.
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6. Residues and the Evaluation of Integrals

6.1. Poles. We have seen that differentiable functions of a complex
variable are analytic in the sense that are equal to their Taylor expan-
sion in the region where the derivative exists. We are now going to
exploit this fact.

One of the most important applications of Cauchy’s integral formula
is the so called residue theorem. We will present this important result
in this section together with some applications. The idea behind the
residue theorem is the general principle in complex analysis that an
analytic function is characterised by its singularities and its zeroes.

For an analytic function there are three types of singularities possi-
ble.

(1) Removable singularities,

(2) Poles,

(3) Essential singularities.

Removable singularities are basically harmless. The idea is that the
singularity is only an apparent singularity because we have not de-
scribed the function appropriately. Suppose that f is not defined at
z0 but limz→z0 f(z) = L exists and is finite. Then z0 is a removable
singularity, because we can redefine f to equal L at z0.

For example, suppose

f(z) =
sin z

z
.

Then f is not defined at z = 0, but limz→0 f(z) = 1. So we can define

F (z) =

{
sin z
z

z �= 0

1 z = 0.

So if we take this as our definition, the apparent singularity at zero
vanishes and we have a continuous function.

Poles cannot be removed. However they are enormously useful. Sup-
pose that f has a singularity at z0, in the sense that | limz→z0 f(z)| = ∞,
but that there exists a disc D around z0 such that for all z ∈ D, with
z �= z0, f is finite and analytic. Then z0 is an isolated singularity.

Definition 6.1. Suppose that f is an analytic function with an isolated
singularity at z0.We say that z0 is a pole of order if the function defined
to be 1/f in a region D containing z0 and equal to zero at z0, is analytic
in D. A singularity which is neither removable, nor a pole, is called an
essential singularity.

An important property of a pole is its order. We will define this
shortly.
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For the next result we require the following property of analytic
functions.

Theorem 6.2. Suppose that f is an analytic function in some con-
nected region Ω with an isolated zero at z0. Then there is a neighbour-
hood D ⊆ Ω containing z0 and a nowhere vanishing function g and a
unique positive integer n such that

f(z) = (z − z0)
ng(z)

for all z ∈ D.

Proof. Since f is analytic it has a Taylor series expansion. We write

f(z) =

∞∑
k=0

ak(z − z0)
k.

There is a smallest integer n such that an �= 0. So we are able to write

f(z) =
∞∑
k=n

ak(z − z0)
k = (z − z0)

n

(
an +

∞∑
k=n+1

ak(z − z0)
k−n

)
= (z − z0)

ng(z), (6.1)

where g(z) = an+
∑∞

k=n+1 ak(z−z0)k−n. Clearly g(z0) �= 0, since an �= 0
and the terms in the power series vanish at 0. By continuity it is clear
that for z sufficiently close to z0, g will not vanish.

Now we want to show that the value of n is unique. Suppose that
we had two such integers n, m with n �= m. We could then write

f(z) = (z − z0)
ng(z) = (z − z0)

mh(z).

Suppose without loss of generality that n > m. Then we write

g(z) = (z − z0)
n−mh(z).

But this implies that g(z0) = 0 which is a contradiction. So the value
of n is unique. �
Theorem 6.3. Suppose that f has a pole at z0 ∈ Ω. Then there is a
positive integer n and neighbourhood D containing z0 and an analytic
function h such that for all z ∈ D with z �= z0

f(z) = (z − z0)
−nh(z).

We say that n is the order of the pole.

Proof. Since z0 is a pole, then 1/f is analytic with a zero at z0. So
there exists a non-vanishing analytic function g(z) and an integer n
such that 1/f(z) = (z − z0)

ng(z). Now g is nonvanishing, so h = 1/g
is analytic. Thus

f(z) = (z − z0)
−nh(z),

as claimed. �
Remark 6.4. A pole of order 1 is said to be a simple pole.
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6.2. Laurent Series. Functions which possess poles have a natural
expansion which is analogous to a Taylor series and may indeed be
seen as a generalisation of the classical Taylor series.

Theorem 6.5. Suppose that f is an analytic function with a pole of
order n at z0. Then there exist numbers {ak}∞k=−n such that

f(z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · ·+ a−1

z − z0
+

∞∑
k=0

ak(z − z0)
k.

(6.2)

Such an expansion is known as a Laurent series for f .

Proof. The proof is a corollary of our previous result. We can write

f(z) = (z − z0)
−nh(z),

where, since h is analytic, we have h(z) =
∑∞

k=0Ak(z − z0)
k. Hence

f(z) =
A0

(z − z0)n
+

A1

(z − z0)n−1
+ · · ·+ An−1

z − z0
+

∞∑
k=n

Ak(z − z0)
k−n

=
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · ·+ a−1

z − z0
+

∞∑
k=0

ak(z − z0)
k,

where a−n = A0, a−n+1 = A1 etc. �

Definition 6.6. The terms

a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · ·+ a−1

z − z0
,

are known as the principle part of the Laurent expansion. The number
a−1 is known as the residue of f at z0. We write Res(f(z), z0) = a−1.

Let us consider some examples. If we know the Taylor series expan-
sion for a function, computing the Laurent expansion is generally very
easy.

Example 6.1. Let f(z) =
ez

z3
. Then we know that

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+
z5

5!
+ · · · .

Hence

ez

z3
=

1

z3
+

1

z2
+

1

2z
+

1

3!
+
z

4!
+
z2

5!
+ · · · .

We see that z = 0 is a pole of order 3 and the residue at the pole is
1/2.



COMPLEX ANALYSIS 103

Example 6.2. The function f(z) =
cos z

z
has a Laurent series

cos z

z
=

1

z

(
1− z2

2!
+
z4

4!
− · · ·

)
=

1

z
− z

2!
+
z3

4!
− · · · .

So z = 0 is a pole of order 1 and the reside is 1.

Example 6.3. The function f(z) =
cos z

z2
has a Laurent series

cos z

z
=

1

z2

(
1− z2

2!
+
z4

4!
− · · ·

)
=

1

z2
− 1

2!
+
z2

4!
− · · · .

So z = 0 is a pole of order 2 and the reside is 0.

Example 6.4. We find the Laurent expansion for f(z) =
sin z

z4
. We use

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · · .

Then
sin z

z4
=

1

z3
− 1

6z
+
z

5!
− z3

7!
+ · · · .

The pole is again of order 3 and the pole is −1/6.

Example 6.5. Let f(z) =
cos z sin z

z4
. We can do this two ways. First

we multiply the series for cos z and sin z together. Now

cos z = 1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

We multiply the series for cos z and sin z term by term to get

cos z sin z =

(
1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

)(
z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

)
= z − 2z3

3
+

2z5

15
− 4z7

315
+ · · ·

And we have

f(z) =
1

z3
− 2

3z
+

2z

15
− 4z3

315
+ · · · .

We have another pole of order 3 and the residue is −2/3. An easier
way is to just note that sin(2z) = 2 sin z cos z so that

cos z sin z =
1

2

(
2z − (2z)3

3!
+

(2z)5

5!
+ · · ·

)
,

and the result follows.
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The most basic series is the geometric series. This is

1

1− z
= 1 + z + z2 + z3 + · · · =

∞∑
n=0

zn.

This series is convergent for |z| < 1. What about for |z| > 1? Can we
express this function as a series? Let us observe that

1

1− z
=

1

z(1
z
− 1)

= −1

z
(1 +

1

z
+

1

z2
+

1

z3
+ · · ·

= − 1

z2
− 1

z3
− 1

z4
− 1

z5
− · · ·

What we have done is expanded
1

1− 1
z

in powers of 1/z, which will

converge when 1/|z| < 1, or |z| > 1. So we have an infinite Laurent
expansion of the function, valid for |z| > 1.

Many series can be derived from the geometric series. For example,
suppose we take the identity

tan−1(z) =

∫ z

0

dt

1 + t2
.

Setting r = −t2 we have

1

1 + t2
= 1− t2 + t4 − t6 + t8 − · · ·

and integrating term by term we get

tan−1(z) =

∫ z

0

dt

1 + t2

=

∫ z

0

(1− t2 + t4 − t6 + t8 − · · · )dt

= z − z3

3
+
z5

5
− z7

7
+ · · ·

and this will be valid again for |z| < 1. We can also observe that

1

1 + t2
=

1

t2(1 + 1
t2
)

=
1

t2
(1− 1

t2
+

1

t4
− 1

t6
+ · · · )

=
1

t2
− 1

t4
+

1

t6
− 1

t8
+ · · ·

Now for |z| > 1 we have∫ ∞

z

dt

1 + t2
=
π

2
− tan−1 z. (6.3)
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So for |z| > 1

π

2
− tan−1 z =

∫ ∞

z

(
1

t2
− 1

t4
+

1

t6
− 1

t8
+ · · ·

)
dt

=
1

z
− 1

3z3
+

1

5z5
− 1

7z7
+ · · ·

Partial fractions are also useful sometimes. For example

z

z2 − 1
=

1

2(z + 1)
+

1

2(z − 1)

=
1

2

(
(1− z + z2 − z3 + · · · )− (1 + z + z2 + z3 + · · · ))

= −1

2
(z + z3 + z5 + z7 + · · · )

The residue of f at a pole is a crucial number. Residues are essential
in the calculation of many integrals. Therefore it is important to be able
to calculate residues effectively. There is, fortunately, a straightforward
method of doing this.

Theorem 6.7. Suppose that f has a pole at z0. If z0 is a simple pole
then

Res(f, z0) = lim
z→z0

(z − z0)f(z). (6.4)

If z0 is a pole of degree n �= 1 then

Res(f, z0) = lim
z→z0

1

(n− 1)!

dn−1

dzn−1
((z − z0)

nf(z)) . (6.5)

Proof. This is a simple exercise that we leave to the reader. It follows
easily from the definition of the residue and the Laurent expansion for
f . �

We often do not need to know the Laurent expansion for a function
to identify the poles and their orders. If we have a function

f(z) =
h(z)

P (z)
, z ∈ D ⊆ C,

where P is a polynomial and h is analytic in D, then z0 ∈ D will be
a pole of f if P (z0) = 0 and h(z0) �= 0. The order of the pole will
be the multiplicity of the root. Essentially, if h is analytic in D and,
z1, ..., zm ∈ D, then

f(z) =
h(z)

(z − z1)n1(z − z2)n2 · · · (z − zm)nm
,

has a pole of order n1 at z1, a pole or order n2 at z2 etc.

Example 6.6. Consider the function

eiz

z2 + 1
=

eiz

(z + i)(z − i)
.
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Since the numerator is analytic everywhere, the poles are the roots of
z2 + 1 = 0, which are clearly z = i,−i. The order of each pole is 1.
That is, they are simple poles. The residue at z = i is then

Res

(
eiz

z2 + 1
, i

)
= lim

z→i

(
(z − i)

eiz

(z + i)(z − i)

)
=
e−1

2i
.

At z = −i, the residue is

Res

(
eiz

z2 + 1
,−i

)
= lim

z→−i

(
(z + i)

eiz

(z + i)(z − i)

)
=

e1

−2i
.

Example 6.7. Consider the function

eiz

(z2 + 1)2
=

eiz

(z + i)2(z − i)2
.

As in the previous example, since the numerator is analytic everywhere,
the poles are the singularities of the function, which are the roots of
the (z2 + 1)2 = 0. These are clearly z = i,−i. The order of each pole
in this case is 2.

Since z = i is a pole of order 2

Res

(
eiz

(z2 + 1)2
, i

)
= lim

z→i

d

dz

(
(z − i)2

eiz

(z2 + 1)2

)
= lim

z→i

d

dz

(
(z − i)2

eiz

(z + i)2(z − i)2

)
= lim

z→i

d

dz

(
eiz

(z + i)2

)
= lim

z→i

(
ieiz

(z + i)2
− 2eiz

(z + i)3

)
= − i

2e
.

Similarly

Res

(
eiz

(z2 + 1)2
,−i

)
= lim

z→−i

d

dz

(
(z + i)2

eiz

(z2 + 1)2

)
= lim

z→i

d

dz

(
(z + i)2

eiz

(z + i)2(z − i)2

)
= lim

z→−i

d

dz

(
eiz

(z − i)2

)
= lim

z→−i

ieiz

(z − i)2
− 2eiz

(z − i)3

= 0.
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Example 6.8. The function f(z) =
sin z

z − 1
has a simple pole at z = 1.

We have

Res

(
sin z

z − 1
, 1

)
= lim

z→1
(z − 1)

sin z

z − 1
= sin 1.

Example 6.9. A harder example is f(z) = tan z =
sin z

cos z
. The singular-

ities of this function are at zn = (2n+1)π
2
, n = 0,±1,±2, .... These are

all simple poles. To see that z = π/2 is a simple pole, we can compute
the Laurent series around that point. We can expand sin z and cos z
as Taylor series around z = π/2. We use the formula

f(z) = f(z0) + f ′(z0)(z − z0) +
1

2!
(z − z0)

2 +
1

3!
(z − z0)

3 + · · · .
This gives

sin z = 1− 1

2

(
z − π

2

)2

+
1

4!

(
z − π

2

)4

− 1

6!

(
z − π

2

)6

+ · · · ,

cos z = −
(
z − π

2

)
+

1

3!

(
z − π

2

)3

− 1

5!

(
z − π

2

)5

+ · · · .
Notice that this is quite different from the familiar expansion around

z0 = 0. Now we are expanding sin z in even powers and cos z in odd
powers. We therefore have

tan z =
1− 1

2

(
z − π

2

)2
+ 1

4!

(
z − π

2

)4 − 1
6!

(
z − π

2

)6
+ · · ·

− (
z − π

2

)
+ 1

3!

(
z − π

2

)3 − 1
5!

(
z − π

2

)5
+ · · ·

.

Getting a series expansion for tan z in powers of z− π
2
is just a laborious

exercise. Let us extract the first term of the series. We write

1

− (
z − π

2

)
+ 1/6

(
z − π

2

)3 − 1/120
(
z − π

2

)5
+ · · ·

=
1

− (
z − π

2

) 1

1− 1
3!

(
z − π

2

)2
+ 1

5!

(
z − π

2

)4
+ · · ·

= − 1(
z − π

2

) (
1 + h(z) + h(z)2 + · · · )

= − 1

z − π
2

− h(z)

z − π
2

− h(z)2

z − π
2

− · · · ,

where h(z) = 1
3!

(
z − π

2

)2 − 1
5!

(
z − π

2

)4
+ · · · . So the first term of the

Laurent series is
−1

z − π
2

. Continuing this way we can slowly extract the

series

tan z = − 1

z − π
2

+
1

3

(
z − π

2

)
+

1

45

(
z − π

2

)3

+
2

945

(
z − π

2

)5

+ · · ·
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We immediately see that the residue at z = π/2 is −1. The residues
at the other poles have the same value. An easier way to compute this
Laurent expansion is with Mathematica. The command

Series[f [z], {z, z0, n}],
will return the first n terms of the series for f about the point z0. Notice
also that

lim
z→π/2

(z − π

2
) tan z = lim

z→π/2

(z − π
2
) sin z

cos z

= lim
z→π/2

sin z + (z − π
2
) cos z

− sin z

= −1.

Which is the value of the residue obtained from the Laurent series.
Notice also that

sec2 z =
d

dz
tan z

=
1(

z − π
2

)2 +
1

3
+

1

15

(
z − π

2

)2

+
2

189

(
z − π

2

)4

+ · · · ,

so that sec2 z has a pole or order 2 at z = π/2 and the residue at this
pole is zero.

Let us now observe something important about the residue of f at
a pole. Let

P (z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · ·+ a−1

z − z0
,

and let h denote the analytic part of f . That is, f(z) = P (z) + h(z).
Now let CR be a circle or radius R which is centered at z0 but does not
contain any other singularities of the function. We wish to calculate
the value of

∫
CR
f(z)dz.

First we note that since the integral is linear and h is analytic. There-
fore

∫
CR
h(z)dz = 0 by Cauchy’s Theorem. So we have∫

CR

f(z)dz =

∫
CR

(P (z) + h(z))dz =

∫
CR

P (z)dz +

∫
CR

h(z)dz

=

∫
CR

P (z)dz.

Next we calculate the term involving a−1. We have seen this done
before, but for convenience we repeat the computation here. Set z(t) =
z0 +Reit, t ∈ [0, 2π]. Then by definition of a contour integral we get∫

CR

a−1

z − z0
dz = a−1

∫
CR

dz

z − z0
dz = a−1

∫ 2π

0

iReit

Reit
dt = 2πia−1.
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Now we consider the terms involving a−k, k �= 1. With the same
parametrisation as before for z we get∫

CR

a−k

(z − z0)k
dz = a−k

∫
CR

dz

(z − z0)k
dz

= a−k

∫ 2π

0

iReit

(Reit)k
dt

= ia−kR
k−1

∫ 2π

0

e(k−1)itdt

= a−kR
k−1

[
1

k − 1
ei(k−1)t

]2π
0

= 0. (6.6)

So the only contribution to the integral comes from the residue at the
pole. We have thus proved the following remarkable theorem.

6.3. The Residue Theorem.

Theorem 6.8. Suppose that f is analytic function on a domain D
with a single pole of order n at z0 ∈ D. Let CR be a circle of radius R
centered at z0. Then∫

CR

f(z)dz = 2πiRes(f(z), z0). (6.7)

This result can be easily generalised. A proof is in Stewart and Tall
[5].

Theorem 6.9 (The residue theorem). Suppose that f is analytic in a
region Ω except at poles z1, ..., zN . Suppose that γ is a closed, simple
contour, traversed counterclockwise which does not pass through any
pole, but contains all the poles z1, ..., zN in its interior. Then∫

γ

f(z)dz = 2πi

N∑
k=1

Res(f(z), zk). (6.8)

Equation (6.8) is known as the residue formula.

Example 6.10. Let CR be a circle of radius R > 0 centered at zero.
Then ∫

CR

ez

z3
dz = 2πi× 1

2
= πi.

We computed the residue previously when we obtained the Laurent
series, see Example 6.1.

The only things that matter when doing an integral around a closed
contour are the values of the residues at the poles inside the contour.
If there is a pole outside the contour, it makes no contribution to the
integral.
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Example 6.11. Let C1 be a circle of radius 1 centered at zero. Then∫
C1

ez

(z + 4)3
dz = 0

since the pole at z = −4 is not inside the contour.

6.4. The Evaluation of Trigonometric Integrals. We can use the
residue theorem to evaluate a huge variety of real integrals. Let us begin
by evaluating some trigonometric integrals. The basic idea is to use the
fact that if z = eit then cos t = 1/2(z + 1/z) and sin t = 1/2i(z − 1/z).
Further dt = dz/iz. In this way many trigonometric integrals can be
reduced to contour integrals and evaluated by residues. The point
is that setting z = eit maps the interval [0, 2π] onto the unit circle
centered at the origin.

Example 6.1. Evaluate the integral
∫ 2π

0
(cos3 t+ sin2 t)dt.

Setting z = eit we map the interval [0, 2π] onto the unit circle. That
is, we can express the integral as∫ 2π

0

(cos3 t + sin2 t)dt =

∫
C

[(
1

2
(z + 1/z)

)3

+

(
1

2i
(z − 1

z
)

)2
]
dz

iz

=

∫
C

[
1

8i
z2 − 1

4i
z − 3i+

1

2iz
+

3

iz2
− 1

4iz3
+

1

iz4

]
dz,

where C denotes the unit circle. Let

f(z) =
1

8i
z2 − 1

4i
z − 3i+

1

2iz
+

3

iz2
− 1

4iz3
+

1

iz4
.

Then f has one pole. It is at z = 0. The residue can be simply read
off from the expansion. It is by definition the coefficient of 1/z which
in this instance is 1/2i.

Thus∫ 2π

0

(cos3 t + sin2 t)dt =

∫
C

f(z)dz = 2πiRes(f, 0) = 2πi× 1/2i = π.

Most integrals of the form
∫ 2π

0
Q(cos t, sin t)dt can, in principle at

least, be done this way.

Exercise 6.1. Evaluate the integral
∫ 2π

0
(cos4 t+sin4 t)dt using residues.

Example 6.2. Calculate the integral

∫ 2π

0

dt

a + b cos t
for a > |b|.

Solution. As before, we make the substitution z = eit. Then

1

a+ b cos t
=

1

a+ b
2
(z + 1/z)

=
z

b
2
z2 + az + b

2

=
2z/b

z2 + 2az/b + 1
.
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Our integral therefore becomes

∫ 2π

0

dt

a+ b cos t
=

∫
C

2z/b

z2 + 2az/b + 1

dz

iz

=
2

ib

∫
C

1

z2 + 2az/b+ 1
dz. (6.9)

The function f(z) =
1

z2 + 2az/b+ 1
has poles at the roots of

z2 + 2az/b+ 1 = 0.

By the quadratic formula

z =
−a±√

a2 − b2

b
.

Since a > |b| the roots are real. For the calculation of the integral we
are only concerned with the pole inside the unit circle. Remember, only
the poles inside the contour make a contribution to the integral. The
poles which lie outside the contour are ignored. The question is which
root, z1 = −(a +

√
a2 − b2)/b or z2 = −(a −√

a2 − b2)/b, is inside the
unit circle. Since a > |b|, it is clear that

|z1| =
∣∣∣(a+√

a2 − b2)/b
∣∣∣ ≥ |a/b| > 1,

so z1 is not in the unit circle. The other pole is in the unit circle. We
know that a−√

a2 − b2 > 0. The statement |z2| < 1 implies that

a−
√
a2 − b2 < |b| =⇒ a2 − 2a|b|+ b2 < a2 − b2, (6.10)

which in turn implies that a > |b| which is true. Thus z2 is in the unit
circle and we need only calculate the residue at z2. We have

Res(f(z), z2) = lim
z→z2

(z − z2)f(z)

= lim
z→−(a−√

a2−b2)/b

(z + (a−√
a2 − b2)/b)

(z + (a+
√
a2 − b2)/b)(z + (a−√

a2 − b2)/b)

=
b

2
√
a2 − b2

. (6.11)

So by the residue theorem we have∫ 2π

0

dt

a+ b cos t
=

2

ib

∫
C

f(z)dz =
2

ib
2πiRes(f(z), z2)

=
2π√
a2 − b2

. (6.12)

Example 6.3. Evaluate the integral

∫ π

0

dt

1 + b cos2 t
, b ≥ 1.
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Solution. First approach. We observe that

cos(t− π) = cos t cosπ − sin π sin t = − cos t.

Thus cos2 t = cos2(t−π). Now we use elementary properties of integrals
to write∫ 2π

0

dt

1 + b cos2 t
=

∫ π

0

dt

1 + b cos2 t
+

∫ 2π

π

dt

1 + b cos2 t

=

∫ π

0

dt

1 + b cos2 t
+

∫ π

0

du

1 + b cos2(u− π)

=

∫ π

0

dt

1 + b cos2 t
+

∫ π

0

du

1 + b cos2 u

= 2

∫ π

0

dt

1 + b cos2 t
.

So ∫ π

0

dt

1 + b cos2 t
=

1

2

∫ 2π

0

dt

1 + b cos2 t
.

As in the preceding two examples we now set z = eit to map the
interval [0, 2π] onto the unit circle C. This gives∫ π

0

dt

1 + b cos2 t
=

1

2

∫
C

1

1 + b
4
(z + 1/z)2

dz

iz

=
2

ib

∫
C

zdz

z4 + (2 + 4/b)z2 + 1
.

This integral can be evaluated by the residue theorem, though it is not
especially pleasant to have to compute the roots of the quartic here.
Let us try another method.
Second approach. Notice that cos2 t = 1

2
(1 + cos 2t). So∫ π

0

dt

1 + b cos2 t
=

∫ π

0

dt

1 + b/2(1 + cos 2t)
.

Now setting z = e2it maps the interval [0, π] onto the unit circle, and
cos 2t = 1

2
(z+1/z) and dt = dz/2iz. Making the change of variables in

the integral produces∫ π

0

dt

1 + b/2(1 + cos 2t)
=

∫
C

1

1 + b/2 + b/4(z + 1/z)

dz

2iz

=
2

ib

∫
C

dz

z2 + (2 + 4/b)z + 1
=

2

ib

∫
C

f(z)dz.

The roots of z2 + (2 + 4/b)z + 1 = 0 are

z1 =
−2 − b− 2

√
1 + b

b
, z2 =

−2− b+ 2
√
1 + b

b
.
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It is clear that |z1| > 1 since∣∣∣∣−2 − b− 2
√
1 + b

b

∣∣∣∣ = ∣∣∣∣2 + b+ 2
√
1 + b

b

∣∣∣∣ > 1.

The fact z2 is inside the unit circle follows from the fact that z2 is a
decreasing function of b with

lim
b→∞

z2 = lim
b→∞

(
2

√
1 + b− 1

b
− 1

)
= −1.

It is also clear that if b = 1 then z2 ≈ −0.171. Therefore−0.17 < z2 < 1
so that z2 is inside the unit circle.

We must calculate the residue of f(z) = 1
z2+(2+4/b)z+1

at z2.

Res(f(z), z2) = lim
z→z2

(z − z2)f(z)

= lim
z→−2−b+2

√
1+b

b

z − −2−b+2
√
1+b

b

(z − (−2−b−2
√
1+b

b
))(z − (−2−b+2

√
1+b

b
))

=
b

4
√
1 + b

.

Therefore ∫ π

0

dt

1 + b cos2 t
=

2

ib
2πiRes(f, z2) =

4π

b

b

4
√
1 + b

=
π√
1 + b

.

This result is actually true for all b > −1. It is a useful exercise to
prove this.

Exercise 6.2. Use contour integration to show that∫ π

0

dt

1 + b sin2 t
=

π√
1 + b

, b > −1.

6.5. Integration over the real line. Next we consider how to evalu-
ate integrals of the form

∫∞
−∞ f(x)dx by the residue theorem. We recall

from earlier in the notes some important facts. By definition, if f is a
continuous function then∫ ∞

−∞
f(x)dx = lim

T→∞

∫ ∞

−T

f(x)dx+ lim
K→∞

∫ K

0

f(x)dx. (6.13)

If the limit (6.13) exists, then it is true that∫ ∞

−∞
f(x)dx = P.V.

∫ ∞

−∞
f(x)dx, (6.14)

where the Cauchy principal value is defined by

PV

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx.
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It must be stressed that the Cauchy principal value can exist, even
when (6.13) does not exist. For example let f be odd. Then∫ R

−R

f(x)dx =

∫ 0

−R

f(x)dx+

∫ R

0

f(x)dx,

and putting x = −t in the first integral gives∫ 0

−R

f(x)dx = −
∫ R

0

f(t)dt (6.15)

so that ∫ R

−R

f(x)dx =

∫ 0

−R

f(x)dx+

∫ R

0

f(x)dx

= −
∫ R

0

f(x)dx+

∫ R

0

f(x)dx

= 0.

Thus for f odd,

P.V.

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx

= lim
R→∞

0

= 0.

Yet if we take f(x) = sin x which is odd, the integral∫ ∞

−∞
sin xdx = lim

T→∞

∫ ∞

−T

sin xdx+ lim
K→∞

∫ K

0

sin xdx

does not exist. Thus
∫∞
−∞ sin xdx does not exist, but

P.V.

∫ ∞

−∞
sin xdx = 0.

What we will do is derive a method for computing the Cauchy prin-
cipal value of an integral. If the integral converges, then this principal
value will be the actual value of the integral.

First we present a simple example, then we will prove a result which
will allow many more such integrals to be evaluated with less work.

Example 6.4. Use contour integration to show that∫ ∞

−∞

dx

1 + x2
= π.
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Solution. This integral can be done by elementary means, since∫ ∞

−∞

dx

1 + x2
= lim

R→∞

∫ 0

−R

dx

1 + x2
+ lim

R→∞

∫ R

0

dx

1 + x2

= lim
R→∞

[tan−1 x]0−R + lim
T→∞

[tan−1 x]T0

=
π

2
+
π

2
= π.

We however will use a contour integral to illustrate a very powerful

γ1

γ2

R-R

Figure 3. A Semicircular Contour.

method. We integrate f(z) =
1

1 + z2
along the semicircular contour

γ = γ1(x)+γ2(x) where γ1(x) = x, −R ≤ x ≤ R and γ2(x) = Reix, 0 ≤
x ≤ π. See Figure 3.

The function f has two simple poles at ±i since

f(z) =
1

(z + i)(z − i)
.

The only pole inside the contour is at z = i. We easily see that

Res(f(z), i) = lim
z→i

(z − i)f(z) = lim
z→i

z − i

(z + i)(z − i)
=

1

2i
.

Now the residue theorem says that∫
γ

f(z)dz = 2πiRes(f(z), i) = π,

since z = i is the only pole inside γ. (Remember, only the poles inside
the curve contribute to the integral).

By the definition of a contour integral we have∫
γ

f(z)dz =

∫ R

−R

dx

1 + x2
+

∫ π

0

Rieix

R2e2ix + 1
dx.



116 MARK CRADDOCK

We see that R2e2ix+1 = R2(cos(2x)+i sin(2x))+1. Since cos(2x) ≥ −1
we have

|R2e2ix + 1| =
√

(R2 cos(2x) + 1)2 +R4 sin2(2x)

=
√
R4 + 2R2 cos(2x) + 1

≥
√
R4 − 2R2 + 1

=
√

(R2 − 1)2,

so that for R > 1, |R2e2ix+1| ≥ R2−1. From this we have the estimate∣∣∣∣ Rieix

R2e2ix + 1

∣∣∣∣ ≤ R

R2 − 1
.

Therefore ∣∣∣∣∫ π

0

Rieix

R2e2ix + 1
dx

∣∣∣∣ ≤ ∫ π

0

R

R2 − 1
dx =

πR

R2 − 1
→ 0

as R→ ∞.
We conclude that

lim
R→∞

∫
γ

f(z)dz = lim
R→∞

∫ R

−R

dx

1 + x2
+ lim

R→∞

∫ π

0

Rieix

R2e2ix + 1
dx

= lim
R→∞

∫ R

−R

dx

1 + x2
= π.

What does this mean? What we have shown is that

P.V

∫ ∞

−∞

dx

1 + x2
= π.

However, if the integral
∫∞
−∞ f(x)dx exists, it is equal to its principle

value. The integral we want exists, and so we can conclude that∫ ∞

−∞

dx

1 + x2
= π.

This might seem rather a lot of work to do an integral that can be
done by elementary means. However, we can also prove the following.

Proposition 6.10. Suppose that f is analytic in the upper half plane
(z) ≥ 0 except at finitely many poles, none of which lie on the real
axis. Suppose further that there is a constant A > 0 such that for large
enough R, |f(z)| ≤ A/Rk, k ≥ 2 on the semicircle z = Reit, 0 ≤ t ≤ π.
Then ∫ ∞

−∞
f(x)dx = πiΣ (6.16)

in which Σ denotes the sum of the residues in the upper half plane.
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Proof. The residue theorem tells us that the integral around the closed
contour γ of the previous example satisfies

∫
γ
f(z)dz = 2πiΣ. The

condition on the growth of f guarantees that∣∣∣∣∫ π

0

f(Reit)Rieitdt

∣∣∣∣ ≤ 2πA

Rk−1
→ 0

as R→ ∞, since k > 1. Now since∫
γ

f(z)dz =

∫ R

−R

f(x)dx+

∫ π

0

f(Reix)Rieixdx

we can say that

lim
R→∞

∫
γ

f(z)dz = lim
R→∞

∫ R

−R

f(x)dx = 2πiΣ.

The growth condition |f(x)| ≤ A/x2 for large x, is enough to guarantee
the convergence of the integral

∫∞
−∞ f(x)dx. Thus∫ ∞

−∞
f(x)dx = P.V.

∫ ∞

−∞
f(x)dx = 2πiΣ

as claimed. �
Example 6.5. Evaluate the integral∫ ∞

−∞

dx

(x2 + a2)(x2 + b2)

where a, b > 0 and a2 �= b2.

Solution. That f(x) =
1

(x2 + a2)(x2 + b2)
satisfies the required bound

is clear: For large x, the function behaves roughly like 1/x4. The only
poles of f in the upper half plane are at z = ia, z = ib. Both are poles
of order one. So

Res(f(z), ia) = lim
z→ia

(z − ia)

(z − ia)(z + ia)(z2 + b2)
=

1

2ia(b2 − a2)

Res(f(z), ib) = lim
z→ib

(z − ib)

(z2 + a2)(z + ib)(z − ib)
=

1

2ib(a2 − b2)
.

We therefore conclude that∫ ∞

−∞

dx

(x2 + a2)(x2 + b2)
= 2πi

(
1

2ia(b2 − a2)
+

1

2ib(a2 − b2)

)
=

π

ab(a + b)
.

Example 6.6. We show that∫ ∞

−∞

x2dx

(x2 + 1)2(x2 + 2x+ 2)
=

7π

50
.
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The function

f(z) =
z2

(z2 + 1)2(z2 + 2z + 2)
,

has poles of order 2 at z = ±i and poles of order 1 at the roots of

z2 + 2z + 2 = 0. These are z = −2±√
4−8

2
= −1 ± i. So the poles we

want are z0 = i, z1 = −1 + i. We calculate the residues.

Res(f(z), i) = lim
z→i

d

dz

(
(z − i)2z2

(z − i)2(z + i)2(z2 + 2z + 2)

)
= lim

z→i

d

dz

(
z2

(z + i)22(z2 + 2z + 2)

)
= lim

z→i
− 2z (z3 + z2 − iz − 2i)

(z + i)3 (z2 + 2z + 2)2

= − 3

25
+

9

100
i

Next

Res(f(z),−1 + i) = lim
z→−1+i

(z − (−1 + i))z2

(z2 + 1)2(z − (−1 + i))(z − (−1− i))

= lim
z→−1+i

z2

(z2 + 1)2(z − (−1− i))

=
3

25
− 4

25
i.

Thus∫ ∞

−∞

x2dx

(x2 + 1)2(x2 + 2x+ 2)
= 2πi

(
− 3

25
+

9

100
i+

3

25
− 4

25
i

)
=

7π

50
.

Example 6.7. Show that ∫ ∞

0

dx

1 + x6
=
π

3
.

The function f(z) =
1

1 + z6
has poles at the roots of z6 + 1 = 0, or

z6 = eπi+2kπi

These are z1 = eiπ/6, z2 = e−iπ/6, z3 = i, z4 = −i, z5 = e5πi/6 and
z6 = e−5πi/6.
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The poles z1, z3 and z5 are above the axis. So we need the residues
at these points.

Res(f(z), z1) = lim
z→z1

(z − z1)f(z)

= lim
z→eiπ/6

1

6z5
=

1

6
e−5πi/6

Res(f(z), z3) = lim
z→z1

(z − z1)f(z)

= lim
z→i

1

6z5
=

1

6i

and

Res(f(z), z5) = lim
z→z5

(z − z1)f(z)

= lim
z→e5πi/6

1

6z5
=

1

6
e−25πi/6 =

1

6
e−πi/6

So we have∫ ∞

−∞

dx

1 + x6
= 2πi

(
1

6
e−5πi/6 +

1

6i
+

1

6
e−πi/6

)
= 2πi

(
−
√
3

12
− i

12
− 1

6
i+

√
3

12
− i

12

)
=

2π

3
.

Since f(x) is even, we can write∫ ∞

0

dx

1 + x6
=

1

2

∫ ∞

−∞

dx

1 + x6
=
π

3
.

Exercise 6.3. Verify the values of the following integrals using the
method of the previous two examples.∫ ∞

−∞

dx

1 + x4
=

π√
2
.

∫ ∞

−∞

dx

1 + x8
=

π

8 sin
(
π
8

) .
One of the most important applications of infinite integrals arise from

the theory of Fourier transforms. If a function f : R → R is integrable,
then the Fourier transform of f is defined by the integral

f̂(y) =

∫ ∞

−∞
f(x)e−iyxdx.

If f̂ is integrable, then we recover f by Fourier inversion.

f(x) =
1

2π

∫ ∞

−∞
f̂(y)eiyxdy.
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Computing Fourier transforms is an enormously important problem in
mathematics, statistics, physics, chemistry, engineering, medical imag-
ing, image processing, astronomy and numerous other areas. In proba-
bility theory, the Fourier transform is called the characteristic function.

The methods we have developed here are essential to this task. Let
us do an example.

Example 6.8. We calculate the Fourier type integral∫ ∞

−∞

eiyx

(x2 + a2)(x2 + b2)
dx,

where again a, b and a �= b and y is real.

Solution. The function f(z) =
eiyz

(z2 + a2)(z2 + b2)
decreases at the same

rate as the function in Example 6.5 and the poles in the upper half plane
are at z = ia and z = ib. So

Res(f(z), ia) = lim
z→ia

(z − ia)eiyz

(z − ia)(z + ia)(z2 + b2)
=

e−ay

2ia(b2 − a2)

Res(f(z), ib) = lim
z→ib

(z − ib)eiyz

(z2 + a2)(z + ib)(z − ib)
=

e−by

2ib(a2 − b2)
.

Which gives∫ ∞

−∞

eiyx

(x2 + a2)(x2 + b2)
dx =

π

b2 − a2

(
e−ay

a
− e−by

b

)
.

If we equate the real and imaginary parts we obtain the integrals∫ ∞

−∞

cos(yx)

(x2 + a2)(x2 + b2)
dx =

π

b2 − a2

(
e−ay

a
− e−by

b

)
∫ ∞

−∞

sin(yx)

(x2 + a2)(x2 + b2)
dx = 0.

Integrals of the form
∫∞
−∞ f(x)eiyxdx can be handled with the same

methods, even if f does not satisfy as strong a condition in terms of
its growth. In fact we can prove the following.

Proposition 6.11. Suppose that f is analytic in the upper half plane
(z) ≥ 0 except at finitely many poles, none of which lie on the real
axis. Suppose further that there is a constant A > 0 such that for large
enough R, |f(z)| ≤ A/|z| for z on the semicircle Reit, t ∈ [0, π]. Then∫ ∞

−∞
f(x)eiyxdx = 2πiΣ (6.17)

in which Σ denotes the sum of the residues of f(z)eiyz in the upper half
plane.
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Proof. The proof is similar to the previous case, except now the inte-
gration is taken around a rectangular contour. The full details are in
Stewart and Tall [5]. �

Example 6.9. Calculate the integrals

∫ ∞

−∞

x3 cosx

(x2 + a2)(x2 + b2)
dx and

∫ ∞

−∞

x3 sin x

(x2 + a2)(x2 + b2)
dx.

Solution. We calculate

∫ ∞

−∞

x3eix

(x2 + a2)(x2 + b2)
dx.

The function f(z) =
z3eiz

(z2 + a2)(z2 + b2)
clearly satisfies the required

growth condition, since for large |z| it grows like 1/|z|. The poles
in the upper half plane are again at z = ia and z = ib and they are
still simple poles. So

Res(f(z), ia) = lim
z→ia

(z − ia)z3eiz

(z − ia)(z + ia)(z2 + b2)
=

a2e−a

2 (a2 − b2)

Res(f(z), ib) = lim
z→ib

(z − ib)z3eiz

(z2 + a2)(z + ib)(z − ib)
=

b2e−b

2 (b2 − a2)
.

This gives the value of the integral as

∫ ∞

−∞

x3eix

(x2 + a2)(x2 + b2)
dx = πi

a2e−a − b2e−b

a2 − b2

Equating real and imaginary parts yields the desired integrals.

∫ ∞

−∞

x3 cosx

(x2 + a2)(x2 + b2)
dx = 0∫ ∞

−∞

x3 sin x

(x2 + a2)(x2 + b2)
dx = π

a2e−a − b2e−b

a2 − b2
.
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Exercise 6.4. Establish the values of the following integrals by residues.∫ ∞

0

cos 5x

x4 + a4
dx =

π

2a3
e−5a/

√
2 sin

(
5a√
2
+
π

4

)
(6.18)∫ ∞

0

cosmx

(1 + x2)2
dx =

πe−m(1 +m)

4
(6.19)∫ ∞

−∞

cosx

x2 + a2
dx =

e−a

a
π (6.20)∫ ∞

−∞

x sin x

x2 + a2
dx = πe−a (6.21)∫ ∞

0

cos(2πx)

1 + x2 + x4
dx = − π

2
√
3
e−π

√
3 (6.22)∫ ∞

−∞

dx

1 + x2 + x4
=

π

2
√
3

(6.23)

∫ ∞

0

x2 cos 5x

x4 + a4
dx =

π
(
cos( 5a√

2
)− sin( 5 a√

2
)
)

2
√
2a

e
− 5 a√

2 (6.24)∫ ∞

−∞

dx

(1 + x2)n+1
=

Γ(2n)

22n−1nΓ(n)2
π, n = 1, 2, 3.... (6.25)

6.6. Integration With Different Contours.

6.6.1. Contour Integrals with Rectangular Paths. Not all contour inte-
grals are evaluated around semi circles. A common type of problem
arising in contour integration involves taking a rectangular path. We
will illustrate with two typical examples. The reader should see that
the principle is exactly the same as for a semicircular contour.

The reason why rectangular contours are important is that they
change the way that we approach infinity. What this means is that
as we take R → ∞ in these examples, the height of the contour does
not change. The length does. This is geometrically different to the
semicircular case and is useful in situation where there may be infin-
itely many poles, as in the next example.

Example 6.10. Show that∫ ∞

−∞

eax

1 + ex
dx =

π

sin(πa)
0 < a < 1

Solution. This integral can be evaluated by means of the Gamma
function, but it is quite hard to do so. Here we use the residue theorem
with a rectangular contour γ = γ1 + γ2 − γ3 − γ4, where

γ1(x) = x, −R ≤ x ≤ R, γ2(x) = R + ix, 0 ≤ x ≤ 2π,

γ3(x) = 2πi+ x, −R ≤ x ≤ R, γ4(x) = −R + ix, 0 ≤ x ≤ 2π.

This is a rectangle with one edge running along the real axis and the
other running above the real axis at a height of 2π. See Figure 4.
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γ1

γ3

γ2γ4

R+2πi-R+2πi

R-R

Figure 4. A rectangular Contour.

We set f(z) =
eaz

1 + ez
and observe that f has a simple pole at z = πi

which lies inside the contour. There are actually infinitely many poles,
but only is in the contour and as R → ∞ the contour still only contains
one pole.

The residue at the pole can be computed by means of L’Hôpital’s
rule. It is

Res(f(z), πi) = lim
z→πi

(z − πi)eaz

1 + ez
= −eπai.

The residue theorem then gives us
∫
γ
f(z)dz = −2πieπai.

We now have to extract out the value of the integral we desire in
the usual manner. First, we consider the integral along γ1. Using the
definition of γ1 we have

IR =

∫
γ1

f(z)dz =

∫ R

−R

eax

1 + ex
dx.

Next we consider the integral along γ3.

∫
γ3

f(z)dz =

∫ R

−R

e(x+2πi)a

1 + ex+2πi
dx = e2πia

∫ R

−R

eax

1 + ex
dx

= e2πiaIR.

Turning to the integral over γ4 we see that∫
γ4

f(z)dz =

∫ 2π

0

iea(−R+ix)

1 + e−R+ix
dx.

It is easy to see that
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∣∣∣∣∫ 2π

0

iea(−R+ix)

1 + e−R+ix
dx

∣∣∣∣ ≤ e−Ra

∫ 2π

0

∣∣∣∣ ieiax

1 + e−R+ix

∣∣∣∣ dx
= e−Ra

∫ 2π

0

∣∣∣∣ 1

1 + e−R+ix

∣∣∣∣ dx
≤ e−Ra

∫ 2π

0

1

1− e−R
dx =

2πe−Ra

1− e−R
.

So limR→∞
∫
γ4
f(z)dz = 0. A similar argument shows that the inte-

gral along γ2 goes to zero as R → ∞.
We thus have

lim
R→∞

∫
γ

f(z)dz = P.V

∫ ∞

−∞

eax

1 + ex
dx− e2πiaP.V

∫ ∞

−∞

eax

1 + ex
dx = −2πeπai.

We know that the integral converges, so we can drop the principle value
sign and write ∫ ∞

−∞

eax

1 + ex
dx =

−2πeπai

1− e2πia
=

2πi

eπia − e−πia

=
π

sin(πa)
.

Example 6.11. By integrating f(z) =
e−2πiξz

cosh(πz)
around the rectangular

contour γ = γ1 + γ2 − γ3 − γ4, where

γ1(x) = x, −R ≤ x ≤ R, γ2(x) = R + ix, 0 ≤ x ≤ 2,

γ3(x) = 2i+ x, −R ≤ x ≤ R, γ4(x) = −R + ix, 0 ≤ x ≤ 2,

show that ∫ ∞

−∞

e−2πiξx

cosh(πx)
dx =

1

cosh(πξ)
.

First we remark that the integral is convergent since the integrand
decays exponentially fast, so that the integral will equal its principal
value.

We observe that inside γ, f has poles at z = i/2 and 3i/2, both of
order 1. We have

Res(f, i/2) = lim
z→i/2

(z − i/2)f(z) =
1

iπ
eπξ.

Res(f, 3i/2) = lim
z→3i/2

(z − 3i/2)f(z) =
i

π
e3πξ.

Thus by the residue theorem we have∫
γ1

+

∫
γ2

−
∫
γ3

−
∫
γ4

= −2eπξ(e2πξ − 1). (6.26)
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Also cosh(π(x+ 2i)) = cosh(πx), So that

∫
γ1

f(z)dz =

∫ R

−R

e−2πixξ

cosh(πx)
dx

and ∫
γ3

f(z)dz = e4πξ
∫ R

−R

e−2πixξ

cosh(πx)
dx.

Hence

(1− e4πξ)

∫ R

−R

e−2πixξ

cosh(πx)
dx+ i

∫ 2

0

e−2πi(R+ix)ξ

cosh(π(R + ix))
dx

− i

∫ 2

0

e−2πi(−R+ix)ξ

cosh(π(−R + ix))
dx = −2eπξ(e2πi − 1).

Now for 0 ≤ x ≤ 2,∣∣∣∣ e−2πi(R+ix)ξ

cosh(π(R + ix))

∣∣∣∣ ≤ e4πξ

| cosh(π(R + ix))| .

Next notice that

| cosh(π(R + ix))|2 = cosh2(πR) cos2(πx) + sinh2(πR) sin2(πx)

= cosh2(πR) cos2(πx) + sinh2(πR)(1− cos2(πx))

= cos2(πx) + sinh2(πR)

≥ sinh2(πR).

Therefore ∣∣∣∣∫ 2

0

e−2πi(R+ix)ξ

cosh(π(R + ix))
dx

∣∣∣∣ ≤ ∫ 2

0

e4πξ

sinh(πR)
dx

=
2e4πξ

sinh(πR)
→ 0,

as R → ∞. A similar calculation holds for the integral along γ4. Taking
the limit as R→ ∞ we get

(1− e4πξ)

∫ ∞

−∞

e−2πixξ

cosh(πx)
dx = −2eπξ(e2πξ − 1).
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So ∫ ∞

−∞

e−2πixξ

cosh(πx)
dx =

−2eπξ(e2πξ − 1)

(1− e4πξ)

=
2e2πξ(eπξ − e−πξ)

e2πξ(e2πξ − e−2πξ)

=
2(eπξ − e−πξ)

(eπξ − e−πξ)(eπξ + e−πξ)

=
2

eπξ + e−πξ

=
1

cosh(πξ)
.

Exercise 6.5. Show by a similar argument that for 0 < a < 1

∫ ∞

−∞

e−2πiξx sin πa

cosh πx+ cos πa
dx =

2 sinh(2πaξ)

sinh(2πξ)
.

There are many results that we can prove that give us formulas for
real integrals in terms of residues. We present another one here. We
leave it as an exercise to prove it.

γ1

γ3

γ2γ4

T+2πi-R+2πi

T-R

Figure 5. Another Rectangular Contour.

Theorem 6.12. Consider the contour of Figure 5. Suppose that a is
not an even integer. If φ is such that∫

γ2

eaz

φ(ez)
dz → 0 (6.27)

and ∫
γ2

eaz

φ(ez)
dz → 0 (6.28)
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as R, T → ∞, then∫ ∞

−∞

eax

φ(ex)
dx = (1− e2πia)−1

∑
(6.29)

where
∑

is the sum of the residues of eaz

φ(ez)
between the lines (z) = 0

and (z) = 2π.

6.6.2. Poles on the Real Axis. In the previous two results we assumed
that the poles of the function do not lie on the real axis. The obvious
question to ask it what do we do when the poles do lie on the real axis?
This problem can also be handled by residues and a slight modification
of the previous methods.

We illustrate by a famous example.

Example 6.12. Show that ∫ ∞

−∞

sin x

x
dx = π.

Solution. We consider the function f(z) = eiz/z and integrate around
the contour γ = γ1 − γε + γ3 + γR where

(1) γ1(x) = x, −R ≤ x < ε

(2) γε(x) = εeix, 0 ≤ x ≤ π

(3) γ2(x) = x, ε ≤ x ≤ R

(4) γR(x) = Reix, 0 ≤ x ≤ π.

This a contour which is indented at the origin. We have seen it before.
It is Figure 2. We choose it because f(z) has a pole at z = 0. Notice
that because of the indentation, the singularity does not lie inside the
contour. So by Cauchy’s Theorem

∫
γ
f(z)dz = 0. From this we can

extract the value of the desired integral. Using the definition of a
contour integral we have∫

γ

f(z)dz =

∫ ε

−R

eix

x
dx−

∫
γε

eiz

z
dz +

∫ R

ε

eix

x
dx+

∫ π

0

eiReix

Reix
Rieixdx.

First we note that∣∣∣∣∣
∫ π

0

eiReix

Reix
Rieixdx

∣∣∣∣∣ ≤
∫ π

0

e−R sinxdx.

Since e−R sinx → 0 as R→ ∞ for all x �= 0, π we have by the dominated
convergence theorem

∫ π

0
e−R sinxdx→ 0 as R → ∞.

Now we calculate the integral around γε.

eiz

z
=

1

z
+ i− z

2!
− i

z2

3!
+ · · · = 1

z
+ k(z)
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where k is an entire function. Since k(z) is entire
∫
γε
k(z)dz → 0 as

ε→ 0. Notice that eiεe
ix → 1 as ε→ 0. We therefore have∫

γε

eiz

z
dz =

∫ π

0

eiεe
ix

εeix
iεeixdx

= i

∫ π

0

eiεe
ix

dx→ i

∫ π

0

dx = πi,

as ε→ 0. We can conclude that

lim
R→∞

lim
ε→0

∫
γ

f(z)dz = P.V.

∫ ∞

−∞

eix

x
dx = πi.

Comparing real and imaginary parts we get

P.V.

∫ ∞

−∞

sin x

x
dx = π

P.V.

∫ ∞

−∞

cosx

x
dx = 0.

However, the sine integral exists, so we can conclude that∫ ∞

−∞

sin x

x
dx = π.

The cosine integral by contrast, does not converge, so the real part of
our integral remains a principle value integral.

The basic principle for evaluating integrals with poles on the real
axis is to indent the contour so that it excludes the poles on the real
axis and then use the residue theorem or Cauchy’s theorem together
with a limiting argument. In our next example we have a pole on the
real axis and poles on the imaginary axis.

Example 6.13. Show that∫ ∞

−∞

sin x

x(x2 + 1)
dx =

π(e− 1)

e
.

Solution. Notice that if we take f(z) =
eiz

z(z2 + 1)
then f has poles on

the imaginary axis at z = ±i and a pole at z = 0. We use the same
contour as in the previous question. The pole at z = i is simple, so
that

Res(f(z), i) = lim
z→i

(z − i)eiz

z(z + i)(z − i)
= −1

2
e−1.

By the residue theorem we have∫
γ

f(z)dz = 2πiRes(f(z), i) = −π
e
i.
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As in the previous example
∫
γR
f(z)dz → 0 as R → ∞.We therefore

have to deal with the integral over γε. Here we observe that by the
dominated convergence theorem∫

γε

f(z)dz =

∫ π

0

eεe
ix

εeix(ε2e2ix + 1)
iεeixdx

= i

∫ π

0

eεe
ix

(ε2e2ix + 1)
dx→ i

∫ π

0

dx = πi,

as ε→ 0. Putting it all together we conclude that

lim
R→∞

lim
ε→0

∫
γ

f(z)dz = P.V.

∫ ∞

−∞

eix

x(x2 + 1)
dx =

π(e− 1)

e
i.

Comparing real and imaginary parts, and using the fact that the sine
integral is convergent, we get∫ ∞

−∞

sin x

x(x2 + 1)
dx =

π(e− 1)

e
.

The cosine integral does not converge however, so we can only say
that

P.V.

∫ ∞

−∞

cosx

x(x2 + 1)
dx = 0.

γ1 γ3
γa γb

γ2

γ4

π

2
-
π

2

..

R-R

Figure 6. A Doubly Indented Contour.

Example 6.14. In this example we will calculate the integral∫ ∞

−∞

cosx

π2 − 4x2
dx. (6.30)

We will use a contour which is indented at two points. See Figure 6.
We notice that π2 − 4x2 = 0 when x = ±π

2
. However by L’Hôpital’s
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rule

lim
x→π

2

cos x

π2 − 4x2
= lim

x→π
2

− sin x

−8x

=
1

4π
.

Similarly

lim
x→−π

2

cosx

π2 − 4x2
=

1

4π
.

So the singularities are removable and since the function decays as
1/x2, the integral is convergent. We then consider the function

f(z) =
eiz

π2 − 4z2
, (6.31)

which we integrate around the contour γ = γ1 − γa + γ2 − γb + γ3 + γ4.
Here γa = −εeit − π

2
and γb = εeit + π

2
. γ1(t) = t, −R ≤ t ≤ −ε − π

2
,

etc.
The function f has poles at ±π

2
, neither of which are inside the

contour. So that by Cauchy’s Theorem∫
γ

f(z)dz = 0.

Now standard arguments show that
∫
γ4
f(z)dz → 0 as R → ∞. Con-

sider the integral around γb =
π
2
− εeit, t ∈ [0, π].

∫
γb

f(z)dz =

∫ π

0

−iei(π2−εeit)εeit

π2 − 4(π
2
− εeit)2

dt

=

∫ π

0

−iei(π2−εeit)εeit

π2 − π2 + 4πεeit − 4ε2e2it
dt

→
∫ π

0

1

4π
dt =

1

4

as ε→ 0. Similarly
∫
γa
f(z)dz → 1

4
as ε → 0. The calculation is nearly

identical.
Now

∫
γ1
+
∫
γ2
+
∫
γ3
+
∫
γ4

=
∫
γa
+
∫
γb

by Cauchy’s Theorem. Taking

the limits as R → ∞ and ε→ 0 we conclude∫ ∞

−∞

cosx

π2 − 4x2
dx =

1

2
.

Exercise 6.6. . Evaluate the following integrals.

(1)

∫ ∞

−∞

sin x

x(x4 + 1)
dx

(2)

∫ ∞

−∞

sin x

x(x2 + 4)(x2 + 1)
dx.



COMPLEX ANALYSIS 131

6.6.3. A Logarithmic Integral.

Example 6.15. Show that∫ ∞

0

ln(x2 + 1)

x2 + 1
dx = π ln 2.

Solution. We use our standard semicircular contour γ = γ1 + γ2 where
γ1(x) = x,−R ≤ x ≤ R, and γ2(x) = Reix, 0 ≤ x ≤ π. For our function

we choose f(z) =
ln(z + i)

z2 + 1
.

Why do we not take the actual integrand in the function? The reason
we cannot do this is that at z = i, ln(z2 + 1) = ln 0. This means that
we need to look for a different function. By the (almost) additivity of
the complex logarithm, ln(z + i) is a good choice for the numerator as
we will see. Now the pole of f inside γ is at z = i and

Res(f(z), i) = lim
z→i

(z − i)
ln(z + i)

(z + i)(z − i)
=

ln(2i)

2i
.

By the residue theorem∫
γ

f(z)dz =

∫ R

−R

ln(x+ i)

x2 + 1
dx+

∫
γ2

ln(z + i)

z2 + 1
dz = 2πi

ln(2i)

2i

= π ln(2i) = π(ln 2 + iArg(i))

= π ln 2 +
1

2
π2i,

since Arg(i) = π/2. The integral over the semicircle goes to zero as
R → ∞ as is easily seen, since∣∣∣∣∫

γ2

ln(z + i)

z2 + 1
dz

∣∣∣∣ = ∣∣∣∣∫ π

0

ln(Reix + i)

R2e2ix + 1
iReixdx

∣∣∣∣
≤

∫ π

0

R| ln(Reix + i)|
R2 − 1

dx.

This integral clearly goes to zero as R → ∞. If we wish to prove this
rigorously we can observe that Reix+ i = R cosx+ i(R sin x+1). Thus

|Reix + i| =
√
R2 + 2R sin x+ 1 ≤

√
R2 + 2R + 1 = |R + 1|.

We can therefore write

Reix + i =
√
R2 + 2R sin x+ 1eiφ

for some angle φ which depends on R and x, but lies in the interval
[−π, π). Hence ln(Reix + i) = ln(

√
R2 + 2R sin x+ 1) + iφ.

Thus∫ π

0

R ln(Reix + i)

R2 − 1
dx =

∫ π

0

R(ln(
√
R2 + 2R sin x+ 1) + iφ)

R2 − 1
dx.
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Now ∣∣∣∣∫ π

0

iRφ

R2 − 1
dx

∣∣∣∣ ≤ R

R2 − 1

∫ π

0

|φ|dx ≤ π2R

R2 − 1
→ 0,

as R→ ∞, since |φ| ≤ π.
Also,∣∣∣∣∣

∫ π

0

R ln(
√
R2 + 2R sin x+ 1)

R2 − 1
dx

∣∣∣∣∣ ≤
∫ π

0

R ln |R + 1|
R2 − 1

dx

=
R ln |R + 1|
R2 − 1

π → 0,

as R→ ∞.
Now we look a bit more carefully at the integral over the interval

[−R,R].∫ R

−R

ln(x+ i)

x2 + 1
dx =

∫ 0

−R

ln(x+ i)

x2 + 1
dx+

∫ R

0

ln(x+ i)

x2 + 1
dx

=

∫ R

0

ln(i− x)

x2 + 1
dx+

∫ R

0

ln(x+ i)

x2 + 1
dx

=

∫ R

0

ln(i− x) + ln(x+ i)

x2 + 1
dx.

The natural logarithm is not quite additive when we deal with com-
plex numbers. That is, for two complex numbers z1, z2 in general
ln(z1z2) �= ln z1 + ln z2. However ln(z1z2) = ln z1 + ln z2 + iC. where
C is some real constant that depends on the argument of z1 and z2.
Thus

ln(i− x) + ln(x+ i) = ln(−1− x2) + iC = ln(−1) + ln(x2 + 1) + iC.

Since ln(−1) = πi we have∫ R

0

ln(i− x) + ln(x+ i)

x2 + 1
dx =

∫ R

0

ln(x2 + 1) + iD

x2 + 1
dx,

where D = C + π is real. Hence∫ R

0

ln(x2 + 1) + iD

x2 + 1
dx+

∫
γ2

f(z)dz = π ln 2 +
1

2
π2i

Taking R → ∞ and comparing real parts gives∫ ∞

0

ln(x2 + 1)

x2 + 1
dx = π ln 2.

Comparing imaginary parts tells us that in fact C = 0 in this calcula-
tion.
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6.6.4. Miscellaneous Integrals. Evaluating real integrals by residues is
something of an art. The key is to find the right contour. While the
standard semicircular and rectangular contours suffice to evaluate a
very large variety of integrals, they are not the only kinds of contours
which can be used.

γ1
2 π

3

γ2γ3

R

Figure 7. An nonstandard Contour.

Example 6.16. Show that for a > 0∫ ∞

0

dx

x3 + a3
=

2π

3
√
3a2

.

The integrand here has a pole at x = −a, which lies on the real axis,
so we would like to avoid this pole. The key is to use the following
contour. γ = γ1 + γ2 − γ3 in which γ1 = x, 0 ≤ x ≤ R; the contour
γ2 is a circular arc given by γ2(x) = Reix, 0 ≤ x ≤ 2π/3 and γ3(x) =
xe2πi/3, 0 ≤ x ≤ R. See Figure 7. The contour is chosen so that only
the pole at z = aeiπ/3 lies inside it. Also, observe that (xe2πi/3)3 = x3.

The choice of contours is not so cryptic when we understand where
it comes from. The third contour is chosen so that the integral over γ3
is a multiple of the integral over γ1.

First our integrand is f(z) =
1

z3 + a3
which has poles at z = −a, z =

aeπi/3 and z = ae−πi/3.
The residue at z = aeiπ/3 is given by

Res(z, aeiπ/3) = lim
z→aeiπ/3

(z − aeiπ/3)

(z − a)(z − aeiπ/3)(z − ae−iπ/3)
=
e−2πi/3

3a2
.

By the residue theorem∫
γ

f(z)dz =

∫ R

0

dx

x3 + a3
+

∫
γ2

dz

z3 + a3
−

∫ R

0

e2πi/3dx

x3 + a3

= (1− e2πi/3)

∫ R

0

dx

x3 + a3
+

∫
γ2

dz

z3 + a3
= 2πi

e−2πi/3

3a2
.
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As usual it is not hard to show that the integral over the circular arc
γ2 goes to zero as R → ∞. Taking the limit as R → 0 we have∫ ∞

0

dx

x3 + a3
= 2πi

e−2πi/3

3a2(1− e2πi/3)

=
−π
3a2

(
2i

e−iπ/3 − eiπ/3

)
=

2π

3
√
3a2

,

since e−iπ/3 − eiπ/3 = −2i sin(π/3).

Exercise 6.7. Prove that for a > 0∫ ∞

0

dx

x5 + a5
=

π

5a4 sin(π/4)
.

Use a contour similar to the previous example, but with the angle 2π/3
replaced by 2π/5 in the definition of γ2 and γ3.

6.6.5. Integration with a Keyhole Contour. There are numerous con-
tours that have been employed for the evaluation of contour integrals.
One of the more frequently occurring non standard contours is the key-
hole contour seen in Figure 8. We will illustrate how such a contour
might arise. The principles are exactly the same as those that we have
been using.

γ1 γ2
γϵ

γ3

R-R

Figure 8. A Keyhole Contour.

Example 6.17. We are going to evaluate the integral∫ ∞

0

xm−1

x2 + 1
dx, 0 < m < 2.

To do this we consider the contour integral I =

∫
C

zm−1

z2 + 1
dz, in which

C is the keyhole contour of Figure 8.
We need to choose a branch of the power function zα and we will let

z = reiθ, for θ ∈ [0, 2π). This places the branch cut along the positive
real axis which our contour misses. If we choose the usual branch for
the argument, we would have a branch cut along the negative axis and
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we would have to flip the contour. This can be done, but we will not
do so here.

Notice that there are two poles inside C at z = ±i. Neither are on
the real axis. The branch cut along the positive real axis means that
the value of the argument jumps by 2π as we cross the axis. So we can
think of the contour on the way in having an argument of 2π and the
argument on the way out being zero.

We leave it as an exercise to show that
∫
CR

zm−1

z2+1
dz → 0 as R → ∞.

We also can show that
∫
Cε

zm−1

z2+1
dz → 0 as ε→ 0.

Let the contour above the axis on the way out be Ca, then∫
Ca

zm−1

z2 + 1
dz =

∫ R

ε

xm−1

x2 + 1
dx. (6.32)

If Cb is the contour running below the axis we have∫
Cb

zm−1

z2 + 1
dz =

∫ ε

R

(xe2πi)m−1

(xe2πi)2 + 1
e2πidx. (6.33)

What we have done here is right x = xe2πi to indicate that we are below
the axis. Then we also have dx → e2πidx. The choice of branch only
makes its presence felt when we are dealing with non integer powers.
Remember integer powers are unique.

Obviously we need to compute the residues at the two poles. For the
pole at z = i = eπi/2 we have

Res(f(z), i) = lim z → ei
π
2
(z − i)zm−1

(z − i)(z + i)

=
(ei

π
2 )m−1

2i
.

Notice that it is only at the non integer power of z that out choice of
branch plays a role.

For the pole at z = −i = e3πi/2 we have

Res(f(z),−i) = lim z → ei
3π
2

(z + i)zm−1

(z − i)(z + i)

=
(ei

3π
2 )m−1

−2i
.

Now by the residue theorem∫
C

=

∫
CR

+

∫
Cε

+

∫ R

ε

+

∫ ε

R

= 2πi

(
(ei

π
2 )m−1

2i
− (ei

3π
2 )m−1

2i

)
.
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Letting R→ ∞ and ε→ 0 we have∫
C

f(z)dz → (1− e2πim)

∫ ∞

0

xm−1

x2 + 1
dx

= 2πi

(
(ei

π
2 )m−1

2i
− (ei

3π
2 )m−1

2i

)
So that ∫ ∞

0

xm−1

x2 + 1
dx =

−iπe imπ
2 (1 + eimπ)

1− e2πim

=
π

2 sin
(
πm
2

) .
The final reduction is left to the reader.

It is of course possible to handle special cases without the need for
a keyhole contour. For example, if m = 3/2 then the integral is

I =

∫ ∞

0

x1/2

x2 + 1
dx. (6.34)

We can put x = u2, then dx = 2udu and the integral becomes

I =

∫ ∞

0

2u2

u4 + 1
du =

∫ ∞

−∞

u2

u4 + 1
du, (6.35)

which can be evaluated using our earlier results.

6.7. Summation of Series. There are many applications of the residue
theorem. Evaluating real integrals is perhaps the most important, but
there are many others. One interesting one is to the evaluation of
infinite sums. The key results are as follows.

Theorem 6.13. Let CN be the path traversing the square with vertices
at the points (N + 1/2)(1 + i), (N + 1/2)(−1 + i), (N + 1/2)(−1 −
i), (N + 1/2)(1 − i) counterclockwise. Let f be a function which is
analytic except at its poles, z1, z2, ....zm, which are contained in CN .
Suppose that on CN , f satisfies |f(z)| ≤ A

|z|k , k > 1 and has no poles at

the points n = 0,±1,±2, .... Then
∞∑

n=−∞
f(n) = −

m∑
k=1

Res(π cot(πz)f(z), zk). (6.36)

Proof. The function cot(πz) has simple poles at z = 0,±1,±2, ....
Hence π cot(πz)f(z) has poles at z = n, n = 0,±1,±2, ... and z1, ..., zm.
Now

Res(π cot(πz)f(z), n) = π lim
n→π

(
z − n

sin(πz)

)
cos(πz)f(z)

= f(n),
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after an application of L’Hôpital’s rule. Let SN =
∑N

n=−N f(n). By the
residue theorem∫

CN

π cot(πz)f(z)dz = 2πi

(
SN +

m∑
k=1

Res(π cot(πz)f(z), zk)

)
.

Now CN has four sides of length 2N + 1, so the length of the path
CN is 8N + 4. We can show that there is a constant A such that
| cot(πz)| ≤M on CN . By the ML inequality∣∣∣∣∫

CN

π cot(πz)f(z)dz

∣∣∣∣ ≤ πAM

(N + 1/2)k
(8N + 4) → 0,

as N → ∞. As N → ∞, SN → ∑∞
n=−∞ f(n). Thus

lim
N→∞

∫
CN

π cot(πz)f(z)dz = lim
N→∞

2πi

(
SN +

m∑
k=1

Res(π cot(πz)f(z), zk)

)
= 0.

Which gives

m∑
k=1

Res(π cot(πz)f(z), zk) +

∞∑
n=−∞

f(n) = 0.

�

It is interesting to note that this result is still true if f has infinitely
many poles z1, z2, .... In this case

∞∑
n=−∞

f(n) = −
∞∑
k=1

Res(π cot(πz)f(z), zk). (6.37)

Example 6.18. Show that

∞∑
n=−∞

1

n2 + a2
=
π

a
coth(πa).

We take the function f(z) = 1
z2+a2

which has simple poles at ±ia. Now

Res

(
π cot(πz)

z2 + a2
, ia

)
= lim

z→ia

(z − ia)π cot(πz)

(z − ia)(z + ia)

=
π cot(iπa)

2ia

=
π cos(iπa)

2ia sin(iπa)

=
π cosh(πa)

−2a sinh(πa)
.
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Similarly

Res

(
π cot(πz)

z2 + a2
,−ia

)
= lim

z→−ia

(z + ia)π cot(πz)

(z − ia)(z + ia)

=
−π cot(iπa)

−2ia

=
π cosh(πa)

−2a sinh(πa)
.

Thus
∞∑

n=−∞

1

n2 + a2
= −

(
π cosh(πa)

−2a sinh(πa)
+

π cosh(πa)

−2a sinh(πa)

)
=
π

a
coth(πa).

We can also sum other kinds of series.

Theorem 6.14. Let CN be the path traversing the square with vertices
at the points (N + 1/2)(1 + i), (N + 1/2)(−1 + i), (N + 1/2)(−1 −
i), (N + 1/2)(1 − i) counterclockwise. Let f be a function which is
analytic except at its poles, z1, z2, ....zm, which are contained in CN .
Suppose that on CN , f satisfies |f(z)| ≤ A

|z|k , k > 1 and has no poles at

the points n = 0,±1,±2, .... Then

∞∑
n=−∞

(−1)nf(n) = −
m∑
k=1

Res(πcosec(πz)f(z), zk). (6.38)

The proof is similar to that of Theorem 6.13. This result is also valid
if there are infinitely many poles.

Example 6.19. We sum the series

∞∑
n=−∞

(−1)n

(n + a)2
.

The function f(z) = 1
(z+a)2

has a pole of order 2 at z = −a. Then

Res

(
πcosec(πz)

(z + a)2
,−a

)
= lim

z→−a

d

dz

(
(z + a)2πcosec(πz)

(z + a)2

)
= −π

2 cos(πa)

sin2(πa)
.

And so
∞∑

n=−∞

(−1)n

(n+ a)2
=
π2 cos(πa)

sin2(πa)
.
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6.8. Counting Zeroes. One of the many applications of Residues is
to a simple problem. Given a function f we often need to know the
zeroes of the function. That is the values of z such that f(z) = 0.
Think of the problem of factorising a polynomial or determining the
maxima and minima of a function.

A rather startling result allows us to determine how many zeroes a
function h as inside a given closed contour. The proof is not particularly
hard.

Theorem 6.15. Suppose that f : S → C is differentiable, except at
a finite number of poles. Suppose that none of the poles or zeroes of
f lie on the simple closed contour γ, which is contained in S. Let the
number of zeroes of f inside γ be N , counted according to multiplicity.
Let the number of poles be P , counted according to order. Then

1

2πi

∫
γ

f ′(z)
f(z)

dz = N − P. (6.39)

We suppose that γ is traversed counterclockwise.

Proof. We establish this in two parts. The key result is

1

2πi

∫
γ

f ′(z)
f(z)

dz =
∑
k=1

Res

(
f ′(z)
f(z)

, zk

)
where the zk are the poles of the integrand.

First we prove that if f has a zero of order k at z1, then f
′/f has a

pole of order 1 at z1 with residue equal to k.
To see this, notice that since f has a zero of order k1 at z1, then we

can write f(z) = (z − z1)
k1φ(z), where φ is analytic in the neighbour-

hood of z1 and φ(z1) �= 0. Now a simple calculation gives

f ′(z)
f(z)

=
k1

z − z1
+
φ′(z)
φ(z)

.

Hence z1 is a pole of order 1 and the residue is k1.
Now we suppose that f has a pole of order np at zp. Then f

′/f has
a pole at zp and the residue is −np.

Adapting our previous argument, we see that we can write

f(z) =
ψ(z)

(z − zp)np
,

in which ψ is differentiable around zp and ψ(zp) �= 0. We then have

f ′(z) =
−npψ(z)

(z − zp)np+1
+

ψ′(z)
(z − zp)np

.

Hence

f ′(z)
f(z)

=
−np

z − zp
+
ψ′(z)
ψ(z)

.

Hence zp is a pole of f ′/f and the residue is −np.
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Now let the zeroes of f be z1, ...., zp−1 and the multiplicities of the
zeroes be k1, ..., kp−1 and let N = k1 + · · ·+ kp−1. Let the poles of f be
zp, ..., zm and the orders of the poles be np, ..., nm. Let P = np+· · ·+nm.
Then

1

2πi

∫
γ

f ′(z)
f(z)

dz =
∑
k=1

Res

(
f ′(z)
f(z)

, zk

)
= N − P.

�

There is an immediate corollary of this. If f has no poles, then we
easily have the number of zeroes inside γ.

Corollary 6.16. Suppose that f : S → C is differentiable except at a
finite number of poles. Suppose that none of the poles or zeroes of f
lies on the simple closed contour γ, which is contained in S. Suppose
further that there are no poles inside γ. Let the number of zeroes of f
inside γ be N , counted according to multiplicity. Then

1

2πi

∫
γ

f ′(z)
f(z)

dz = N. (6.40)

We suppose that γ is traversed counterclockwise.

Proof. This is the previous result with P = 0. �

This has lots of applications. For example, suppose that f has no
poles inside the closure of Ω ⊆ C. Suppose further that f ′/f is analytic
in the closure of Ω. Then for any simple closed contour γ in C, we have

1

2πi

∫
γ

f ′(z)
f(z)

dz = 0,

by Cauchy’s Theorem. Hence f has no zeroes inside Ω.
For example, take f(z) = ez. Then f ′(z) = ez. So that for any

simple closed curve γ in the complex plane,

1

2πi

∫
γ

f(z)

f ′(z)
dz =

1

2πi

∫
γ

ez

ez
dz (6.41)

=
1

2πi

∫
γ

dz = 0. (6.42)

Since this holds for any simple closed curve, it follows that ez has no
zeroes anywhere.
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Example 6.20. We take f(z) = zn−1 where n is a positive integer. Let
γ = 2eiθ, θ ∈ [0, 2π). Then

1

2πi

∫
γ

f(z)

f ′(z)
dz =

1

2πi

∫
γ

nzn−1

zn − 1
dz

=
1

2πi

∫ 2π

0

2nnieniθ

2neniθ − 1
dθ

=
1

2π

∫ 2π

0

2nnieniθ − 1 + 1

2neniθ − 1
dθ

=
1

2π

∫ 2π

0

ndθ +
1

2π

∫ 2π

0

1

2neniθ − 1
dθ

= n.

We leave it as an exercise to prove that
∫ 2π

0
1

2neniθ−1
dθ = 0. So we have

recovered the fact that zn = 1 has n solutions inside the circle γ. In
fact these are the only zeroes.

This result is useful in many areas. Often it is used in conjunction
with a numerical method. Suppose we want to solve f(z) = 0. We can
use Newton’s method or some other iterative scheme to obtain zeroes.
If we know that there are exactly N zeroes, then when we have obtained
N values for the zeroes, we know that we can stop because we have
found all of them.

6.9. Inversion of Laplace Transforms. The Laplace transform is
one of the most useful tools in analysis. It is defined by the integral

F (s) =

∫ ∞

0

f(t)e−stdt.

A sufficient condition for the Laplace transform of f to exist is that
f is continuous and there exists constants K > 0 and a such that
|f(t)| ≤ Keat. Laplace transforms play an important role in differential
equations, probability theory, the theory of linear systems and many
other areas.

Example 6.21. Let us calculate the Laplace transform of f(t) = ta, a >
−1. The restriction on a is to ensure that the integral converges. We
have via the change of variables st = u∫ ∞

0

tae−stdt =
1

sa+1

∫ ∞

0

uae−udu

=
Γ(a+ 1)

sa+1
.

So L(f)(s) = Γ(a+ 1)

sa+1
. Here Γ(z) =

∫∞
0
tz−1e−tdt is the Gamma func-

tion.
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Exercise 6.8. Compute the Laplace transform of f(t) = eat.

Example 6.22. Find the Laplace transform of f(t) = sin(at).
Solution. To do this we observe that by Euler’s formula

sin(at) =
1

2i
(eiat − e−iat).

Hence

L(f) = 1

2i
L(eiat)− 1

2i
L(e−iat) =

1

2i

(
1

s− ia
− 1

s+ ia

)
=

1

2i

(
s+ ia− (s− ia)

s2 + a2

)
=

a

s2 + a2
.

Given a Laplace transform F (s), we would like to know the original
function f . That is, invert the Laplace transform. We can do this in
several ways, but one of the most powerful methods is to use contour
integration. We need a preliminary definition first.

Definition 6.17. A function f is said to have bounded variation on
[a, b] if for every partition P = {x0, x1, ..., xn} of [a, b] the quantity

variation(f) =
n∑

i=1

|f(xi)− f(xi−1)|,

is bounded.

Theorem 6.18 (Laplace Transform Inversion). If f(t) is a locally in-
tegrable function on [0,∞) such that,

(1) f is of bounded variation in a neighborhood of a point t0 ≥ 0 (a
right hand neighborhood if t0 = 0).

(2) The integral
∫∞
0
f(t)e−stdt converges absolutely on Re(s) = γ

then,

lim
T−→∞

1

2πi

∫ γ+iT

γ−iT

F (s)estds =

⎧⎨⎩ 0 t0 < 0
f(0+)/2 t0 = 0

1
2
(f(t+0 ) + f(t−0 )) t0 > 0.

In particular if f is differentiable on (0,∞) and satisfies (1) and (2)
then,

lim
T−→∞

1

2πi

∫ γ+iT

γ−iT

F (s)estds = f(t) 0 < t <∞.

Proof. This result can be established from the Fourier inversion theo-
rem. We will prove the special case when f is continuous. We suppose
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that F (s) =
∫∞
0
f(t)e−stdt. So applying the inversion formula we have

lim
T→∞

1

2πi

∫ γ+iT

γ−iT

estF (s)ds

= lim
T→∞

1

2πi

∫ γ+iT

γ−iT

est
(∫ ∞

0

e−su[eγuf(u)]du

)
ds.

We now make the substitution s = γ + iy. So ds = idy and

lim
T→∞

1

2πi

∫ γ+iT

γ−iT

est
(∫ ∞

0

e−suf(u)du

)
ds

= lim
T→∞

1

2π
eγt

∫ T

−T

eiyt
(∫ ∞

0

e−iyuf(u)du

)
dy

= eγt

{
e−γtf(t), t ≥ 0

0, t < 0,

by the Fourier Inversion Theorem applied to the function

g(t) =

{
e−γtf(t), t ≥ 0

0, t < 0,
.

�
Remark 6.19. The integral is taken in the principal value sense since

in general
∫ γ+i∞
γ−i∞ F (s)estds does not converge.

Γ

γ-iT

γ+iT

-R

Figure 9. The Bromwich Contour.
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The integral is usually evaluated using the so called Bromwich con-
tour. We want the integral along the line running from γ−iT to γ+iT.
To obtain this, we integrate around the Bromwich contour and use the
residue Theorem.

We have the following result, which we will not prove.

Theorem 6.20. If we can find constants M > 0 and k > 0 such that
on Γ with s = Reiθ we have

|F (s)| < M

Rk
, (6.43)

then the integral around Γ of estF (s) approaches 0 as R → ∞. ie.

lim
R→∞

∫
Γ

estF (s)ds = 0. (6.44)

Thus taking R → ∞ and T → ∞ we should obtain the value of the
inverse Laplace transform. In practice this means that we have to sum
the residues of estF (s) at every pole of F (s).

Example 6.12. Let

F (s) =
1

(s2 + 1)
.

We observe that there are poles at s = ±i. So that

Res

(
est

s2 + 1
, s = i

)
= lim

s−→i

(
(s− i)est

(s− i)(s+ i)

)
=

1

2i
eit

Res

(
est

s2 + 1
, s = −i

)
= lim

s−→−i

(
(s+ i)est

(s− i)(s+ i)

)
= − 1

2i
e−it

By the Cauchy residue theorem we then have∫ γ+i∞

γ−i∞
estF (s)ds = 2πi

∑
Residues

= 2πi(
1

2i
(eit − e−it)) = 2πi sin t

So

L−1(
1

s2 + 1
) =

1

2πi
2πi sin t = sin t

Notice that the 2πi from the Theorem and the 1/2πi from the Theorem
cancel. So we just need to sum the residues.

Example 6.23. Compute the inverse Laplace transform of

F (s) =
s

(s2 + 4)(s2 + 1)

using residues.
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Solution The poles are at ±2i and ±i. The residues are then

Res

(
sest

(s2 + 1)(s2 + 4)
, s = i

)
= lim

s→i

(
(s− i)sest

(s− i)(s+ i)(s2 + 4)

)
=

1

6
eit,

Res

(
sest

(s2 + 1)(s2 + 4)
, s = −i

)
= lim

s→−i

(
(s+ i)sest

(s− i)(s+ i)(s2 + 4)

)
=

1

6
e−it,

and

Res

(
sest

(s2 + 1)(s2 + 4)
, s = 2i

)
= lim

s→2i

(
(s− 2i)sest

(s− 2i)(s+ 2i)(s2 + 4)

)
= −1

6
e2it,

Res

(
sest

(s2 + 1)(s2 + 4)
, s = −2i

)
= lim

s→−2i

(
(s+ 2i)sest

(s− 2i)(s+ 2i)(s2 + 4)

)
= −1

6
e−2it.

As the 2πi from the Residue theorem and the 1/(2πi) from the in-
version theorem cancel, we have

L−1(F (s)) =

(
1

6
eit +

1

6
e−it − 1

6
e2it − 1

6
e−2it

)
=

1

3
(cos t− cos(2t)).

It is possible for a Laplace transform to have infinitely many poles.
In this case we have to sum all the residues.

Example 6.24. Find the inverse Laplace transform of

F (s) =
sinh(sx)

s2 cosh(sa)
, 0 < x < a.

First note that

sinh(sx)

s2
=
x

s
+
sx3

3!
+
s3x5

5!
+ · · ·

so that there is a pole of order 1 at s = 0 and

Res(estF (s), 0) = x.
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Now cosh(sa) = 0 when s = (k + 1
2
)πi
a
. So there are poles at sk =

(k + 1
2
)πi
a
, k = 0,±1,±2, ... These are poles of order 1. Now

Res(estF (s), sk) = lim
s→sk

(s− sk)e
st sinh(sx)

s2 cosh(sa)

lim
s→sk

est
sinh(sx)

s2
lim
s→sk

s− sk
cosh(sa)

= e(k+
1
2
)πi

a
t sinh((k +

1
2
)πi
a
x)

((k + 1
2
)πi
a
)2

1

a sinh((k + 1
2
)πi

,

where we used L’Hôpital’s rule. This simplifies to

Res(estF (s), sk) = (−1)k+1a
e(k+

1
2
)πi

a
t sin((k + 1

2
)π
a
x)

π2(k + 1
2
)2

.

So if F (s) = L[fx(t)] we have

fx(t) = x+
∞∑

k=−∞
(−1)k+1a

e(k+
1
2
)πi

a
t sin((k + 1

2
)π
a
x)

π2(k + 1
2
)2

= x+
8a

π2

∞∑
n=1

(−1)n

(2n− 1)2
sin

(
(2n− 1)πx

2a

)
cos

(
(2n− 1)πt

2a

)
.

Using the Weierstrass M test we can prove that this series converges
uniformly to a continuous function in both x and t. It is quite common
for an inverse Laplace transform to be computed as an infinite series.

It must be cautioned that the inversion of Laplace transforms can be
a difficult problem. There are numerous examples where the method
used here is not sufficient to invert a transform, often because calcu-
lating the poles and residues of certain functions can be quite difficult.
Laplace transform inversion is typically carried out with the aid of ta-
bles of transforms. Numerical integration is also used. Residues can
play a role here as well, but that is not something that we can discuss
here.
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7. Appendix: Cardano and the Cubic

A formula for the roots of a cubic in terms of its coefficients was
first published in 1545 in a book by the Italian physician and mathe-
matician Girolamo Cardano(1501-1576), entitled Artis magnae sive de
regulis algebraicis liber unus (The Great Art or the First Book about
Regular Algebra). This is often called the Ars Magna for short. Car-
dano was the illegitimate son of Fazio Cardano and Chiara Micheria.
Fazio Cardano was a Milanese lawyer and an accomplished mathemati-
cian, as well as a friend of Leonardo da Vinci. Leonardo often consulted
Fazio about problems in geometry. Indeed the elder Cardano actually
taught geometry at the University of Pavia, where the junior Cardano
later studied. The son seems to have learned a good deal of mathemat-
ics from his father. Girolamo Cardano did interesting(if not entirely
correct ) work in mechanics and hydrodynamics. He also appears to be
the first person to have studied what we would call probability theory.

The formula which Tartaglia gave to Cardano was for the solution of
a so called depressed cubic, which we studied at the beginning of these
notes. One of the many strange features of this story is that Tartaglia
delivered the formula to Cardano in the form of a poem, rather than
as a straight formula.

Cardano had tried to solve the cubic himself and failed. Tartaglia,
however, had been using his solution of the cubic to win competitions
with fellow mathematicians. It may seem bizarre, but in the Renais-
sance, it was common for one mathematician to challenge another to a
problem solving contest, with prize money on the outcome. And people
followed these contests.

Becoming aware that Tartaglia had the formula Cardano tried to
persuade him to reveal the secret. However every attempt was met
with refusal. It was not until Cardano told Tartaglia that his name
had been mentioned to Alfonso d’Avalos, the Marchese del Vasto, who
was Cardano’s patron and a military governor for the emperor in Milan,
that Tartaglia changed his tune. Cardano offered to provide Tartaglia
with an introduction to the Marchese. Since Tartaglia was a poorly
paid mathematics teacher looking for a way to move up in the world,
this was too good an opportunity to pass up.

So Tartaglia travelled to Milan in March 1539 and stayed in Car-
dano’s house. Cardano was the perfect host, tending to Tartaglia’s
every need, while all the time trying to extract the secret of the cu-
bic. When Tartaglia finally relented and gave Cardano the method,
he delivered it in the form of a poem. This was really a kind of code,
designed to protect the secret from prying eyes.

Unfortunately for Tartaglia, the Marchese was away and Tartaglia
never got to meet him. Cardano did provide a letter of introduction
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for Tartaglia, but by the end of the trip, Tartaglia was regretting the
whole business and was becoming very suspicious of his host.

The formula was delivered on the condition that Cardano would
keep it a secret until Tartaglia published it himself. With the method
in hand, Cardano and his student Lodivico Ferrari (1522-1565) set to
work studying and extending it and in 1540 Ferrari discovered a method
for solving the general quartic! As we have seen, the method of solving
the quartic actually depended on the solution of the cubic, however,
and so Ferrari and Cardano could not publish this great discovery.

However Cardano, after duly keeping the secret for several years,
grew tired of waiting and included a formula for the cubic in his master
work, the Ars Magna. Why did Cardano break his oath? Cardano
argued that he didn’t break the oath at all. Because Cardano and
Ferrari had discovered a rather interesting fact from a very obscure
mathematician named Hannibal della Nave.

Tartaglia was furious with Cardano, even though the later fully ac-
knowledges in his writings that Tartaglia had solved the cubic and
told him the secret. However Cardano also tells us in the book that
Tartaglia didn’t discover the cubic formula first. Tartaglia had actu-
ally learned of the existence of a method for the depressed cubic from
Antonio Maria Fior around the year 1535. As it happens Fior, who is
usually described as a fairly mediocre mathematician by historians of
mathematics, didn’t discover it either. He was a student of Scipione
del Ferro (ca. 1465-1526), who appears to be the true discoverer of the
formula. Scipione del Ferro was the holder of the Chair of Arithmetic
and Geometry at the University of Bologna from 1496 onwards. From
our imperfect knowledge he appears to have discovered the method for
finding roots of the equation x3 + bx = c. This is an example of a so
called depressed cubic. In his book, Cardano gives equal credit to del
Ferro for the discovery. In the Ars Magna he writes:

Scipione Ferro of Bologna, almost thirty years ago, discovered the
solution of the cube and things equal to a number [that is, the solution
of the depressed cubic x3 + bx = c], a really beautiful and admirable
accomplishment. In distinction this discovery surpasses all mortal in-
genuity, and all human subtlety. It is truly a gift from heaven, although
at the same time a proof of the power of reason, and so illustrious that
whoever attains it may believe himself capable of solving any problem.

Historians argue that because del Ferro didn’t accept negative num-
bers, he would not have understood that he could use the formula to
solve an equation like x3 = −bx + c, because the negative coefficient
would have confused him. However, at least one historian, Bortolotti,
argues that del Ferro could solve both x3 + bx = c and x3 = bx+ c.

It appears strange to us that mathematicians at the time had such
a problem with negative numbers. The reason is that they were still
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thinking of numbers geometrically. A negative length had no meaning.
The idea that a number could also indicate a direction did not occur till
much later. Thus an equation we might write as x2 − 2x+ 4 = 0 they
would write as x2 + 4 = 2x. In antiquity things were worse, because
mathematicians would think of this equation in words, rather than
symbols. Thus they would seek a number which, when four is added
to its square yields twice the original number. This cumbersome way
of thinking made what to us is elementary mathematics, extremely
hard. And the rejection of negative quantities meant that instead of
considering one single case for a polynomial, mathematicians had to
solve all sorts of different special cases. Thus x3+ bx = c was regarded
as quite different from x3 = bx+ c, whereas to us they are exactly the
same. Moreover, zero was not in widespread use. Mathematics was
held back for centuries by this basic lack of understanding of what are,
to us at least, relatively simple concepts.

Whether or not del Ferro understood that his method really solved all
cubics or not, he passed the secret onto Fior and several other people,
including Hannibal della Nave. Fior was quite happy for people to know
that he had it. How much he divulged about the method while making
his boasts is unclear. It is unlikely that del Fior really understood
the method well. Some years earlier del Fior had challenged Tartaglia
to a public contest solving cubics and lost badly. There were thirty
equations to solve and the contestants had forty days to do them.
Tartaglia did the lot in two hours. If del Ferro really understood how
the method worked, he should also have been able to solve the problems
easily.

Yes, there really was a public contest solving cubic equations. It is
hard to imagine a public contest these days with two mathematicians
competing against one another to see who could solve the most equa-
tions in a given time, though it would probably be better than most
reality tv. At the time though, these ‘debates’ were very common and
a way for a scholar to establish a public reputation. There was also
often money involved. Tartaglia was very experienced in this format.

The reason for the debate was that Tartaglia had actually discovered
a method for solving the cubic x3 + bx2 = c and made this fact known,
though not the method. Fior thought that Tartaglia was bluffing and
so issued the challenge, which Tartaglia accepted. Working furiously,
Tartaglia managed to discover the method of solving x3 = bx+c, (which
was what del Fiore was supposed to know how to do) just before the
contest. How much of Ferro’s method did Tartaglia glean from del Fiore
before the contest? We don’t actually know. Tartaglia may well have
made the discovery entirely independently. Or, he may have picked up
vital clues from del Fiore.

Whatever the truth is, mathematics cannot be kept secret. Over the
history of mathematics when an idea is in the air, sooner or later more
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than one mathematician will discover it. The reason is that important
discoveries don’t come from nowhere. They develop out of what is
already known. So that if one person can take pre-existing knowledge
and push it in some new direction, then so can someone else. In the
history of mathematics it is not unusual for the same results to be
discovered more or less independently by different people around the
same time. This can however lead to some childishly silly disputes.

For example, Sir Isaac Newton (1642-1727)insisted that Gottfried
Wilhelm von Leibniz (1646-1716) had stolen calculus from him, and
Leibniz in turn accused Newton of the same. It seems however that they
discovered it largely independently, though Newton did it first. Leib-
niz, however, published it first. Both men benefited from the fact that
the ground work for the invention of calculus had already been done by
others. Years before Newton, Pierre de Fermat (1607-1665) could essen-
tially differentiate a polynomial and both René Descartes (1596-1650)
and Fermat had methods for calculating tangents to curves, which it-
self lead to a bitter dispute between Fermat and Descartes. Fermat’s
method based on something similar to differentiation was quite superior
to Descartes’ clumsy method of trying to make a circle touch the curve
at the desired point and use the fact that the tangent to a circle can
be computed. Indeed in 1659 the Dutch mathematician Johann Hudde
used Fermat’s ideas to show that if y =

∑n
k=0 akx

k, then the extreme
points occur where

∑n
k=1 kakx

k−1 = 0. That is, where y′ = 0, though
they did not think in terms of the modern derivative concept. Despite
the superiority of Fermat’s ideas, the mathematician Girard Desargues
(1591-1661) was called to artbitrate this dispute and his judgment is
a famous masterpiece of diplomacy: “Monsieur Descartes is right and
Monsieur Fermat is not wrong.”

As for integration, JohnWallis (1616-1703) could effectively integrate
powers of x and so find areas under curves bounded by polynomials.
Therefore, someone was bound to discover calculus proper sooner or
later. That is, see the link between the problem of finding areas and
the problem of finding tangents to curves. That person turned out to
be Newton, closely followed by Leibniz. For the record, we use Leibniz’s
name for the subject (calculus) as well as his notation for integrals and
derivatives. Newton actually called Calculus, ‘the method of fluents
and fluxions.’ Newton’s genius was for mathematics and physics, not
the creation of catchy names.

Returning to the cubic, it was from Tartaglia’s victory in his con-
test with del Fiore that Cardano learned that Tartaglia had solved the
problem of the cubic, or at least several special cases of it. This moti-
vated Cardano to try and solve the cubic himself, but he failed and so
asked Tartaglia for the secret, which is where we came in.

In 1543, Cardano and Ferrari met Hannibal della Nave, who just
happened to be del Ferro’s son in law and he showed them del Ferro’s
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notebook with the secret of the depressed cubic in it. Knowing that
Tartaglia was not the original discoverer of the method, Cardano de-
cided that he was no longer obliged to keep Tartaglia happy. What
he did however, was publish del Ferro’s methods, not the method as
Tartaglia gave it to him. Technically he argued, he had kept his oath.

Cardano’ argument, that he was presenting del-Ferro’s method, did
not impress Tartaglia. So incensed was Tartaglia that he even tried to
persuade Cardano that the formula he had been given was wrong. Since
it plainly is not wrong, (one can easily check that it works by trying
it out), this shows a considerable desperation. For the rest of his life,
Tartaglia nursed a deep hatred for Cardano and wrote a book giving his
version of events in which he heaped abuse on Cardano. Since Tartaglia
was not well known and Cardano was Europe’s leading mathematician,
Cardano was not much bothered by this. However his student Ferarri
defended Cardano in the dispute with Tartaglia and challenged him
to a contest similar to the one with Fior. Tartaglia wanted to debate
Cardano, but was ignored. Eventually Tartaglia did debate Ferrari,
though only when he was forced to as part of his ambitions to take up
a university lectureship. This time Tartaglia was soundly beaten and
the defeat seemed to break him. He died nine years later. Never before
or since has mathematics been such a brutal business.

Cardano it must be said, was a very good mathematician in his own
right and he did make a major contribution to the problem of the cubic.
What Cardano did was show how to extend the methods of Tartaglia-
del Ferro to all cubics. That is, he showed how to solve the equation
that we would write as x3 + bx2 + cx + d = 0 for any choice of b, c, d.
Since he was not including negative coefficients, he had to consider a
whole range of special cases to pull this off. At the time it was an
important achievement in its own right.

Some historians still claim that Cardano was not above pinching
other people’s results. Because his student Ferrari had derived a for-
mula for the roots of a quartic equation, which Cardano published in
the Ars Magna. Some have claimed that this was a form of theft. How-
ever it is likely that Cardano made a real contribution to the solution
of the quartic too. It is also true that Cardano credits Ferrari with the
solution of the quartic.

The solution of the quartic made a name for Ferrari, but he did not
live long enough to enjoy it. Leaving mathematics, he became a tax
inspector, which was considerably more lucrative. When he retired at
a young age as a very wealthy man, he appeared to be moving back
into mathematics, but died in 1565 at the age of 43. It is said that he
was killed by white arsenic, delivered by his sister. Such was life in the
Italian Renaissance. This story brings to mind a famous line from the
movie, ‘The Third Man’, where Harry Lime (played by Orson Welles)
tells Holly Martin (Joseph Cotten) that
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“You know what the fellow said–in Italy, for thirty years under the
Borgias, they had warfare, terror, murder and bloodshed, but they pro-
duced Michelangelo, Leonardo da Vinci and the Renaissance. In Switzer-
land, they had brotherly love, they had five hundred years of democracy
and peace - and what did that produce? The cuckoo clock.”

Today del Ferro’s formula is usually, somewhat bizarrely, referred
to as Cardano’s formula. Many famous results in mathematics end
up being named after people who did not actually discover them.
(L’Hôpital’s rule is due to Johann Bernoulli, Stokes’ Theorem is due
to Lord Kelvin, Cotes discovered Euler’s formula decades before Euler,
Taylor series were known to Gregory 45 years earlier,.....)

The history of mathematics is a fascinating subject. For those want-
ing to know more, Stillwell’s book is a good starting point, [6].
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