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37234 - Advanced Calculus Session 1 - AUT/BAU 2019 Main exam

Question 1 Total marks: 6+7+7=20.

(a) Let z = x+ iy. Obtain the real and imaginary parts of the function

f(z) =
z

1 + z3
.

(b) Let f(x + iy) = u(x, y) + iy (5x4 − 10x2y2 + 2x+ y4). Determine a function
u such that f is differentiable in the whole complex plane. Express f as a
function of z = x+ iy.

(c) Let f(x + iy) = u(x, y) + iv(x, y), be differentiable everywhere. Prove that
the function g(x+ iy) = u(x, y)− iv(x, y) cannot be differentiable everywhere,
unless u and v are constants. (Hint: Use the Cauchy-Riemann equations).
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Question 2 Total marks: 10+10=20.

(a) Let f(z) = z4 + 2z and consider two contours: γ1(t) = t2 − it, t ∈ [0, 1] and
γ2(t) = (1− i)t, t ∈ [0, 1].

(i) Show by directly evaluating both integrals that∫
γ1

f(z)dz =

∫
γ2

f(z)dz.

(ii) Evaluate the integral ∫ 1−i

0

f(z)dz.

(iii) Explain why the integrals in (i) and (ii) are the same.

(iv) Let g(z) = e−|z|
2
. Let I1 =

∫
γ1
g(z)dz, I2 =

∫
γ2
g(z)dz. It can be shown

that I1 6= I2. (You do NOT have to do this). Explain why I1 and I2 can
have different values.

(b) Use Green’s Theorem to evaluate the integral∮
C

(5xy2 + 3x3 + 7y)dx+ (6x2y2 + 5x3y)dy

where C is the rectangle with vertices (0, 0), (b, 0), (b, a) and (0, a) which is
traversed counterclockwise.
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Question 3 Total marks: 5+5+6+4=20.

(a) Evaluate the contour integral∫
C

ze
1
3
πz

z2 + 1
dz,

where C is the circle of radius 3 centered at z = 0, traversed counterclockwise.

(b) Evaluate the contour integral

1

2πi

∫
C

cos2(tz)

z2 + 1
dz, t > 0,

where C is the circle of radius 1 centered at z = i, traversed counterclockwise.

(c) Use the Cauchy integral formula to show that if f is differentiable inside a
circle of radius R centered at z0, then

f ′(z0) =
1

2πR

∫ 2π

0

e−iθf(z0 +Reiθ)dθ.

(d) Show that if f is differentiable everywhere and there is a positive constant
M < ∞ such that |f(z)| ≤ M , for all z, then f ′(z) = 0 everywhere. (Hint:

Use (c) and the fact that |
∫ b
a
f(x)dx| ≤

∫ b
a
|f(x)|dx. Notice that (c) holds for

all R > 0.)
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Question 4 Total marks: 7+5+8=20.

(a) Obtain a Laurent series expansion for the function

f(z) =
sin(tz) + z2

z4
,

around z = 0. What is the order of the pole at z = 0? What is the value of
the residue at the pole? Let γ be a circular contour of radius 1 centered at
zero, traversed counterclockwise. Find the value of

∫
γ
f(z)dz.

(b) Obtain a Laurent series expansion for

f(z) =
z

z2 + 16
,

valid for: (i) |z| < 4, (ii) |z| > 4. Identify the poles of f and the values of the
residues at the poles.

(c) Show that ∫ 2π

0

dθ

4 + 2 sin θ
=

∫
C

1

z2 + 4iz − 1
dz,

where C is the unit circle taken counterclockwise. Hence show that∫ 2π

0

dθ

4 + 2 sin θ
=

π√
3
.

Hint: sin θ = 1
2i

(z − 1/z) if z = eiθ.
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Question 5 Total marks 8+12=20 Marks

(a) Using residues, establish the following result.∫ ∞
−∞

cosx

x4 + 1
dx =

e
− 1√

2π
(

sin
(

1√
2

)
+ cos

(
1√
2

))
√

2
.

Hint: Find the poles of the function f(z) =
eiz

z4 + 1
.

(b) Consider the contour γ = γ1 + γ2 − γ3.
γ1(t) = t, 0 ≤ t ≤ R,

γ2(t) = Reit, 0 ≤ t ≤ 2π/5,

γ3(t) = te2πi/5, 0 ≤ t ≤ R.

The function f(z) =
z2

z5 + 1
has simple poles at

zk = e(2k+1)πi/5, k = 0,±1,±2.

Taking careful note of which pole lies inside γ, use the residue theorem to
evaluate the contour integral∫

γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz −
∫
γ3

f(z)dz,

and hence show that ∫ ∞
0

x2

x5 + 1
dx =

π

5 sin
(
3π
5

) .
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Useful information

1

1− z
= 1 + z + z2 + z3 + · · · |z| < 1,

ez = 1 + z +
z2

2!
+
z3

3!
+ · · ·

cos z = 1− z2

2!
+
z4

4!
− · · ·

sin z = z − z3

3!
+
z5

5!
− · · ·

f(z) = f(z0) + f ′(z0)(z − z0) +
1

2!
f ′′(z0)(z − z0)2

+
1

3!
f ′′′(z0)(z − z0)3 + · · ·

eiθ = cos θ + i sin θ∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt, where γ = γ(t), t ∈ [a, b],

f (n)(z) =
n!

2πi

∫
γ

f(ξ)

(ξ − z)n+1
dξ.

f(t) = lim
R→∞

1

2πi

∫ R+ic

R−ic
F (s)estds, F is the Laplace transform of f

Residue(f(z), z0) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
((z − z0)nf(z)) ,

for a pole or order n.

Residue(f(z), z) = lim
z→z0

(z − z0)f(z),

for a pole of order 1. ∫
γ

f(z)dz = 2πi
N∑
k=1

Residue(f(z), zk)

z1, ...zN are the poles of f inside the closed simple curve γ.

The Cauchy-Riemann equations are ux = vy, uy = −vx.∮
C

Pdx+Qdy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

where C is the boundary of D.
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