Complex Analysis Tutorial Nine Solutions.
Question One. We have the integral
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This is just an application of the residue theorem. There are four
simple poles above the axis. These are solutions of z® = —16 and
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We then obtain after an elementary application of Euler’s formula
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Question Two. We use the same contour as was in the last question of
tutorial eight. We have v = ~; + 72 = where v (t) =t,0 <t <R,
Y2(t) = Re™, O<t<2”,73(t)—eot 0<t<R

Let f(z) = ;%5 The poles are at the solutlons to 25 = e™ 2k The

only pole inside the contour is at z; = e5. So that by the Residue
Theorem
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as R — oo. So taking R — oo we have
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Question Three.

(a). We have fo 9)df for an analytic function f. Let z = ¢ and
C be the unit mrcle Then we have
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by the Cauchy integral formula.

(a). We have fo ) cos0df. As in the previous question we have
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The first integral on the second line is zero by Cauchy’s Theorem.

Question Four.
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We let f(z) =
have

e +1) There are two poles of order 2 at +i. So we
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We take f(z) = T which has four simple poles These are at
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This gives
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Question Five.
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(a) We have the Laplace transform F(s) = = +S4)(82 o This has

poles at £2¢ and 43:. Then we require
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If f(t) is the inverse Laplace transform of F'(s) then
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We have F(s) = . This has infinitely many poles
simple poles at s =0 and s = £m¢, £37i .... Now
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