Complex Analysis Tutorial Six Solutions.

Question One.
We let
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Then @, = 1 and P, = 6y. C is the circle (z — 1)' 4+ (y — 2)? = 25.
This has radius 5. Welet x =1+ rcosf,y =2+ rsinf. So0 <r <5
and 0 < 0 < 27. Let D be the interior of C. By Green’s Theorem
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Question Two.
We have (t) = 2¢",t € [0,7/2]. Then
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By the Fundamental Theorem of Contour Integration
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Question Three.
We have f(z) = z? — 2z and since this is differentiable, the integral
is independent of path. Hence
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Question Four.
We can set up the integral as a sum of integrals along four straight
line contours. However by the Cauchy integral formula, with f(z) =1

/ L = omif(1) = 2ni.
C

Z—1

Question Five.
Notice that the singularity of the integrand does not lie inside the
curve. So the function is differentiable on and inside C'. Thus by

Cauchy’t Theorem
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Question Six.

Green’s Theorem says that
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D is the interior of C. Let P = —&* and Q= a“. Then
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If u is a harmonic function then
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This is important in the study of Laplace’s equation.

Question Seven. We have
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Put P = F% and Q = —F %, Then
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Question Eight.
We write the integral as
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Now put f(z) = 12z* — 3. Then by the Cauchy integral formula
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Question Nine.
Let f(z) = 223. 2y = 2 is inside the curve C. So by the general

Cauchy integral formula
f(2) :
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Question Ten.
Put f(z) = e*. Then by the Cauchy integral formula
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Now put (t) = e® and let t € [0, 27i). Then
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Equating the real and imaginary parts we have
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Question Eleven.
By elementary properties of integrals
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It is obvious that |23 + 22| > |z|? for |z + 1| > 1. Taking reciprocals
we have
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So by the ML inequality we have
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because the length of the contour is 27 R.




