Complex Analysis Tutorial Eight Solutions
Question One. We have
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This converges for }%’ < 1. We can also write
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which converges for |z — 3| < 2. The residue at z = 3 is clearly —1/2.

Question Two.
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for |24 1| < 5. The residue at -1 is —1/5. Now z = —1 is the only pole

inside C', so
/—1 dz:27r><_—1:_2m.
c(z=4)(z+1) 5 5

Question Three. We use the substitution z = €.
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There are poles of order 2 at the roots of 3+ 10iz — 322 = 0. The poles
are z = 31 and i/3. Clearly only the second is inside the unit circle.
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So by the Residue theorem

/QW df [ 5i\ 5w
=2 —— | = —.
o (b—3sinh)? 64 32

(b)

/2” df _/ 1 dz
o 3+cosf—2sinf  Jo3+4+3(2+1/2)+i(z—1/2) iz

_/g dz
C Jo i (14222462 +1—2i

There are poles at z; = —1 4+ 2¢ and 25 = —% + % 2o 18 inside the unit
circle. The other pole is outside.
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Clearly there is a pole of order 3 at z = 0. There are two other poles
at z =1/2 and z = 2. Thus we have two poles in the unit circle.
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Do this in Mathematica. It is far too messy by hand. In practice most
of these sorts of problems would be done on a computer in real life.
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Question Four. We will do these in part 2.



