Complex Analysis Tutorial One

Question One.

We have f(x) = |x - 1|. From the definition of the derivative,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Now we consider limits to the left and right. We want x = 1.

$$\lim_{h \to 0^+} \frac{|x+h-1| - |x-1|}{h} \Big|_{x=1} = \lim_{h \to 0^+} \frac{|1+h-1| - |1-1|}{h}$$
$$= \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1,$$

since h > 0 implies |h| = h. Now we take the limit from the left.

$$\lim_{h \to 0^{-}} \frac{|x+h-1| - |x-1|}{h} \Big|_{x=1} = \lim_{h \to 0^{-}} \frac{|1+h-1| - |1-1|}{h}$$
$$= \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1,$$

since h < 0 implies that |h| = -1. These two limits are different. Thus f' is discontinuous at x = 1.

Question Two. In both these examples the limits are of the form $\frac{0}{0}$. So we can apply L'Hôpital's rule. (a)

$$\lim_{x \to 0} \frac{\tan x}{2x} = \lim_{x \to 0} \frac{\sec^2 x}{2} = \frac{1}{2}.$$

(b)

$$\lim_{x \to -2} \frac{x+2}{x^3+8} = \lim_{x \to -2} \frac{1}{3x^2} = \frac{1}{12}.$$

Question Three.

(a)
$$f(x, y) = x^2 + y^2$$
. Then $\frac{\partial f}{\partial x} = 2x$, $\frac{\partial f}{\partial y} = 2y$.
(b) $f(x, y) = x^3 y$. Then $\frac{\partial f}{\partial x} = 3x^2 y$, $\frac{\partial f}{\partial y} = x^3$.
(c) $f(x, y) = x \ln(xy^2) = x \ln x + 2x \ln y$. So
 $\frac{\partial f}{\partial x} = \ln x + 1 + 2 \ln y = \ln(xy^2) + 1$, $\frac{\partial f}{\partial y} = \frac{2x}{y}$.
(d) $f(x, y) = e^{-x^2 - y^2}$, $\frac{\partial f}{\partial x} = -2xf(x, y)$, $\frac{\partial f}{\partial x} = -2yf(x, y)$.
(e) $f(x, y) = \sin(xy^2)$. $\frac{\partial f}{\partial x} = y^2 \cos(xy^2)$, $\frac{\partial f}{\partial y} = 2xy \cos(xy^2)$

Question Four.

The principal value of the argument of i is $\frac{\pi}{2}$. So that $i = e^{\frac{\pi}{2}i}$. Hence $1/i = e^{-\frac{\pi}{2}i}$.

Question Five.

(a) Let z = x + iy. Then $|z| = \sqrt{x^2 + y^2}$. So |z| = 2 is the set of points $\sqrt{x^2 + y^2} = 2$, or $x^2 + y^2 = 4$. This is a circle of radius 2 centered at the origin. See accompanying Mathematica file.

(b) $|z+1| = |x+iy+1| = \sqrt{(x+1)^2 + y^2}$. Thus |z+1| = 1 is the set of points $\sqrt{(x+1)^2 + y^2} = 1$ which is the same as $(x+1)^2 + y^2 = 1$. This is a circle of radius 1 centered at (-1, 0). See Mathematica file.

(c) $|z - 2i| = |x + iy - 2i| = \sqrt{x^2 + (y - 2)^2}$. Hence $|z - 2i| \le 1$ is the set of points $\sqrt{x^2 + (y - 2)^2} \le 1$ or $x^2 + (y - 2)^2 \le 1$ which is the interior of the circle of radius 1, centered at (0, 2). See Mathematica file.

(d) $\operatorname{Arg}(z) = \frac{2\pi}{3}$ is the set of points of the form $z = re^{\frac{2\pi}{3}i}$. For any r > 0.

(e) $|z-2| = \sqrt{(x-2)^2 + y^2}$ So |z-2| > 1 and |z-2| < 3 is the set of points 1 < |z-2| < 3 or $1 < (x-2)^2 + y^2 < 9$. This is the region between the circles centered at (2,0) of radii 1 and 3. See Mathematica file.

Question Six.

Euler's formula says $e^{iz} = \cos z + i \sin z$. Hence $e^{-iz} = \cos z - i \sin z$. So that $e^{iz} + e^{-iz} = \cos z + i \sin z + \cos z - i \sin z = 2 \cos z$. Further $e^{iz} - e^{-iz} = \cos z + i \sin z - (\cos z - i \sin z) = 2i \sin z$. Rearranging these gives the results.

Now

$$\cos^{2} z + \sin^{2} z = \left(\frac{e^{iz} + e^{-iz}}{2}\right)^{2} + \left(\frac{e^{iz} - e^{-iz}}{2i}\right)^{2}$$
$$= \frac{e^{2iz} + 2 + e^{-2iz}}{4} - \frac{e^{2iz} - 2 + e^{-2iz}}{4} = \frac{4}{4} = 1.$$

Question Seven.

We have to solve $z^3 = 1 + i$. We 1 + i write in polar form. $|1 + i| = \sqrt{1+1} = \sqrt{2}$. The number is in the first quadrant, so the principal value is $\frac{\pi}{4}$. Thus we want to solve $z^3 = e^{\frac{\pi}{4}i + 2k\pi i}$. Taking k = 0, we see that the first solution z_0 must satisfy $z_0^3 = \sqrt{2}e^{\frac{\pi}{4}i}$. Hence $z_0 = 2^{1/6}e^{\frac{\pi}{12}i}$. Next take k = 1. So the second solution satisfies $z_1^3 = \sqrt{2}e^{\frac{\pi}{4}i+2\pi i} = \sqrt{2}e^{\frac{9\pi}{4}i}$. Hence $z_1 = 2^{1/6}e^{\frac{3\pi}{4}i}$. Finally take k = -1. Then the third solution satisfies $z_{-1}^3 = \sqrt{2}e^{\frac{\pi}{4}i-2\pi i} = \sqrt{2}e^{\frac{-7\pi}{4}i}$. Hence $z_{-1} = 2^{1/6}e^{-\frac{7\pi}{12}i}$.

 $\mathbf{2}$