
Complex Analysis Tutorial Two

Question One
We let z = a + ib and suppose that b �= 0. Now

sin(z) = sin(a + ib) = sin a cos(ib) + sin(ib) cos a

= sin a cosh b+ i sinh b cos a

Now if sin z = 0 the real and imaginary parts must both be zero. Hence
sin a cosh b = 0. However cosh b = 1

2
(eb + e−b) �= 0 for any real b, since

the exponential of a real number is positive. This means that sin a = 0.
Since a is real, then it is one of the real roots of sinx. These are a = nπ
where n is an integer.

Next we must also have sinh b cos a = 0. However a = nπ. Hence
cos(nπ) sinh b = (−1)n sinh b = 0. This means that sinh b = frac12(eb−
e−b) = 0. This is only possible if b = 0. So if sin z = 0, z = nπ and so
all the zeroes are real.

We repeat this for cos z = cos(a+ ib) = cos a cos(ib)− sin a sin(ib) =
cos a cosh b − i sin a sinh b. We apply the same argument as before.
cos a cosh b = 0 implies that cos a = 0, so a = (n + 1

2
)π for n an

integer. Since sin a sinh b = sin((n + 1
2
)π) sinh b = (−1)n sinh b = 0 we

must have b = 0. So that z = (n + 1
2
)π and all zeroes are real.

Question Two
We have the power series expansion ez =

∑∞
n=0

zn

n!
. Now let an = zn

n!
.

By the ratio test, the series will converge absolutely if limn→∞
∣∣∣an+1

an

∣∣∣ <
1. Now

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ zn+1

(n+ 1)!
/(
zn

n!
)

∣∣∣∣ = lim
n→∞

|z|n!
(n + 1)!

= lim
n→∞

|z|
n + 1

= |z| lim
n→∞

1

n+ 1
= 0 < 1.

So the series converges uniformly for all z ∈ C.

Next we have sin z =
∑∞

n=0
(−1)n+1z2n+1

(2n+1)!
. For the ratio test we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣(−1)n+2z2n+3

(2n+ 3)!
/(
(−1)nz2n+1

(2n+ 1)!
)

∣∣∣∣ = lim
n→∞

|z|2(2n+ 1)!

(2n+ 3)!

= lim
n→∞

|z|2
(2n+ 2)(2n+ 3)

= |z|2 lim
n→∞

1

(2n+ 2)(2n+ 3)

= 0 < 1.

Finally cos z =
∑∞

n=0
(−1)n+1z2n

(2n)!
. Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣(−1)n+2z2n+2

(2n+ 2)!
/(
(−1)nz2n

(2n)!
)

∣∣∣∣ = lim
n→∞

|z|2(2n)!
(2n+ 2)!

= lim
n→∞

|z|2
(2n+ 1)(2n+ 2)

= |z|2 lim
n→∞

1

(2n+ 1)(2n+ 2)

= 0 < 1.
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Question Three
We have tanh z = sinh z

cosh z
= y. So that ez−e−z

ez+e−z = y. This can be

rewritten e2z−1
e2z+1

= y. Or (e2z − 1) = y(e2z + 1). Rearranging we have

e2z(1− y) = y + 1.

Hence

e2z =
y + 1

y − 1
.

We take logs to get

z = tanh−1(y) =
1

2
ln

(
y + 1

y − 1

)
.

Question Four
Now cosh z = 1

2
(ez+e−z) = y. Multiply both sides by 2ez to produce

e2z + 1 = 2ezy. If we put u = ez we have the quadratic equation

u2 − 2uy + 1 = 0. Then u =
2y±

√
4y2−4

2
= y ±

√
y2 − 1. Note y =

cosh z ≥ 1. We take the positive square root, since cosh z is positive
when z is real. Now take the natural log to produce

z = cosh−1(y) = ln(y +
√
y2 − 1).

Question Five
We want to find the roots of z6 = 1. Lets call them z1, ...., z6. We

write z6 = e2kπi. Then we use the fact that the roots appear in complex
conjugate pairs. Take k = 0, then the first root satisfies z61 = 1, so
z1 = 1. We also see that z2 = −1 is also a root. Next take k = 1. The
third root satisfies z63 = e2kπi, or

z3 = e
2πi
6 = e

πi
3 = cos

(π
3

)
+ i sin

(π
3

)
=

1

2
+

i
√
3

2
. We then immediately see that the fourth root is

z4 = e
−πi
3 = cos

(π
3

)
− i sin

(π
3

)
=

1

2
− i

√
3

2

. Taking k = 2 we get the fifth root z65 = e4πi, or z5 = e
2πi
3 = −1

2
+ i

√
3

2
.

and the final root is z6 = e
2πi
3 = −1

2
− i

√
3

2
.

Question Six
We write z = (2− 2i) = |z|eiargz. Now |z| = √

22 + 22 =
√
8 = 2

√
2.

argz = −πi
4
+ 2kπi. Proceeding as in question five we have four roots:

81/8e−
πi
16 , (k = 0), 81/8e

7πi
16 , (k = 1), 81/8e

−9πi
16 , (k = −1), 81/8e

15πi
16 , (k =

2).
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Question Seven
We have from the definitions of the hyperbolic functions

cosh2 z − sinh2 z =

(
1

2
(ez + e−z)

)2

−
(
1

2
(ez − e−z)

)2

=
1

4
(e2z + 2 + e−2z − (e2z − 2 + e−2z)

=
4

4
= 1.

Question Eight
This uses the fairly obvious fact that Arg(exeiy) = y. We let z =

x+ iy, note that we are taking the principal value and write

Loge(e
z) = ln |ez|+ iArg(exeiy)

= ln(ex) + iy

= x+ iy = z.

We used the fact that |eiy| = 1. So we have shown that the principal
value of the logarithm is the inverse of the exponential function.

Question Nine
We write i = e

πi
2
+2kπi, k ∈ Z. Then

ii/2 = (e
πi
2
+2kπi)i/2 = e−

π
4
−kπ.

Question Ten
We want to calculate

∑n
k=1 sin(kθ). We use Euler’s formula and the

sum of a geometric progression. Recall that

ar + ar2 + · · ·+ arn =
ar (rn − 1)

r − 1

Now let r = eiθ and a = 1. Then

n∑
k=1

sin(kθ) = Im

n∑
k=1

eikθ

=
eiθ(einθ − 1)

eiθ − 1
.
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Now

eiθ(einθ − 1)

eiθ − 1
=

eiθein
θ
2 (ein

θ
2 − e−in θ

2 )

ei
θ
2 (ei

θ
2 − e−i θ

2 )

=
ei

θ
2 ein

θ
2 (2i sin

(
nθ
2

)
)

2i sin
(
θ
2

)

=
ei

1
2
(n+1)θ sin

(
nθ
2

)
sin

(
θ
2

)

=

(
cos

(
1

2
(n+ 1)θ

)
+ i sin

(
1

2
(n+ 1)θ

))
sin

(
nθ
2

)
sin

(
θ
2

)
Taking the imaginary part we obtain the formula

n∑
k=1

sin(kθ) = sin

(
1

2
(n+ 1)θ

)
sin

(
nθ
2

)
sin

(
θ
2

) .


