Complex Analysis Tutorial Seven Solutions

Question One.
(a) We have the general Cauchy integral formula
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Let f(2) = €3 and n = 1. Then we have
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If R < 2 then only z =1 is inside Cg. So
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If R is large enough to contain both poles we have by partial fractions
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Then put

where f(z) = .

Question Two. (a)

(b)
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where ay, = % and ag,1 = %
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Question Three.
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There is a pole of order 3 at z = 0. The residue is 1/2.

Question Four.
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This is convergent for |z| < 2.

Question Five.
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Now let a,, = z"*!. We use the ratio test first. So
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provided |z| < 1. Alternatively |a, |/ = |z]*"%. So limy,_e0 |an|V/" =

lim, o0 2" = |2| < 1 provided |z| < 1. So the Taylor series is
convergent for |z| < 1.

Question Six.
This was done in lectures. Consider the more general problem
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In general we have a pole of order n at z = 0. The residue is 1/(n —1)!



Question Seven.
(a) We factorise the denominator to obtain
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and this converges for |z + 1| < 3.

(b)

We can write by partial fractions
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The first series converges for |z| < 2 and the second converges for |z| >

1, so the resulting series converges on the overlap. That is 1 < |z| < 2.

Question Eight.
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after some tedious algebra. So we have a pole of order 1 and the residue
is 1. Note that we usually only need a few terms to identify the order

of the pole and find the residue.




4

Question Nine.
This is just a matter of multiplying terms out until you get bored.
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There is a pole or order 2 at z = 0. The residue is zero.
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Notice that this has NO pole. The point z = 0 is a removable singular-
ity. We can define f(0) = 2 and the resulting function is continuous.



