
Differential Equations

Problem sheet one.

(1) Find the general solution of the following ordinary differential
equations. For those equations which have an initial condition
given, find the unique solution satisfying the given data.

(a)
dy

dx
= 2x2y, y(0) = 2.

(b)
dy

dx
= 2xy2

(c)
dy

dx
=

cosx

3y2 + ey
, y(0) = 2.

(d) 2
dy

dx
= y(y − 2).

(e) 2(y − 1)
dy

dx
= ex, y(0) = −2.

(2) Find an integrating factor to solve the following first order linear
equations.
(a) xy′ + 2y = 4x2, y(1) = 4.

(b) xy′ + (x− 2)y = 3x3e−x

(c) y′ + (cotx)y = 3 sin x cosx.

(d) x(ln x)y′ + y = 2 lnx, y(e) = 1.

(e) y′ + 3x2y = x2 + e−x3

.

(3) A Bernoulli equation has the general form

y′ + p(x)y = q(x)yn,

where n is any number other than 0 or 1. These can be turned
into first order linear equations by first dividing both sides of the
equation by yn, then introducing the new variable u = y1−n. Use
the appropriate substitutions to solve the following Bernoulli
equations.

(a) y′ +
3

x
y = x2y2.

(b) 2y′ +
1

x+ 1
y + 2(x2 − 1)y3 = 0.

(c) xyy′ = y2 − x2.
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Problem sheet two.

(1) Obtain the general solution of the following second order ODES.

(a) 2y′′ + 4y′ + 8y = 0.

(b) y′′ + 16y = 4x.

(c) y′′ − 3y′ + 2y = 6e−x.

(d) y′′ + 2y′ + 5y = 4e−x cos 2x.

(e) 2x2y′′ − 5xy′ + 3y = 0. (Hint: Try y = xa and show that a
must satisfy a quadratic.)

(2) Solve the following third order ODEs.

(a) y′′′ − 6y′′ + 11y′ − 6y = 0.

(b) y′′′ − 4y′ = 0.

(3) Find changes of variables which convert the following Riccati
equations to second order linear equations. You do not have to
solve the resulting equations.
(a) f ′ + 1

2
f 2 = 2x+ 4

(b) xf ′ + 2f 2 + 3xf = 0. (c) (1 + x2)f ′ + 4f 2 = sin x.

(4) Solve the following exact equations.
(a) 2x sin y − y sin x+ (x2 cos y + cosx)y′ = 0.

(b) (2xy3 + 8x)dx+ (3x2y2 + 5)dy = 0, y(2) = −1,

(c) (x2ey + 3ex)y′ + (2xey + 3yex) = 0, y(0) = 1/2.

(d) y cosxdx+ (sin x− sin y)dy = 0.

(5) Convert the following problems to separable equations and hence
solve.
(a) (y2 − xy)dx+ x2dy = 0, (b) (x+ 3y)dx+ xdy = 0

(c) y′ =
x3

4x3 − 3x2y
, (d)

dy

dx
=

x3y

x4 + y4
.

(e) ey/xy′ = 2(ey/x − 1) +
y

x
ey/x.
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Differential Equations

Problem sheet three.

(1) Use the given solution of the homogeneous problem for the fol-
lowing ODEs to construct the general solution.

(a) x3y′′ + xy′ − y = 0, y1 = x.

(b) xy′′ + (1− 2x)y′ + (x− 1)y = 0, y1 = ex.

(c) 2xy′′ + (1− 4x)y′ + (2x− 1)y = ex, y1 = ex.

(d) x2(x+ 2)y′′ + 2xy′ − 2y = (x+ 2)2, y = x.

(2) Use variation of parameters to solve the following second order
inhomogenous ODEs

(a) y′′ − 3y′ + 2y = − e2x

ex + 1
.

(b) y′′ + y = tan x sec x.

(c) y′′ + 2y′ + y = e−x sec2 x.

(d) y′′ − y =
2

ex + 1
.

(e) y′′ + 2y′ + y = 4e−x ln x.

(f) y′′ + y = cosecx.

(g) y′′ − 2ay′ + (a2 + b2)y = eax(A cos(bx) +B sin(bx))
(3) Let a, b be positive real numbers with a �= b. Use Variation

of parameters to show that the general solution of the second
order ODE

y′′ + (a + b)y′ + aby = F (x),

can be written as

y(x) = c1e
−ax + c2e

−bx +
1

b− a

∫ x

x0

[e−a(x−t) − e−b(x−t)]F (t)dt,

where x0 is some initial point.
(4) If y1, y2 are linearly independent solutions of the ODE

Ly = y′′ + p(x)y′ + q(x)y = 0, write a general formula for the
solution of Ly = R(x), similar to the previous question.
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(5) Variation of parameters can be extended to higher order equa-
tions. Suppose we want to solve

y(n)(x) + p1(x)y
(n−1)(x) + · · ·+ pn(x)y(x) = g(x).

We assume that we have n linearly independent solutions of
the homogenous equation. Call these solutions y1, ..., yn. The
Wronskian is W (y1, ..., yn). By analogy with the n = 2 case,
suppose that there is a particular solution

yp = v1y1 + · · ·+ vnyn.

An extension of the argument used in the n = 2 case gives the
system ⎛⎜⎜⎜⎝

y1 · · · yn
y′1 · · · y′n
... · · · ...

y
(n−1)
1 · · · y

(n−1)
n

⎞⎟⎟⎟⎠
⎛⎝v′1...
v′n

⎞⎠ =

⎛⎝0
...
0

⎞⎠ ,

where y
(k)
i is the kth derivative of yi. Cramer’s rule gives

v′k(x) =
g(x)Wk(x)

W (y1, ..., yn)
,

where Wk(x) = (−1)n−kW (y1, ...yk−1, yk+1, ..., yn). For example,
in the n = 4 case,

W1(x) = (−1)4−1det

⎛⎝y2 y3 y4
y′2 y′3 y′4
y′′2 y′′3 y′′4

⎞⎠ , W2(x) = (−1)4−2det

⎛⎝y1 y3 y4
y′1 y′3 y′4
y′′1 y′′3 y′′4

⎞⎠
etc.
(a) Solve the equation x3y′′′+x2y′′−2xy′+2y = x3 sin x. (For

the homogeneous equation, try y = xa as a solution to ob-
tain a cubic for a.)

(b) In structural engineering the bending of a beam under a
load g(x) is given by y(4)−k2y′′ = g(x), 0 < x < L. Here y
is the deflection of the beam from parallel due to the load
g(x) and k is a constant and L is the length of the beam.
Show that the general solution is given by

y(x) = c1 + c2x+ c3e
kx + c4e

−kx +

∫ x

0

g(t)G(x, t)dt,

where

G(x, t) =
t− x

k2
− sinh(k(t− x))

k3
.
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(6) Show that if u is a known solution of the ODE

y′′ + p(x)y′ + q(x)y = 0,

then the substitution y = uv produces a first order DE for v.
Solve this to obtain a new proof of the result from class.
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Differential Equations

Problem sheet four.

(1) Obtain series solutions for the following differential equations.

(a) 2y′′ − xy′ − 2y = 0.

(b) y′′ − (x+ 1)y = 0.

(c) y′′ − x2y′ − 2xy = 0.

(d) (1 + x)y′′ − y = 0.

(e) y′′ − (sin x)y = 0.

(f) y′′ − xy′ − x2y = 0.

(g) y′′ − (x2 + 1)y = 0.

(h) (x2 + 1)y′′ − xy′ + y = 0.

(i) y′′ + exy′ + (1 + x2)y = 0, y(0) = 1, y′(0) = 0.
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Differential Equations

Problem sheet five.

(1) Use the method of Frobenius to solve the following differential
equations.

(a) x2y′′ − 5xy′ + (3− x)y = 0.

(b) 2x2y′′ + xy′ − (2x+ 1)y = 0.

(c) 2xy′′ + 3y′ − xy = 0.

(d) (2x2 − x3)y′′ + (7x− 6x2)y′ + (3− 6x)y = 0.

(e) (2x− 2x2)y′′ + (1 + x)y′ + 2y = 0.

(f) x2(x+ 2)y′′ − xy′ + (1 + x)y = 0.

(h) 3x2y′′ + 8xy′ + (x− 2)y = 0.

(i) x2y′′ − x(1 + x)y′ + y = 0.

(2) Express the solutions of the following equations in terms of
Bessel functions.

(a) y′′ + x2y = 0.

(c) x2y′′ + 5xy′ + (3 + 4x2)y = 0.

(c) xy′′ − 3y′ − 9x5y = 0.

(d) x2y′′ + 5xy′ +
(
8 + 4

x4

)
y = 0.

(3) Can any of the equations in question 2 be solved in terms of
Bessel functions?

(4) Solve the equation xy′′ + (1−x)y′ +ny = 0. Show that if n is a
nonnegative integer, then the equation has solutions which are
polynomials of degree n. These are called Laguerre polynomials.

(5) In quantum mechanics we are interested in obtaining the so
called wave function for an elementary particle, which we denote
ψ. If Ω is a region of space, the probability that the particle will
be found in Ω is given by the integral

∫
Ω
|ψ|2dx. The Hydrogen

atom consists of a single proton orbited by a single electron.
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In a simplified model we assume that the wave function of the
electron depends only on the distance r from the proton. In
this case

− �
2

2m

1

r

d2

dr2
(rψ)− e20

r
ψ = Eψ.

Here m is the mass of electron, e0 is the charge on the electron,
E < 0 is a constant and � = h/(2π) where h is known as
Planck’s constant. Let

r =
h2

4π2me20
x, E =

2π2me40
h2

ε, f = xψ.

Now obtain a series solution for the resulting equation.
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Differential Equations

Problem sheet six.

(1) Solve Legendre’s differential equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

Show that if n is a positive integer it has solutions which are
polynomials. These are known as Legendre polynomials.

(2) Find one solution of Gauss’ Hypergeometric differential equa-
tion

x(1− x)y′′ + [c− (a+ b+ 1)x]y′ − aby = 0.

(The solutions are special functions known as hypergeometric
functions).

(3) Find a solution of the confluent hypergeometric equation

xy′′ + (b− x)y′ − ay = 0.

(4) Show that the Hermite equation

y′′ − 2xy′ + 2ny = 0

has polynomial solutions when n is a positive integer. These
are called Hermite polynomials and denoted Hn(x). Show that
these are generated by Rodriguez’s formula

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

To really impress your friends, prove the Taylor series expansion

exp(2xt− t2) =

∞∑
n=0

Hn(x)
tn

n!
.

(5) Use the definition of the first kind Bessel functions and the series

expansions of sin x and cosx to prove that J1/2(x) =
√

2
πx

sin x

and J−1/2(x) =
√

2
πx

cosx.

(6) Show that xJ ′
p(x) = pJp(x) − xJp+1(x). It can also be shown

that xJ ′
p(x) = −pJp(x) + xJp−1(x). Conclude that

2p

x
Jp(x) = Jp−1(x) + Jp+1(x).

(7) Consider the general second order differential equation

u′′(x) + a1(x)u
′(x) + a2(x)u = 0 (1)
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Show that the change of variable u = ũ(x)e
∫
φ(x)dx, where φ(x) =

−a1(x)/2, converts equation (1) into the second order equation

ũ′′(x) + [a2(x) + a1(x)φ(x) + φ′(x) + φ(x)2]ũ = 0.

(8) Use the change of variables in the previous question to solve the
following ODEs

u′′(x) + 2 cot(x)u′(x)− u(x) = 0

u′′(x) + 2 tan(x)u′(x) + 2 tan2(x)u(x) = 0
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Differential Equations

Problem sheet seven.

(1) Compute the Laplace transforms of the following functions
(a) f(x) = e−5x

(b) f(x) = x2 cos 2x.,
(c) f(x) = −3 cos(4x) + 5ex sin 3x
(d) f(x) = J0(ax).

(e) f(x) = ae−bx−be−ax

b−a
.

(f) f(x) = sin ax cosh ax− cos ax sinh ax.
(g) f(x) = x2 sin(x) cos(2x).
(h) f(x) = ln(1 + x). (This is quite hard).

(2) Prove that the inverse Laplace transform is linear.

(3) Calculate the Laplace transform of the following functions.
(a) f(t) = t2e−3t cos(4t),

(b) f(t) = sin(2t) cos(4t),

(c) f(t) = e−3t(t + 3)2 sin(3t) sin(4t) cos(3t) cos(4t),

(d) f(t) = H(t− 3) sin(3t− 9) cos(4t− 12).

(4) Calculate the Laplace transform of Jα(t).

(5) Find the Laplace transforms of

(a)

∫ t

0

x2exdx

(b) e2t
√
t

(c)

∫ t

0

cos2 udu

(6) Find the inverse Laplace transforms of the following functions.

(a) e−s 1

(s− 2)2

(b)
s

(s− 2)3/2(s2 + 1)

(c) e−2s 1

s2 + 9π2

(d)
s

s4(s2 + 9)

(7) Find a function f which has the following Laplace transforms.
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(a) F (s) =
2s+ 7

(s+ 2)(s2 + 9)

(b) F (s) =
s+ 3

(s2 + 9)(s2 − 16)

(c) F (s) =
s2 − 9

(s+ 3)2 + 4
.

(d) F (s) =
1

sa
e

k
s , a > 0. (Expand in powers of 1/s and invert

term by term. Then compare the result to the series for a
Bessel function).

(8) Find the inverse Laplace transform of

F (s) =
1

(1 + 2st)
n
2

exp

(
− sx

1 + 2st

)
.
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Differential Equations

Problem sheet eight.

(1) Solve the following initial value problems by Laplace trans-
forms.
(a)

x′′(t) + 4x(t) = 5e−t,

x(0) = 2, x′(0) = 3.

(b)

x′′ + 2x′ + x = 4 sin t,

x(0) = −2, x′(0) = 1

(c)

x′′ + 4x′ + 5x = 25t

x(0) = 0, x′(0) = 2.

(2) Solve the initial value problem

x′′ + x = f(t)

x(0) = x′(0) = 0,

f(t) =

{
t 0 ≤ t ≤ 1

1, t > 1.

(3) Solve the initial value problem

x′′ − x = f(t)

x(0) = 1, x′(0) = 0,

f(t) =

{
0 0 ≤ t ≤ 1

t− 1, t > 1.

(4) By using the Laplace transform, express the solution of the
problem

x′′ + x = f(t), x(0) = 0, x′(0) = 1

as an integral.

(5) Systems of differential equations can often be solved by Laplace
transform. Try to solve the following system by Laplace trans-
form.

x′ + 2x− 2y = 0

−x + y′ + y = 2et
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x(0) = 0, y(0) = 1. (Hint: Take the Laplace transform of both
equations and obtain a pair of simultaneous equations for X(s)
and Y (s). Then invert both transforms).

(6) Take the Laplace transform in t to solve the PDE

∂2u

∂x∂t
+ sin t = 0, t > 0,

with u(x, 0) = x, u(0, t) = 0.

(7) Solve the wave equation with source term

∂2u

∂x2
=

1

c2
∂2u

∂t2
− k sin(πx), 0 < x < 1, t > 0.

Suppose that

u(x, 0) = 0,
∂u

∂x
(x, 0) = 0, u(0, 1) = u(1, t) = 0.
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Differential Equations

Problem Sheet Nine

(1) Calculate the Fourier series for the function

f(x) = x(x+ 1),−π < x < π,

with f(x+ 2π) = f(x).

(2) Compute the Fourier series for f(x) = 2x2−3x+2, −1 < x < 1,
with f(x+ 2) = f(x).

(3) Calculate the Fourier cosine series of f(x) = sin x on the inter-
val [0, π].

(4) Calculate the Fourier sine series for f(x) = cosx on the interval
[0, π]. What is the periodicity of the function?

(5) Find the Fourier sine and cosine series for

f(x) = 1− x, 0 < x < 1.

What is the periodicity of the function?

(6) Obtain the Fourier series expansion of f(x) = x − [x] on the
interval −2 < x < 2, f(x + 4) = f(x) for all x and [x] is the
integer part of x.

(7) A more compact form for the Fourier series is to use exponential
functions. We expand f as a series of the form

f(x) =

∞∑
n=−∞

f̂(n)e2πinx,

where

f̂(n) =

∫ 1

0

f(x)e−2πinxdx.

Compute the exponential Fourier series for f(x) = x.

(8) Solve the heat equation subject to the given initial and bound-
ary conditions.

∂u

∂t
=

1

2

∂2u

∂x2
, t > 0, 0 < x < 1

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, u(x, 0) = f(x).
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Differential Equations

Problem Sheet Ten

(1) Solve the heat equation subject to the given initial and bound-
ary conditions.

∂u

∂t
= 2

∂2u

∂x2
, t > 0, 0 < x < 3

u(0, t) = u(3, t) = 0, u(x, 0) = (2x− 1)(x− 3).

(2) Solve the wave equation subject to the given initial and bound-
ary conditions.

1

c2
∂2u

∂t2
=
∂2u

∂x2
, t > 0, 0 < x < π

u(0, t) = u(π, t) = 0, u(x, 0) = (x− 3),
∂u

∂t
(x, 0) = x2 − 1.

(3) Solve the wave equation subject to the given initial and bound-
ary conditions.

1

c2
∂2u

∂t2
=
∂2u

∂x2
, t > 0, 0 < x < 1

u(0, t) = u(1, t) = 0, u(x, 0) = 2x− 4,
∂u

∂t
(x, 0) = x2 − x.

(4) Find the Fourier sine and cosine series for the given functions.

(a) f(x) = x sin x, 0 < x < 2π, f(x+ 2π) = f(x), all x ∈ R.

(b) f(x) = 1− 1
2
x, 0 < x < 1, f(x+ 1) = f(x), all x ∈ R.

(5) For the previous questions, what values does Parseval’s Theo-
rem give for the sum of the squares of the Fourier coefficients?

(6) Calculate the Fourier cosine series for f(x) = x2, 0 ≤ x ≤ π and

hence show that
∞∑
n=1

(−1)n+1

n2
=
π2

12
.

(7) Show that

∞∑
n=0

1

(2n+ 1)4
=
π4

96
.

(8) Find Fourier cosine and sine series for the function

f(x) =

{
1− 2x, 0 ≤ x < 1/2

1 1/2 ≤ x < 1.

To what numerical value do your Fourier series converge at
x = 1/2? What about at x = −1/2?
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(9) Solve Laplace’s equation on the region 0 < x < a, y ≥ 0 with
a > 0 and the conditions u(0, y) = u(a, y) = 0 for all y ≥ 0 and
u(x, 0) = f(x) for 0 ≤ x ≤ a. Assume that u is bounded, so
that |u(x, y)| ≤M , for some positive constant M .

(10) Solve the problem ut = uxx + kux, 0 ≤ x ≤ a, t ≥ 0, with
k, a > 0 and u(0, t) = u(a, t) = 0, u(x, 0) = f(x).


