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1. An Introduction to Differential Equations

1.1. What is a Differential Equation? Suppose that F is a con-
tinuous function of n+ 2 variables. An nth order ordinary differential
equation, or ODE is an expression of the form

F (x, y, y′, ..., y(n)) = 0.

In other words a differential equation is an equation involving the
derivatives of a function and the independent variables. A partial dif-
ferential equation or PDE is a differential equation involving more than
one independent variable, so the derivatives involved are partial deriva-
tives.

The basic problem which these notes address is the following: Given
F , find y. A simple example that we might be interested in is the
following. Find a function y such that

y′ + y′′ + y2 + x2 = 0.

Here F (x1, x2, x3, x4) = x2
1 +x2

2 +x3 +x4. In practice we will not use the
F notation, but will just write down the actual equation in terms of
the unknown function y and the independent variable x. This equation
is second order because the highest derivative in the equation is the
second derivative. The equation is said to be non-linear because of the
y2 term.

The variety of differential equations that can arise is essentially in-
finite, and we can only solve certain types of equations exactly. For
most equations we need to find a numerical solution. Some equations
may not even have a solution.

Nevertheless, the equations that we can solve have, over the last few
centuries, yielded a tremendous amount of information about the world
in which we live. Fortuitously, the types of equations that we need to
solve for the purposes of modelling real world phenonomena, often fall
within the classes of exactly solvable equations.

We will begin by considering the basic ordinary differential equations
that are typically encountered in a first year course. We will then move
on to consider some more advanced techniques.

Example 1.1. Suppose that we have a particle that is moving with
velocity v at time t. The instantaneous rate of change of v is called
the acceleration. Assume for the moment that the acceleration of the
particle is a constant, a.
Then we have

dv

dt
= a. (1.1)

This is a differential equation for the velocity. To solve, we integrate.
Thus

v(t) =

∫
adt = at+ c,
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where c is a constant of integration. In order to determine the con-
stant c, we require more information about the velocity. For example,
suppose we know that the initial velocity is v0, i.e. the velocity at time
t = 0 is v0. This is an initial condition for the differential equation
(1.1).

Applying the initial condition, we have v(0) = a · 0 + c = v0. Hence
c = v0 and

v(t) = v0 + at.

We can go further and work out a formula for the displacement.
Velocity is the rate of change of displacement so we have

ds

dt
= v = v0 + at.

Integrating again gives

s = v0t+
1

2
at2 + c2,

where c2 is another constant of integration. Now we apply an initial
condition to work out c2. If we know that at t = 0, s = s0, then we get

s = v0 · 0 +
1

2
a · 02 + c2 = s0.

So

s = s0 + v0t+
1

2
at2.

The expressions for v and s found here are familiar from high school
physics.

These differential equations are rather trivial, but they are neverthe-
less instructive. There is a phenomenon that we wish to understand
quantitatively. We have information about the derivatives of the func-
tion describing this phenomenon. Why derivatives? Because deriva-
tives measure rates of change and we can measure these. To obtain
the quantitative information, we must determine the function from its
derivatives, as well as our knowledge of the initial conditions satisfied
by the solution. They are in fact simple examples of so called initial
value problems.

Definition 1.1. Let f : Rn+1 → R be a continuous function of n + 1
variables. Consider the ordinary differential equation

f(x, y(x), y′(x), ..., y(n)(x)) = 0, a ≤ x ≤ b. (1.2)

The problem of determining a solution of (1.2) subject to the conditions
y(a) = y0, ..., y

(n−1)(a) = yn−1 is known as an Initial Value Problem (or
IVP) for the ODE (1.2). The conditions y(a) = y0, ..., y

(n−1)(a) = yn−1

are known as the initial conditions. An nth order equation requires
n− 1 initial conditions to specify the solution completely.
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A problem arising in nuclear physics is to estimate the amount of
mass remaining in a radioactive substance such as uranium after a
given amount of time has elapsed. This is quite elementary and is
often done in high school.

Example 1.2. Suppose that we have a radioactive substance, say ura-
nium. Let the mass of the uranium be M . Now it has been observed
that uranium naturally decays. The mass of uranium determines the
rate at which it decays. More precisely, the rate at which M decays,
dM
dt

is proportional to M itself. We write this as

dM

dt
∝M.

This means that there exists a constant of proportionality k such
that

dM

dt
= kM.

But since M is decaying, dM
dt
< 0. This tells us that the constant k has

to be negative. In other words, k = −λ, where λ > 0.
Thus our equation for the mass of uranium present at a given moment
in time is

dM

dt
= −λM

M(0) = M0.

Notice that we have specified the initial mass of the uranium present.
This is also an initial value problem. The obvious problem is how to
solve such an equation. We will see how this is done shortly.

Example 1.3. Next, we consider an equation that arises from New-
ton’s second law of motion, which tells us that the total force acting on
a body is equal to the mass of the body multiplied by the acceleration.
In other words,

F = ma.

Suppose that a skydiver is in an aeroplane, and he or she jumps out
from a height of x feet. In free fall, the skydiver accelerates due to the
gravitational pull of the earth. Gravity acts downwards, so we have

Fg = −mg.

We know that the acceleration a =
dv

dt
. This tells us that

m
dv

dt
= −mg.

Now when the diver pulls the ripchord, a new force acts on the sky-
diver. This is the drag force due to the parachute. How do we measure
it? Physical arguments, which need not concern us, suggest that a
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reasonable assumption is that it is proportional to the square of the
velocity, i.e.

Fd = kv2.

Fd, the drag force, acts against gravity. So the total force on the
skydiver is

Fg + Fd = −mg + kv2.

But this means that, by Newton’s law the velocity of the skydiver
must satisfy

m
dv

dt
= −mg + kv2,

after the parachute has been opened. If the skydiver pulls the ripchord
after T1 seconds, they have a velocity of

v(T1) = −gT1.

This means that the velocity after the ripchord has been pulled must
satisfy

m
dv

dt
= −mg + kv2

v(T1) = −gT1.

Again, we ask how do we solve this equation? All these examples of
differential equations can be solved by methods you will learn in this
course.

Another type of problem which arises with certain kinds of differen-
tial equation involving prescribing the behaviour of the solution on the
boundary of a region.

Definition 1.2. Consider the ODE F (x, y′, ..., y(n)) = 0. A boundary
value problem for this ODE is to find a solution y on an interval [a, b]
satisfying the boundary conditions y(a) = α and y(b) = β.

Boundary value problems or BVPs arise in many physical situations.
For example, suppose we are studying vibrations in a bridge. So we are
looking at the vertical motion of the bridge. We can assume (at least
we hope that we can assume), that the motion at the ends of bridge is
zero. Then if y(x) represents the vertical displacement of the bridge at
the point x and a and b are the end points, the boundary conditions
would be y(a) = y(b) = 0.

We will focus in this course on initial value problems, but we will
turn to BVPs towards the end. These are particularly important for
the study of partial differential equations.

1.2. Linear and Non-Linear Equations. Broadly speaking, differ-
ential equations can be classed as either linear or nonlinear. In a linear
equation, the differential operator is a linear operator. More precisely,
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a differential operator is a transformation that sends a function y to
some combination of its derivatives. So if we define

L = a
d2

dx2
+ b

d

dx
+ c (1.3)

then L is a second order linear differential operator and

Ly = ay′′ + by′ + cy. (1.4)

We say that L is linear because for any two twice differentiable func-
tions u and v and any constants a and b, we have

L(au+ bv) = aL(u) + bL(v).

A differential equation of the form Lu = 0 is said to be homogeneous.
Conversely, an equation of the form Lu = f(x) is said to be inhomo-
geneous.

An equation Lu = f(x) is said to be linear if L is a linear differential
operator. Linear equations have the important feature that if Lu = 0
and Lv = 0, then L(au + bv) = 0. So adding two solutions of a
homogeneous equation together produces another solution.

If the equation is not homogeneous, this does not work. Clearly if
Lu = f(x) and Lv = f(x), then L(u+ v) = f(x) + f(x) = 2f(x). Thus
u + v is not a solution. However, we shall see later that if L is linear,
then we can use solutions of the equation Lu = 0 to solve Lu = f(x)
for any f.

A differential operator L is said to be non-linear if

L(au+ bv) 6= aL(u) + bL(v).

For example, if

Ly = y′ + y2, (1.5)

then the operator is non-linear. This is because

L(u+ v) = u′ + v′ + (u+ v)2

= u′ + v′ + u2 + 2uv + v2

6= L(u) + L(v).

Thus even for homogeneous non-linear equations, adding two solutions
together does not produce a new solution. This makes non-linear equa-
tions much harder to study. We will consider only a few types of
first order non-linear equations in this course. Higher order non-linear
equations are much harder, although there are some higher order non-
linear equations which can be solved exactly, such as those of so called
Painlève type. We do not consider these here.
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1.3. Existence and Uniqueness of Solutions. The IVP of Defini-
tion 1.1 can be shown to have a solution if the function f satisfies a
Lipschitz condition. We can also prove that the solution is unique.
In order to complete the proof, we needs some facts from elementary
analysis.

An important problem in analysis is to consider the convergence of a
sequence of functions {fn}∞n=1, or more simply {fn}. There are actually
different types of convergence, but we will be concerned only with two.

Definition 1.3. A sequence of functions {fn} is said to converge
pointwise to f if for every x, the sequence {fn(x)} converges to f(x).
That is, given ε > 0 we can find N > 0 such that for all n ≥ N,
|fn(x)− f(x)| < ε.

A stronger form of convergence is uniform convergence.

Definition 1.4. A sequence of functions {fn} converges to f uniformly
on X ⊆ R if given any ε > 0 we can find an N > 0 such that for all
n ≥ N , supx∈X |fn(x)− f(x)| < ε.

The significance of uniform convergence is that the choice of N does
not depend on x. The same N works for every x, which is not the case
with pointwise convergence. Roughly speaking, the sequences {fn(x)}
all converge at the same rate for every x. This uniformity makes them
nicely behaved and allows us to manipulate them in a way that is not
possible if the convergence is only pointwise.

Uniform convergence has very nice properties. For example,

Theorem 1.5. Suppose that {fn} is a sequence of continuous functions
and fn → f uniformly. Then f is continuous.

If the convergence is only pointwise, the result is not true. For exam-
ple, the sequence fn(x) = xn converges to f where f(x) = 0, x ∈ [0, 1)
and 1 if x = 1. This limit is not continuous, but each fn is contin-
uous. The problem is that the convergence is not uniform. Another
important result allows us to swap limits and integrals.

Theorem 1.6. Suppose that {fn} is a sequence of integrable functions
that converges to f uniformly on [a, b]. Then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx.

Again, this result will not necessarily hold if the convergence is not
uniform. For example, if fn(x) = nxe−nx

2
then

lim
n→∞

∫ 1

0

fn(x)dx 6=
∫ 1

0

lim
n→∞

fn(x)dx.

The sequence of functions converges to zero, but does not do so uni-
formly.
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For series, we are interested in the sequence defined by the par-
tial sums SN(x) =

∑n
n=1 fn(x). There is a very simple test to decide

whether or not convergence of a series is uniform.

Theorem 1.7 (The Weierstrass M test). Suppose that {fn} is a se-
quence of functions on X ⊆ R such that |fn(x)| ≤ Mn for each n
and x ∈ X. If

∑∞
n=1 Mn < ∞. then the series

∑∞
n=1 fn(x) converges

uniformly on X.

Proof. Let SN(x) =
∑∞

n=1 fn(x) and suppose that |fn(x)| ≤Mn. Then
for all N ≥M

|SN(x)− SM(x)| = |
N∑

n=M+1

fn(x)|

≤
N∑

n=M+1

|fn(x)|

≤
N∑

n=M+1

Mn → 0,

as N,M → ∞. So the series SN converges independently of x and
hence is uniformly convergent. �

Finally we present a useful tool which will be employed in the proof
of the major theorem of this section.

Lemma 1.8. Suppose that the interval I contains a point x0. Suppose
that w is a continous nonnegative function and that there is a constant
M > 0 such that

w(x) ≤M

∣∣∣∣∫ x

x0

w(t)dt

∣∣∣∣ .
Then w is identically zero on I.

Proof. Let

W (x) =

∫ x

x0

w(t)dt, x > x0,

and

W (x) = −
∫ x

x0

w(t)dt, x < x0.

Clearly W (x0) = 0 and W is nonnegative. Now suppose that x ≥ x0.
Then W ′(x) = w(x) and we have W ′(x) −MW (x) ≤ 0. Multiplying
by e−M(x−x0) gives

e−M(x−x0)W ′(x)−MW (x)W ′(x) ≤ 0

which implies that

d

dx
[W (x)e−M(x−x0)] ≤ 0.
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This then gives

W (x) ≤ W (x0)eM(x−x0).

But since W (x0) = 0, we have W (x) = 0 for x ≥ x0. For x < x0 a
similar calculation shows that W (x) = 0. But this means that w(x) = 0
on I.

�

This is all background material for our first major result. This is
on the existence and uniqueness of solutions of initial value problems.
We prove the result for first order equations. The proof for higher
order equations can be obtained from the first order case, as we will
demonstrate later.

Theorem 1.9 (Picard). Let f(x, y) be jointly continuous in x and y
and satisfy a Lipschitz condition on the rectangle

R = {(x, y) : |x− x0| ≤ a, |y − k| ≤ b}.
Suppose also that |f(x, y)| ≤ A. Then the initial value problem

y′(x) = f(x, y(x)), y(x0) = k

has a unique solution on the interval [x0 − α, x0 + α], where

α = min(a, b/A).

This theorem gives us conditions which guarantee that an ODE has
a unique solution. It should be obvious that there is no point in trying
to solve an ODE if the equation doesn’t have a solution. The details
of the proof are quite involved.

Proof. The idea is to construct a solution inductively. The Fundamen-
tal Theorem of Calculus gives the integral equation

y(x) = k +

∫ x

x0

f(t, y(t))dt. (1.6)

We then introduce the sequence {yn} by defining y0 = k and

yn(x) = k +

∫ x

x0

f(t, yn−1(t))dt,

|x− x0| ≤ α.
Each of these functions is well defined and continuous, since the

initial function y0 is continuous and by induction we can prove that
|yn(x) − k| ≤ b for |x − x0| ≤ α, which shows that (x, yn−1(x)) ∈ R.
Specifically, |y0(x) − k| = 0 < b for |x − x0| ≤ α. Suppose then that
(x, yk(x)) ∈ R for for |x − x0| ≤ α. Then f(x, yk(x)) is defined and
continuous and so integrable. So we can write

yk+1(x) = k +

∫ x

x0

f(t, yk(t))dt
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hence

|yk+1(x)− k| ≤
∣∣∣∣∫ x

x0

f(t, yk(t))dt

∣∣∣∣
≤ A|x− x0| ≤ Aα ≤ b.

So (x, yk+1(x)) ∈ R.
To prove that the sequence converges, we prove that the infinite

series

y0 +
∞∑
n=1

(yn − yn−1),

converges. The nth partial sum of this series is yn, so if the series
converges, the sequence converges. Actually we prove it converges uni-
formly and hence the limit is continuous. First note

|y1(x)− k| ≤
∫ x

x0

|f(t, k)| dt ≤ A|x− x0|. (1.7)

Now let the Lipschitz constant be L and notice that

y2(x) = k +

∫ x

x0

f(t, y1(t))dt

y1(x) = k +

∫ x

x0

f(t, y0(t))dt,

so that

|y2(x)− y1(x)| ≤
∫ x

x0

|f(t, y1(t))− f(t, y0(t))|dt

≤
∫ x

x0

L|y1(t)− k|dt

≤ AL|x− x0|.

If we continue this procedure we see that

|yn(x)− yn−1(x)| ≤ ALn−1|x− x0|n

n!
. (1.8)

So we have

y0 +
∞∑
n=1

(yn − yn−1) ≤ |k|+
∞∑
n=1

ALn−1|x− x0|n

n!

= |k|+ A

L
(eAL − 1).

The Weierstrass M test shows that the series is uniformly convergent,
hence {yn} converges and the limit is continuous. We now prove that
the limit is a solution of the integral equation. Let the limit be y and
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consider |y(x)− yn(x)|. This is given by∣∣∣∣y(x)− k −
∫ x

x0

f(t, y(t))dt

∣∣∣∣ ≤ |y(x)− yn(x)|+∫ x

x0

|f(t, yn−1(t))− f(t, y(t))| dt

≤ |y(x)− yn(x)|+ L

∫ x

x0

|yn−1(t)− y(t)|dt.

By uniform convergence we can find an integer N such that if n ≥ N
then

|y(x)− yn(x)| ≤ 1

2

ε

1 + αL
for all |x− x0| ≤ α > 0. So for n ≥ N we obtain∣∣∣∣y(x)− k −

∫ x

x0

f(t, y(t))dt

∣∣∣∣ ≤ 1

2

ε

1 + αL
+ L

∣∣∣∣∫ x

x0

1

2

ε

1 + αL
dt

∣∣∣∣
≤ 1

2

ε

1 + αL
+

1

2

ε

1 + αL
|x− x0|

≤ ε.

Since this holds for all ε > 0 we conclude that

y(x) = k +

∫ x

x0

f(t, y(t))dt,

so y is a solution of the integral equation and hence the differential
equation.

Finally we prove uniqueness. Suppose that

u(x) = k +

∫ x

x0

f(t, u(t))dt

v(x) = k +

∫ x

x0

f(t, v(t))dt.

Then

|u(x)− v(x)| ≤ L

∫ x

x0

|u(t)− v(t)|dt.

By Lemma 1.8, this implies that u = v. �

Now we turn to the major theme of this course: actually solving
differential equations.

Example 1.4. Here is a simple example of an IVP that has no solution.
We want to solve

xy′′ + y′ + 3y = 1,

subject to the conditions y(0) = 1, y′(0) = 0. Clearly this is impossible,
since at x = 0 we have 0 × y′′(0) + y′(0) + 3y(0) = 3y(0) = 1, which
implies that y(0) = 1/3. This contradicts the initial condition, so there
is no solution. Problems like this are said to be ill posed.
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1.4. First Order Separable Equations. We begin with a class of
equations known as first order separable. Suppose that we have an
initial value problem of the form

dy

dt
= f(y)g(t) (1.9)

y(0) = y0.

Since the right hand side of (1.9) is a product of a function of y and
a function of t, we can separate it. The idea is to rewrite the equation
as

dy

f(y)
= g(t)dt,

and then integrate both sides.
Let us consider the uranium problem discussed earlier. We had

dM

dt
= −λM

M(0) = M0.

We have a separable equation. So we have

dM

M
= −λdt.

Thus ∫
dM

M
=

∫
−λdt.

Hence ln |M | = −λt+ c, where c is a constant of integration. Thus

M = ece−λt,

M(0) = ec = M0.

The solution is therefore

M(t) = M0e
−λt.

This shows that the quantity of uranium decays exponentially over
time. This is a key fact in nuclear physics.

Now let us consider the plight of the skydiver discussed previously.

Example 1.5. We wish to solve the differential equation

m
dv

dt
= −mg + kv2

v(T1) = −gT1.

We rewrite the equation as

dv

dt
=

k

m
v2 − g.
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The right hand side is a function of v only. So it is separable. Thus we
have

dv
k
m
v2 − g

= dt. (1.10)

The problem here is to integrate the left hand side. We rewrite (1.10)
as

m

k

∫
dv

(v2 − mg
k

)
=

∫
dt.

Now v2 − mg
k

= (v −
√

mg
k

)(v +
√

mg
k

). (Note mg
k
> 0.) So, by partial

fractions we have

m/k

(v2 − mg
k

)
=

m/k

(v −
√

mg
k

)(v +
√

mg
k

)

=
A

v −
√

mg
k

+
B

v +
√

mg
k

.

Take A = m/k

2
√

mg
k

, B = − m/k

2
√

mg
k

. Then

m/k

2
√

mg
k

(
1

v −
√

mg
k

− 1

v +
√

mg
k

)
=

m/k

2
√

mg
k

2
√

mg
k

v2 −mg/k
.

Hence

m

k

∫
dv

v2 − mg
k

=
m/k

2
√

mg
k

∫ (
1

v −
√

mg
k

− 1

v +
√

mg
k

)
dv

=
m/k

2
√

mg
k

(
ln

∣∣∣∣v −√mg

k

∣∣∣∣− ln

∣∣∣∣v +

√
mg

k

∣∣∣∣)+ c

=
1

2

√
m

gk
ln

∣∣∣∣∣v −
√

mg
k

v +
√

mg
k

∣∣∣∣∣+ c1

= t+ c2,

since
∫
dt = t+ c2 for some constant c2. Letting c2 − c1 = c gives

1

2

√
m

gk
ln

∣∣∣∣∣v −
√

mg
k

v +
√

mg
k

∣∣∣∣∣ = c+ t.

We now have to solve this for v as a function of t.

ln

∣∣∣∣∣v −
√

mg
k

v +
√

mg
k

∣∣∣∣∣ = 2

√
gk

m
t+ c′, c′ = 2

√
gk

m
c.

Taking exponentials, we have

v −
√

mg
k

v +
√

mg
k

= Aeαt, A = ec, α = 2

√
gk

m
.
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Now v −
√

mg
k

=
(
v +

√
mg
k

)
Aeαt.

Hence

v − vAeαt =

√
mg

k
Aeαt +

√
mg

k

and

v(t) =

√
mg

k

(
(1 + Aeαt

1− Aeαt

)
.

We now have to fit the initial condition, i.e. find A.

v(T1) =

√
mg

k

(
1 + AeαT1

1− AeαT1

)
= −gT1.

Cross multiplying, we get

1 + AeαT1

1− AeαT1
= −gT1

√
k

mg

= −T1

√
gk

mg

= −2αT1.

1 + AeαT1 =
(
1− AeαT1

)
(−2αT1)

= −2αT1 + 2αT1Ae
αT1

1 + 2αT1 = (2αT1 − 1)AeαT1 .

So

A =

(
2αT1 + 1

2αT1 − 1

)
e−αT1 .

We have thus solved the initial value problem for the DE.

1.4.1. A Problem from Biology. Another important example of a sepa-
rable differential equation is the logistic equation. This equation arises
in many areas, but particularly in population growth.

Example 1.6. Suppose that a population of bacteria is growing in a
Petri dish. At t = 0 the population is P0. The rate of production of a
population of new bacteria is proportional to the number of bacteria
present. Of course bacteria are also dying. So this would suggest a
model dP

dt
= kP, P (0) = P0, which has a solution P (t) = P0e

kt. But
this is not a very realistic model. It suggests that the population grows
without bound.

A more realistic model takes into account the fact that the popula-
tion growth should slow down as some “saturation” level is reached.
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Call this level M. So, dP
dt

= 0 when P = M. But for small P , dP
dt
∝ P.

A model which incorporates this feature is

dP

dt
= k(M − P )P

P (0) = P0.

This is known as the logistic equation. It is a model that arises in
many areas of biology.

dP

dt
= k(M − P )P, P (0) = P0

dP

P (M − P )
= kdt.

As before, we have∫
dP

P (M − P )
=

∫
kdt

1

P (M − P )
=
A

P
+

B

M − P
, A =

1

M
, B =

1

M
.

Therefore

1

P (M − P )
=

1

M

(
1

P
+

1

M − P

)
.

Hence ∫
kdt = kt+ c1

=
1

M

∫ (
1

P
+

1

M − P

)
dP

=
1

M
(ln |P | − ln |M − P |) + c1.

So that

ln

∣∣∣∣ P

M − P

∣∣∣∣ = Mkt+ c, c = c2 − c1.

Taking exponentials of both sides gives

P

M − P
= AeMkt,

which implies

P = A(M − P )eMkt.

We rearrange this to get APeMkt + P = AMeMkt, or

P (t) =
AMeMkt

1 + AeMkt
.
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Now P (0) = P0. Hence

P (0) =
AM

1 + A
= P0.

So that AM = P0(1 + A), and therefore

A(M − P0) = P0,

or

A =
P0

M − P0

.

Thus

P (t) =
MP0eMkt

M−P0

1 + P0eMkt

M−P0

=
MP0e

Mkt

M − P0 + P0eMkt

=
MP0e

Mkt

M + P0(eMkt − 1)
.

We can rewrite this as

P (t) =
MP0

(M − P0)e−Mkt + P0

.

This makes it easier to see the limiting behaviour of the population.

lim
t→∞

P (t) = lim
t→∞

(
MP0

(M − P0)e−Mkt + P0

)
=
MP0

P0

= M.

In this model, the bacterial population tends to a stable value of M .

Example 1.7. Consider the equation

dy

dt
=

t2

cos y + sin y
.

This is separable, so we write

(cos y + sin y)dy = t2dt

and ∫
(cos y + sin y)dy =

∫
t2dt

So the solution y(t) is given implicitly by

cos(y(t))− sin(y(t)) = −1

3
t3 + c. (1.11)
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(Combining integration constants of both sides.) Solving this for y in
terms of t is actually quite straightforward. Observe that

√
2 cos

(
y(t) +

π

4

)
= cos(y(t))− sin(y(t)).

Thus the solution is

y(t) = cos−1

(
− t3

3
√

2
+ C

)
− π

4
. (1.12)

1.4.2. Solutions Given Implicitly. First order separable equations are
very common. Whether we can solve them depends very much on
whether we can do the necessary integration. Having performed the
integration, we would like to express the solution y as an explicit solu-
tion of the independent variable, but we cannot always do this.

Example 1.8. Solve the equation

dy

dx
= (x2 + 3)(y2 + y3).

Separating variables leads to

dy

y2 + y3
= (x2 + 3)dx.

This is the same as∫ (
1

y2
+

1

y + 1
− 1

y

)
dy =

∫
(x2 + 3)dx.

Integration then gives

−1

y
+ ln

(
1 + y

y

)
=

1

3
x3 + 3x+ C.

We can rewrite this as(
1 + y

y

)
e−1/y = Ae

1
3
x3+3x, (1.13)

A = eC . This is as far as we can go. Writing the solution in the form
y(x) = f(x) does not seem possible for this example. To determine y
for a specific value of x, we would have to solve (1.13) numerically, for
example with Newton’s method.

What we have in the previous example is a solution given implicitly.
That is, we have an expression connecting the solution y and the inde-
pendent variable that does not involve any derivatives. In other words
we have an expression of the form F (y(x)), x) = C for some function
F . This is typical for nonlinear differential equations. Usually we can-
not solve the equation F (y, x) = C explicitly for y in terms of x, but
instead have to solve it numerically. Thus F (y, x) = C is known as an
implicit solution.
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1.5. First order linear equations. These equations have the general
form

a(x)
dy

dx
+ b(x)y = f(x)

If a(x) 6= 0, then we can rewrite the equation as

dy

dx
+
b(x)

a(x)
y =

f(x)

a(x)

which is the same as
dy

dx
+ c(x)y = g(x), (1.14)

where b(x)
a(x)

= c(x) and f(x)
a(x)

= g(x).

To solve a first order linear equation, the first step is to write it in
the form (1.14). Now we make the following important observation.
Recall that the fundamental Theorem of Calculus states that for any
integrable function c(t),

d

dx

∫ x

a

c(t)dt = c(x).

Thus

d

dx
exp

(∫ x

a

c(t)dt

)
= c(x)e

∫ x
a c(t)dt.

The reason why this is important is that the right hand side of (1.14)
is “almost” a derivative.

The product rule of differentiation says that

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x).

So what does this tell us in the context of our ODE? The right hand
side is

dy

dx
+ c(x)y.

We are going to turn this into a single derivative in the following way.
Multiply y by e

∫
c(x)dx, then take the derivative to get

d

dx

(
y(x)e

∫
c(x)dx

)
= e

∫
c(x)dx dy

dx
+ c(x)e

∫
c(x)dxy, (1.15)

from the product rule and the fact that d
dx
e
∫
c(x)dx = c(x)e

∫
c(x)dx. So if

we multiply (1.14) by e
∫
c(x)dx we get

e
∫
c(x)dx dy

dx
+ c(x)e

∫
c(x)dxy = g(x)e

∫
c(x)dx.

But by (1.15), this is

d

dx

(
e
∫
c(x)dxy

)
= g(x)e

∫
c(x)dx.
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Integrating both sides of the equation gives

e
∫
c(x)dxy =

∫
g(x)e

∫
c(x)dxdx,

or

y = e−
∫
c(x)dx

∫
g(x)e

∫
c(x)dxdx.

In practice, we rarely use this formula. It is easier to just follow
the procedure from the beginning. The function e

∫
c(x)dx is called an

integrating factor.

Example 1.9. Let a, b be constants, a 6= 0. Solve

dy

dx
+ ay = b

y(0) = y0.

The integrating factor is e
∫
adt = eat. Multiplying the equation by eat

gives

eat
dy

dx
+ aeaty = beat.

Therefore
d

dt

(
eaty

)
= beat.

We integrate both sides∫
d

dt

(
eaty

)
dt =

∫
beatdt.

So

eaty =
b

a
eat + C.

Then

y = Ce−at +
b

a
and the initial condition gives

y(0) = C +
b

a
= y0 ⇒ C = y0 −

b

a
.

Hence the solution is

y =

(
y0 −

b

a

)
e−at +

b

a
.

Example 1.10. As our next example, consider

x
dy

dx
− ky = x2,

k a constant. First we divide by x to put the equation in the appropriate
form.

dy

dx
− k

x
y = x.
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The integrating factor is

e−
∫
k
x = e−klnx

= eln(x−k) = x−k.

So we have

x−k
dy

dx
− k

x
x−ky = x−k+1.

Hence
d

dx

(
x−ky

)
= x−k+1.

We have 2 cases. First, k 6= 2. Then 1− k 6= −1. Integration gives

x−ky = x−k+2 + C.

So we have established that

y = x2 + Cxk.

If k = 2, then 1− k = −1. So integration gives

x−2y =

∫
dx

x
= lnx+ C.

The solution is thus

y = x2lnx+ Cx2.

Example 1.11. For a third example, consider

dy

dx
− tanxy = x.

The integrating factor is

e−
∫

tanxdx.

−
∫

tanxdx = −
∫

sinx

cosx
dx

=

∫
du

u
, u = cosx

= ln |cosx| .
Thus

e−
∫

tanxdx = eln|cosx| = cosx.

Hence

cosx
dy

dx
− cosx tanxy = x cosx,

or

d

dx
((cosx) y) = x cosx,
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and integration gives

(cosx) y =

∫
x cosxdx

= x sinx−
∫

sinxdx

= x sinx+ cosx+ C.

So

y =
x sinx+ cosx+ C

cosx
= x tanx+ 1 + C secx.

Perhaps the most powerful tool for solving ODEs is the change of
variable, in much the same way that we can use changes of variables to
integrate difficult functions. Here we give some examples of how this
works. Many other cases are known.

1.5.1. Bernoulli Equations. A Bernoulli equation is one of the form

y′ + p(x)y = q(x)yn. (1.16)

Dividing through by yn produces the equation

y′y−n + p(x)y1−n = q(x).

This suggests the change of variables u = y1−n. Differentiation gives

u′ = (1− n)y′y−n. (1.17)

Consequently (1.16) becomes

1

1− n
u′ + p(x)u = q(x). (1.18)

This is a first order linear equation.

Example 1.12. We solve y′ + 1
3x
y = x2y4. Here n = 4 so the change

of variables u = y−3 leads to

u′ − 1

x
u = −3x2.

The integrating factor is 1/x so(
1

x
u

)′
= −3x. (1.19)

Hence 1
x
u = −3

2
x2 + C. Or u = −3

2
x3 + Cx. Finally y = u−1/3 or

y = (−3

2
x3 + Cx)−1/3.



24 MARK CRADDOCK

1.6. Riccati Equations. Nonlinear equations are often very difficult
to solve, but there are some which can be handled very effectively.
Riccati equations are named after Count Jacopo Francesco Riccati
(1676-1754), who studied them extensively. They turn up in many
applications. Importantly, they can all be linearised.

A Riccati equation has the form

m(x)y′ + a(x)y + b(x)y2 = c(x). (1.20)

If c(x) = 0 then we can also regard this as a Bernoulli equation. As an
example

xy′ − y +
1

2
y2 = Ax2 +Bx+ C

is a Riccati equation. Any Riccati equation can be turned into a second
order linear ODE. The trick is to make a change of variables. By
dividing through by m we can make the coefficient of y′ equal to 1,
so we may as well set m = 1 and we do not lose any generality. Now
define

y = A(x)f ′/f,

where A is to be determined. Differentiating gives

y′ = A′(x)
f ′

f
+ A(x)

(
f ′′

f
−
(
f ′

f

)2
)
. (1.21)

This is substituted into (1.20) to give

A′(x)
f ′

f
+ A(x)

(
f ′′

f
−
(
f ′

f

)2
)

+ a(x)A(x)
f ′

f
+ b(x)A2(x)

(
f ′

f

)2

= c(x)

Observe that if −A(x)+b(x)A2(x) = 0 then the nonlinear terms disap-
pears. This happens if A(x)b(x) = 1. We are then left with the second
order linear equation

A(x)f ′′ + (A′(x) + a(x)A(x))f ′ − c(x)f(x) = 0.

Example 1.13. The equation xy′−y+ 1
2
y2 = Ax2+Bx+C is linearised

by putting y′ = 2xf ′/f. This produces the equation

2x2f ′′ − (Ax2 +Bx+ C)f = 0.

Methods for solving equations of this type will be discussed later.

Riccati equations have some very interesting properties. We will not
give a detailed discussion, but one is well worth mentioning. The differ-
ence between nonlinear and linear equations is that adding solutions of
linear equations together produces new solutions. Adding solutions of
nonlinear equations together does not produce a new solution. However
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for some nonlinear equations, there are ways of combining solutions to-
gether to get new solutions. These are called nonlinear superposition
principles.

Riccati equations possess a nonlinear superposition principle that
was discovered by the Norwegian mathematician Sophus Lie (which is
pronounced Lee) and independently by Eduard Weyr in 1875. Suppose
that y1, y2, y3 satisfy a Riccati equation. Let a be a constant. Then

y4 =
y1(y3 − y2) + ay2(y1 − y3)

y3 − y2 + a(y1 − y3)
, (1.22)

is also a solution of the same Riccati equation. In this way we can
produce chains of solutions of Riccati equations and introduce arbitrary
parameters into the solutions.

Example 1.14. Three solutions of the Riccati equation xf ′−f+ 1
2
f 2 =

Ax+B are

f(x) =
1

2
+b
√
x, g(x) =

1

2
+b
√
x tanh(b

√
x), h(x) =

1

2
+b
√
x coth(b

√
x),

where we set B = −3
8
, A = 1

2
b2. Using these solutions and the nonlinear

superposition principle we easily generate the fourth solution y(x) =

2b
√
x(a− coth(b

√
x)− a+ µ coth(b

√
x) + (1− 2µb

√
x) tanh(b

√
x)

2 (−a+ µ coth(b
√
x) + tanh(b

√
x))

,

with µ = a − 1. Using y and two of f, g, h we can generate solutions
y2, y3, y4 etc.

1.7. Exact Equations. There are many types of first order equations
which can be solved explicitly. Exact equations are of special interest
because of a remarkable fact discovered by Sophus Lie, which we briefly
mention below.

We consider an ODE written in the form

P (x, y)dx+Q(x, y)dy = 0. (1.23)

This is equivalent to the equation Q(x, y)y′ + P (x, y) = 0. These are
easy to solve, provided that P and Q satisfy a special condition.

Theorem 1.10. If
∂Q

∂x
=
∂P

∂y
,

then there is a function F (x, y) such that

Q =
∂F

∂y
, P =

∂F

∂x
,

and the solution of the exact equation

P (x, y)dx+Q(x, y)dy = 0, (1.24)

is given implicitly by F (x, y) = C, with C a constant.
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Proof. First suppose that we can find an F such that Fx = P, Fy = Q.
Now suppose that F (x, y) = C. Then

d

dx
F (x, y(x)) = Fyy

′ + Fx

= Q(x, y)y′ + P (x, y) = 0.

Alternatively, ifQ(x, y)y′+P (x, y) = 0, then we must have F (x, y(x)) =
C. Finally observe that

F (x, y) =

∫ x

x1

P (t, y)dt+

∫ y

y1

Q(x, t)dt (1.25)

satisfies Fx(x, y) = P (x, y), Fy(x, y) = Q(x, y). �

Example 1.15. Solve the differential equation

(3x2y − 2y3 + 3)dx+ (x3 − 6xy2 + 2y)dy = 0.

The equation is exact because

Qx = 3x2 − 6y2 = Py.

So there is an F such that

Fx = 3x2y − 2y3 + 3, Fy = x3 − 6xy2 + 2y.

Now

F (x, y) =

∫
Fxdx = x3y − 2xy3 + 3x+ g(y)

where g is an arbitrary function of y. Next differentiate this with respect
to y, to obtain

Fy = x3 − 6xy2 + g′(y).

This gives us two expressions for Fy, which must be equal. Comparing
we see that g′(y) = 2y so g(y) = y2 + D, and the solution y is given
implicitly by

x3y − 2xy3 + 3x+ y2 = C −D = C ′,

where C is a constant. Note that in practice we can ignore the constant
of integration for g, since it will just be combined with C to produce
another constant.

The importance of exact equations lies in the fact that essentially
all first order equations which we can solve, can be recast as exact
equations. Indeed Lie showed that many equations which are not exact
can be converted to exact equations by means of an integrating factor.

There is a caveat obviously. Obtaining the integrating factor may
be harder than solving the original DE. However it is often possible to
find it. This integrating factor comes from the symmetry group of the
equation. Unfortunately this is well beyond the scope of this course,
so we will not discuss it further.



35231 DIFFERENTIAL EQUATIONS LECTURE NOTES 27

1.8. Making First Order Equations Separable. The word ho-
mogenous is used in to mean different things in mathematics, which
can be somewhat confusing. We will refer to certain kinds of differen-
tial equations as homogeneous. A function can also be considered to
be homogeneous.

Definition 1.11. A function f : Rn → R is homogeneous of degree k
if f(tx1, ..., txn) = tkf(x1, ..., xn) for every t > 0 and all x1, ..., xn.

As an example, the function f(x, y, z) = x2y3z4 is homogeneous of
degree 9, since

f(tx, ty, tz) = t2x2t3y3t4z4 = t9x2y3z4.

Now consider the differential equation

dy

dx
=
P (x, y)

Q(x, y)
,

where P and Q are homogeneous of the same degree. A simple substi-
tution will make this equation separable.

Proposition 1.12. If P and Q are homogenous functions of the same
degree then the substitution y = xv(x) will make the differential equa-
tion

dy

dx
=
P (x, y)

Q(x, y)

separable.

Proof. Suppose that P and Q are homogeneous of degree n, then

P (x, y) = P (x, xv) = xnP (1, v), Q(x, y) = Q(x, xv) = xnQ(1, v)

and y′ = xv′ + v. So the ODE becomes

xv′ + v =
xnP (1, v)

xnQ(1, v)

=
P (1, v)

Q(1, v)
.

Which is the same as

x
dv

dx
= K(v)

where

K(v) =
P (1, v)

Q(1, v)
− v.

This equation is separable. �

Example 1.16. Solve the equation

dy

dx
=

2xy

x2 + y2
.
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The numerator and denominator are homogeneous of degree 2. Set
y = xv. Then

x
dv

dx
=

2v

1 + v2
− v =

v − v3

1 + v2
.

Thus

1 + v2

v − v3
dv =

dx

x

Using partial fractions we obtain(
1

v
− 1

v + 1
− 1

v − 1

)
dv =

dx

x
.

Hence

ln v − ln(v2 − 1) = ln x+ C.

Taking exponentials gives
v

v2 − 1
= Ax, A = eC . (1.26)

But v = y/x. So that the solution is given implicitly by
y

y2 − x2
= A.

1.9. Second Order Linear, Constant Coefficient Equations. Next
we turn to second order linear equations. Our first aim is to solve the
equation

ay′′ + by′ + cy = 0, a 6= 0.

Since a 6= 0, we may as well divide by a to get

y′′ +
b

a
y′ +

c

a
y = 0.

So really we need only consider equations of the form

y′′ +my′ + ny = 0, m, n ∈ R,
where at least one of m,n is nonzero.

Let us first consider the quadratic equation λ2 +mλ+ n = 0.
Suppose this has two roots α and β. In other words,

(λ− α) (λ− β) = λ2 − (α + β)λ+ αβ = λ2 +mλ+ n.

Now we are going to use this to rewrite our differential equation. Notice
that (

d

dx
− α

)(
dy

dx
− βy

)
=
d2y

dx2
− β dy

dx
− αdy

dx
+ αβy

=
d2y

dx2
− (α + β)

dy

dx
+ αβy

=
d2y

dx2
+m

dy

dx
+ ny. (1.27)
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The first step is to now introduce a new function

z =
dy

dx
− βy.

By (1.27),

d2y

dx2
+m

dy

dx
+ ny =

(
d

dx
− α

)(
dy

dx
− βy

)
=

(
d

dx
− α

)
z

=
dz

dx
− αz

= 0.

But the solution of
dz

dx
= αz is simply z = Aeαx.

Consequently, we must have

z =
dy

dx
− βy = Aeαx.

But this is a first order linear equation. The integrating factor is
e−βx. We have two cases.

Case 1. α 6= β.
Then

e−βx
dy

dx
− βe−βxy = Ae(α−β)x.

Which means

d

dx

(
e−βxy

)
= Ae(α−β)x.

Thus

e−βxy =
A

α− β
e(α−β)x +B

y =
A

α− β
eαx +Beβx

= A′eαx +Beβx, A′ =
A

α− β
.

So if α 6= β, i.e. λ2 +mλ+n = 0 has distinct roots α, β, the general
solution is

y = Aeαx +Beβx.
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Case 2. α = β. Then α− β = 0. So

d

dx

(
e−βxy

)
= A

i.e. e−βxy = Ax+B

y = (Ax+B)eβx.

Therefore for repeated roots β, we have

y = (Ax+B)eβx.

Example 1.17. y′′ + 3y′ + 2y = 0.

λ2 + 3λ+ 2 = (λ+ 2)(λ+ 1) α = −2, β = −1

and y = Ae−2x +Be−x.

Example 1.18. y′′ + 8y′ + 16y = 0.

Here (λ+ 4)2 = λ2 + 8λ+ 16 = 0,

λ = −4.

Therefore

y = (Ax+B)e−4x.

Case when roots are complex. The roots of λ2 + mλ + n = 0 may
of course be complex numbers. The solution we have written down
remains valid in the case where the roots are complex, but it is often
convenient to express the solution using only real numbers. Recall that
Euler’s formula states

eiθ = cos θ + i sin θ.

Now if λ = α± iβ are the roots of

λ2 +mλ+ n = 0,

then the general solution of

y′′ +my′ + ny = 0

will be

y = Ae(α+iβ)t +Be(α−iβ)t.

We use Euler’s formula to rewrite this

y = eαt
(
Aeiβt +Be−iβt

)
= eαt (A (cos βt+ i sin βt) +B (cos βt− i sin βt))

= eαt [(A+B) cos βt+ i(A−B) sin βt]

= eαt (C1 cos βt+ C2 sin βt) ,

in which C1 = A + B, C2 = i(A − B). Since A, B are allowed to be
complex, then C1 and C2 may be real valued.
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Example 1.19. Solve y′′ − 4y′ + 13y = 0.

λ2 − 4λ+ 13 = 0

λ =
4±
√

16− 4 · 13

2
= 2± 3i

α = 2, β = 3.

So the general solution can be written

y = e2t (C1 cos 3t+ C2 sin 3t) .

With complex roots, this is the preferred form of the solution.

1.10. The Method of Undetermined Coefficients. Imagine that
we have a second order linear ODE with constant coefficients

y′′ + ay′ + by = f(x). (1.28)

We will show later that solutions to (1.28) are of the form

y = yh + yp,

where yh is the general solution of the homogeneous problem associated
with (1.28),

y′′ + ay′ + by = 0,

and yp is a particular solution to (1.28).

Variation of Parameters gives us a method of finding yp knowing yh.
However, VOP can be quite complex and if f(x) has a relatively simple
form, this can be more trouble than it is worth.

Consider the problem where f(x) is a polynomial p(x). Clearly if we
have a function yp such that

y′′p + ay′p + byp = p(x),

then yp must itself be a polynomial of the same degree as p(x). Thus
we might pick an arbitrary polynomial yp(x) and try and choose coef-
ficients so that yp is a solution.

Example 1.20. y′′ + 2y′ + 2y = x2.
Let us try a polynomial of degree 2.

yp = ax2 + bx+ c.

Then if y′′p + 2y′p + 2yp = x2 we must have

2a+ 2(2ax+ b) + 2(ax2 + bx+ c) = x2.

Now this implies that

2a = 1,

4a+ 2b = 0,

2a+ 2b+ 2c = 0,


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when we equate coefficients of powers of x. So a = 1
2

and therefore

4 · 1

2
+ 2b = 0, 2b = −2, b = −1

and 1− 2 + 2c = 0,

so c =
1

2
.

Therefore we must have

yp =
1

2
x2 − x+

1

2
.

This is an example of the method of undetermined coefficients.
Here is a useful table for the equation

y′′ + ay′ + by = R(x).

We look for yp of the following forms

R(x) Choice for yp
keγx ceγx∑n

k=0 akx
k

∑n
k=0 bkx

k

α coswx+ β sinwx A coswx+B sinwx
eαx(α coswx+ β sinwx) eαx(A coswx+B sinwx).

So if we want to solve, say

y′′ + ay′ + by = α coswx+ β sinwx,

then we look for a particular solution of the form

yp = A coswx+B sinwx.

This technique, while limited in scope, entails less work than varia-
tion of parameters in the cases where it is applicable.

Example 1.21. Solve

y′′ + 3y′ + 2y = sinx.

First solve
y′′ + 3y′ + 2y = 0.

The characteristic equation is

λ2 + 3λ+ 2 = 0.

The roots are λ = −2, λ = −1 and therefore

yh = Ae−2x +Be−x

Now R(x) = sin x. So we try

yp = C cosx+D sinx.
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Then

y′p = −C sinx+D cosx,

y′′p = −C cosx−D sinx.

Hence

−C cosx−D sinx− 3C sinx+ 3D cosx+ 2C cosx+ 2D sinx =

(−D − 3C + 2D) sinx+ (−C + 3D + 2C) cosx = sinx.

So

D − 3C = 1,

C + 3D = 0.

Hence C = −3D.
Thus

D − 3(−3D) = 10D = 1,

giving

D =
1

10
,

C = − 3

10
.

So the particular solution is

yp = − 3

10
cosx+

1

10
sinx,

and y = yh + yp is the general solution.

Example 1.22. Solve

y′′ + 5y′ + 6y = 2ex.

First solve

y′′ + 5y′ + 6y = 0.

The characteristic equation is

λ2 + 5λ+ 6 = 0,

which factorises as

(λ+ 3)(λ+ 2) = 0.

So the roots are λ = −3, λ = −2. and the homogeneous solution is
yh = Ae−3x +Be−2x.
R(x) = 2ex. Now 2ex is not a solution of the homogeneous problem,

so we try

yp = Cex.
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Since

y′′p + 5y′p + 6yp = 2ex then

(1 + 5 + 6)Cex = 12Cex = 2ex,

or C =
1

6
.

Thus

yp =
1

6
ex.

So our general solution is

y = yh + yp

y = Ae−3x +Be−2x +
1

6
ex.

There is one slight modification to the above that sometimes has to
be made.

We are trying to solve

y′′ + ay′ + by = R(x).

Now if

R′′(x) + aR′(x) + bR(x) = 0

then we cannot have yp = cR(x) since

y′′p + ay′p + byp = c(R′′ + aR′ + bR) = 0.

So what do we do?

Since our equation is constant coefficient, then solutions correspond
to roots of

λ2 + aλ+ b = 0. (1.29)

Rule 1. Let λ1, λ2 be roots of (1.29). Then if R(x) is a solution it
must have the form

R(x) = αeλ1x + βeλ2x.

Rule 2. If R(x) is a solution of the associated homogeneous problem,
multiply the test solution in the table by

(i) x if R(x) corresponds to a root of multiplicity 1,

(ii) x2 if R(x) corresponds to a root of multiplicity 2.

In this case we look for a yp of the form

yp = x
(
Aeλ1x +Beλ2x

)
.

If λ1,2 are complex with λ1 = α+ iβ, then R(x) must have the form

R = eαx (A cos βx+B sin βx) ,
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so we try

yp = xeαx (C cos βx+D sin βx) .

If R(x) corresponds to a double root, then we multiply by x2.

Let us see some examples of this procedure.

Example 1.23. d2y
dx2

+ 4 dy
dx

+ 4y = xe−2x.
We first solve

y′′ + 4y′ + 4y = 0

leading to the characteristic equation λ2 + 4λ + 4 = (λ + 2)2 = 0.
Obviously λ = −2 is a root of multiplicity 2. So we look for a solution
of the form

yp = Cx3e−2x = x2(Cxe−2x).

Simple calculations give.

dyp
dx

= (3Cx2 − 2Cx3)e−2x,

d2yp
dx2

= 2(3Cx2 − 2Cx3)e−2x + (6Cx− 6Cx2)e−2x.

Therefore

y′′p + 4y′p + 4yp =
(
(4C − 8C + 4C)x3 + (−12C + 12C)x2 + 6Cx

)
e−2x

= 6Cxe−2x

= xe−2x

Hence C = 1
6
. Thus

yp =
1

6
x3e−2x.

Example 1.24 (Resonance). The situation in which R satisfies the
associated homogeneous problem has real physical consequences. One
is the phenomenon of resonance. Let us consider the ODE

y′′ + 4y = sin(2t), y(0) = 0, y′(0) = 1.

The solutions of y′′ + 4y = 0 are y1 = sin(2t), y2 = cos(2t). Thus
R(t) = sin(2t) satisfies the homogeneous problem. Let us try yp =
At sin(2t) +Bt cos(2t). Then

y′′p + 4yp = 4A cos(2t)− 4B sin(2t) = sin(2t).

So A = 0, B = −1/4. Consequently the general solution is

y = c1 cos(2t) + c2 sin(2t)− 1

4
t cos(2t).
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Now y(0) = c1 = 0 and y′(t) = 2c2 cos(2t)− 1
4

cos(2t) + 1
2
t sin(2t). Thus

y′(0) = 2c2 − 1
4

= 1. So c2 = 5
8
. So the solution is

y(t) =
1

8
(5 sin(2t)− 2t cos(2t)).

20 40 60 80

-20

-10

10

20

Figure 1. Resonance in a solution.

Let us now plot this solution. See Figure 1. Notice that the oscilla-
tions grow without bound. This phenomenon is called resonance. It is
a real physical phenomenon which occurs when a system is subjected
to a forcing term which matches the natural frequency of the system.
Opera singers shattering wine glasses by hitting the right note provide
an illustration of this. In the building of large structures, resonance
needs to be taken into account to avoid instability in windy conditions.
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2. Second Order Linear Differential Equations

We now embark upon a study of quite general second order ordinary
differential equations of the form

y′′ + p(x)y′ + q(x)y = R(x). (2.1)

This is the most general 2nd order linear ODE. It is nonhomogeneous,
meaning that the term R 6= 0. The first question we need to consider
is that of existence and uniqueness for solutions of (2.1).

Any nth order equation can be converted to a system of n first order
equations. So let us first formulate Picard’s Theorem for first order
systems.That is, we want to know to study the system

y′1(t) = f1(t, y1, ..., yn), y1(0) = a1

...

y′n(t) = fn(t, y1, ..., yn), yn(0) = an.

Equivalently we consider y′ = f(t,y), y(0) = a. We define the norm of
a vector x = (x1, ..., xn) by

‖x‖ = max
i
{|x1|, ..., |xn|}.

A vector function f satisfies a Lipschitz condition if there is a constant
K such that

‖f(t,x)− f(t,y)‖ ≤ K‖x− y‖, (2.2)

for all x,y. Then we have the result

Theorem 2.1 (Picard’s Theorem for Systems). If the continuous func-
tion f satisfies a Lipschitz condition on

R = {(t,x) : |t− t0| ≤ a, ‖x− k‖ ≤ b},
and ‖f(t,x)‖ ≤ A on R then the initial value problem

y′(t) = f(t,y(t)),

y(t0) = k has a unique solution on (t0−α, t0+α), where α = min(a, b/A).

Proof. The proof is essentially the same as in the one dimensional case.
We simply replace the absolute values in the one dimensional case with
the norm and the details remain basically the same. �

Now we convert (2.1) to a first order system by setting u = y, v = y′

giving the system

u′ = v (2.3)

v′ = −p(x)v − q(x)u+R(x), (2.4)

u(x0) = y0, v(x0) = y1. Applying the system version of Picard’s Theo-
rem and imposing suitable assumptions on the functions p, q, R we can
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show that the equation u′′ + p(x)u′ + q(x)u = R(x) with u(x0) = y0,
u′(x0) = y1 has a unique solution over some interval.

Actually, we can do better than this with some work. We will not
give the details, but simply state the most important result.

Theorem 2.2. Let (a, b) be an interval on which p(x), q(x), and R(x)
are continuous. Let x0 ∈ (a, b) and let y0, y1 ∈ R, and arbitrary. Then
over the interval (a, b) equation (2.1) has one and only solution y =
φ(x) satisfying

y0 = φ(x0), y1 = φ′(x0).

2.0.1. Some important concepts. Given an equation (2.1) the equation
obtained by setting R(x) ≡ 0 is called the associated homogenous equa-
tion. We will consider homogeneous equations first.

Probably the most important property of (2.1) with R(x) ≡ 0 is the
property of linearity.

Let

Ly = y′′ + p(x)y′ + q(x)y, (2.5)

and let Ly1 = Ly2 = 0 and c1, c2 be constants. Then

L(c1y1 + c2y2) = c1Ly1 + c2Ly2 = 0.

That is if y1 and y2 are solutions of Ly = 0 then so is c1y1 + c2y2.
From linear algebra we recall the concept of linear independence of

a set of vectors. A similar idea exists for functions.

Definition 2.3. A collection of n functions {y1, ..., yn} on an interval
(a, b) is linearly independent if and only if

c1y1(x) + · · ·+ cnyn(x) = 0 for all x ∈ (a, b),

if and only if c1 = · · · = cn = 0.
If a set of functions is not linearly independent then it is said to be

linearly dependent.

The meaning of this definition is easy to grasp. A set of functions is
linearly independent if none of the functions in the set can be written
as a linear combination of the others. If we have two functions, then
they are linearly independent if and only if one is not a multiple of the
other.

Example 2.1. ex and e2x are linearly independent. Whereas ex, 2ex

are not linearly independent. The second is just twice the first. They
are therefore linearly dependent.

Example 2.2. The functions y1(x) = x, y2(x) = x2, y3(x) = 4x + 3x2

are linearly dependent because y3 = 4y1 + 3y2.

The importance of this definition lies in the following result.
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Theorem 2.4. Let y1(x) and y2(x) be linearly independent solutions
of

Ly = 0. (2.6)

Then every solution of (2.6) is of the form

c1y1(x) + c2y2(x).

Actually we can generalise this to higher order equations.

Theorem 2.5. Suppose that the nth order linear ODE

y(n)(x) + a1y
(n−1)(x) + · · ·+ an−1y

′(x) + any(x) = 0

has n linearly independent solutions y1, ..., yn. Then every solution of
the ODE is of the form

y =
n∑
k=1

ckyk,

c1, ..., cn are constants.

Corollary 2.6. A linear ordinary differential equation of order n can
have at most n linearly independent solutions.

This leads to an important idea.

Definition 2.7. Given two linearly independent solutions y1, y2 of
(2.1), the function y = c1y1(x) + c2y2(x) for arbitrary c1, c2 is called
the general solution of (2.6).

We will prove Theorem 2.4 shortly. The proof in the nth order case
is basically the same. To this end, we introduce an important quantity
in the theory of differential equations. Namely the Wronskian.

Definition 2.8. Let y1(x) and y2(x) be any two solutions of

y′′ + p(x)y′ + q(x)y = 0.

Then we define the Wronskian of y1(x) and y2(x) by

W (y1, y2) = y1(x)y′2(x)− y2(x)y′1(x)

=

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ .
More generally if {y1, ..., yn} are a set of n − 1 times differentiable
functions, then

W (y1, ..., yn) = det


y1 y2 · · · yn
y′1 y′2 · · · y′n
...

... · · · ...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

 . (2.7)

The Wronskian tells us whether or not a set of functions are linearly
independent.
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Theorem 2.9. Let y1, ..., yn be defined and possess n − 1 derivatives
on an interval I. Then y1, ..., yn are linearly independent on I, if and
only if their Wronskian is nonzero for at least one point x ∈ I.

Remark 2.10. If the Wronskian is nonzero at a point for a family of
continuous functions, it will be nonzero in an interval around that
point. We will not prove this.

Proof. This is an exercise in linear algebra. Assume that our functions
are linearly dependent. Then for some non zero constants a1, ..., an we
can write

a1y1(x) + a2y2(x) + · · ·+ anyn(x) = 0,

for all x ∈ I. Differentiating this n− 1 times, we still get zero. Hence

a1y1(x) + a2y2(x) + · · ·+ anyn(x) = 0,

a1y
′
1(x) + a2y

′
2(x) + · · ·+ any

′
n(x) = 0,

...

a1y
(n−1)
1 (x) + a2y

(n−1)
2 (x) + · · ·+ any

(n−1)
n (x) = 0.

This system of equations for a1, ..., an has a nonzero solution valid for
all x ∈ I. Since a1 = a2 = · · · = an = 0 is also a solution, the system
does not have a unique solution. Thus the determinant of the system
must equal zero for all x ∈ I. But the determinant is the Wronskian.
So if the functions y1, ..., yn are linearly dependent, W (y1, ..., yn) = 0
for every x ∈ I. Hence if the functions are linearly independent the
Wronskian must be nonzero at at least one x ∈ I. �

Theorem 2.11. If y1, y2 satisfy

y′′ + p(x)y′ + q(x)y = 0,

then

W (y1, y2) = K12e
−

∫
p(x)dx,

K12 is a constant depending on y1 and y2.

Proof. y1, y2 satisfy (2.6). So

y′′1 + p(x)y′1 + q(x)y1 = 0, (A)

y′′2 + p(x)y′2 + q(x)y2 = 0. (B)

Consider the difference

y1(B)− y2(A)

= y1(y′′2 + p(x)y′2 + q(x)y2)− y2(y′′1 + p(x)y′1 + q(x)y1)

= y1y
′′
2 − y2y

′′
1 + y1y

′
2p(x)− y2y

′
1p(x) + (y1y2 − y2y1)q(x)

= y1y
′′
2 − y2y

′′
1 + (y1y

′
2 − y2y

′
1)p(x) = 0.
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Now

W (y1, y2) = y1y
′
2 − y2y

′
1

d

dx
W (y1, y2) = y1y

′′
2 + y′2y

′
1 − y′2y′1 − y2y

′′
1

= y1y
′′
2 − y2y

′′
1 .

So
dW

dx
+ p(x)W = 0.

Solving this separable ODE gives

dW

W
= −p(x)dx.

Hence

lnW = −
∫
p(x)dx or

W (y1, y2) = K12e
−

∫
p(x)dx.

K12 depends upon W (y1(x0), y2(x0)) for some x0 ∈ (a, b). �

Given any two linearly independent functions y1 and y2 which can
be differentiated, then W (y1, y2) 6= 0. We now recast Theorem 2.5 in a
slightly different form.

Theorem 2.12. If y1, y2 are solutions of (2.6) on (a, b) and

W (y1, y2) 6= 0,

for some x0 ∈ (a, b), then any solution y of (2.6) may be written

y(x) = c1y1(x) + c2y2(x).

Proof. Let y3 be any solution of (2.1). Then by Theorem 2.11

W (y3, y1) = y3y
′
1 − y′3y1 = K13e

−
∫
p(x)dx

W (y3, y2) = y3y
′
2 − y′3y2 = K23e

−
∫
p(x)dx

}
.

This is a pair of simultaneous equations for y3 and y′3. We get by simple
linear algebra

y3(y1y
′
2 − y2y

′
1) = K23e

−
∫
p(x)dxy1(x)−K13e

−
∫
p(x)dxy2(x).

So

y3K12e
−

∫
p(x)dx = K23e

−
∫
p(x)dxy1(x)−K13e

−
∫
p(x)dxy2(x),

and K12 6= 0. Thus we have

y3 =
K23

K12

y1(x)− K13

K12

y2(x),
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which we can write as

y3 = c1y1(x) + c2y2(x).

�

Remark 2.13. This result extends to higher order equations. If

y(n)(x) + Pn−1(x)y(n−1) + . . .+ Pny = 0, (2.8)

and y1, . . . , yn are n linearly independent solutions of (2.8), then any
solution y of (2.8) may be written

y(x) =
n∑
k=1

ckyk(x).

Example 2.3. Consider the equation

y′′ − y = 0. (2.9)

We see that y1 = ex, y2 = e−x are solutions, so that

W (y1, y2) =

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ =

∣∣∣∣ex e−x

ex −e−x
∣∣∣∣

= −ex(e−x)− exe−x

= −2 6= 0.

Therefor any solution of (2.9) is of the form

y = c1e
x + c2e

−x.

Example 2.4. An equation with trigonometric solutions is

y′′ + 4y = 0. (2.10)

One easily finds that y1 = sin 2x, y2 = cos 2x are solutions and

W (y1, y2) =

∣∣∣∣ sin 2x cos 2x
2 cos 2x −2 sin 2x

∣∣∣∣
= 2(sin2 2x+ cos2 2x)

= −2 6= 0.

Therefore any solution of (2.10) may be written

y = c1 sin 2x+ c2 cos 2x.

The Wronskian is useful for the study of many different aspects of
DEs. We give one important application. That of finding a second
solution of an equation given a first solution.

Let us imagine that we have a solution y1 of an equation

y′′ + p(x)y′ + q(x)y = 0.

We can often find such solutions by inspection. For example, an equa-
tion of the form

a(x)y′′(x) + kxy′(x)− ky(x) = 0,
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obviously has y(x) = x as a solution. Can we find another linearly
independent solution?

Proposition 2.14. Let y1 be a nonzero solution of

y′′(x) + p(x)y′ + q(x)y = 0.

Then

y2 = y1

∫
e−

∫
p(x)dx

y1(x)2
dx, (2.11)

is a second linearly independent solution.

Proof. We use the Wronskian W (y1, y2). By our previous results we
have for any second linearly independent solution y2,

W (y1, y2) = Ae−
∫
p(x)dx, for some constant A 6= 0.

Now we differentiate the quantity
y2

y1

. By the quotient rule,

d

dx

(
y2

y1

)
=
y1y
′
2 − y2y

′
1

y2
1

=
W (y1, y2)

y2
1

=
Ae−

∫
p(x)dx

y2
1

.

Thus

y2

y1

= A

∫
e−

∫
p(x)dx

y2
1

dx

So y2 = Ay1(x)

∫
e−

∫
p(x)dx

y2
1

dx,

is our second solution. �

Corollary 2.15. Every second order linear ODE with one nonzero
solution has exactly two linearly independent solutions.

Example 2.5. Consider the equation

x2y′′ + 4xy′ − 4y = 0. (2.12)

An equation of the form x2y′′ + bxy′ + cy = 0 is known as an Euler
equation and it may be solved by finding solutions of the form y = xλ.
Substitution of this into our equation will give us a quadratic in λ.
However, as we remarked above, it it is easy to see by inspection that
since b = −c, then y = x is a solution. Thus by Proposition 2.14 we
may find a second solution. First we rewrite the equation as

y′′ +
4

x
y′ − 4

x2
y = 0.
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This puts it into the form given in the proposition. Then p(x) = 4
x
.

Now
e−

∫
p(x)dx = e−4

∫
1
x
dx = e−4 lnx = x−4.

So

y2(x) = Ay1(x)

∫ 1
x4

x2
dx = Ax

∫
dx

x6

= Ax

(
−1

5x5

)
= − A

5x4
.

Since any A is linear, any multiple of a solution is a solution. Hence
x−4 is a solution. So we conclude that the general solution of (2.12) is

y = c1x+ c2x
−4.

Example 2.6. A harder example follows. Suppose that we want to
solve

u′′ + xu′ + u = 0.

It is not hard to see that u1(x) = e−
x2

2 is a solution since

u′1(x) = −xe−
x2

2

u′′1(x) = x2e−
x2

2 − e−
x2

2

= (x2 − 1)e−
x2

2 .

So

(x2 − 1)e−
x2

2 + x
(
−xe−

x2

2

)
+ e−

x2

2 = 0.

Now p(x) = x. So e−
∫
p(x)dx = e−

x2

2 .

u2
1(x) =

(
e−

x2

2

)2

= e−
x2

2 .

So our second solution u2(x) is

u2(x) = Ae−
x2

2

∫
e−

x2

2

e−x2
dx

= Ae−
x2

2

∫
e
x2

2 dx.

We cannot do the integral so we leave the answer as

u2(x) = Ae−
x2

2

∫ x

0

e
t2

2 dt+ u2(0).

So any solution of u′′ + xu′ + u = 0 is of the form

u(x) = c1e
−x

2

2 + c2

(
e−

x2

2

∫ x

0

e
t2

2 dt+ u2(0)

)
.
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Example 2.7. Observe that

y′′ + 3y′ + 2y = 0. (2.13)

has a solution y = e−x. In this case P (x) = 3. So

e−
∫

3dx = e−3x.

y2
1(x) = e−2x. So ∫

e−
∫
P (x)dx

y2
1(x)

=

∫
e−xdx = −e−x.

Hence

y2(x) = Ae−x(−e−x) = −Ae−2x.

Thus y2(x) = e−2x is a solution and every solution of (2.13) is of form

y = c1e
−2x + c2e

−x.

Example 2.8. Suppose that we wish to solve y′′+ 2ay′+ a2y = 0. We
let y = eλx and this gives the auxilliary equation

λ2 + 2aλ+ a2 = 0

Then p(x) = 2a. So that with y1 = e−ax we have

y2 = y1

∫
e−2ax

e−2ax
dx = xe−ax. (2.14)

This is the second solution that we arrived at previously.

2.1. Non-Homogeneous Equations. We now return to the problem
of solving the inhomogeneous equation

Ly = y′′ + p(x)y′ + q(x)y = R(x). (2.15)

The basic result we need is one telling us what solutions of nonho-
mogenous equations look like.

Theorem 2.16. Let yp be a particular solution of (2.15) and yh =
c1y1 + c2y2 be the general solution of the associated homogeneous prob-
lem

y′′ + p(x)y′ + q(x)y = 0. (2.16)

Then every solution of (2.15) is of the form

y = yh + yp.

Proof. Let y be any solution of (2.15) and yp be any particular solution.

Now set

u = y − yp.



46 MARK CRADDOCK

Then

Lu = L(y − yp)
= Ly − Lyp
= R(x)−R(x)

= 0.

Thus u is a solution of the associated homogeneous equation. Hence
we can write

u = c1y1(x) + c2y2(x),

where y1, y2 are the two linearly independent solutions of the homoge-
neous problem. Thus our arbitrary solution y satisfies

c1y1 + c2y2 = y − yp.
So

y = c1y1 + c2y2 + yp.

�

2.2. The Method of Variation of Parameters. Given an equation

y′′ + p(x)y′ + q(x)y = R(x), (2.17)

can we construct a particular solution yp(x)? It turns out that given
two linearly independent solutions y1, y2 of the associated homogeneous
problem (2.17), we can produce a solution of (2.17) by a process called
variation of parameters.

The idea is relatively straightforward. Let y1, y2 be solutions of

y′′ + p(x)y′ + q(x)y = 0,

with W (y1, y2) = y1y
′
2 − y2y

′
1 6= 0.

Then we look for a solution of (2.17) of the form

yp = u(x)y1(x) + v(x)y2(x).

We can certainly write any nonzero function yp in this form. The
question is whether we can determine u and v?

The key is that yp must satisfy the differential equation, so we dif-
ferentiate both sides.

y′p = u′y1 + uy′1 + vy′2 + v′y2

and

y′′p = u′′y1 + u′y′1 + u′y′1 + uy′′1 + v′′y2 + v′y′2 + v′y′2 + vy′′2

= u′′y1 + 2u′y′1 + uy′′1 + v′′y2 + 2v′y′2 + vy′′2 .

Next we substitute into (2.17). We have

u′′y1 + 2u′y′1 + uy′′1 + v′′y2 + 2v′y′2 + vy′′2+

p(x)(u′y1 + uy′1 + vy′2 + v′y2) + q(x)(u(x)y1(x) + v(x)y2(x)) = R(x).
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Now we collect the terms together and we get

u(y′′1 + p(x)y′1 + q(x)y1) + v(y′′2 + p(x)y′2 + q(x)y2)+

u′′y1 + v′′y2 + 2(u′y′1 + v′y′2) + p(x)(u′y1 + v′y2) = R(x),

where y′′1 + p(x)y′1 + q(x)y1 = A and y′′2 + p(x)y′2 + q(x)y2 = B. Notice
that A and B are zero since y1, y2 are solutions of the homogeneous
problem. So that

u′′y1 + v′′y2 + 2(u′y′1 + v′y′2) + p(x)(u′y1 + v′y2) = R(x). (2.18)

The idea here is to choose u and v in such a way that

u′y1 + v′y2 = 0,

which means that u′′y1 +v′′y2 +2(u′y′1 +v′y′2) = R(x) Now observe that

d

dx
(u′y1 + v′y2) = u′′y1 + v′′y2 + u′y′1 + v′y′2 = 0.

Substituting this into (2.18) to obtain the second equation

u′y′1 + v′y′2 = R(x).

So we have a simultaneous pair of equations for u′, v′. These are

u′y1 + v′y2 = 0 (A)

u′y′1 + v′y′2 = R(x). (B)

To solve, multiply A by y′2 and B by y2. So

u′y1y
′
2 + v′y2y

′
2 = 0, A′,

u′y′1y2 + v′y′2y2 = R(x)y2. B′.

Thus A′ −B′ gives

u′(y1y
′
2 − y′1y2) = −y2R(x),

or u′ =
−y2R(x)

y1y′2 − y′1y2

=
−y2R(x)

W (y1, y2)

=
−y2R(x)

K12e−
∫
p(x)dx

.

Which gives

u′ =
−y2R(x)

K12

e
∫
p(x)dx.

For v′ we obtain

v′ =
y1R(x)

W (y1, y2)

=
y1R(x)

K12

e
∫
p(x)dx.

Integrating our equations for u′ and v′ we obtain
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u = −
∫

y2R(x)

W (y1, y2)
dx,

and

v =

∫
y1R(x)

W (y1, y2)
dx.

Finally yp = uy1+vy2. We differentiate this and substitute it into the
original ODE to show that it is a solution. This is a somewhat laborious
exercise and we omit it. We have derived the following result.

Theorem 2.17. Let y1 and y2 be linearly solutions of the second order
linear equation y′′ + p(x)y′ + q(x)y = 0. We suppose that p and q are
smooth functions and the ODE has a solution. Then if

u = −
∫

y2R(x)

W (y1, y2)
dx

v =

∫
y1R(x)

W (y1, y2)
dx,

the function yp = uy1 + vy2 is a solution of the equation

y′′(x) + p(x)y′(x) + q(x)y(x) = R(x).

Now we will consider some examples.

Example 2.9.
x2y′′ + 4xy′ − 4y = x2. (2.19)

We saw earlier that y1 = x and y2 = x−4 are solutions of the homo-
geneous problem.

First we compute the Wronskian.

W (y1, y2) = y1y
′
2 − y2y

′
1

= x

(
− 4

x5

)
− 1

x4

= − 5

x4
.

We see that the differential equation is

y′′ +
4

x
y′ − 4

x2
y = 1. (2.20)

Thus R(x) = 1. Consequently

u = −
∫

(x−4)

−5/x4
dx =

1

5

∫
dx =

1

5
x,

v =

∫
x

−5/x4
dx = −1

5

∫
x5dx = − 1

30
x6.
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Therefore the solution yp is

yp =
1

5
x · x− 1

30
x6 · 1

x4
=

(
1

5
− 1

30

)
x2 =

1

6
x2.

Example 2.10. Let us solve the ODE

x2y′′ + xy′ − 4y = lnx.

y1 = x2 is a solution of the homogeneous problem.
We now find a second solution y2. We have the equation

y′′ +
1

x
y′ − 4

x2
y =

lnx

x2
.

p(x) = 1
x
, so e−

∫
p(x)dx = e−

∫
1
x
dx = e− lnx = eln 1

x = 1
x
.

Then our second linearly independent solution y2 is

y2 = y1

∫ (
1

x
/x4

)
dx = x2

∫
dx

x5

= x2

(
−1

4
x−4

)
= −1

4
x−2.

So we take y2 = x−2.
Now we find yp by variation of parameters. So

u = −
∫
y2(x)R(x)

W (y1, y2)
dx, v =

∫
y1(x)R(x)

W (y1, y2)
dx,

and y = uy1 + vy2.

Calculating the Wronskian

W (y1, y2) = y1y
′
2 − y2y

′
1 = x2(−2x−3)− 2x · x−2

= −2x−1 − 2x−1 = −4x−1 = −4

x
.

Thus

u = −
∫
x−2 lnx

x2

− 4
x

dx

=
1

4

∫
lnx

x3
dx

=
1

4

(
− 1

2x2
lnx+

∫
1

x
· 1

2x2
dx

)
=

1

4

(
− lnx

2x2
+

1

2

(
−1

2
x−2

))
= − lnx

8x2
− 1

16
· 1

x2
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and

v =

∫ (
x2 lnx

x2

−4/x

)
dx

= −1

4

∫
x lnxdx

= −1

4

(
x2

2
lnx−

∫
x2

2
· 1

x
dx

)
=

1

16
x2(1− 2 lnx)

Thus

yp = x2

(
− lnx

8x2
− 1

16x2

)
+

1

x2

(
−x

2

8
lnx+

x2

16

)
= − lnx

8
− 1

16
− lnx

8
+

1

16

= − lnx

4
.

So the general solution is

y = c1x
2 + c2x

−2 − lnx

4
.

Example 2.11.

y′′ + y = secx (2.21)

First solve y′′+y = 0. We have the auxiliary equation λ2 +1 = 0, which
has solutions λ = ±i. Thus

y = A sinx+B cosx.

Take

y1 = sinx,

y2 = cosx.

Now

W (y1, y2) = y1y
′
2 − y2y

′
1

= sinx(− sinx)− cosx cosx

= −1.
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Then

u =

∫
cosx secx

−1
dx

=

∫
dx

= x.

v =

∫
sinx secx

−1
dx

= −
∫

tanxdx

= − ln |secx|
= ln |cosx| .

Hence
yp = x sinx+ cosx ln |cosx| .
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3. Series Solutions of ODEs

3.1. Introductory Examples. In the previous section we discussed
the problem of solving some ODEs. One of the problems that we looked
at was the problem of solving second order, linear constant coefficient
equations.

Given an ODE with real, constant coefficients

ay′′(x) + by′(x) + cy(x) = 0, (3.1)

we know that it can be solved by looking for solutions of the form
y(x) = eλx. This leads to a quadratic equation for λ and the various
cases which we considered previously.

This can be extended to higher order linear equations as well. For
example, suppose we wish to solve

y′′′ + 5y′′ − 2y′ − 24y = 0. (3.2)

Letting y = eλx gives λ3 + 5λ2 − 2λ− 24 = 0. The roots are 2,−3,−4
and so the general solution is

y = c1e
2x + c2e

−3x + c3e
−4x.

In practice for higher order equations, we may not always be able to
solve the polynomial equation for the characteristic values λ1, ..., λn
exactly, but we can always employ some numerical root finding scheme.
So linear constant coefficient ODEs present no challenge in terms of
obtaining solutions.

An obvious question to ask is what happens when we allow the equa-
tions we are studying to have coefficients which are not constant?

The simplest ODEs which are not constant coefficient equations have
powers of x as coefficients of the derivatives of y. The easiest such
equation to solve is of the form

ax2y′′ + bxy′ + cy = 0. (3.3)

We have seen these Euler type equations already. They are easy to
solve since we can use the same method that works for (3.1). Instead
of looking for an exponential solution, we look for a power of x as a
solution. That is, we try y = xλ as our trial solution.

Differentiation gives y′ = λxλ−1 and y′′ = λ(λ−1)xλ−2. Substitution
into the ODE (3.3) gives

aλ(l − 1)x2xλ−2 + bxλxλ−1 + cxλ = xλ(aλ2 + (b− a)λ+ c) = 0.

Cancelling the xλ term gives us the quadratic

aλ2 + (b− a)λ+ c = 0.

Example 3.1. Solve the ODE x2y′′ + 5xy′ + 3y = 0.
Solution We set y = xλ. Substitution into the ODE leads to the qua-
dratic equation

λ2 + 4λ+ 3 = 0.
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This has roots −3 and −1. Thus the general solution of the ODE is

y =
A

x
+
B

x3
.

By means of this method, any ODE of the form (3.3) may be solved.
Does this work for other kinds of equations where the pattern of the
powers of x does not match the order of the derivatives as it does here?
An example would be the equation y′′−xy = 0. Here the coefficient of
the zeroth derivative is 2 and the coefficient of the second derivative is
zero. We can easily check that this does not have solutions of the form
y = xλ for any λ.

Can we solve such an equation? Actually we will shortly see that
the general solution of y′′ − xy = 0 is

y = c1Ai(x) + c2Bi(x)

where Ai and Bi are the so called Airy functions of the first and sec-
ond kind. Airy functions are examples of what are known as special
functions. Special functions have been the subject of intense study by
mathematicians since the late 18th century. The exact definition of a
special function is somewhat difficult to formulate. For our purposes,
a special function is one which is not of the elementary type familiar
from high school. i.e lnx, ex, sinx are all elementary functions. Spe-
cial functions are often (though not always) solutions of second order
ODES.

The key to solving non-constant coefficient equations is to look for
solutions which are given in terms of infinite series. We take an infinite
power series

y =
∞∑
n=0

an(x− x0)n,

and substitute it into the differential equation and obtain a formula
for the coefficients an. The linear change of variable z = x − x0 will
convert this series to one of the form y =

∑∞
n=0 anz

n. So we will focus
our attention on power series solutions with x0 = 0.

The technique of series solutions relies upon some important results
from real analysis, which we now state without proof.

Theorem 3.1. Suppose that the power series
∑∞

n=0 anx
n is conver-

gent on the interval (−R,R), for R > 0. Then f(x) =
∑∞

n=0 anx
n is

differentiable on (−R,R) and

f ′(x) =
∞∑
n=1

nanx
n−1, (3.4)

for all x ∈ (−R,R).
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It follows from this that every power series is differentiable infinitely
many times, and further, the radius of convergence of the power series
is not changed by the process of differentiation.

Using power series to solve differential equations requires that we
equate a power series to zero. We then need to know under what
conditions a power series is equal to zero for all x?

Proposition 3.2. Suppose that
∞∑
n=0

anx
n =

∞∑
n=0

bnx
n

for all x ∈ (−R,R), where R > 0 is the radius of convergence of both
series. Then for each n, we have an = bn.

Corollary 3.3. If
∑∞

n=0 anx
n = 0 for all x ∈ (−R,R), where R > 0

is the radius of convergence of the power series, then an = 0 for every
n = 0, 1, 2, 3, ....

We are now in a position to develop series methods for the solution
of ordinary differential equations. A simple example will illustrate the
basic ideas.

Example 3.2. Obtain a series solution of the ODE

y′ = y (3.5)

with y(0) = 1.
Solution We want to try an infinite series solution. That is, we want a
trial solution with infinitely many terms:

y(x) =
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + . . . + anx

n + . . .

so y′ = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + (n+ 1)an+1x
n

+ . . .

The differential equation (3.5) implies that for every value of x we must
have

a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + anx
n + . . . (3.6)

= a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + (n+ 1)an+1x
n + . . . (3.7)

In order for the power series to solve the ODE for every value of x the
coefficients of the powers of x on both sides of (3.6) must match. It is
easy to see that we have to have a0 = a2, a1 = 2a2 etc. Putting this in
a tabular form gives
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

a1 = a0 = a0
1

a2 = 1
2
a1 = a0

1×2

a3 = 1
3
a2 = 1

1×2×3
a0 = 1

3!
a0

...

an = 1
n
an−1 = 1

n!
a0

an+1 = 1
n+1

an = 1
(n+1)!

a0

...

(3.8)

This process of courses continues forever for all coefficients. The point
is that we have a relationship between the coefficients. This allows us
to obtain all coefficients in terms of a0. The initial condition y(0) = 1
now implies

1 = y(0) = a0.

Consequently we have an = 1/n! for every n.
Hence we have obtained a solution to our equation in terms of an

infinite series

y = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ . . .

=
∞∑
n=0

xn

n!
. (3.9)

We already know that the ODE y′ = y with y(0) = 1 has the unique
solution y = ex. So we expect that this series is simply the Taylor
series for ex, and this is the case. If we had no initial condition, the
constant a0 would remain arbitrary and the solution would be given as
y = a0

∑∞
n=0 x

n/n!.
Let us consider another familiar ODE from the point of view of power

series.

Example 3.3. Use series methods to solve the ODE

y′′ + ω2y = 0.

Solution Again we try a power series solution y =
∑∞

n=0 anx
n. Differ-

entiation produces the following.

y′(x) =
∞∑
n=1

nanx
n−1

y′′(x) =
∞∑
n=2

n(n− 1)anx
n−2.

We now substitute this into the ODE to get

y′′ + ω2y = 0.
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This becomes
∞∑
n=2

n(n− 1)anx
n−2 + ω2

∞∑
n=0

anx
n = 0. (3.10)

We now make the powers of x in the sums the same. Notice that the
first sum in (3.10) starts at n = 2. However the power of x is n− 2. So
the first term in this series will be x0, the next will be x1 etc. So by
replacing n by n+ 2 in the first sum, the expression n(n− 1) becomes
(n+ 2)(n+ 1) and so the equation (3.10) can be written

∞∑
n+2=2

(n+ 2)(n+ 1)an+2x
n + ω2

∞∑
n=0

anx
n = 0,

which is the same as
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n + ω2

∞∑
n=0

anx
n = 0.

The key here is that we have made the sums both start from n = 0.
We next combine the sums and in each term take out the common
power of x to obtain the expression

∞∑
n=0

[
(n+ 2)(n+ 1)an+2 + ω2an

]
xn = 0.

This has to hold for all values of x. Which means that the coefficients
of x must be zero.

We therefore equate the coefficients of like powers of x to zero, which
gives us

(n+ 2)(n+ 1)an+2 + ω2an = 0

for n = 0, 1, 2, . . .

What we have here is a recurrence relation for the coefficients an. It
is simply

an+2 =
−ω2

(n+ 2)(n+ 1)
an

for n = 0, 1, 2, . . .
The next step is to identify coefficients recursively. We will find that

they naturally separate into the odd and even values of n. Taking n = 0
gives

a2 = − ω2

2× 1
a0 = −ω

2

2!
a0 (3.11)

a4 = − ω2

4× 3
a2 =

(−1)2ω4

4!
a0 (3.12)

a6 = − ω2

6× 5
a4 =

(−1)3ω6

6!
a0. (3.13)

If we take n = 1 we get
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a3 = − ω2

3× 2
a1 = −ω

2

3!
a1 (3.14)

a5 = − ω2

5× 4
a3 =

(−1)2ω4

5!
a1 (3.15)

a7 = − ω2

7× 6
a5 =

(−1)3ω6

7!
a1, (3.16)

and in general the odd and even coefficients are given by

a2n =
(−1)nω2n

(2n)!
a0, a2n+1 =

(−1)nω2n

(2n+ 1)!
a1

respectively.
From this we can now determine the general solution of our ODE.

We have

y(x) = a0 + a1x+ a2x
2 + . . .

= a0 + a1x− a0
ω2

2!
x2 − a1

ω2

3!
x3 +− . . .

= a0

(
1− (ωx)2

2!
+

(ωx)4

4!
· · ·+ (−1)n(ωx)2n

(2n)!
+ . . .

)
+
a1

ω

(
(ωx)− (ωx)3

3!
+

(ωx)5

5!
· · ·+ (−1)n(ωx)2n+1

(2n+ 1)!
+ . . .

)
.

Let us introduce some initial conditions to tidy up the solution. We
will take y(0) = y0 and y′(0) = y1. This implies that

y0 = y(0) = a0(1 + 0 + . . . ) +
a1

ω
(0 + 0 + . . . ).

So a0 = y0. Next we have

y1 = y′(0) = a0(0 + 0 + . . . ) +
a1

ω
(ω + 0 + . . . ),

which gives a1 = y1.
It is now an easy task to find the particular solution that satisfies

the initial conditions:

y(x) = y0

(
∞∑
n=0

(−1)n(ωx)2n

(2n)!

)
+
y1

ω

(
∞∑
n=0

(−1)n(ωx)2n+1

(2n+ 1)!

)
.

These solutions are not so mysterious when we realise that the two
infinite series solutions are nothing more than the Taylor series for cos
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and sin respectively. That is

cosωx =
∞∑
n=0

(−1)n(ωx)2n

(2n)!
,

sinωx =
∞∑
n=0

(−1)n(ωx)2n+1

(2n+ 1)!
.

By using power series we may solve a very large class of ordinary dif-
ferential equations. Obviously the examples we have seen here are more
easily solved by other methods. The power series method really comes
into its own when we have to solve equations where the coefficients of
the derivatives are functions of x.

3.2. Ordinary Points. To apply series methods to an ODE we need
to distinguish between two different types of equations. Those with
only ordinary points and those with regular singular points. First we
discuss ordinary points.

Recall that a function f is analytic at a point x0 if the Taylor series
for f about x0 is convergent in some interval I which contains x0. More
precisely

Definition 3.4. Let f : I → R be infinitely differentiable at x0 ∈ I.
Let it have a Taylor series expansion about the point x0 of the form

Tf (x) =
∞∑
n=0

an(x− x0)n.

If there is an interval I1 ⊆ I containing x0 such that f(x) = Tf (x) for
all x ∈ I1 then we say that f is analytic at x0 or just analytic.

Examples of analytic functions which students are familiar with from
high school are the trigonometric functions, the exponential function,
all polynomials, the natural logarithm ln(1 + x) etcetara. Most of the
functions encountered in first year mathematics courses are analytic on
(at least) some finite interval.

Since we are trying to obtain Taylor expansions for solutions, the
question of whether or not a function can be represented as a Taylor
polynomial is crucial. It must be realised that not every function can
be represented by a Taylor series. For example, the function f(x) = |x|
is not differentiable at x = 0, so it is not expressible as a Taylor series
around zero.

A more interesting example is the function

f(x) = e−1/x2 , x 6= 0, f(0) = 0.
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Using the first principle definition of the derivative, we show that every
derivative of f exsits at zero.

f ′(0) =
f(x)− f(0)

x− 0

= lim
x→0

1

x
e−1/x2

= lim
u→∞

ue−u
2

= 0.

Actually we can easily show that f (n)(0) = 0 for each n. Hence the
Taylor series of f about x = 0 is Tf (x) = 0. Clearly f is not equal to
its Taylor series, except at zero.

Now we define ordinary points and singular points for an ODE.

Definition 3.5. Consider an nth order ODE of the form

y(n) + a1(x)y(n−1) + · · ·+ an(x)y(x) = 0 (3.17)

The ODE (3.17) is said to have an ordinary point at x0 if each of the
functions a1..., an is analytic at x0. A point which is not an ordinary
point is said to be a singular point.

If we consider the ODE

y′′ +
2

x
y′ + y = 0, (3.18)

then x = 0 is a singular point and all other points are ordinary points.
Identifying ordinary and singular points is not usually a terribly diffi-
cult problem. Consider the equation

y′′ +
1

sinx
y′ +

1

cosx
y = 0. (3.19)

This has singular points at x = nπ and x = 2n+1
2
π for n = 0,±1,±2, ....

All other points are ordinary points.
The importance of this definition is the following theorem which we

will not prove.

Theorem 3.6. Consider the ODE

y(n) + a1(x)y(n−1) + · · ·+ an(x)y(x) = 0. (3.20)

Assume that each of the coefficient functions a1, ..., an is analytic at the
point x0 and is equal to its Taylor series expansion on the open interval
I, where x0 ∈ I. Then every solution of (3.20) is analytic at x0 and
equal to its Taylor series expansion on I.

A proof of this result in the n = 2 case may be found in Chapter 3
of Rabenstein, [4]. This Theorem means that if a differential equation
has analytic coefficients then we can look for Taylor series solutions, at
least on some suitable open interval.

Now let us look at an example where the ODE has a coefficient which
is a power of x.
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Example 3.4. Let us solve the ODE y′′ + xy′ + y = 0.
Solution First observe that the coefficient functions are all analytic for
every value of x. That is, every value of x is an ordinary point for the
ODE. We try a series solution as usual, setting y =

∑∞
n=0 anx

n.
Differentiating twice and substituting into the equation gives

∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n =

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n = 0. (3.21)

To extract an expression for the coefficients an from this, notice that
the middle series has first term a1x and the first and third series have
first terms 2a2 and a0 respectively. So we take the constant terms from
the first and third sum and write (3.21) as

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n

= 2a2 + a0 +
∞∑
n=3

n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n +

∞∑
n=1

anx
n

= 2a2 + a0 +
∞∑
n=1

[(n+ 2)(n+ 1)an+2 + nan + an]xn

= 2a2 + a0 +
∞∑
n=1

[(n+ 2)(n+ 1)an+2 + (n+ 1)an]xn = 0. (3.22)

Since this can only be equal to zero if all the coefficients of the powers
of x are zero, we conclude that 2a2 + a0 = 0 and

(n+ 2)(n+ 1)an+2 + (n+ 1)an = 0

or
(n+ 2)an+2 + an = 0. (3.23)

Starting with a2 = −1/2a0 we get for the even terms

a4 = (−1)2 1

4
× 1

2
a0 =

1

2× 2

1

2× 1
a0 =

1

22 × 1!
a0,

a6 = (−1)3 1

6
× 1

4
× 1

2
a0 = − 1

2× 3

1

2× 2

1

2× 1
a0 = − 1

233!
a0

It is easy to see that

a8 = (−1)4 1

244!
a0.

In general the even terms are given by

a2n = (−1)n
1

2nn!
a0.
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For the odd coefficients we have starting with n = 1 in (3.23)

a3 = −1

3
a1, a5 = (−1)2 1

5
× 1

3
a1, a7 = (−1)3 1

7
× 1

5
× 1

3
a1,

etcetera.
To see the pattern here, rewrite the a7 term as

a7 = (−1)3 1

7
×1

5
×1

3
a1 = (−1)3 2× 4× 6

1× 2× 3× 4× 5× 6× 7
a1 = −(1)3 233!

7!
a.

This generalises to give the odd coefficients as

a2n+1 = (−1)n
2nn!

(2n+ 1)!
a1.

Rather than write the solution as a single series we split it into odd
and even powers of x.

The solution of the ODE is given by the infinite series expansion

y(x) = a0

∞∑
n=0

(−1)n

2nn!
x2n + a1

∞∑
n=0

(−1)n2nn!

(2n+ 1)!
x2n+1. (3.24)

Expressing the second series as a known function is not so easy.
However the first series is just the Taylor series for e−x

2/2! The second
series is actually a special function called the Error function.

The method has thus given us two linearly independent solutions of
our ODE. The first is

y(x) = a0

∞∑
n=0

(−1)n

2nn!
x2n = a0e

−x
2

2 , (3.25)

and the second is

y(x) = a1

∞∑
n=0

(−1)n2nn!

(2n+ 1)!
x2n+1. (3.26)

which is a more complicated function. In general, with a power series
solution it is not easy to express it in terms of known functions and
usually not necessary, since all the properties of the solution can in
principle be obtained from the Taylor series.

Notice that these two infinite series converge for all values of x, which
is a reflection of the fact that every point in R is a regular point for
the ODE.

Example 3.5 (Airy’s equation). Find a power series solution of Airy’s
equation

y′′ − xy = 0.

Solution Here every point is an ordinary point. So we again set y =∑∞
n=0 anx

n. Then y′′ =
∑∞

n=2 n(n−1)anx
n−2. The differential equation
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then implies that
∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=0

anx
n = 0.

This is the same as
∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n+1

= 2a2 +
∞∑
n=3

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n+1

= 2a2 +
∞∑
n=0

(n+ 3)(n+ 2)an+3x
n+1 −

∞∑
n=0

anx
n+1

2a2 +
∞∑
n=0

[(n+ 3)(n+ 2)an+3 − an]xn+1 = 0.

As always, the coefficients of the powers of x must be equal to zero.
So we immediately see that a2 = 0. We also have

an+3 =
an

(n+ 3)(n+ 2)
.

Thus a5 = 0, which implies a8 = 0, a11 = 0, a14 = 0 etc. Conse-
quently a3n+2 = 0.

Taking n = 0 gives a3 = 1
3×2

a0. We then get a6 = 1
6×5

1
3×2

a0. Next we
find

a9 =
1

9× 8

1

6× 5

1

3× 2
a0 =

7× 4× 1

9× 8× ...× 3× 2× 1
a0 =

7.4.1

9!
a0.

This gives a12 = 10.7.4.1.
12!

a0. The general pattern is

a3n =
(3n− 2)(3n− 5)...4.1

(3n)!
a0,

for n = 1, 2, 3, ..
The remaining coefficients can be obtained the same way. We have

the general expression

a3n+1 =
(3n− 1)(3n− 4)...5.2

(3n+ 1)!
a1,

for n = 1, 2, 3, ... The general solution of the differential equation can
then be written

y = a0(1+
∞∑
n=1

1 · 4 · · · (3n− 2)

(3n)!
x3n)+a1(x+

∞∑
n=1

2 · 5 · · · (3n− 1)

(3n+ 1)!
x3n+1).

These two power series both converge for all values of x, which is again
a reflection of the fact that every point in R is an ordinary point for
the equation.
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The functions defined by these power series are called Airy functions.
In fact the Airy functions are defined as the sum and difference of these
two series, weighted by certain constants.

Definition 3.7. The Airy functions Ai and Bi are the linearly inde-
pendent solutions of the differential equation y′′ − xy = 0. Define

f(x) = 1 +
∞∑
n=1

1 · 4 · · · (3n− 2)

(3n)!
x3n

and

g(x) = x+
∞∑
n=1

2 · 5 · · · (3n− 1)

(3n+ 1)!
x3n+1.

Then the Airy functions of the first and second kind are defined as

Ai(x) = c1f(x)− c2g(x) (3.27)

Bi(x) =
√

3 [c1f(x) + c2g(x)] (3.28)

The constants c1 and c2 are defined by c1 = 3−2/3/Γ(2/3) ≈ 0.355028
and c2 = 3−1/3/Γ(1/3) ≈ 0.258819

The Airy functions are very closely related to Bessel functions, which
we will study later. They are named after the mathematician and as-
tronomer George Airy (1801-1892) who discovered them while studying
so called caustics in the theory of optics. A caustic is the envelope of
light produced when light rays are reflected or refracted by a curved
surface. Rainbows are the most familiar example.

Actually a rainbow is caused by the interaction of millions of caus-
tics produced when light from the sun strikes drops of water in the
atmosphere. Among Airy’s other claims to fame is the establishment
of the Greenwich meridian in 1851, in the city of Greenwich, England.
This line is considered to have longitude zero and all others longitudes
on earth are measured from this line.

The functions Ai and Bi behave very differently. The function Ai has
the property that it is oscillatory for x < 0 and decays exponentially
for x > 0. A plot of the function is given below.

The behaviour of Ai is interesting and in a sense predictable. The
equation y′′ = ky, where k is a constant, has exponential solutions

for k > 0 - that is solutions y = Ae
√
kx + Be−

√
kx. Conversely it has

oscillatory solutions for k < 0- that is solutions y = A cos(
√
kx) +

B sin(
√
kx). So we would expect the solutions of y′′ = xy to have

similar behavior for x > 0 and x < 0. This is what we see. To the right
of the origin, we have a function which decays exponentially and to the
left, the function has decaying oscillations.

Conversely, the function Bi is unbounded. It grows exponentially
for x > 0 and has small values for x < 0.
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Figure 2. Ai The Airy function of the first kind
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Figure 3. Bi, the Airy function of the second kind

One of the interesting features of special functions is the variety of
ways in which they can be represented. Although we have a definition
of Ai and Bi in terms of series solutions of the ODE in Example 4.5 it
is often more convenient to use the following integral representation.
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Proposition 3.8. The Airy functions have the following representa-
tions as integrals

Ai(x) =
1

π

∫ ∞
0

cos(
1

3
t3 + xt)dt (3.29)

Bi(x) =
1

π

∫ ∞
0

[
exp(−1

3
t3 + xt) + sin(

1

3
t3 + xt)

]
dt. (3.30)

The Airy functions may also be written as combinations of Bessel
functions, a result which will be presented after we discuss regular
singular points.

Example 3.6. Solve the equation (1− x2)y′′ − 5xy′ − 3y = 0.
Solution. Here we observe that the equation has an ordinary point at
zero, but two singular points at ±1, since we can rewrite the ODE as

y′′ − 5x

1− x2
y′ − 3

1− x2
y = 0.

We therefore expect that the power series solution around x = 0 will
only converge for |x| < 1. As before, we set y =

∑∞
n=0 anx

n. Substitut-
ing into the differential equation produces

(1− x2)
∞∑
n=2

n(n− 1)anx
n−2 − 5x

∞∑
n=1

nanx
n−1 − 3

∞∑
n=0

anx
n =

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n −

∞∑
n=1

5nanx
n −

∞∑
n=0

3anx
n = 0.

(3.31)

Remember that the guiding principle in this method is that the coef-
ficient of every power of x must equal zero. So we collect the powers of
x together by writing out the terms of the series, collecting like powers
of x and setting their coefficients equal to zero, thus getting the appro-
priate expressions for the values of an. In this example the expression
(3.31) can be rewritten as

2a2 − 3a0 + (6a3 − 8a1)x+
∞∑
n=4

n(n− 1)anx
n−2

−
∞∑
n=2

[n(n− 1) + 5n+ 3]anx
n = 0. (3.32)

The sum which starts at n = 4 can be shifted back to start at n = 2
by a change of index. Thus

∞∑
n=4

n(n− 1)anx
n−2 =

∞∑
n=2

(n+ 2)(n+ 1)an+2x
n. (3.33)
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This means that equation (3.32) can be expressed as

2a2 − 3a0 + (6a3 − 8a1)x+
∞∑
n=2

[(n+ 2)(n+ 1)an+2 − (n2 + 4n+ 3)an]xn

= 2a2 − 3a0 + (6a3 − 8a1)x+
∞∑
n=2

(n+ 1)[(n+ 2)an+2 − (n+ 3)an]xn

= 0.

So the coefficients must satisfy a2 = 3
2
a0 and a3 = 8

6
a1 = 4

3
a1. In

general (n + 1)[(n + 2)an+2 − (n + 3)an] = 0. Cancelling the n + 1 we
have

an+2 =
n+ 3

n+ 2
an.

Working out the values of the even coefficients recursively we have

a4 =
5

4
a2 =

5

4
× 3

2
a0, a6 =

7

6
× 5

4
× 3

2
a0, a8 =

9

8
× 7

6
× 5

4
× 3

2
a0,

etcetera. Notice that 8.6.4.2 = 24(4.3.2.1). The general pattern is that
for n = 0, 1, 2, 3, ...

a2n =
(2n+ 1)(2n− 1)...3

2nn!
a0.

For the odd coefficients, we get

a5 =
6

5
× 4

3
a1, a7 =

8

7
× 6

5
× 4

3
a1, a9 =

10

9
× 8

7
× 6

5
× 4

3
a1,

and so on. Now 10.8.6.4 = 24(5.4.3.2.1). Thus

a2n+1 =
2n(n+ 1)!

(2n+ 1)(2n− 1)...3.1
a1.

As usual, it is convenient to separate the series into two series, one
with even powers and one with odd powers. The series solution of the
differential equation is therefore

y(x) = a0

∞∑
n=0

(2n+ 1)(2n− 1)...3

2nn!
x2n + a1

∞∑
n=0

2n(n+ 1)!x2n+1

(2n+ 1)(2n− 1)...3.1
.

It is not hard to check that these power series only converge for
|x| < 1. This is exactly what we expected, since they are power series
centered on zero and the differential equation has singular points at
±1. We can think of the singular points as providing a ‘barrier’ to
the series solution. Obtaining solutions for the differential equation
which are valid outside the range |x| < 1 is possible, by looking for
an expansion of the solution around a different point. For example,
suppose that we wish to know the value of a function y satisfying the
differential equation, and possibly some extra conditions, at x = 2. We
could expand the solution about some point x0, which is sufficiently
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close to 2 for the resulting power series to converge. This is an issue
that we will not explore, however.

It is possible to prove some very useful facts about IVPs. The fol-
lowing is left as an exercise.

Theorem 3.9. Let p(x) and q(x) be analytic in the interval I =
(−x0, x0), where x0 > 0. Then the only solution on I to the IVP

y′′(x) + p(x)y′(x) + q(x)y(x) = 0,

y(0) = y′(0) = 0 is y(x) = 0.

The power series method is a very useful tool. It does however
have limitations. We have already seen that not every function can
be expanded in a power series around a given point. We have seen two
examples of this before. Let us consider an example of direct relevance
to differential equations.

Example 3.7. The function f(x) =
√
x cannot be represented by a

power series around x = 0. To see why, suppose that it could be. Then
for some coefficients a0, a1, a2..., we would have

√
x = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · · .

Setting x = 0 tells us that we must have a0 = 0. Thus the series
would have to be

√
x = a1x+ a2x

2 + a3x
3 + a4x

4 + · · · . Now suppose
that x 6= 0. Then divide both sides by the square root of x. We would
then have for all x > 0

1 = a1

√
x+ a2x

3/2 + a3x
5/2 + · · · .

The left hand side is a constant, the right hand side is not a constant,
so this is impossible. Thus

√
x cannot be represented as a power series

about x = 0. We could expand it as a Taylor series about another
point, say x = 1, but not x = 0.

The relevance of this to the solution of differential equations is readily
apparent if we consider the Euler equation

2x2y′′ + 3xy′ − y = 0.

The reader may easily check that y =
√
x is a solution of this equation.

Clearly x = 0 is a singular point for the equation and we have a solution
which cannot be represented as a power series around the singular
point.

Fortunately there is a way around this if the singular point of the
differential equation is a regular singular point
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3.3. Regular Singular Points and the Method of Frobenius. We
first start by defining a regular singular point. Then we will introduce
the method of Frobenius which generalises the idea of a power series
solution for a differential equation.

Definition 3.10. A differential equation

y(n) +
P1(x)

x− x0

y(n−1) + · · ·+ Pn−1(x)

(x− x0)n−1
y′ +

Pn(x)

(x− x0)n
y = 0,

is said to have a regular singular point at x0 if all of the coefficient
functions Pi, i = 1, ..., n are analytic at x0.

As a simple example, the second order ordinary differential equation
2x2y′′ + 3xy′ − y = 0 has a regular singular point at x = 0. Another
important example is provided by Bessel’s equation,

x2y′′ + xy′ + (x2 − α2)y = 0,

where α is real. We will solve this important equation shortly. Each
equation of this form has a regular singular point at x = 0.

The method of Frobenius depends on one important fact. Every
differential equation with a regular singular point at x0 has at least
one solution of the form

y = (x− x0)s
∞∑
n=0

an(x− x0)n.

Here the number s need not be an integer.
The method thus extends the power series method in that we can

find a solution as the product of a power series and some power of
(x− x0)s. To illustrate we will present an example.

Example 3.8. Solve the differential equation

2x2y′′ + xy′ − (x+ 1)y = 0,

by the method of Frobenius.
Solution. There is a regular singular point at x = 0. To see this observe
that the equation can be rewritten as

y′′ +
x

2x2
y′ − x+ 1

2x2
y = 0.

The functions x and x + 1 are analytic at x = 0, since they are poly-
nomials and so 0 is a regular singular point.

Now we introduce the trial solution y =
∑∞

n=0 anx
n+s. The first

task is to identify the allowable values of s. We differentiate in the
time honoured manner to get y′ =

∑∞
n=0(n + s)anx

n+s−1 and y′′ =∑∞
n=0(n+ s)(n+ s− 1)anx

n+s−2.
Notice that the differentiated series still starts at n = 0. The reason

for this is the presence of the s in the exponent. If we have
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y =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · ·

then

y′ = a1 + 2a2x+ 3a3x
2 + · · · =

∞∑
n=1

nanx
n−1. (3.34)

So when we differentiate a regular power series, the constant term
disappears, hence we can shift the starting value of n from 0 to 1 and
we don’t lose anything. Notice that if we left the index as starting at
n = 0 in (3.34) then it would not make any difference because for n = 0
the term nan is zero anyway.

However when we consider the method of Frobenius, things are a
little different. Consider

y =
∞∑
n=0

anx
n+s = a0x

s + a1x
s+1 + a2x

s+2 + a3x
s+3 + · · · , (3.35)

then

y′ = sa0x
s−1 + (s+ 1)a1x

s + (s+ 2)a2x
s−1 + · · · =

∞∑
n=0

(n+ s)anx
n+s−1.

(3.36)
There is no constant term in (3.35), so the index in the differentiated
series still starts at n = 0.

Now we substitute the expressions for y′ and y′′ into the differential
equation. The procedure is similar to what we do when finding a power
series solution. We have in this case

2x2

∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 + x

∞∑
n=0

(n+ s)anx
n+s−1

− (x+ 1)
∞∑
n=0

anx
n+s

=
∞∑
n=0

[2(n+ s)(n+ s− 1) + (n+ s)− 1]anx
n+s −

∞∑
n=0

anx
n+s+1 = 0.

(3.37)

Now the final series in the expression starts with the power xs+1.
The first series starts with a power xs. So we take one term out of the
first series so that the two series start with power xs+1. We thus rewrite
(3.37) as
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∞∑
n=0

[2(n+ s)(n+ s− 1) + (n+ s)− 1]anx
n+s −

∞∑
n=0

anx
n+s+1

= (2s(s− 1) + s− 1)a0x
s +

∞∑
n=1

[2(n+ s)(n+ s− 1) + (n+ s)− 1]anx
n+s

−
∞∑
n=0

anx
n+s+1.

Notice that
∞∑
n=0

anx
n+s+1 =

∞∑
n=1

an−1x
n+s. (3.38)

Hence we have

(2s(s− 1) + s− 1)a0x
s +

∞∑
n=1

[2(n+ s)(n+ s− 1) + (n+ s)− 1]anx
n+s

−
∞∑
n=1

an−1x
n+s = (2s2 − s− 1)a0x

s

+
∞∑
n=1

[(2(n+ s)(n+ s− 1) + (n+ s)− 1)an − an−1]xn+s = 0. (3.39)

Observe that the terms inside the summation sign indicate that an
is a multiple of an−1. Thus if a0 = 0 then all the coefficients an will
be zero! So we do not want a0 = 0. This means that we must have
2s2 − s − 1 = 0, in order for the coefficient of xs to equal zero. This
gives us s = 1 and s = −1/2 as the only possible choices.

First we will take s = 1. Then from (3.39) we get

(2(n+ s)(n+ s− 1) + (n+ s)− 1)an− an−1 = (2n+ 3)nan− an−1 = 0.

Hence

an =
1

n(2n+ 3)
an−1.

We may therefore generate the coefficients an recursively for n ≥ 1. We
have

a1 =
1

1.5
a0, a2 =

1

2.7

1

1.5
a0, a3 =

1

3.9

1

2.7

1

1.5
a0, a4 =

1

4.11

1

3.9

1

2.7

1

1.5
a0.

Thus a4 = 1
11×9×7×5×4!

a0. In general for n ≥ 1 we get

an =
1

n!(2n+ 3)(2n+ 1)...5
a0 =

(2n+ 2)2n · · · 4 · 3 · 2
n!(2n+ 3)!

a0

= 3
2n+1(n+ 1)!

n!(2n+ 3)!
a0 = 3

2n+1(n+ 1)

(2n+ 3)!
a0.
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So for s = 1 we have the solution

y1 = a0

∞∑
n=0

3
2n+1(n+ 1)

(2n+ 3)!
xn+1.

This series converges for all x. We can obviously absorb the 3 into the
constant a0.

If we take s = −1/2 we will get another solution. Using s = −1/2
we have

(2(n+ s)(n+ s− 1) + (n+ s)− 1)an− an−1 = (2n2− 3n)an− an−1 = 0.

Hence for n ≥ 1 we have

an =
1

n(2n− 3)
an−1.

Thus

a1 = −a0, a2 = − 1

2.1
a0, a3 = − 1

3.2.1.1.3
a0, a4 = − 1

4.3.2.1.1.3.5
a0

and so on. Continuing we see that for n ≥ 2 the coefficients are given
by

an = − 1

n!1.3...(2n− 3)
a0 = −2n−2(n− 2)!

n!(2n− 3)!
a0 = − 2n−2

n(n− 1)(2n− 3)!
a0.

Hence for s = −1/2 we have the solution

y−1/2 = a0x
−1/2

(
1− x−

∞∑
n=2

2n−2

n(n− 1)(2n− 3)!
xn

)
.

The general solution to the differential equation is of course an arbitrary
linear combination of y1 and y−1/2. Thus the general solution is

y = c1

∞∑
n=0

2n+1(n+ 1)

(2n+ 3)!
xn+1+c2x

−1/2

(
1− x−

∞∑
n=2

2n−2xn

n(n− 1)(2n− 3)!

)
,

for arbitrary constants c1 and c2. (Note the factor of 3 in the solution
y1 has been absorbed into the constant c1.) These solutions are valid
for all x > 0. For x < 0 only y1 is valid.

Notice that we have to write the second sum starting at n = 2
because our formula for an is only valid for n ≥ 2. We separate out the
a0 and a1 terms.

3.4. The case of a single exponent. The previous example illus-
trates the fact that for a second order ODE the exponent s is obtained
in the method of Frobenius by finding the roots of a quadratic equa-
tion. It may be the case that the quadratic has only a single root s1. In
this case the method of Frobenius only produces one solution. However
it is a relatively straightforward problem to produce a second solution
from our known solution.
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Let us assume that we have obtained a value s = s1 and from this
constructed a solution

y1(x) = xs1
∞∑
n=0

an(s1)xn. (3.40)

Here we are emphasising the fact that coefficients an really depend
on s. This was implicit in our previous example. Here we will make use
of this fact. During the process of determining the possible values of
the exponent s we obtain an expression an(s) for the coefficients which
depends on s. In the previous example we had

2(n+ s)(n+ s− 1) + (n+ s)− 1)an − an−1

giving

an(s) =
an−1

(n+ s)2 − 1
.

Taking the two values of s we found gave us two different sets of coeffi-
cients an(s1) and an(s2). In general, the expression for the coefficients
an(s) in the solution (3.40), when written in terms of s has the general
form

an(s) =
1

(s+ n− s1)2

n∑
k=0

gn(k, s)ak, n ≥ 1, (3.41)

for some function gn(k, s). This expression for an(s) as a function of
s can be used to derive another solution of the ODE by the following
means.

We have the following theorem which we will not prove.

Theorem 3.11. Let the ordinary differential equation

y′′ + p(x)y′ + q(x)y = 0, (3.42)

have a regular singular point at x = 0 and let s = s1 be the only
exponent obtained in the Method of Frobenius. Let the solution corre-
sponding to s1 be y1(x). Let an(s) be given by (3.41). Then a second
linearly independent solution of the ODE is

y2(x) = y1(x) lnx+ xs1
∞∑
n=1

a′n(s1)xn, (3.43)

where a′n(s) is the derivative of an(s) with respect to s.

Example 3.9. Find two linearly independent solutions of the ODE
x2y′′ − xy′ + (1− x)y = 0.



35231 DIFFERENTIAL EQUATIONS LECTURE NOTES 73

Solution. We look for a solution of the form y = xs
∑∞

n=0 anx
n. Sub-

stituting into the power series produces

x2

∞∑
n=0

(n+ s)(n+ s− 1)anx
n+s−2 − x

∞∑
n=0

(n+ s)anx
n+s−1

+
∞∑
n=0

anx
n+s − x

∞∑
n=0

anx
n+s = 0. (3.44)

Taking the first term of the first three sums and noting that (n +
s)(n+ s− 1)− (n+ s)− 1 = (n+ s− 1)2 we write this as

(s2 − 2s+ 1)a0x
s +

∞∑
n=1

(n+ s− 1)2anx
n+s −

∞∑
n=0

anx
n+s+1 = 0.

The only root of s2 − 2s + 1 = 0 is s = 1. Since
∑∞

n=0 anx
n+s+1 =∑∞

n=1 an−1x
n+s we have, (making the dependence of an on s explicit

again),
∞∑
n=1

[(n+ s− 1)2an(s)− an−1(s)]xn+s = 0, (3.45)

which tells us that an(s) = 1
(n+s−1)2

an−1(s). If we let s = 1 we get

an =
1

n2
an−1.

Thus

a1 =
1

12
a0, a2 =

1

22

1

12
a0, a3 =

1

32

1

22

1

12
a0, ...

Thus for s = 1 we have

an(s)|s=1 =
1

(n!)2
a0.

Our first solution is then

y1(x) = x
∞∑
n=0

xn

(n!)2
.

Now we require a second solution and our theorem gives us this. We
have an(s) = 1

(n+s−1)2
an−1. So if we iterate this we get

an(s) =
a0

s2(s+ 1)2 · · · (s+ n− 1)2
.

We require a′n(1). To obtain this we use logarithmic differentiation.
That is, we take the log of both sides. We have

ln an(s) = ln a0 − ln(s2(s+ 1)2 · · · (s+ n− 1)2)

= ln a0 − 2 ln s− 2 ln(s+ 1)− · · · − 2 ln(s+ n− 1). (3.46)

Differentiating both sides with respect to s we get
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a′n(s)

an(s)
= −2(

1

s
+

1

s+ 1
+ · · ·+ 1

n+ s− 1
) (3.47)

Thus, if we set s = 1 and recall that an(1) =
1

(n!)2
, we obtain

a′n(1) = −2an(1)
n∑
k=1

1

k
= − 2

(n!)2
Hn, (3.48)

where Hn is the nth Harmonic number Hn =
∑n

k=1
1
k
.

Thus from equation (3.43), we get the new solution

y2(x) = y1(x) lnx− x
∞∑
n=1

2Hn

(n!)2
xn.

3.5. When the exponents differ by an integer. The third case we
need to consider with the method of Frobenius is when the values of s
we find differ by an integer. This is a slightly subtle problem. If there
are two exponents s1 and s2 and s1−s2 is an integer, there may be two
linearly independent solutions which correspond to s1 and s2. However
there are times when we do not get a second solution. The reason this
can occur can be understood in the following manner.

Say that s2 = s1 + N, where N is an integer. Suppose also that we
find y1 corresponding to s1 and y1 = xs1

∑∞
n=0 an(s1)xn.

Suppose that we try to find a second solution y2. This would be of
the form y2 = xs2

∑∞
n=0 bn(s2)xn. but

xs2
∞∑
n=0

bn(s2)xn = xs1
∞∑
n=0

bn(s2)xn+N .

What can go wrong is that when we generate the terms bn(s1) since s1

and s2 differ by an integer, the values of bn may have essentially the
same values as an(s1), just shifted by an integer N . Which would mean
that

∞∑
n=0

bn(s2)xn+N = C

∞∑
n=0

an(s1)xn

for some constant C. In other words, the method of Frobenius may
provide a solution y1 for s1, but for s2 it just produces a scalar multiple
of y1. We will illustrate how this can happen in practice shortly.

So we want a second solution y2 which is not a multiple of y1. As
in the case of equal exponents, there is a way of generating a second
solution y2 from a known solution y1. We will again only present the
result without proof.

Theorem 3.12. Suppose that the ordinary differential equation

y′′ + p(x)y′ + q(x)y = 0, (3.49)
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has a regular singular point at x = 0. Suppose that the exponents ob-
tained by the method of Frobenius are s1 and s2 and s1 − s2 = N,
where N is an integer. Further assume that there is a solution y1 cor-
responding to the exponent s1. Define bn(s) = (s − s2)an(s). Then
lims→s2 bN(s) = bN 6= 0 and a second linearly independent solution of
(3.49) is

y2(x) =
bN
a0

y1(x) lnx+ xs2
∞∑
n=0

b′n(s2)xn. (3.50)

We will now use the method of Frobenius to determine a solution
of one of the most important differential equation, namely Bessel’s
equation. This will introduce the Bessel functions of the first kind,
which are among the most important special functions in mathematics.

3.6. Bessel’s Equation. The differential equation

x2y′′ + xy′ + (x2 − α2)y = 0 (3.51)

is called Bessel’s equation of order α. It has a regular singular point
at x = 0. It was studied by Friedrich Bessel (1784-1846), a German
astronomer and mathematician. We therefore would like a solution of
the form y =

∑∞
n=0 anx

n+s. Substitution of the trial solution into (3.51)
gives

∞∑
n=0

[(n+ s)2 − α2]anx
n+s +

∞∑
n=0

anx
n+s+2 = 0. (3.52)

Which is the same as

(s2 − α2)a0x
s + ((s+ 1)2 − α2)a1x

s+1 +
∞∑
n=2

[(n+ s)2 − α2]anx
n+s

+
∞∑
n=0

anx
n+s+2 = 0. (3.53)

Since
∞∑
n=0

anx
n+s+2 =

∞∑
n=2

an−2x
n+s, (3.54)

then (3.53) becomes

(s2 − α2)a0x
s + ((s+ 1)2 − α2)a1x

s+1

+
∞∑
n=2

[((n+ s)2 − α2))an + an−2)]xn+s = 0. (3.55)

Equating the coefficients of powers of x to zero gives s2 = α2, so s =
±α. We also have to have ((s+ 1)2−α2)a1x

s+1 = 0, hence a1 = 0. The
remainder of the coefficients must satisfy ((n+ s)2−α2)an + an−2 = 0.
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If we take s = α then we have (n2 + 2nα + α2 − α2)an + an−2 = 0.
So for n ≥ 2 we have

an =
−1

n2 + 2nα
an−2.

Generating the coefficients in the usual manner we see that all the odd
coefficients are zero since a1 = 0 and for the even coefficients we have

a2 = − 1

2(2 + 2α)
a0 = − 1

22(1 + α)
a0,

a4 = − 1

4(4 + 2α)
a2 =

(−1)2

242!(1 + α)(2 + α)
a0,

a6 = − 1

6(6 + 2α)
a4 =

(−1)3

263!(1 + α)(2 + α)(3 + α)
a0, ...

The general even coefficient is given by

a2n =
(−1)n

22nn!(1 + α) · · · (n+ α)
a0.

Thus the solution we obtain is

yα = a0x
α

∞∑
n=0

(−1)n

22nn!(1 + α) · · · (n+ α)
x2n.

For each a0 we obviously have a solution. One very important choice
for a0 turns out to be

a0 =
1

2αΓ(1 + α)
.

For this choice the solution yα is called the Bessel function of the first
kind. Recall that Γ(x+ 1) = xΓ(x). Thus

(1 + α)(2 + α) · · · (n+ α)Γ(1 + α) = Γ(n+ α + 1).

Consequently the solution for this choice of α is as follows.

Definition 3.13. The Bessel function of the first kind of order α is
defined by

Jα(x) = xα
∞∑
n=0

(−1)nx2n

22n+αn!Γ(n+ α + 1)
. (3.56)

The number α is called the order (or sometimes index) of the Bessel
function.

We present a plot of the Bessel function J1 below. From the graph we
see that J1 is an oscillatory function. Indeed all the Bessel functions of
the first kind are oscillatory. This makes them important in the study
of for example, wave motion.
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Figure 4. J1, the Bessel function of the first kind of
order 1.

By the same calculation as we have just presented it is possible to
show that when α is not an integer taking s = −α leads to

J−α(x) = x−α
∞∑
n=0

(−1)nx2n

22nn!Γ(n− α + 1)
.

In this case the functions Jα(x) and J−α(x) are linearly independent.
Thus for α not an integer, the general solution of (3.51) is

y = c1Jα(x) + c2J−α(x).

In the case when α is an integer Jα(x) and J−α(x) are not linearly
independent. In fact there is a very simple relationship between them.
For n a positive integer we have J−n(x) = (−1)nJn(x). This is a con-
sequence of the phenomenon discussed in the previous section. If α is
an integer, then the exponents differ by an integer.

To see what goes wrong, we need to return to the calculation of the
coefficients in the power series. We see that these are generated by the
recurrence relation ((n+ s)2 − α2)an + an−2 = 0. For s = −α we have
[(n− α)2 − α2]an + an−2 = 0. But this is

(n2 − 2nα)an = −an−2.

Now if α is an integer, then 2α is also an integer. Suppose 2α = N.
Then when we come to n = N we have to satisfy the equation

(n2 − 2nα)an|n=N = (N2 −N2)aN = −aN−2.
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That is, 0 · aN = −aN−2. This requires aN−2 = 0. Which in turn forces
aN−4 = 0. Indeed we require

a0 = a2 = · · · = aN−2 = 0.

Thus the method essentially breaks down. We can obtain a solution
by defining the Bessel function

J−N(x) =
∞∑
n=0

(−1)nx2n−N

22n−Nn!Γ(n−N + 1)
. (3.57)

One can check that this is a solution. Notice that there is a term
1/Γ(n − N + 1). The reciprocal of the Gamma function is an entire
function, which means it is differentiable in the whole complex plain.
Euler proved a remarkable formula, specifically

1

Γ(z)
= zeγz

∞∏
n=1

[(
1 +

z

n

)
e−z/n

]
, (3.58)

in which γ = limm→∞
(∑m

k=1
1
k
− lnm

)
= 0.57721.... is Euler’s con-

stant. This is an infinite product involving the zeroes of the function.
(Actually, any analytic function can be written as an infinite product
involving its zeroes, but that is another subject).

It is obvious from this formula that
1

Γ(−k)
= 0 for k a positive inte-

ger. So the series (3.57) really starts at n = N. That is

J−N(x) =
∞∑
n=N

(−1)nx2n−N

22n−Nn!Γ(n−N + 1)
. (3.59)

Now we put n = m+N. This leads to

J−N(x) =
∞∑
m=0

(−1)m+Nx2m+N

22m+Nn!Γ(m+N + 1)
= (−1)NJN(x). (3.60)

Thus JN and J−N are not actually linearly independent. So if α is
an integer in order to obtain a second linearly independent solution of
Bessel’s equation we need to use Theorem 3.12.

Applying Theorem 3.12 to Bessel’s equation when α is an integer
leads to Bessel functions of the second kind. We will not go through
the derivation of the second solution, we merely present the result.

Definition 3.14. Let n be an integer. Weber’s Bessel function of the
second kind Yn(x) is defined by

Yn(x) =
2

π

[
Jn(x)(γ + ln

x

2
)− 1

2

n−1∑
k=0

(n− k − 1)!(x/2)2k−n

k!

−1

2

∞∑
k=0

(−1)k[Hk +Hk+n](x/2)2k+n

k!(k + n)!

]
. (3.61)
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Here Hn =
∑n

r=1
1
r

and γ is Euler’s constant. For α not an integer we
can interpret Yα by

Yα(x) =
(cos πα)Jα(x)− J−α(x)

sin πα
. (3.62)

It can also be shown that

Yα(x) = − 2(x/2)−α√
πΓ(1/2− α)

∫ ∞
1

cos(xt)dt

(t2 − 1)α+1/2
dt. (3.63)

An example of Yn is plotted below. We now have the following result.

Proposition 3.15. The general solution of Bessel’s equation x2y′′ +
xy′ + (x2 − n2)y = 0 for integer n is y = c1Jn(x) + c2Yn(x).

2 4 6 8 10 12 14

-1.25
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-0.75
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-0.25

0.25

Figure 5. Y1, the Bessel function of the second kind of
order 1.

We will consider properties of Bessel functions in more detail in the
next chapter, but before we do so, we will introduce the so called
modified Bessel functions.

An equation closely related to the Bessel equation is the following

x2y′′ + xy′ − (x2 + α2)y = 0. (3.64)

The solutions of this equation are called modified Bessel functions.
They may be derived in the same way as Jα and Yn. We state the
results.

Proposition 3.16. The modified Bessel equation

x2y′′ + xy′ − (x2 + α2)y = 0. (3.65)
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has general solution y = c1Iα(x) + c2I−α(x) when α is not an integer.
Here

Iα(x) = xα
∞∑
k=0

x2k

22k+αk!Γ(k + α + 1)
(3.66)

is called a modified Bessel function of the first kind. If α = n is an
integer then the general solution is y = c1In(x) + c2Kn(x) where the
modified Bessel function of the second kind Kn is defined by

Kn(x) =
1

2
(
x

2
)−n

n−1∑
k=0

(n− k − 1)!

k!
(−x

2

4
)k + (−1)n+1In(x) ln(

x

2
)

+ (−1)n
1

2
(
x

2
)n
∞∑
k=0

ψ(k + 1) + ψ(n+ k + 1)

k!(n+ k)!
(
x2

4
)k. (3.67)

Where ψ(n) = −γ +
∑n−1

r=1
1
r

is the digamma function and γ is Euler’s
constant.

3.6.1. Differential equations solvable by Bessel functions. A surprising
number of differential equations can be solved by reducing them to
Bessel equations. If we consider the general form of Bessel’s equation
t2u′′ + tu′ + (t2 − α2)u = 0 and make the substitution t = axr and
y = xsu(axr) then Bessel’s equation is transformed into the following
ODE.

x2y′′(x) + (1− 2s)xy′(x) + [(s2 − r2α2) + a2r2x2r]y(x) = 0. (3.68)

The general solution of an ordinary differential equation of the form
(3.68) is therefore y = c1x

sJα(axr) + c2x
sYα(axr), where we interpret

Yα to be J−α in the case that α is not an integer.
This is valid for a purely imaginary. If a is purely imaginary we

simply replace Jα with Iα and Yα with Kα.

Example 3.10. Solve the differential equation

x2y′′ + 7xy′ + (4 + 36x4)y = 0.

Solution Here 2r = 4 so r = 2. Also 1 − 2s = 7, so s = −3. Next we
note that s2 − r2α2 = 4 which gives α = ±

√
5/2. Finally a2r2 = 36,

hence a = 3. Therefore the general solution is

y = x−3[c1J√5/2(3x2) + c2J−
√

5/2(3x2)]. (3.69)

Example 3.11. The differential equation y′′ + y = 0 can be solved in
terms of Bessel functions. We multiply by x2 to obtain

x2y′′ + x2y = 0.

This is of the general form we obtained with 1 − 2s = 0, s2 − r2α2 =
0, a2r2x2r = x2. Hence r = 1, s = 1/2, and α = 1/2. The general
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solution is thus

y = c1

√
xJ1/2(x) + c2

√
xJ−1/2(x). (3.70)

We know that the general solution of this ODE is y = A sinx +
B cosx. This suggests that sinx and cos x can be represented as Bessel
functions. In the next chapter we will prove that

J1/2(x) =

√
2

πx
sinx, J−1/2(x) =

√
2

πx
cosx.

Next we illustrate the connection between Bessel functions and Airy
functions. The Airy equation is y′′ − xy = 0. This is the same as
x2y′′ − x3y = 0. So 1− 2s = 0 giving s = 1/2. Also 2r = 3 or r = 3/2.
Next a2r2 = −1, or a = 2

3
i. Finally we obtain α = 1/3. This tells us

that the general solution of Airy’s equation is

y =
√
x

[
c1I1/3(

2

3
x3/2) + c2I−1/3(

2

3
x3/2)

]
. (3.71)

Thus the Airy functions must be expressible in terms of Bessel func-
tions. It is not hard to show by comparing (3.71) and the Airy functions
for different choices of c1, c2 and x that the following result holds.

Proposition 3.17. The Airy functions may be expressed in terms of
Bessel functions by the following relations.

Ai(x) =
1

3

√
x[I−1/3(

2

3
x3/2)− I1/3(

2

3
x3/2)] (3.72)

Bi(x) =

√
x

3
[I−1/3(

2

3
x3/2) + I1/3(

2

3
x3/2)]. (3.73)

3.6.2. Bessel Functions and the Laplacian. We take a look ahead at
future material here. Given a twice differentiable function of two vari-
ables, u(x, y) the Laplacian of u is

∆u =
∂2u

∂x2
+
∂2u

∂y2
. (3.74)

If we write the Laplacian in polar coordinates, x = r cos θ, y = r sin θ,
then the Laplacian can be written

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂2θ
. (3.75)

Suppose we want to solve the partial differential equation

∆u+ k2u = 0.

This is an important equation in physics, since it arises in the study of
gravity and electromagnetism. A technique which we will investigate
in depth later in these notes is separation of variables. This is to look
for a solution of the form u(r, θ) = R(r)Θ(θ).
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Substituting this trial solution into the PDE gives

Θ(R′′ +
1

r
R′ + k2R) +

R

r2
Θ′′ = 0. (3.76)

Upon rearranging we have

r2

R

(
R′′ +

1

r
R′ + k2R

)
= − 1

Θ
Θ′′. (3.77)

The only way that a function of r can be equal to a function of θ for
all r, θ is if both are constant. We thus have

r2

R

(
R′′ +

1

r
R′ + k2R

)
= λ

for some λ. This can be rearranged to give

r2R′′ + rR′ + (k2r2 − λ)R = 0. (3.78)

This is a form of Bessel’s equation. Thus Bessel functions naturally
arise when we solve problems involving the Laplacian in polar coordi-
nates.

In the next chapter we will begin a deeper study of the properties of
Bessel functions and discuss some of their properties.



35231 DIFFERENTIAL EQUATIONS LECTURE NOTES 83

4. Bessel functions

We have seen Bessel functions as solutions of the differential equation
x2y′′ + xy′ + (x2 − α2)y = 0. In this section we shall describe some of
their properties. The Bessel functions Jα(x) are entire functions for
α ≥ 0 and it is not hard to see from the power series

Jα(x) =
∞∑
n=0

(−1)kx2k+α

22k+αk!Γ(k + α + 1)

that

J0(0) = 1, Jα(0) = 0, α > 0.

Many simple properties of Bessel functions can be derived from the
power series. Here we present a few.

4.1. Elementary properties of Bessel functions. Let us now de-
rive some of the simplest but most useful properties of Bessel functions.
We begin with some properties of the derivatives of Bessel functions.
Observe that

d

dx
(xαJα(x)) =

d

dx

∞∑
n=0

(−1)kx2k+2α

22k+αk!Γ(k + α + 1)

=
∞∑
n=0

(−1)k(2k + 2α)x2k+2α−1

22k+αk!Γ(k + α + 1)

= xα
∞∑
n=0

(−1)k(k + α)x2k+α−1

22k+α−1k!Γ(k + α + 1)

= xα
∞∑
n=0

(−1)k(k + α)x2k+α−1

22k+α−1k!(k + α)Γ(k + α)

= xα
∞∑
n=0

(−1)kx2k+α−1

22k+α−1k!Γ(k + α)
= xαJα−1(x).

More or less the same argument shows that

d

dx
(x−αJα(x)) = −x−αJα+1(x). (4.1)

Now from the product rule we see that

d

dx
(xαJα(x)) = αxα−1Jα(x) + xαJ ′α(x) = xαJα−1(x).

Rearranging this gives

J ′α(x) = Jα−1(x)− α

x
Jα(x). (4.2)
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We also know that
d

dx
(x−αJα(x)) = −αx−α−1Jα(x) + x−αJ ′α(x) = −x−αJα+1(x).

Upon rearranging this gives

J ′α(x) = −Jα+1(x) +
α

x
Jα(x) (4.3)

Adding (4.2) and (4.3) gives us the relation

J ′α(x) =
1

2
(Jα−1(x)− Jα+1(x)). (4.4)

If on the other hand we subtract (4.2) from (4.3) we get

Jα+1(x) =
2α

x
Jα(x)− Jα−1(x). (4.5)

We collect these together.

Proposition 4.1. The Bessel functions of the first kind Jα(x) have the
following properties.

d

dx
(xαJα(x)) = xαJα−1(x), (4.6)

d

dx
(x−αJα(x)) = −x−αJα+1(x), (4.7)

J ′α(x) =
1

2
(Jα−1(x)− Jα+1(x)), (4.8)

Jα+1(x) =
2α

x
Jα(x)− Jα−1(x). (4.9)

It is also quite easy to calculate simple integrals involving Bessel
functions. One can show that∫

xαJα(x)dx = xα+1Jα+1(x) + C

and ∫
x1−αJα(x)dx = −x1−αJα−1(x) + C.

There are many integrals of Bessel functions which can be calculated
exactly and we will present some examples later. However the reader
can find hundreds of integrals of Bessel functions in [2].

Interestingly, the Bessel functions of the second kind Yα(x) satisfy
exactly the same relations, though this is a bit more complicated to
prove. The modified Bessel functions of the first kind Iα(x) satisfy
very similar relations. For example

I ′α(x) =
1

2
(Iα−1(x) + Iα+1(x)).

These kinds of elementary observations are easy to show from the
power series definition of Jα(x). However there are other ways of study-
ing the Bessel functions, although all such methods ultimately descend
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from the power series definition. To conclude this section we derive
the generating function for the Bessel functions Jn(x) where n is an
integer.

Theorem 4.2. Let Jn(x) be the Bessel function of the first kind of
order n. Then we have the generating function

e
1
2
x(t− 1

t
) =

∞∑
n=−∞

tnJn(x) (t 6= 0). (4.10)

Proof. The proof of the theorem is a not especially deep. We simply
multiply the appropriate Taylor series together. We begin with the
observation that

eax = 1 + ax+
1

2
a2x2 +

1

6!
a3x3 + · · · .

Thus

e
xt
2 = 1 +

xt

2
+

1

2!

x2t2

22
+

1

3!

x3t3

23
+ · · ·

and

e−
x
2t = 1− x

2t
+

1

2!

x2

22t2
− 1

3!

x3

23t3
+ · · ·

We now multiply these two series together and collect powers of t. The
coefficient of t0 is obtained by multiplying the terms with tn in the
numerator with the the correspond term with tn in the denominator.
The coefficient of t is obtained from multiplying the terms with tn in
the numerator with the terms that have tn−1 in the denominator and
so on. So we have

e
1
2
x(t− 1

t
) =(

1 +
xt

2
+

1

2!

x2t2

22
+

1

3!

x3t3

23
+ · · ·

)(
1− x

2t
+

1

2!

x2

22t2
− 1

3!

x3

23t3
+ · · ·

)
= 1− x2

22
+

x4

(2!)224
− x6

(3!)226
+ · · ·+ xt

2

(
1− 1

2!

x2

22
+

x4

242!3!
− · · ·

)
− 2

xt

(
1− 1

2!

x2

22
+

x4

242!3!
− · · ·

)
+ t2(

x

2
)2

(
1

2
− x2

224!
+ · · ·

)
· · ·

(4.11)

Looking at the coefficients of tn we see that they are nothing more than
the Taylor expansion of Jn(x). Hence

e
1
2
x(t− 1

t
) = J0(x) + tJ1(x) +

1

t
J−1(x) + t2J2(x) +

1

t2
J2(x) + · · ·

=
∞∑

n=−∞

tnJn(x).

This completes the proof. �
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4.2. Integral representations for Bessel functions. As well as the
generating function another important tool in the study of Bessel func-
tions are integral representation of the Bessel functions. There are nu-
merous representations of Bessel functions in terms of integrals. We
will not attempt to give an exhaustive list. The book [1] has a large
number of such representations. We will only present a few and indicate
how they are derived.

Theorem 4.3. The Bessel functions of the first kind of order n are
given by

Jn(x) =
1

π

∫ π

0

cos(x sin θ − nθ)dθ (4.12)

=
i−n

π

∫ π

0

eix cos θ cos(nθ)dθ (4.13)

Proof. We illustrate the proof of the first identity in the case n = 0.
That is, we will show that

J0(x) =
1

π

∫ π

0

cos(x sin θ)dθ.

To prove this, we expand cos(x sin θ) in a Taylor series and integrate
term by term. We have

cos(x sin θ) = 1− x2 sin2 θ

2!
+
x4 sin4 θ

4!
+
x6 sin2 θ

6!
− · · · . (4.14)

So

1

π

∫ π

0

cos(x sin θ)dθ

=
1

π

∫ π

0

(
1− x2 sin2 θ

2!
+
x4 sin4 θ

4!
+
x6 sin2 θ

6!
− · · ·

)
dθ

= 1− x2

2!

1

π

∫ π

0

sin2 θdθ +
x4

4!

1

π

∫ π

0

sin4 θdθ + · · · (4.15)

We have to evaluate integrals of the form
∫ π

0
sin2k θdθ, but these can

all be done in closed form. The general result is formula 2.513.1 in [2].∫
sin2n xdx =

1

22n

(2n)!

(n!)2
+

(−1)n

22n−1

n−1∑
k=0

(−1)k
2n!

k!(2n− k)!

sin(2n− 2k)x

2n− 2k

Since sin(2n− 2k)π = 0 for all integers n and k we have

1

π

∫ π

0

sin2n xdx =
1

22n

(2n)!

(n!)2
.
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We therefore have

1

π

∫ π

0

cos(x sin θ)dθ = 1− x2

2!

2!

22(1!)2
+
x4

4!

4!

24(2!)2
− x6

6!

6!

26(3!)2
− · · ·

= 1− x2

22
+

x4

24(2!)2
− x6

26(3!)2
+ · · ·

= J0(x). (4.16)

We can proceed in the same manner for the general n case, but another
method is to use the generating function. Observe that by Euler’s
formula

eix sinφ = cos(x sinφ) + i sin(x sinφ).

Now the generating function for Jn is

e
1
2
x(t− 1

t
) =

∞∑
n=−∞

tnJn(x) = J0(x) +
−1∑

n=−∞

tnJn(x) +
∞∑
n=1

tnJn(x)

= J0(x) +
∞∑
n=1

(tnJn(x) + t−nJ−n(x))

= J0(x) +
∞∑
n=1

(tn + (−1)nt−n)Jn(x),

since J−n(x) = (−1)nJn(x). We put t = eiθ. Then

t− 1

t
= eiθ − e−iθ = 2i sin θ,

which gives

e
1
2
x(t− 1

t
) = eix sin θ = J0(x) +

∞∑
n=1

(einθ + (−1)ne−inθ)Jn(x).

For even n we have

einθ + (−1)ne−inθ = einθ + e−inθ = 2 cos(nθ).

While for odd n

einθ + (−1)ne−inθ = einθ − e−inθ = 2i sin(nθ).

We therefore have

cos(x sin θ) + i sin(x sin θ) =J0(x) +
∞∑
k=1

2 cos(2kθ)J2k(x)

+ 2i
∞∑
k=1

2 sin((2k − 1)θ)J2k−1(x).
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Equating the real and imaginary parts gives

cos(x sin θ) = J0(x) + 2
∞∑
k=1

cos(2kθ)J2k(x)

sin(x sin θ) = 2
∞∑
k=1

sin((2k − 1)θ)J2k−1(x).

To complete the proof we observe that

cos(x sin θ − nθ) = cos(x sin θ) cos(nθ) + sin(x sin θ) sin(nθ).

This however can be rewritten as

cos(x sin θ − nθ) =

(
J0(x) +

∞∑
k=1

2 cos(2kθ)J2k(x)

)
cos(nθ)

+ 2
∞∑
k=1

2 sin((2k − 1)θ)J2k−1(x) sin(nθ).

Now it is simply a question of integrating.

1

π

∫ π

0

cos(x sin θ − nθ)dθ =
1

π
J0(x)

∫ π

0

cos(nθ)dθ

+ 2
∞∑
k=1

J2k(x)
1

π

∫ π

0

cos(2kθ) cos(nθ)dθ

+ 2
∞∑
k=1

J2k−1(x)
1

π

∫ π

0

sin((2k − 1)θ) sin(nθ)dθ.

Again these trigonometric integrals are standard.

1

π

∫ π

0

cos(2kθ) cos(nθ)dθ =
1

π

[
sin[(2k − n)θ]

2(2k − n)
+

sin[(2k + n)θ]

2(2k + n)

]π
0

=
1

π


0 n 6= 2k
π
2

n = 2k 6= 0

π n = 2k = 0

.

Similarly

1

π

∫ π

0

sin((2k − 1)θ) sin(nθ)dθ

=
1

π

[
sin[(2k − 1− n)θ]

2(2k − 1− n)
− sin[(2k − 1 + n)θ]

2(2k − 1 + n)

]π
0

=
1

π

{
0 n 6= 2k − 1
π
2

n = 2k − 1 6= 0
.
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So if n = 2j for some integer j ≥ 1 then

2
∞∑
k=1

J2k(x)
1

π

∫ π

0

cos(2kθ) cos(nθ)dθ

= 2

(
J2(x)

1

π

∫ π

0

cos(2θ) cos(2jθ)dθ + J4(x)
1

π

∫ π

0

cos(4θ) cos(2jθ)dθ+

+ · · ·+ J2j(x)
1

π

∫ π

0

cos(2jθ) cos(2jθ)dθ + · · ·
)

= 2
π

2
J2j(x) = J2j(x),

since the only nonzero integral occurs when 2k = 2j. Conversely all the
integral of the form 1

π

∫ π
0

sin((2k−1)θ) sin(nθ)dθ are zero when n = 2j.
Thus for n = 2j

1

π

∫ π

0

cos(x sin θ − 2jθ)dθ = J2j(x) = Jn(x).

Now if n = 2j + 1 all the cosine integrals are zero and only one of the
sine integrals is nonzero, so we have that if n = 2j − 1 then

1

π

∫ π

0

cos(x sin θ − (2j − 1)θ)dθ = J2j−1(x) = Jn(x).

If n = 0 we obtain

1

π

∫ π

0

cos(x sin θ)dθ = J0(x).

This completes the proof of the first integral identity. The second
integral identity follows from the first by exploiting Euler’s formula. �

There are also integral representations for Bessel functions of non
integral order. We will only state without proof a few of these in the
next theorem.

Theorem 4.4. For x > 0 and <(α) > −1
2
, the following representa-

tions for the Bessel function of the first kind and the modified Bessel
function of the first kind are valid.

Jα(x) =

(
x
2

)α
√
πΓ(1

2
+ α)

∫ π

0

cos(x cos θ) sin2α θdθ (4.17)

Iα(x) =

(
x
2

)α
√
πΓ(1

2
+ α)

∫ π

0

e±x cos θ sin2α θdθ. (4.18)

For the Bessel function of the second kind we have for all complex
numbers x with |arg(x)| < 1

2
π

Yα(x) =
1

π

∫ π

0

sin(x sin θ − αθ)dθ

− 1

π

∫ ∞
0

(eαt + e−αt cosαπ)e−x sinh tdt. (4.19)
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The book [1] has many more such representations. Integral repre-
sentations of Bessel functions, or indeed any special function can be a
very powerful tool in the analysis of many problems. It is often easier
to deduce a property of a function from its integral representation than
it is to deduce it from the power series expansion.

4.3. Connections between Bessel functions and other func-
tions. The Bessel functions are solutions of a certain kind of ordinary
differential equation. We have seen that the Bessel equation can be
transformed into a rather more general form by a simple change of
variables. This leads to the observation that certain kinds of func-
tions can be expressed in terms of Bessel functions and certain Bessel
functions can be expressed in terms of other functions.

We will begin with the trigonometric functions. It turns out that

the Bessel functions of order (2n+1)
2

for all integer n can be expressed
in terms of the standard trigonometric functions.

Proposition 4.5. The Bessel functions J1/2 and J−1/2 satisfy

J1/2(x) =

√
2

πx
sinx, (4.20)

J−1/2(x) =

√
2

πx
cosx. (4.21)

Similarly we have

I1/2(x) =

√
2

πx
sinhx, (4.22)

I−1/2(x) =

√
2

πx
coshx. (4.23)

Proof. We will only do the case of J1/2. The other cases are similar.
We have the Taylor series

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

Now we calculate the Taylor series for J1/2.

J1/2(x) = (
x

2
)
1
2

∞∑
k=0

(−1)k
x2k

22kk!Γ(k + 1 + 1
2
)

= (
x

2
)
1
2

∞∑
k=0

(−1)k
x2k

22kk!(k + 1
2
)Γ(k + 1

2
)
,

since Γ(a+ 1) = aΓ(a). Applying this property of the Gamma function
k times we have
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Γ(k + 1 +
1

2
) = (k +

1

2
)(k − 1

2
)(k − 3

2
) · · · 3

2

1

2
Γ(

1

2
)

= (k +
1

2
)(k − 1

2
)(k − 3

2
)(k − 5

2
) · · · 3

2

1

2

√
π.

So expanding the Taylor series we have

J1/2(x) = (
x

2
)
1
2

(
2√
π
− x2

22 3
2

1
2

√
π

+
x4

242!5
2

3
2

1
2

√
π
− · · ·

)
= (

x

2
)
1
2

(
2√
π
− 2x2

3.2.1
√
π

+
2x4

5.4.3.2.1
− · · ·

)
=

√
2

π

√
x

(
1− x2

3!
+
x4

5!
− · · ·

)
=

√
2

π

(√
x− x5/2

3!
+
x7/2

5!
− · · ·

)
=

√
2

πx

(
x− x3

3!
+
x5

5!
− · · ·

)
=

√
2

πx
sinx.

�

For an arbitrary integer n we have

Proposition 4.6. For n = 0,±1,±2, ... we have√
πx

2
Jn+ 1

2
(x) = fn(x) sinx+ (−1)n+1f−n−1(x) cosx, (4.24)

where f0(x) = 1/x, f1(x) = x−2 and

fn−1(x)− fn+1(x) = (2n+ 1)
1

x
fn(x).

Equivalently √
πx

2
Jn+ 1

2
(x) = xn

(
−1

x

d

dx

)n
sinx

x
. (4.25)

For the Bessel functions of the third kind we have√
πx

2
Yn+ 1

2
(x) = xn

(
−1

x

d

dx

)n
cosx

x
. (4.26)

We also have√
πx

2
In+ 1

2
(x) = gn(x) sinhx+ g−n−1(x) coshx, (4.27)
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where g0(x) = 1/x, g1(x) = −x−2 and

gn−1(x)− gn+1(x) = (2n+ 1)
1

x
gn(x).

This is equivalent to√
πx

2
In+ 1

2
(x) = xn

(
1

x

d

dx

)n
sinhx

x
. (4.28)

The proof of this theorem can be obtained by using the integral
representations for the Bessel functions. We omit it and simply present
an example. For n = 1 we obtain from the theorem.

I3/2(x) =

√
2

πx

(
−sinhx

x2
+

coshx

x

)
.

The reader can easily generate the corresponding expressions for J3/2

and Y3/2.

4.4. Integrals involving Bessel functions. We have seen some sim-
ple integrals of Bessel functions. Now we will evaluate some more
complicated examples. There are many areas where it is necessary
to evaluate an integral involving a Bessel function. For example, in
bond pricing, one often needs to compute an integral involving modi-
fied Bessel functions of the first kind multiplied by some other function,
in order to obtain the price of a bond or an option on a bond. Many
of these integrals can be done in Mathematica, but it is important to
be aware of how some of these integrals are actually done.

We first consider the following problem. The Laplace transform (de-
noted by either f or F ) of a suitable function f is defined by

F (s) =

∫ ∞
0

f(t)e−stdt.

It will be studied in more detail later. Here we calculate an important
example.

Example 4.1. Calculate the Laplace transform of J0. That is, evaluate
the integral

J0(s) =

∫ ∞
0

e−stJ0(x)dx. (4.29)

Solution. We know that

J0(x) =
1

π

∫ π

0

cos(x sin θ)dθ.

So the Laplace transform is

J0(s) =
1

π

∫ ∞
0

∫ π

0

e−sx cos(x sin θ)dθdx

=
1

π

∫ π

0

∫ ∞
0

e−sx cos(x sin θ)dxdθ (4.30)
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where we have reversed the order of integration. The inner integral can
now be done using integration by parts. We have∫ ∞

0

e−sx cos(x sin θ)dx =
s

s2 + sin2 θ
. (4.31)

This gives

J0(s) =
1

π

∫ π

0

s

s2 + sin2 θ
dθ. (4.32)

This last integral is one that is perhaps not familiar, however it can
be done in a number of ways. One way is to use residues but it is
not necessary. An antiderivative can be found. The substitution z =
cot θ will reduce the integral to a readily computable form. For the
lazy mathematician however looking at the table of integrals in [2],
specifically formula 2.562.1 gives us the result we require.

1

π

∫
s

s2 + sin2 θ
dθ =

1√
s2 + 1

tan−1

(√
1 + s2

s2
tan θ

)
. (4.33)

There is a slight subtlety here, however. The range of integration we
want is [0, π], but the function tan θ is singular at θ = π/2 and zero at
both endpoints. However we observe that

1

π

∫ π

0

s

s2 + sin2 θ
dθ =

1

π

∫ π
2

0

s

s2 + sin2 θ
dθ +

1

π

∫ π

π
2

s

s2 + sin2 θ
dθ

Since sin(π − t) = sin t, then if we put θ = π − t we get

1

π

∫ π

0

s

s2 + sin2 θ
dθ =

1

π

∫ π
2

0

s

s2 + sin2 θ
dθ − 1

π

∫ 0

π
2

s

s2 + sin2 t
dt

=
2

π

∫ π
2

0

s

s2 + sin2 θ
dθ

=
2

π
lim
R→π

2

[
1√
s2 + 1

tan−1

(√
1 + s2

s2
tan θ

)]R
0

=
1√

1 + s2
(4.34)

since tanR→∞ as R→ π
2

and tan−1(z)→ π
2

as z →∞.

As an extension of this we can easily do the following.

Example 4.2. Show that ∫ ∞
0

J0(x)dx = 1

for all positive integers n.
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Solution. We know that∫ ∞
0

J0(x)e−sxdx =
1√

1 + s2
(4.35)

We simply take s = 0. We can generalise this by the change of variables
z = bx to show that for b > 0∫ ∞

0

J0(bx)dx =
1

b
.

By another change of variables we can easily show that∫ ∞
0

J0(bx)e−sxdx =
1√

s2 + b2
.

A rather involved calculation with the power series expansion for Jn(x)
shows that∫ ∞

0

e−sxJn(bx)xndx =
2nΓ(n+ 1

2
)

√
π

bn

(a2 + b2)n+ 1
2

. (4.36)

Finally, setting s = ia, n = 0 and taking the real and imaginary
parts we can establish the following.

∫ ∞
0

sin axJ0(bx)dx =

{
0 b > a
1√

a2−b2 b < a,
(4.37)

∫ ∞
0

cos axJ0(bx)dx =

{
0 b < a
1√

b2−a2 b > a.
(4.38)

Actually, many integrals of special functions are calculated by ma-
nipulating the relevant series expansion. We will do an example of such
a calculation.

Example 4.3. Evaluate Weber’s integral to prove that∫ ∞
0

e−a
2x2Jα(bx)xα+1dx =

bα

(2a2)α+1
e−b

2/4a2 (4.39)

Solution. To do this we use the series expansion for Jα(x) and reverse
the order of the sum and the integral. So we have∫ ∞

0

e−a
2x2Jα(bx)xα+1dx =

∫ ∞
0

e−a
2x2xα+1

∞∑
k=0

(−1)k(bx/2)2k+α

k!Γ(k + α + 1)
dx

=
∞∑
k=0

(−1)k(b/2)2k+α

k!Γ(k + α + 1)

∫ ∞
0

e−a
2x2x2α+2k+1dx.

(4.40)

We now use the substitution t = a2x2 in the integral. So xdx = dt/2a2.
This converts the integral into a Gamma function. We have∫ ∞

0

e−a
2x2x2α+2kxdx =

1

2a2(k+α+1)

∫ ∞
0

e−ttα+kdt =
Γ(α + k + 1)

2a2(k+α+1)
.
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This gives us∫ ∞
0

e−a
2x2Jα(bx)xα+1dx =

∞∑
k=0

(−1)k(b/2)2k+α

k!

1

2a2(k+α+1)

=
bα

(2a2)(α+1)

∞∑
k=0

(−1)k(b2/4a2)k

k!

=
bα

(2a2)(α+1)
e−b

2/4a2 , (4.41)

since the last sum is just the Taylor series for e−u with u = b2/4a2.

Integrals like this come up a great deal in the theory of Bessel pro-
cesses and in particular, so called square root models for interest rates.
However it is often necessary to evaluate the integrals with the Jα(x)
replaced by Iα(x). We notice that the series expansion for Iα is the
same as that for Jα with the difference that there is no (−1)k term.
Thus we can repeat the calculation for the modified Bessel function
and obtain∫ ∞

0

e−a
2x2Iα(bx)xα+1dx =

bα

(2a2)(α+1)

∞∑
k=0

(b2/4a2)k

k!

=
bα

(2a2)(α+1)
eb

2/4a2 . (4.42)

We can generalise these results by further manipulation of the series.
For example we can prove the following.∫ ∞

0

e−a
2x2Jα(bx)xα+3dx =

bα

2α+1aα+2

(
α + 1− b2

4a

)
e−b

2/4a (4.43)

for a > 0.
The Bessel functions Jα(x) have infinitely many zeroes on the posi-

tive real axis. Let us call these zeroes {ξi}∞i=1. It is possible to compute
the zeroes numerically and these have been tabulated, in for example
[1]. Using a package such as Mathematica we can generate as many
zeroes as we desire. Our concern here however is with the following
result.

Proposition 4.7. The Bessel functions Jn(ξix), satisfy∫ a

0

xJn(ξix)Jn(ξjx)dx =
a2

2
[Jn+1(ξia)]2δij, (4.44)

where ξi and ξj are distinct roots of the equation Jn(ξa) = 0. Here δij
is the Kroneckor delta. That is δij = 1 for i = j and δij = 0 for i 6= j.

This result is extremely important. It establishes the fact that the
Bessel functions are orthogonal in some sense. This means that one
can expand functions in series of Bessel functions. The expansion of
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functions in series of so called orthogonal functions is a major area in
its own right.

4.5. Bessel functions of the third kind. To conclude our study
of Bessel functions we will briefly mention the Bessel functions of the
third kind. These are actually not new Bessel functions at all. They
are in fact just Bessel functions of the first and second kind taken in
complex linear combination. More precisely we have

Definition 4.8. The Bessel functions of the third kind, also known as
the Hankel functions of the first and second kind are

H1
α(x) = Jα(x) + iYα(x) (4.45)

H2
α(x) = Jα(x)− iYα(x) (4.46)

Since these functions are just linear combinations of the first and
second kind Bessel functions, one can deduce their properties from
studying Jα and Yα. Consequently we will not say any more about
them.
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5. Laplace Transforms

Suppose that f is a function defined on [0,∞) such that the integral∫∞
0
f(t)e−stdt converges for s ∈ Ω ⊂ C, where

Ω = {s ∈ C|0 ≤ s1 ≤ Re(s) ≤ s2 ≤ ∞}.

Here Re(s) is the real part of s. Then the Laplace transform of f is
defined by

L(f)(s) =

∫ ∞
0

f(t)e−stdt, s ∈ Ω. (5.1)

A sufficient condition for the Laplace transform of f to exist is that
f is continuous and there exists constants K > 0 and a such that
|f(t)| ≤ Keat.

Often we denote the Laplace transform by using the corresponding
capital letter. Thus

F (s) = L(f)(s) =

∫ ∞
0

f(t)e−stdt. (5.2)

The Laplace transform is closely related to the so called Fourier
transform. The Fourier transform of a function f is defined by the
integral

F(f)(y) =

∫ ∞
−∞

f(t)e−itydt. (5.3)

The Fourier transform is one of the most important tools in analysis.
In a loose sense it can be thought of as “arranging” the information
in a function in terms of frequencies instead of evolution over time. It
plays a major role in probability theory, differential equations, signal
and image processing and many other areas. For example, in proba-
bility theory, the Fourier transform is also known as the characteristic
function for a continuous random variable.

If we assume that f(t) = 0 for all t < 0, then setting y = −si gives

F(f)(s) =

∫ ∞
0

f(t)e−stdt. (5.4)

So L(f) is a special case of the Fourier transform, in which the
transform variable s is considered to be a complex variable. Many
properties of the Laplace transform can be deduced from corresponding
properties of the Fourier transform. For example, there is a result
known as the Plancherel-Parseval Theorem which tells us that if f is a
square integrable function then∫ ∞

−∞
|f̂(t)|2dt = 2π

∫ ∞
−∞
|f(t)|2dt.
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There is also an inversion theorem for the Fourier transform, which
allows us to recover the original function from the transform. Specifi-

cally, if f̂ is integrable, then we recover f by

f(t) =
1

2π

∫ ∞
−∞

f̂(y)eiytdy. (5.5)

The corresponding results for Laplace transform can be obtained
from those for the Fourier transform. See any standard text on Fourier
analysis for a discussion of this.

However it would be wrong just to think of the Laplace transform
as simply a different version of the Fourier transform. It has its own
unique and interesting features, which make it well worth studying in
its own right. Let us begin by presenting some elementary examples.

Example 5.1. Find the Laplace transform of f(t) = 1.
Solution By definition of the Laplace transform we have

L(f)(s) =

∫ ∞
0

e−stdt =

[
−1

s
e−st

]∞
0

=
1

s
. (5.6)

Example 5.2. Calculate the Laplace transform of f(t) = tn.
Solution. We again integrate by parts to obtain

L(f)(s) =

∫ ∞
0

tne−stdt =

[
−1

s
tne−st

]∞
0

+
n

s

∫ ∞
0

tn−1e−stdt

=
n

s
L(tn−1)(s). (5.7)

From this it follows that

L(tn)(s) =
n

s
L(tn−1)(s) =

n(n− 1)

s2
L(tn−2) = · · · = n!

sn+1
.

Example 5.3. Now let us calculate the Laplace transform of f(t) =
ta, a > −1. The restriction on a is to ensure that the integral converges.
We have via the change of variables st = u∫ ∞

0

tae−stdt =
1

sa+1

∫ ∞
0

uae−udu

=
Γ(a+ 1)

sa+1
.

So L(f)(s) =
Γ(a+ 1)

sa+1
.

5.1. Elementary Properties of the Laplace Transform. The most
basic fact about the Laplace transform is that it is linear.

Proposition 5.1. The Laplace transform is a linear operator. That
is, if L(f)(s) = F (s) and L(g)(s) = G(s), for all s ∈ Ω, then for all
constants a, b, we have

L(af + bg) = aL(f) + bL(g).
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Proof. The proof follows from the fact that integration is linear. �

A useful tool for calculating Laplace transforms is to differentiate
under the integral sign. We are able to do this because of a very deep
property of the Laplace transform.

Theorem 5.2. Let f be a piecewise continuous function, such that
F (s) =

∫∞
0
f(t)e−stdt, for s ∈ Ω ⊂ C. Then F is an analytic function

for all s ∈ Ω.

The proof of this result relies on the fact that e−st is analytic, but it
is quite involved, so we omit it. A consequence of the theorem however,
is that we may differentiate Laplace transforms to all orders. We use
this fact in the next result.

Proposition 5.3. Let f have Laplace transform F (s). Then

L(tnf(t)) = (−1)n
dn

dsn
F (s). (5.8)

Proof. We write

F (s) =

∫ ∞
0

f(t)e−stdt.

Now differentiating under the integral sign gives

d

ds
F (s) =

d

ds

∫ ∞
0

e−stf(t)dt (5.9)

=

∫ ∞
0

f(t)
d

ds
e−stdt (5.10)

= −
∫ ∞

0

tf(t)e−st (5.11)

= −L(tf(t)). (5.12)

Thus L(tf(t)) = − d
ds
F (s). The general result now follows by induction.

�

Let us recover our earlier result on the Laplace transform of tn by
this method.

Example 5.4. Find the Laplace transform of f(t) = t.
Solution. By the previous result we have

L(f) =

∫ ∞
0

te−stdt = − d

ds

∫ ∞
0

e−stdt = − d

ds
(
1

s
) =

1

s2
. (5.13)

Example 5.5. Find the Laplace transform of f(t) = t2.
Solution. Using the previous proposition once more gives.

L(f) =

∫ ∞
0

t2e−stdt =
d2

ds2

∫ ∞
0

e−stdt = (−1)2 d
2

ds2
(
1

s
) =

2

s3
. (5.14)
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For general n we easily see by these calculations that

L(tn) =
n!

sn+1
.

This gives us the result that we found previously.
Now let us present a few more commonly occurring Laplace trans-

forms. The calculations are all straightforward.

Example 5.6. Find the Laplace transform of f(t) = e−at.
Solution. This is again a simple integration.

L(f) =

∫ ∞
0

e−ate−stdt =

[
1

s+ a
e−(a+s)t

]∞
0

=
1

s+ a
. (5.15)

We apply this last result to simplify our calculations in the next
examples.

Example 5.7. Find the Laplace transform of f(t) = sin(at).
Solution. To do this we observe that by Euler’s formula

sin(at) =
1

2i
(eiat − e−iat).

Hence

L(f) =
1

2i
L(eiat)− 1

2i
L(e−iat) =

1

2i

(
1

s− ia
− 1

s+ ia

)
=

1

2i

(
s+ ia− (s− ia)

s2 + a2

)
=

a

s2 + a2
.

Example 5.8. Find the Laplace transform of f(t) = cos(at).
Solution. This is similar to the previous example. We have

L(f) = L
(

1

2
(eiat + e−iat)

)
=

1

2

(
1

s− ia
+

1

s+ ia

)
=

s

s2 + a2
.

It is straightforward to compute Laplace transforms of a polynomial
multiplied by a sine or cosine.

Example 5.9.

L(t cos 2t) = − d

ds
L(cos 2t) = − d

ds

(
s

s2 + 4

)
=

s2 − 4

(s2 + 4)2
. (5.16)

A useful technique for computing Laplace transforms is to write the
original function as a power series and integrate term by term.

Theorem 5.4. Suppose that f is an integrable function which possesses
a Laplace transform, and more over,

f(t) =
∞∑
n=0

an
n!
tn,
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with the series converging absolutely. Then

L(f)(s) =

∫ ∞
0

∞∑
n=0

an
n!
tne−stdt

=
∞∑
n=0

an
sn+1

.

Let us use this technique to calculate a Laplace transform.

Example 5.10. The Laplace transform of the zeroth order Bessel func-
tion J0(t) is

L(J0(t))(s) =
1√

1 + s2
. (5.17)

We evaluated this Laplace transform in the section on Bessel functions.
Here is another approach. We use the fact that

J0(t) =
∞∑
n=0

(−1)nt2n

22nn!Γ(n+ 1)
. (5.18)

Now we take the Laplace transform term by term.∫ ∞
0

∞∑
n=0

(−1)nt2n

22nn!Γ(n+ 1)
e−stdt =

∞∑
n=0

∫ ∞
0

(−1)nt2n

22nn!Γ(n+ 1)
e−stdt

=
∞∑
n=0

(−1)n(2n)!

22nn!Γ(n+ 1)s2n+1
.

Next we note that
1√

1 + s2
=

1

s
√

1 + 1
s2

=
1

s
(1 +

1

s2
)−

1
2

=
1

s
(1− 1

2

1

s2
+

3

8

1

s4
− 5

16

1

s6
+ · · · )

=
∞∑
n=0

(−1)n(2n)!

22nn!Γ(n+ 1)s2n+1
,

which gives the desired result when we compare the two series.

Proposition 5.5. Let f have Laplace transform F and assume that F
is defined at s+ a. Then

L(e−atf(t)) = F (s+ a).

Proof. By the definition of the Laplace transform we have

F (s+ a) =

∫ ∞
0

f(t)e−(s+a)tdt. (5.19)

Hence
L(e−atf(t)) = F (s+ a).

�
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Example 5.11. We will use this to compute the Laplace transform of
f(t) = e−2t sin(4t). We have

L(e−2t sin(4t))(s) =
4

(s+ 2)2 + 16
. (5.20)

Proposition 5.6. Let f(t) have Laplace transform F (s). Then the
Laplace transform of fa(t) = f(at) is

L(fa)(s) =
1

a
F (

s

a
). (5.21)

Proof. The proof of this result is again a simple computation with the
integral. We have

L(fa)(s) =

∫ ∞
0

fa(t)e
−stdt

=

∫ ∞
0

f(at)e−stdt (5.22)

=
1

a

∫ ∞
0

f(u)e−su/adu =
1

a
F (

s

a
),

where we used the substitution at = u in the integral (5.22). �

Example 5.12. Let f(t) = sin t. Then L(sin t)(s) =
1

1 + s2
. Therefore

L(sin(5t))(s) =
1

5

1

1 + s2/52
=

5

s2 + 25
.

Example 5.13. Find the Laplace transform of J0(4t).
By the proposition, we have

L(J0(4t))(s) =
1

4

1√
1 + (s/4)2

=
1√

16 + s2
.

5.2. Laplace Transforms of Derivatives. The interest in Laplace
transforms from the point of view of studying differential equations lies
in the relationship between differentiation and Laplace transform. The
next result is fundamental.

Proposition 5.7. Let f be an n times differentiable function which
has Laplace transform F . Then

L(f (n)(x)) = −f (n−1)(0)−sf (n−2)(0)−· · ·−sn−1f(0)+snF (s). (5.23)

Proof. The definition of the Laplace transform gives

L(f ′(x)) =

∫ ∞
0

f ′(x)e−sxdx = [f(x)e−sx]∞0 + s

∫ ∞
0

f(x)e−sxdx

= −f(0) + sF (s),
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where F (s) is the Laplace transform of f . Similarly

L(f ′′(x)) = L((f ′)′) = −f ′(0) + s(−f(0) + sF (s))

= −f ′(0)− sf(0) + s2F (s).

The result for L(f (n)) follows by induction. �

We give one further elementary property of Laplace transforms, which
is extremely useful.

Proposition 5.8. Let the Heaviside step function be defined by

H(x− a) =

{
1 x ≥ a
0 x < a

Then

L(H(x− a)f(x− a)) = e−saF (s)

Proof. This is a simple calculation.

L(H(x− a)f(x− a)) =

∫ ∞
0

H(x− a)f(x− a)e−sxdx

=

∫ ∞
a

f(x− a)e−sxdx, t = x− a

=

∫ ∞
0

f(t)e−s(t+a)dt = e−saF (s).

�

These results allow us to considerably extend the kinds of functions
for which we can find the Laplace transform.

5.3. The Inverse Laplace Transform. One of the most important
properties of Laplace transforms is that they are unique. This is en-
capsulated in the next result.

Theorem 5.9. Suppose that L(f) = 0. Then f = 0.

Remark 5.10. If the student knows measure theory, the result of the
preceding theorem really should be that f = 0 almost everywhere, but
this will not concern us here.

Corollary 5.11. Suppose that L(f) = L(g). Then f = g.

Proof. By Theorem 5.9, L(f − g) = 0 implies that f = g. �

Because the Laplace transform is one to one, we can in principle go
from a Laplace transform F to the original function f .

Definition 5.12. Suppose that L(f) = F. That is, F is the Laplace
transform of f. Then the inverse Laplace transform of F is the operator
that recovers f from F. We write L−1(F ) = f.
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The inverse Laplace transform can actually be found in many cases
by evaluating an integral. This will be discussed later. However in
practice, we can find the inverse Laplace transform by using tables
of known transforms and elementary properties of Laplace transforms.
the most important is the following.

Theorem 5.13. The inverse Laplace transform is linear. That is, for
all constants a, b, we have

L−1(aF + bG) = aL−1(F ) + bL−1(G).

Proof. This is an exercise. �

We know that L(cos(at)) =
s

s2 + a2
, so that

L−1

(
s

s2 + a2

)
= cos(at). (5.24)

We also know the inverse Laplace transforms for many other elementary
functions. Combining these, we can find the inverse Laplace transforms
of many different functions.

Let us compute some examples.

Example 5.14. Find

L−1

(
s

(s+ 2)(s2 + 9)

)
.

We use partial fractions. We have

s

(s+ 2)(s2 + 9)
=

A

s+ 2
+
Bs+ C

s2 + 9
.

After some elementary algebra we obtain

s

(s+ 2)(s2 + 9)
=

1

13

(
2s

s2 + 9
+

9

s2 + 9
− 2

s+ 2

)
.

Thus by linearity of the inverse Laplace transform, we can write

L−1

(
s

(s+ 2)(s2 + 9)

)
=

1

13
L−1

(
2s

s2 + 9

)
+

1

13
L−1

(
9

s2 + 9

)
− 1

13
L−1

(
2

s+ 2

)
=

2

13
L−1

(
s

s2 + 9

)
+

3

13
L−1

(
3

s2 + 9

)
− 2

13
L−1

(
1

s+ 2

)
=

2

13
cos(3t) +

3

13
sin(3t)− 2

13
e−2t.
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Example 5.15. Calculate

L−1

(
s

(s2 + 4)(s2 + 9)

)
.

The solution is again to use partial fraction decompositions. We
write

s

(s2 + 4)(s2 + 9)
=
As+B

s2 + 4
+
Cs+D

s2 + 9

and find after some algebra that A = 1/5 = −C and B = D = 0. Thus

s

(s2 + 4)(s2 + 9)
=

1

5

(
s

s2 + 4
− s

s2 + 9

)
.

From which

L−1

(
s

(s2 + 4)(s2 + 9)

)
=

1

5
L−1

(
s

s2 + 4

)
− 1

5
L−1

(
s

s2 + 9

)
=

1

5
(cos(2t)− cos(3t)).

Often we need to use some of the elementary properties of Laplace
transforms to find the inverse transform. Here are two simple illustra-
tions.

Example 5.16. Find

L−1

(
s+ 4

((s+ 4)2 + 4)((s+ 4)2 + 9)

)
.

We know that L−1(F (s + a)) = e−atL−1(F (s)) by Proposition 5.5. So
by the previous example we have

L−1

(
s+ 4

((s+ 4)2 + 4)((s+ 4)2 + 9)

)
=

1

5
e−4t(cos(2t)− cos(3t)).

Example 5.17. Find L−1(e−3s/s4), where L−1 denotes the inverse
Laplace transform.

Solution. We know that
1

6
L(x3) =

1

6

3!

s4
=

1

s4
. So by Proposition 5.8 we

have

e−3s 1

s4
= L(H(x− 3)

1

6
(x− 3)3).

Hence

L−1(e−3s/s4) =
1

6
(x− 3)3H(x− 3)

=

{
1
6
(x− 3)3, x > 3

0, x ≤ 3.
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5.4. Inversion by series. This method is quite useful and actually
quite straightforward. Let us consider the Laplace transform

F (s) =
s

s2 + a2
=

1

s(1 + (a/s)2)
. (5.25)

We write this as the sum of a geometric series.

1

s(1 + (a/s)2)
=

1

s

(
1− a2

s2
+
a4

s4
− a6

s6
+ · · ·

)
. (5.26)

Inverting term by term, according to the rule

L−1

(
1

sn+1

)
=

1

n!
tn, (5.27)

we have

L−1

(
s

s2 + a2

)
= 1− (at)2

2!
+

(at)4

4!
− (at)6

6!
+ · · ·

= cos(at).

Example 5.18. We invert the Laplace transform F (s) = sin(a/s).
Expanding in a series we get

sin
(a
s

)
=
a

s
− a3

3!s3
+ · · · (5.28)

=
∞∑
n=0

(−1)n
a2n+1

(2n+ 1)!s2n+1
(5.29)

Inverting term by term gives

f(t) = L−1(sin(a/s)) =
∞∑
n=0

(−1)n(at)2n

(2n)!(2n+ 1)!
.

This can be reduced to an expression involving Bessel functions, but
we will not consider this. We will however do a similar example later.
The point is that even if we do not recognise the function, we still have
a series for the inverse Laplace transform which we can use.

Example 5.19. Recall that for |x| < 1 the inverse tan can be expressed
as

tan−1(x) = x− x3

3
+
x5

5
− · · · .

From this we have

tan−1
(a
s

)
=
a

s
− a3

3s3
+

a5

5s5
− · · · (5.30)

This means that
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L−1
(

tan−1
(a
s

))
= a− a3t2

3!
+
a5t4

5!
− · · ·

=
1

t

(
at− 1

3!
(at)3 +

1

5!
(at)5 − · · ·

)
=

sin(at)

t
.

We might like to verify this Laplace transform directly by computing

F (s) =

∫ ∞
0

sin(at)

t
e−stdt.

The easiest way to do this is to differentiate under the integral sign.
We find that

F ′(s) =
d

ds

∫ ∞
0

sin(at)

t
e−stdt

=

∫ ∞
0

∂

∂s

sin(at)

t
e−stdt

= −
∫ ∞

0

sin(at)e−stdt

= − a

s2 + a2
.

Integration then gives us

F (s) = − tan−1
(s
a

)
+ C.

C is a constant of integration. Now

F (0) =

∫ ∞
0

sin(at)

t
dt =

π

2
.

(We have used a known integral). This gives us

F (s) =
π

2
− tan−1

(s
a

)
. (5.31)

This seems to be different from our previous answer. But let us inves-
tigate further. We know that

π

2
− tan−1 n = lim

m→∞

(
tan−1m− tan−1 n

)
= lim

m→∞
tan−1

(
m− n
1 +mn

)
.

(5.32)

With n = s/a we have

tan−1m− tan−1
(s
a

)
= tan−1

(
m− s/a
1 +ms/a

)
= tan−1

(
1− s/(am)

1/m+ s/a

)
.
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Now

lim
m→∞

tan−1

(
1− s/(am)

1/m+ s/a

)
= tan−1

(a
s

)
. (5.33)

So that

π

2
− tan−1

(s
a

)
= tan−1

(a
s

)
. (5.34)

and there is no contradiction between the two answers.

Example 5.20. We now invert F (s) = ln

(
s+ a

s+ b

)
. We know that

ln
(
s+a
s+b

)
= ln(s+ a)− ln(s+ b) and

∫
ds
s+a

= ln(s+ a). Using

1

s+ a
=

1

s(1 + a/s)
=

1

s

(
1− a

s
+
(a
s

)2

−
(a
s

)3

+ · · ·
)

we have

ln

(
s+ a

s+ b

)
= −b− a

s
+
b2 − a2

2s2
− (b2 − a3)

3s3
+ · · · . (5.35)

Inverting term by term gives

f(t) = L−1

(
ln

(
s+ a

s+ b

))
= −(b− a) +

b2 − a2

2!
t− (b3 − a3)

3!
t2 + · · ·

=
1

t

((
1− bt+

b2t2

2!
− b3t3

3!
+ · · ·

)
−
(

1− at+
a2t2

2!
− a3t3

3!
+ · · ·

))
=

1

t
(e−bt − e−at).

5.5. Convolution. Convolution is the “right” multiplication for an
integral transform. It is obvious that Lfg 6= L(f)L(g). However this
begs the question, what is the inverse Laplace transform of F (s)G(s) in
terms of the inverse Laplace transforms of F and G? Is there a simple
way of working this out? It turns out that the answer is yes.

We proceed as follows. Let F = L(f), G = L(g), then

F (s)G(s) =

∫ ∞
0

e−sxf(x)dx

∫ ∞
0

e−syg(y)dy

=

∫ ∞
0

∫ ∞
0

e−s(x+y)f(x)g(y)dydx
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Now let x = t − u and u = y so that t = x + y. The double integral
then becomes,

F (s)G(s) =

∫ ∞
0

∫ t

0

e−stf(t− u)g(u)dudt

=

∫ ∞
0

e−st
(∫ t

0

f(t− u)g(u)du

)
dt

= L
(∫ t

0

f(t− u)g(u)du

)
.

Hence ∫ x

0

f(x− u)g(u)du = L−1(FG).

This gives us the desired inverse Laplace transform in terms of the
convolution for the Laplace transform.

Definition 5.14. Let f and g be two integrable functions. Then the
convolution for the Laplace transform is given by

(f ∗ g)(t) =

∫ t

0

f(t− u)g(u)du. (5.36)

We have already proved the next result.

Theorem 5.15. Let f and g be functions which are integrable and
possess Laplace transforms. Then L(f ∗ g) = L(f)L(g).

As an application of this result we do the following.

Example 5.21. Find the inverse Laplace transform of

H(s) =
1

s2(s2 + 1)
.

Solution. Let F (s) = 1/s2 and G(s) = 1/(s2 + 1). Then we know that
f(x) = L−1(F (s)) = t and g(t) = L−1(G(s)) = sin t. Hence

L−1(FG) =

∫ t

0

f(t− u)g(u)du

=

∫ t

0

(t− u) sinudu

= [−(t− u) cosu− sinu]u=t
u=0

= t− sin t

Example 5.22. Compute the Laplace transform of the integral
∫ t

0
f(x)dx.
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Solution We use the convolution theorem. So that

L
(∫ t

0

f(x)dx

)
= L(f ∗ 1)

= L(1)L(f)

=
1

s
F (s),

where F is the Laplace transform of f.

5.6. Solving Differential Equations. Constant coefficient ordinary
differential equations can be solved by Laplace transform, relatively
easily. Let us consider two simple examples.

Example 5.23. We solve the equation

y′′ + 5y′ + 6y = t2,

subject to y(0) = 1, y′(0) = 2. The idea is to take the Laplace transform
of both sides of the equation, so that we have

L (y′′ + 5y′ + 6y) = L
(
t2
)
. (5.37)

Using our results for the Laplace transforms of the first and second
derivatives of a function, we can write

(s2 + 5s+ 6)Y (s)− (5 + s)y(0)− y′(0) =
2

s3
, (5.38)

where Y is the Laplace transform of y. Rearranging this gives

Y (s) =
7 + s

s2 + 5s+ 6
+

2

s3(s2 + 5s+ 6)
. (5.39)

Using partial fractions we obtain

Y (s) =
19

4(s+ 2)
− 106

27(s+ 3)
+

19

108s
− 5

18s2
+

1

3s3
. (5.40)

We recover the solution by taking the inverse Laplace transform of
Y (s). So that

y(t) = L−1 (Y (s))

= L−1

(
19

4(s+ 2)
− 106

27(s+ 3)
+

19

108s
− 5

18s2
+

1

3s3

)
=
t2

6
− 5t

18
− 106e−3t

27
+

19e−2t

4
+

19

108
.

We next consider a problem where the right hand side of the equation
is left unspecified.

Example 5.24. Suppose that we want to solve the equation

y′′ + a2y = f(t),
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subject to the condition y(0) = 0, y′(0) = 1. We take the Laplace
transform of both sides, to obtain

(s2 + a2)Y (s)− sy(0)− y′(0) = (s2 + a2)Y (s)− 1 = F (s), (5.41)

where Y is the Laplace transform of y and F is the Laplace transform
of f. Consequently

Y (s) =
F (s)

s2 + a2
+

1

s2 + a2
(5.42)

Now L−1
(

1
s2+a2

)
= 1

a
sin(at). By the Convolution Theorem we can also

write

L−1

(
F (s)

s2 + a2

)
=

1

a

∫ t

0

f(t− u) sin(au)du. (5.43)

From which we have the solution

y(t) =
1

a

∫ t

0

f(t− u) sin(au)du+
1

a
sin(at). (5.44)

It is possible to solve some nonconstant coefficient differential equa-
tions using the Laplace transform. We provide some examples.

Example 5.25. Solve the ODE ty′′ + y = 0, y(0) = 0. We let Y (s) =
L(y) and then we have

L(ty′′) = − d

ds
(s2Y (s)− sy(0)− y′(0))

= −s2Y ′(s)− 2sY (s).

The equation then becomes

s2dY

ds
+ (2s− 1)Y (s) = 0. (5.45)

The solution of this first order ODE is

Y (s) =
A

s2
e−1/s. (5.46)

We have to invert this Laplace transform. We do it term by term. We
are here using a result presented previously. Note that

1

s2
e−1/s =

1

s2
(1− 1

s
+

1

2!s2
− 1

3!s3
+

1

4!s4
− · · · . (5.47)

Now we use the fact that L−1(1/sn+1) = 1
n!
tn. This gives

L−1[
1

s2
e−1/s] = L−1[1/s2]− L−1[1/s3] +

1

2!
L−1[1/s4]− · · ·

= t− t2

2!
+

t3

2!3!
− t4

3!4!
+ · · ·

= t

∞∑
n=0

(−1)ntn

n!(n+ 1)!
.
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To identify this function, we note that

Ja(t) =

(
t

2

)a ∞∑
n=0

(−1)n(t/2)2n

n!Γ(n+ a+ 1)
. (5.48)

Let us take a = 1. Then we see that

J1(2
√
t) =

√
t
∞∑
n=0

(−1)ntn

n!(n+ 1)!
. (5.49)

From this we conclude that

L−1[
1

s2
e−1/s] =

√
tJ1(2

√
t). (5.50)

Thus the solution of the ODE turns out to be y(t) = A
√
tJ1(2

√
t).

Remark 5.16. Using the technique of the previous question, we can
show that for n > 0 and a > 0

L−1

[
1

sn
e−

a
s

]
=
(a
t

) 1−n
2
Jn−1

(
2
√
at
)
. (5.51)

Example 5.26. Solve the equation xy′′ + (b − x)y′ − ay = 0. This
is called the confluent hypergeometric equation. We take a slightly
different approach to this problem. We suppose that the solution can
be written

y(x) =

∫ ∞
0

h(t)e−xtdt.

This method assumes that t2h(t)e−xt → 0 at t → ∞, in order for
the solution to be expressible in this form. If there is a solution which
does not have this property, then it will not be expressible as a Laplace
transform.

Now to calculate y′′ we differentiate the exponential under the in-
tegral sign, to get y′′(x) =

∫∞
0
t2h(t)e−xtdt. Then using integration by

parts we have

xy′′(x) =

∫ ∞
0

xt2h(t)e−xtdt

= −
∫ ∞

0

t2h(t)
d

dt
e−xtdt

= −
[
t2h(t)e−xt

]∞
0

+

∫ ∞
0

d

dt
(t2h(t))e−xtdt

=

∫ ∞
0

(t2h′(t) + 2th(t))e−xtdt.
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Next we have

(b− x)y′(x) = −(b− x)

∫ ∞
0

th(t)e−xtdt

= −b
∫ ∞

0

th(t)e−xtdt−
∫ ∞

0

th(t)
d

dt
e−xtdt

= −b
∫ ∞

0

th(t)e−xtdt−
[
th(t)e−xt

]∞
0

+

∫ ∞
0

(th′(t) + h(t))e−xtdt

=

∫ ∞
0

(th′(t) + (1− bt)h(t))e−xtdt.

Combing we have

xy′′ + (b− x)y′ − ay =∫ ∞
0

(
t2h′(t) + 2th(t) + th′(t) + (1− bt)h(t)− ah(t)

)
e−xtdt

=

∫ ∞
0

(t(1 + t)h′(t) + (1− a+ (2− b)t)h(t))e−xtdt = 0.

In order for this to hold, the integrand must be zero. So we require

t(1 + t)h′(t) + (1− a+ (2− b)t)h(t) = 0. (5.52)

This is a first order separable ODE

h′(t) +
1− a+ (2− b)t

t(1 + t)
h(t) = 0. (5.53)

So ∫
dh

h
= −

∫
1− a+ (2− b)t

t(1 + t)
dt (5.54)

or

lnh(t) = (b− a− 1) ln(t+ 1) + (a− 1) ln(t) + C. (5.55)

Hence

h(t) = Ata−1(1 + t)b−a−1. (5.56)

Thus the solution is

h(t) = A

∫ ∞
0

ta−1(1 + t)b−a−1e−xtdt. (5.57)

The most common choice for the constant is A = 1/Γ(a). Then

U(a, b, x) =
1

Γ(a)

∫ ∞
0

ta−1(1 + t)b−a−1e−xtdt (5.58)

is the confluent hypergeometric function of the second kind, or Tri-
comi’s confluent hypergeometric function.
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There is another solution of this equation, Kummer’s confluent hy-
pergeometric function which can be represented as

1F1(a, b, x) =
∞∑
k=0

(a)n
k!(b)n

xn, (5.59)

where (a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n − 1). This can be
found by the method of Frobenius. It was not found by the Laplace
transform method because of the convergence condition we mentioned

before. For large x, 1F1(a, b, x) grows like Γ(b)
Γ(a)

exxa−b.

It is possible to establish an integral representation for Kummer’s
function. Specifically

1F1(a, b, x) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

extta−1(1− t)b−a−1dt. (5.60)

The general hypergeometric function is

pFq(a1, ...ap; b1, ..., bq, x) =
∞∑
k=0

(a1)n · · · (ap)n
k!(b1)n · · · (bq)n

xn, (5.61)

and the series converges if p ≤ q. These satisfy higher order differential
equations. We obviously require that the b’s are not negative integers,
to avoid dividing by zero. For example

(−2)3 = −2× (−1)× (0) = 0.

It should also be clear that if one of the a’s is a negative integer, then the
series will terminate, and so the corresponding hypergeometric function
is a polynomial.

The importance of the hypergeometric functions lies in their connec-
tion with other functions. A very large class of differential equations
have solutions which can be expresses as hypergeometric functions of
some type. For example it is clear that if a = b, then

1F1(a, b, x) =
∞∑
k=0

1

k!
xn = ex. (5.62)

There are many such relations. Some are not obvious, such as

1F1(α + 1/2, 2α + 1, 2ix) = Γ(α + 1)eix(x/2)−αJα(x). (5.63)

So Bessel functions can be expressed in terms of hypergeometric func-
tions. Many functions familiar to you, such as polynomials, logarithms,
sines and cosines, the error function from probability, Bessel functions,
Legendre functions, Hermite functions, etc are expressible as hyperge-
ometric functions.
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5.7. Solving PDEs with Laplace Transform. The differential equa-
tions that we have solved so far are of course all solvable by variation of
parameters or series methods. It turns out that the Laplace transform
is actually very useful for the solution of partial differential equations
than ordinary differential equations. The idea is to turn a PDE into
an ODE. We will discuss PDEs in more detail in the final section of
the course. Here we simply give two fairly typical examples.

Example 5.27. Solve the first order PDE,

x
∂u

∂t
+
∂u

∂x
= x x, t > 0 (5.64)

subject to the conditions

u(x, 0) = 0, u(0, t) = 0.

Solution. We take the Laplace transform in the t variable.

L
(
x
∂u

∂t

)
= x

∫ ∞
0

∂u

∂t
e−st = x(−u(x, 0) + sŪ(x, s)),

where Ū(x, s) =
∫∞

0
u(x, t)e−stdt. Also.

L
(
∂u

∂x

)
=

∂

∂x
L(u) =

∂

∂x
Ū(x, s),

and x is treated as a constant. Hence we have,

−xu(x, 0) + xsŪ(x, s) +
∂Ū

∂x
(x, s) =

x

s
.

So
d

dx
Ū(x, s) + xsŪ(x, s) =

x

s
.

We solve this ODE by multiplying through by the integrating factor of
esx

2/2. This gives

es
x2

2
dŪ

dx
+ sxes

x2

2 Ū =
x

s
es

x2

2 .

Hence,
d

dx
(es

x2

2 Ū) =
x

s
es

x2

2 .

Therefore

es
x2

2 Ū =

∫
x

s
es

x2

2 dx =
1

s2
es

x2

2 + C,

for some constant of integration C. Solving for Ū(x, s) gives,

Ū(x, s) =
1

s2
+ Ce−s

x2

2 .

Now we need to determine C. To do this we take the Laplace trans-
form of the initial condition to get,

Ū(0, s) = L(u(0, t)) = L(0) = 0.
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We can now find our constant C. We have

Ū(0, s) =
1

s2
+ C = 0⇒ C = − 1

s2
.

Hence

Ū(x, s) =
1

s2
− 1

s2
e−s

x2

2

To find u(x, t) we now take the inverse Laplace transform.

L−1

(
1

s2
− 1

s2
e−s

x2

2

)
= L−1

(
1

s2

)
− L−1

(
1

s2
e−s

x2

2

)
= t− L−1

(
1

s2
e−s

x2

2

)
.

Let a = x2/2, now L(y(t− a)H(t− a) = e−saL(y)) so,

L−1

(
1

s2
e−s

x2

2

)
= (t− 1

2
x2)H(t− 1

2
x2).

Consequently the solution of the PDE is

u(x, t) = t− (t− 1

2
x2)H(t− 1

2
x2)

=

{
1
2
x2 t ≥ 1

2
x2

t t < 1
2
x2.

The Laplace transform is often used to solve equations of the form

ut = a(x)uxx + b(x)ux + c(x)u, (5.65)

by taking the Laplace transform in the t variable and producing an
ODE, which can be solved by the methods that we have already devel-
oped. Let us consider an example of such a problem.

Example 5.28. We want to solve the following initial-boundary value
problem for the heat equation.

1

k

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ a, t ≥ 0

u(x, 0) = 0,

(
∂u

∂x

)
x=a

= 0, u(0, t) = u0

The heat equation will be discussed in greater detail in the next chapter.
Solution. We take the Laplace transform in the t variable. This leads
to the following ODE for the Laplace transform of u.

L
(
∂2u

∂x2

)
=

d2

dx2
Ū = −1

k
u(x, 0) +

s

k
Ū(x, s)

=
s

k
Ū(x, s)

This is a second order constant coefficient ODE for Ū . The solution is
of the form
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Ū(x, s) = c1e
x
√

s
k + c2e

−x
√

s
k .

However it is more convenient to write the solution as,

Ū(x, s) = A cosh

(
x

√
s

k

)
+B sinh

(
x

√
s

k

)
.

Now L(u(0, t)) = L(u0) = u0/s = Ū(0, s). Also,(
∂Ū

∂x

)
x=a

=

∫ ∞
0

(
∂u

∂x

)
x=a

e−stdt = 0

So Ū(0, s) = A, u0/s and(
∂Ū

∂x

)
x=a

= A

√
s

k
sinh

(
a

√
s

k

)
+B

√
s

k
cosh

(
a

√
s

k

)
= 0

B = −
u0 sinh

(
a
√

s
k

)
s cosh

(
a
√

s
k

) .
Now we use various identities for the hyperbolic functions to obtain

Ū(x, s) =
u0

s

(
cosh

(
x

√
s

k

)
−

sinh
(
a
√

s
k

)
cosh

(
a
√

s
k

) sinh

(
x

√
s

k

))

=
u0

s

(
cosh

(
a
√

s
k

)
cosh

(
x
√

s
k

)
− sinh

(
a
√

s
k

)
sinh

(
x
√

s
k

)
cosh

(
a
√

s
k

) )

=
u0

s

cosh
(
(x− a)

√
s
k

)
cosh a

√
s
k

.

In order to determine u we have to invert this Laplace transform.
This is accomplished with the aid of tables of transforms. It turns out
that the inverse Laplace transform is given by an infinite series. We
have

u(x, t) = L−1

(
u0

s

cosh
(
(x− a)

√
s
k

)
cosh a

√
s
k

)

= u0

[
1− 4

π

∞∑
n=1

1

2n− 1
e−(2n−1)2π2kt/4a2 sin

(
2n− 1

2a

)
πx

]
.

The solution that we have obtained here is an example of a Fourier
series. It is possible to derive it using a technique called separation of
variables, which we will study in the next chapter.
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5.8. Deeper Properties of Laplace Transforms. An important
problem is to know exactly when a given function F (s) is the Laplace
transform of some function f . The next result gives a partial answer
to that question. We state the result without proof. The conditions
may be found in a number of texts. Here we have taken them from the
book by Zayed, [5].

Definition 5.17. A function f : X → R is locally integrable if for
every finite interval I ⊆ X, the integral

∫
I
f(t)dt exists.

Theorem 5.18. A function F is the Laplace transform of some locally
integrable function f if any of the following conditions is satisfied.

(1) F is analytic in some half plane Re(s) > σc with

lim
|τ |−→∞

|τ ||F (σ + iτ)| = 0, for σ > σc

(2) F is a rational function of the form F (s) = P (s)/Q(s) where
P and Q are polynomials with deg Q > deg P .

(3) F (s) = G(s)H(s) where G and H are Laplace transforms of
locally integrable functions.

(4) F (s) = G(s)e−sT T > 0 where G is the Laplace transform of a
locally integrable function g.

Proof. We will not go into details for the proof of part 1, but the re-
maining parts are quite straightforward. For part 2, the proof follows
from the fact that every such function has a partial fraction decom-
position. We can then invert the Laplace transform term by term.
For part 3, the inverse Laplace transform will be the convolution of
f and g. Finally, for part 4, the inverse Laplace transform will be
H(t− T )g(t− T ). �

One of the most important properties of the Laplace transform is
that a Laplace transform is analytic. This result was quoted at the be-
ginning of the notes. In fact the following deeper result from [5] holds.
We have already used this result to invert several Laplace transforms.

Theorem 5.19. The Laplace transform F (s) of a locally integrable
function f is an entire function in 1/s if and only if f is an entire
function of order 1 and of minimal type, that is f is analytic for all t
and

f(t) = O(e−ε|t|), as t −→∞.

Moreover if

F (s) =
∞∑
n=0

an
sn+1

, |s| > C > 0,
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then f(t) is an entire function of exponential type α (that is, f(t) =
O(eα|t|) as t −→∞) and

f(t) =
∞∑
n=0

an
tn

n!
.

To see why this works, we let f(t) =
∞∑
n=0

ant
n

n!
and compute the

Laplace transform, assuming it is valid to interchange sum and integral.
Thus

L(f) =

∫ ∞
0

∞∑
n=0

ant
n

n!
e−stdt

=
∞∑
n=0

an
n!

∫ ∞
0

tne−stdt

=
∞∑
n=0

an
n!

n!

sn+1

=
∞∑
n=0

an
sn+1

= F (s).

A little more is needed to prove the theorem, but the idea is relatively
simple.

To conclude our discussion of the Laplace transform we present the
best known inversion theorem. There are in fact several inversion the-
orems for the Laplace transform, but this is the most useful. Before
presenting the result, we need a definition.

Definition 5.20. A function f is said to have bounded variation on
[a, b] if for every partition P = {x0, x1, ..., xn} of [a, b] the quantity

variation(f) =
n∑
i=1

|f(xi)− f(xi−1)|,

is bounded.

Theorem 5.21 (Laplace Transform Inversion). If f(t) is a locally in-
tegrable function on [0,∞) such that,

(1) f is of bounded variation in a neighborhood of a point t0 ≥ 0 (a
right hand neighborhood if t0 = 0).

(2) The integral
∫∞

0
f(t)e−stdt converges absolutely on Re(s) = c

then,

lim
T−→∞

1

2πi

∫ c+iT

c−iT
F (s)estds =

 0 t0 < 0
f(0+)/2 t0 = 0

1
2
(f(t+0 ) + f(t−0 )) t0 > 0.



120 MARK CRADDOCK

In particular if f is differentiable on (0,∞) and satisfies (1) and (2)
then,

lim
T−→∞

1

2πi

∫ c+iT

c−iT
F (s)estds = f(t) 0 < t <∞.

Proof. This result can be established from the Fourier inversion theo-
rem, but we will not discuss it. �

Remark 5.22. The integral is taken in the principal value sense since

in general
∫ c+i∞
c−i∞ F (s)estds does not converge.

Example 5.29. F (s) = 1/(s2 + 1) there are poles at s = ±i. So that

Residue

(
est

s2 + 1
, s = i

)
= lim

s−→i

(
(s− i)est

(s− i)(s+ i)

)
=

1

2i
eit

Residue

(
est

s2 + 1
, s = −i

)
= lim

s−→−i

(
(s+ i)est

(s− i)(s+ i)

)
= − 1

2i
e−it

By the Cauchy residue theorem we then have∫ c+i∞

c−i∞
estF (s)ds = 2πi

∑
Residues

= 2πi(
1

2i
(eit − e−it)) = 2πi sin t

So

L−1(
1

s2 + 1
) =

1

2πi
2πi sin t = sin t

Our last result is the Laplace transform version of a result known as
the Plancherel Theorem which holds for the Fourier transform.

Theorem 5.23 (Parseval’s Theorem). If F is the Laplace transform
of a function f ∈ L2(0,∞) then,

lim
σ−→0+

F (σ + it) = F (it), (5.66)

lim
T−→∞

1

2πi

∫ iT

−iT
F (s)estds =

{
f(t) t ≥ 0

0 t < 0
(5.67)

and ∫ ∞
0

e−2ct|f(t)|2dt =
1

2π

∫ ∞
−∞
|F (c+ iτ)|2dτ,

where c > 0 and the limits are taken in the L2 sense.
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6. Fourier Series and Separation of Variables

6.1. The Heat Equation. In the eighteenth century many questions
arose about the ways in which a function can be represented by sim-
pler functions, such as polynomials and trigonometric functions. We
have seen that it is possible to represent a particular class of functions
as power series. Functions which can be expressed as power series
are known as the analytic functions and the technique of expanding a
function in a Taylor series has been crucial to an enormous amount of
mathematics over the centuries.

The study of partial differential equations however led to the consid-
eration of other kinds of expansions for functions. The most important
of these relates to trigonometric series. Three partial differential equa-
tions arise in numerous areas of mathematics and its applications, par-
ticularly in physics. These are the heat, wave and Laplace equations.
There are many more PDEs which arise in applications, but these three
are the most important.

The n dimensional heat equation is

1

k

∂u

∂t
=

n∑
k=1

∂2u

∂x2
k

. (6.1)

It models the behaviour of heat in a solid body. It is an example of
a diffusion equation, because it describes how heat diffuses through a
body over time. The constant k depends on the medium in which the
heat is being conducted. You can think of a solution u(x, y, z, t) as
giving the temperature at the point (x, y, z) at a time t. Study of the
heat equation is of enormous importance in many problems in physics
and engineering.

The wave equation in n dimensions is

1

c2

∂2u

∂t2
=

n∑
k=1

∂2u

∂x2
k

. (6.2)

This equation describes wave motion, where c is the speed of the wave.
It is important in the theory of sound, electromagnetism, fluid mechan-
ics and many other fields.

Finally, Laplace’s equation in n dimensions is the equation

n∑
k=1

∂2u

∂x2
k

= 0. (6.3)

It arises in numerous areas from the study of complex variables, to
Newton’s theory of gravity.

Partial Differential Equations are classified into different types. For
a linear PDE in two dimensions, the classification is as follows.
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Definition 6.1. A partial differential equation

auxx + 2buxy + cuyy + dux + euy + fu = 0

is said to be

(i) Elliptic if ac− b2 > 0

(ii) Parabolic if ac− b2 = 0

(iii) Hyperbolic if ac− b2 < 0.

In higher dimensions there is a similar definition. The heat equation
is parabolic, the wave equation is hyperbolic and the Laplace equation
is elliptic. The classification comes from the classification of curves in
the plane. A curve of the form

ax2 + 2bxy + cy2 + dx+ ey + f = 0

is an ellipse if ac− b2 > 0, a parabola if ac− b2 = 0 and a hyperbola if
ac−b2 < 0. Equations of different types have quite different properties.
We will not go into any depth on this subject, but we will discuss some
interesting properties of elliptic equations later.

The methods that we introduce here can be used to solve these and
other equations in any number of dimensions. However we will focus
on the problem of solving a PDE in which there are two variables. We
will begin by consider the problem of solving the heat equation, for
n = 1, subject to some additional conditions.

Example 6.1. We wish to solve the one dimensional heat equation

∂2u

∂x2
=

1

k

∂u

∂t
0 ≤ x ≤ 1, t > 0, (6.4)

subject to the boundary conditions u(0, t) = u(1, t) = 0 and the initial
condition u(x, 0) = f(x), for some nonzero function f . Here k is a
nonzero constant.
Solution. We have seen that this equation can be solved by Laplace
transform. We could try this here, but instead we use a different
method. A very important method of solution to this problem is to
look for a separable solution. What this means is that we let

u(x, t) = X(x)T (t),

for some functions X and T . This is an extension of the method of
separation of variables which works well for some first order ODEs.

Since u(0, t) = X(0)T (t) = 0 for all T , then X(0) = 0, because
otherwise we would have T (t) = 0 for all T and this would give u =
0, which does not satisfy the given initial condition. By the same
argument applied to the other boundary condition, X(1) = 0.
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Next we note that uxx = X ′′(x)T (t) and ut = X(x)T ′(t). Since u is
a solution of the heat equation, we get

X ′′(x)T (t) =
1

k
X(x)T ′(t) =⇒ X ′′(x)

X(x)
=

1

k

T ′(t)

T (t)
.

Here we have a function of x only equal to a function of t alone, for
all values of x and t. As we have noted before, this is only possible if
both functions are equal to some constant which we denote λ.1 This is
called the separation constant. Actually it will turn out that there are
infinitely many separation constants which are known as eigenvalues.

We have reduced the heat equation to the pair of ODES

X ′′(x)

X(x)
=

1

k

T ′(t)

T (t)
= λ.

This gives us the differential equation X ′′(x) = λX(x). Clearly we
would like a nonzero solution to this equation that satisfies the given
boundary conditions X(0) = X(1) = 0. We consider three cases. The
first is λ > 0. In this case the general solution of the ODE for X is

X(x) = Ae
√
λx +Be−

√
λx.

Applying the boundary conditions gives

A+B = 0 (6.5)

Ae
√
λ +Be−

√
λ = 0. (6.6)

Solving these simultaneous equations gives A = B = 0. So if λ > 0 we
do not get nonzero solutions for X.

The case λ = 0 leads to X ′′(x) = 0 which has solution

X(x) = Ax+B.

Since X(0) = B = 0 and X(1) = A = 0, we do not get nonzero
solutions for this case either.

This leaves the case λ < 0. Let λ = −ω2. The equation

X ′′(x) = −ω2X(x)

has solution
X(x) = A sin(ωx) +B cos(ωx).

Taking X(0) = B = 0 we are left with X(x) = A sin(ωx). This leaves
us to satisfy the condition X(1) = A sin(ω) = 0. We can do this in two
ways. We could take A = 0, but this gives X = 0 again. Fortunately,
we can also insist that ω = nπ for n ∈ N, since sin(nπ) = 0. We have
thus obtained the nonzero solution

X(x) = A sin(nπx).

1To see why, notice that if f(x) = g(t) for all x, t, and a is in the domain of g,
then f(x) = g(a) for all x. Since g(a) is a constant, then f(x) is a constant. Also
g(t) = f(b) for b in the domain of f. Hence g is constant too.
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For T we get T ′ = kλT = −kn2π2T. This first order ODE has
solution T (t) = Be−kn

2π2t where B is a constant of integration. This
leads to a solution of the heat equation

u(x, t) = C sin(nπx)e−kn
2π2t

where C is a constant. This solution satisfies the given boundary con-
ditions, but not the given initial condition.

How then do we satisfy the initial condition? The solution to the
problem of satisfying an initial condition using separable solutions, goes
back to d’Alembert, an 18th century French mathematician. He used
this technique to obtain a solution of the wave equation. The idea
is to take a linear combination of solutions, choosing the constants
multiplying each solution in a clever way. The first person to actually
determine the right way of choosing the coefficients of each solution
correctly was Euler, but it was Joseph Fourier who was the first person
to make extensive use of the technique.

Because the heat equation is linear we can take a superposition of
solutions. That is, we can add two solutions together to obtain a third
solution. Suppose that we add infinitely many solutions together. Let
{Cn} be a sequence of constants and define

u(x, t) =
∞∑
n=1

Cn sin(nπx)e−kn
2π2t. (6.7)

The question of when this series actually converges and what it con-
verges to when it does converge at all, is one that will be discussed
later. Suppose that it does converge. It is a sum of solutions of the
heat equation, so is itself a solution of the heat equation. Now set
t = 0. If u(x, 0) = f(x) then we need the equation

u(x, 0) = f(x) =
∞∑
n=1

Cn sin(nπx). (6.8)

to be satisfied.
The key to obtaining the values for Cn is the fact that∫ 1

0

sin(mπx) sin(nπx)dx =

{
0 n 6= m
1
2

n = m.

To see how this allows us to obtain the value of Cn we write our
expression as

f(x) = C1 sin(πx) + C2 sin(2πx) + C3 sin(3πx) + · · ·+ Ck sin(kπx) + · · ·
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Next we multiply both sides by sin(kπx) and integrate from 0 to 1.
Then ∫ 1

0

f(x) sin(kπx)dx =

∫ 1

0

C1 sin(πx) sin(kπx)dx

+

∫ 1

0

C2 sin(2πx) sin(kπx)dx

+ · · ·+
∫ 1

0

Ck sin2(kπx)dx+ · · ·

= Ck

∫ 1

0

sin2(kπx)dx =
1

2
Ck,

since all the other integrals on the right are zero. This immediately
allows us to deduce the formula

Ck = 2

∫ 1

0

f(x) sin(kπx)dx. (6.9)

The numbers {Ck}∞k=1 are known as the Fourier sine coefficients of f .
This gives us a formal solution to our initial-boundary value problem
for the heat equation.

u(x, t) = 2
∞∑
n=1

{∫ 1

0

f(y) sin(nπy)dy

}
sin(nπx)e−kn

2π2t. (6.10)

At this point all we have done is established a formal solution to the
heat equation. We do not know if it is correct, because we do not know
that the series of sines converges to f. To establish that it does, we
must investigate such series in more detail.

6.2. Fourier Series. We will consider the problem of whether or not
it is possible to expand a function f on the interval (−π, π) as a series
of sines and cosines. We begin with the observation that∫ π

−π
cos(nx)dx = 0,

∫ π

−π
sin(nx)dx = 0,∫ π

−π
sin(nx) cos(mx)dx = 0,

∫ π

−π
cos(nx) cos(mx)dx = 0∫ π

−π
sin(nx) sin(mx)dx = 0,

∫ π

−π
sin2(nx)dx =

∫ π

−π
cos2(nx)dx = π.

for n,m integers with n 6= m Finally
∫ π
−π dx = 2π.

Now if we can write

f(x) = a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)),
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for x ∈ (−π, π), then it follows that f(x + 2π) = f(x) for all x, since
sine and cosine are both periodic with period 2π. Multiplying both
sides by cos(nx) and integrating from −π to π, we arrive at

an =
1

π

∫ π

−π
f(x) cos(nx)dx, n = 1, 2, 3... (6.11)

a0 =
1

2π

∫ π

−π
f(x)dx. (6.12)

Similarly we have

bn =
1

π

∫ π

−π
f(x) sin(nx)dx. (6.13)

These numbers are known as the Fourier sine and cosine coefficients.
We will write

f(x) ∼ a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx))

to indicate that the Fourier series for the function on the right is given
by the expression on the left. We are not yet claiming that a function
is actually equal to its Fourier series.

Example 6.2. Let us find the Fourier expansion for the function
f(x) = x, −π < x < π, f(x+ 2π) = f(x) for all x. We have

bn =
1

π

∫ π

−π
x sin(nx)dx = 2

(−1)n+1

n
. (6.14)

Integration also shows that a0 = 0 and an = 0 for all n. Thus

f(x) ∼ 2
∞∑
n=1

(−1)n+1

n
sin(nx). (6.15)

As mentioned above, we are not claiming that the function is actually
equal to its Fourier series. This remains to be seen. A simple test is
to plot the function against the series. Since we cannot add an infinite
number of terms, we compare f with the Nth partial sum of the series.
That is, we compare f with

SN(x) = a0 +
N∑
n=1

(an cos(nx) + bn sin(nx)). (6.16)

We will take N = 100. Does the Fourier series actually converge to f
for this example? The graphical evidence suggests that it does, but
this is not proof. We see that the sum of the first 100 terms does give
a good approximation to f away from the end points of the interval.
The jagged behaviour near the end points is a well known property of
Fourier sine series, which is called the Gibb’s phenomenon.
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Figure 6. The sum of the first one hundred terms of
the Fourier series for x.

Example 6.3. Now we compute the Fourier series for

f(x) = x2, −π < x < π,

f(x) = f(x+ 2π) for all x. We have

bn =
1

π

∫ π

−π
x2 sin(nx)dx = 0 (6.17)

an =
1

π

∫ π

−π
x2 cos(nx)dx = 4

(−1)n

n2
, a0 =

1

2π

∫ π

−π
x2dx =

π2

3
. (6.18)

The Fourier series is therefore

f(x) ∼ π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx). (6.19)

Let us now plot the sum of the first 100 terms of this series. We see
from the graph (Figure 7 below) that it gives a very good approximation
to f . Notice also that the jagged behaviour near the end points that
appeared with the Fourier sine series is absent for this series involving
only cosines.

Example 6.4. Let us consider a more complicated example. We let
g(x) = x3 + 3x2 − 25 sin2 x, −π < x < π, f(x + 2π) = f(x) for all x.
Calculating the Fourier coefficients we have

a0 =
1

2π

∫ π

−π
g(x)dx =

1

2

(
−25 + 2π2

)
. (6.20)

For the cosine coefficients, there is a subtle feature which needs to be
incorporated. For n = 2

1

π

∫ π

−π
sin2(x) cos(2x)dx = −1

2
, (6.21)
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Figure 7. The sum of the first one hundred terms of
the Fourier series for x2.
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Figure 8. The graph of g.

but for all other non zero values of n we have

1

π

∫ π

−π
sin2(x) cos(2x)dx = 0. (6.22)

For the coefficients we therefore have

an =
1

π

∫ π

−π
g(x) cos(nx)dx = 12

(−1)n

n2
, n 6= 2 (6.23)

bn =
1

π

∫ π

−π
g(x) sin(nx)dx =

2(−1)n+1 (n2π2 − 6)

n3
. (6.24)

Thus, incorporating the extra cosine term at n = 2, we have

g(x) ∼ 1

2
(2π2 − 25) +

25

2
cos(2x)+

∞∑
n=1

(
12

(−1)n

n2
cos(nx) +

2(−1)n+1 (n2π2 − 6)

n3
sin(nx)

)
.

From the graph the match appears to be quite good.
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Figure 9. The graph of g against the sum of the first
100 terms of the Fourier series.

6.2.1. Even and Odd Functions. The evaluation of Fourier series is
aided by the observation that if f is an odd function, then

a0 =
1

2π

∫ π

−π
f(x)dx =

1

2π

(∫ 0

−π
f(x)dx+

∫ π

0

f(x)dx

)
=

1

2π

(
−
∫ π

0

f(x)dx+

∫ π

0

f(x)dx

)
= 0.

an =
1

2π

∫ π

−π
f(x) cos(nx)dx

=
1

2π

(∫ 0

−π
f(x) cos(nx)dx+

∫ π

0

f(x) cos(nx)dx

)
=

1

2π

(
−
∫ π

0

f(x) cos(nx)dx+

∫ π

0

f(x) cos(nx)dx

)
= 0.

We have used f(−x) = −f(x) and used the change of variables x→ −x
in the first integrals. Similarly if f is even, we easily show that bn = 0.
Thus the Fourier series for even functions contain only cosines and the
Fourier series for odd functions contain only sines.

Another important result about Fourier coefficients is the Riemann-
Lebesgue Lemma.

Lemma 6.2 (Riemann-Lebesgue). Let f be differentiable on [−π, π].
Then

lim
n→∞

∫ π

0

f(x) sin(nx)dx = lim
n→∞

∫ 0

−π
f(x) sin(nx)dx = 0 (6.25)

lim
n→∞

∫ π

0

f(x) cos(nx)dx = lim
n→∞

∫ 0

−π
f(x) cos(nx)dx = 0 (6.26)

The proof is a tutorial exercise.
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6.3. The Convergence of Fourier Series. The question of whether
a Fourier series converges and to what it converges, is in general a
difficult one to answer. There are still interesting problems in the
subject, but a good deal is known. We can actually make very strong
statements if we make moderate assumptions on the function f. Let us
first consider an example where we can prove convergence easily.

Example 6.5. Consider the Fourier series for f(x) = x2 on (−π, π)
given by

π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx). (6.27)

Now fn(x) = 4 (−1)n

n2 cos(nx) satisfies |fn(x)| ≤ 4
n2 and

∑∞
n=1

4
n2 < ∞.

So the Fourier series converges uniformly. Since each function is con-
tinuous, the limit is a continuous function.

We have established that a particular Fourier series converges to a
continuous function, but this does not tell us that the limit function
is the original function. The graphical data suggests that the Fourier
series does recover the original function, but this is not proof.

We might anticipate that the convergence of a Fourier series is related
to the smoothness of the function, because the rate at which the Fourier
coefficients decay is determined by the differentiability of the function.

Definition 6.3. We say that a function f is of order g(x), written
O(g(x)) if there is a constant C such that for x large |f(x)| ≤ C|g(x)|.

Proposition 6.4. Let f be twice continuously differentiable and 2π
periodic. Then the Fourier coefficients an, bn are both O(1/n2).

Proof. Consider the sine coefficients.

πbn =

∫ π

−π
f(x) sin(nx)dx

=

[
−f(x)

cos(nx)

n

]π
−π

+
1

n

∫ π

−π
f ′(x) cos(nx)dx

=
1

n2
[f ′(x) sin(nx)]

π
−π −

1

n2

∫ π

−π
f ′′(x) sin(nx)dx

= − 1

n2

∫ π

−π
f ′′(x) sin(nx)dx.

We used the fact that f is periodic, so f(π) = f(−π) and cos is even.
So that

|bn| ≤
1

πn2

∫ π

−π
|f ′′(x)|dx. (6.28)

We take C = π−1
∫ π
−π |f

′′(x)|dx. The proof for an is basically identical.
�
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We can relax the boundary conditions on f but we will not consider
this. Generally speaking, the more derivatives of f that exist, the faster
the coefficients an, bn will decay.

Differentiability cannot be relaxed. It is possible to find examples of
continuous functions, but non-differentiable functions, whose Fourier
series do not converge at all. However, if we assume differentiability,
then we can establish convergence. The first theorem of this type was
proved by Dirichlet.

Theorem 6.5 (Dirichlet). Let f be a piecewise differentiable function
on (−π, π) and suppose that its Fourier series is

f(x) ∼ a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)),

where the Fourier coefficients are as stated above. If f is also con-
tinuous at x0, then the Fourier series converges to f(x0) at x0. If
f is piecewise continuous at x0, then the Fourier series converges to
1
2
[f(x+

0 ) + f(x−0 )] at x0. Here

f(x+
0 ) = lim

x→x0+
f(x), f(x−0 ) = lim

x→x0−
f(x).

Proof. Let

Sn(x0) = a0 +
n∑
k=1

(an cos(kx0) + bn sin(kx0)).

We wish to show that limn→∞ Sn(x0) = 1
2
[f(x+

0 ) + f(x−0 )]. To this end
we observe that replacing the Fourier coefficients with their integral
expressions gives us

Sn(x0) =
1

2π

∫ π

−π

(
f(t) + 2

n∑
k=1

f(t)[cos(kt) cos(kx0) + sin(kt) sin(kx0)]

)
dt

=
1

π

∫ π

−π
f(t)

[
1

2
+

n∑
k=1

cos(k(t− x0))

]
dt

=
1

π

∫ π

−π
f(t)Dn(t− x0)dt.

Here Dn(θ) is the so called Dirichlet kernel2 defined by

Dn(θ) =
1

2
+

n∑
k=1

cos(kθ). (6.29)

2If we define (Tf)(y) =
∫ b

a
f(x)k(x, y)dx, the function k(x, y) is known as the

kernel of the operator T .
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Now if g has period 2π then
∫ π−x
−π−x g(t)dt =

∫ π
−π g(t)dt for any x. Thus

putting u = t− x0 we have

Sn(x0) =
1

π

∫ π

−π
f(x0 + u)Dn(u)du

=
1

π

∫ 0

−π
f(x0 + u)Dn(u)du+

1

π

∫ π

0

f(x0 + u)Dn(u)du.

Now we need to know more about Dn. We can actually sum the ex-
pression for the kernel explicitly. Since cos(kθ) = <(eikθ) we have

n∑
k=1

cos(kθ) = <

(
n∑
k=1

eikθ

)
= <

(
eiθ
(
einθ − 1

)
eiθ − 1

)
.

Here < denotes the real part. The right side is a geometric sum with
common ratio eiθ, which is easily summed. If cos(kθ) = 1, the sum is
n. Now

eiθ
(
einθ − 1

)
eiθ − 1

=
eiθ
(
einθ − 1

)
eiθ/2(eiθ/2 − e−iθ/2)

=
eiθ/2

(
einθ − 1

)
2i sin(θ/2)

=
ei(n+1/2)θ

(
einθ/2 − e−inθ/2

)
2i sin(θ/2)

=
ei(n+1/2)θ sin(nθ/2)

sin(θ/2)
.

Thus

1

2
+ <

(
n∑
k=1

eikθ

)
=

1

2
+ cos([n+

1

2
]θ)

sin(nθ/2)

sin(θ/2)

= − sin2

(
nθ

2

)
+ cot

(
θ

2

)
sin

(
nθ

2

)
cos

(
nθ

2

)
+

1

2

=
1− 2 sin2

(
nθ
2

)
+ 2 cot

(
θ
2

)
sin
(
nθ
2

)
cos
(
nθ
2

)
2

=
cos2

(
nθ
2

)
− sin2

(
nθ
2

)
+ 2 cot

(
θ
2

)
sin
(
nθ
2

)
cos
(
nθ
2

)
2

=
cos(nθ) + cot(θ/2) sin(nθ)

2

=
sin(θ/2) cos(nθ) + cos(θ/2) sin(nθ)

2 sin(θ/2)
.
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So we have

Dn(θ) =


n+ 1

2
, θ = 2Nπ,N = 0,±1,±2, ...

sin([n+ 1
2
]θ)

2 sin(θ/2)
. otherwise.

(6.30)

It is also easy to see that
∫ π

0
Dn(θ)dθ =

∫ 0

−πDn(θ)dθ = π/2. In view of
these integrals we can write

1

2
[f(x+

0 ) + f(x−0 )] =
1

π

∫ π

0

f(x+
0 )Dn(u)du+

1

π

∫ 0

−π
f(x−0 )Dn(u)du.

Notice that f(x+
0 ), f(x−0 ) do not depend on u and so can be taken

outside the integrals, and the integrals cancel half the factor of 1/π.
Because of all this, we have

Sn(x0)− 1

2
[f(x+

0 ) + f(x−0 )] =
1

π
(An(x0) +Bn(x0)),

where

An(x0) =

∫ π

0

[f(x0 + u)− f(x+
0 )]Dn(u)du, (6.31)

Bn(x0) =

∫ 0

−π
[f(x0 + u)− f(x−0 )]Dn(u)du. (6.32)

If we can show that An(x0), Bn(x0)→ 0 as n→∞, then we are done.
We will only consider the case for An(x0) since the case for Bn(x0) is
basically the same. Using the expression for Dn we can write

An(x0) =

∫ π

0

f(x0 + u)− f(x+
0 )

u

u/2

sin(u/2)
sin([n+

1

2
]u)du. (6.33)

Using the expansion for sin(A+B) this can be expressed as

An(x0) =

∫ π

0

φ(u) cos(nu)du+

∫ π

0

ψ(u) sin(nu)du

where

φ(u) =
f(x0 + u)− f(x+

0 ))

u

u

2
, (6.34)

ψ(u) =
f(x0 + u)− f(x+

0 ))

u

u/2

sin(u/2)
cos(u/2). (6.35)

We assumed that f was piecewise differentiable, so that both φ and ψ
are piecewise continuous on [0, π] and hence the integrals exist. So we
can apply the Riemann-Lebesgue Lemma to the two integrals to con-
clude that limn→∞An(x0) = 0. The same argument works for Bn(x0)
and the theorem follows. �
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Example 6.6. Consider the function f(x) = x, −π < x < π. We
computed the Fourier series for this previously. The function is differ-
entiable and continuous for all x ∈ (−π, π), so that at x = π

2
, we may

write

π = 2× 2
∞∑
n=1

(−1)n+1

n
sin(

nπ

2
)

= 4(1− 1

3
+

1

5
+

1

7
− 1

9
+ · · · ).

This is a famous series for π that was discovered in India about 1000
years ago. It is also known as Leibnitz’s series.

Example 6.7. We consider the piecewise differentiable function

f(x) =

{
1 0 ≤ x < π

x −π < x < 0.
(6.36)

Without computing the Fourier series, we can see that at x = 0 the
Fourier series will converge to 1/2(0+1) = 1/2. We compute the Fourier
coefficients to give

a0 =
1

2π

(∫ 0

−π
xdx+

∫ π

0

dx

)
=

2− π
4

,

an =
1

2π

(∫ 0

−π
x cos(nx)dx+

∫ π

0

cos(nx)dx

)
= −−1 + (−1)n

n2π
,

and

bn =
1

2π

(∫ 0

−π
x sin(nx)dx+

∫ π

0

sin(nx)dx

)
= −−1 + (−1)n + (−1)nπ

nπ
.

Thus by Dirichlet’s Theorem for x ∈ (−π, π), x 6= 0

f(x) =
2− π

4
−
∞∑
n=1

−1 + (−1)n

n2π
cos(nx)

+
∞∑
n=1

−1 + (−1)n + (−1)nπ

nπ
sin(nx)).

The graph shows that at x = 0, the Fourier series passes through 0.5.

It is quite important to realise that the assumption in Dirichlet’s
Theorem that f is differentiable, at least piecewise, cannot be relaxed.
That is, it is not sufficient to assume only that f is continuous. It is
possible to find continuous functions whose Fourier series diverge at
infinitely many points.
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Figure 10. The graph of f against the sum of the first
100 terms of the Fourier series.

6.3.1. The Gibbs-Wilbraham Phenomenon. In Figure 6.7 we can see an
example of what is commonly called the Gibbs Phenomenon. This is
the jagged behaviour of the graph of the partial sums as we approach a
point of discontinuity. Henry Wilbraham was actually the first person
to observe this phenomenon in a paper in 1848, which was largely
ignored. In 1898 Albert Michelson observed the phenomenon arising in
a machine he had constructed and in 1899 Gibbs wrote a paper which
gave an explanation of the phenomenon. Maxime Bocher provided a
detailed analysis in 1906 and called it the Gibbs phenomenon. It is
often now called the Gibbs-Wilbraham Phenomenon, in recognition of
Wilbraham’s earlier work.

The phenomenon is illustrated clearly by Figure 6.7. It is the succes-
sive undershooting and overshooting of the limit at the discontinuity
x0 as the number of terms in the partial sums SN(f, x0) increase. It
also refers to the fact that this overshooting and undershooting does
not die out as N increases, but actually converges to a limit.

The point where the maximum value of the overshooting (under-
shooting) occurs moves closer and closer to the point of discontinuity,
but the height of the overshoot (undershoot) converges to a fixed value.
The reason for this is that Dirichlet’s Theorem tells us that at the jump
discontinuity the Fourier series converges to 1/2(f(x+

0 ) + f(x−0 )). The
graph of the Fourier series approximation near a discontinuity can-
not be smooth because the actual function is not smooth there. The
height of the overshooting (undershooting) can be shown to converge
to 0.089a where a = f(x+

0 )− f(x−0 ). That is, the maximum overshoot
(undershoot) is about 9% of the jump at the discontinuity.

6.4. Parseval’s Theorem. A very useful fact about Fourier series is
that they preserves square integrals in a very precises sense.
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Theorem 6.6. Let f be a piecewise differentiable function on (−π, π).
Suppose that the Fourier sine coefficients are bn and the cosine coeffi-
cients are an. Then the following equality holds

1

π

∫ π

−π
|f(x)|2dx = 2a2

0 +
∞∑
n=1

(a2
n + b2

n). (6.37)

Sketch of proof. Let us briefly consider why this result is true. We will
not consider the question of convergence. Let us suppose that f is
differentiable, so that we know from Dirichlet’s Theorem that

f(x) = a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)). (6.38)

So that∫ π

−π
f(x)2dx =

∫ π

−π

(
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx))

)2

dx (6.39)

Now
∫ π
−π cos2(nx)dx =

∫ π
−π sin2(nx)dx = π,

∫ π
−π cos(nx) cos(mx)dx = 0

etc. When we expand the right side out we get terms of the form∫ π

−π
a2
n cos2(nx)dx,

∫ π

−π
b2
n sin2(nx)dx,

∫ π

−π
anam cos(nx) cos(mx)dx,

∫ π

−π
bnbm sin(nx) sin(mx)dx,∫ π

−π
anbm cos(nx) sin(mx)dx,

∫ π

−π
bnbm sin(nx) cos(mx)dx,∫ π

−π
a0am cos(nx)dx,

∫ π

−π
a0bn sin(nx)

and the first term is
∫ π
−π a

2
0dx = 2πa2

0. Now
∫ π
−π a

2
n cos2(nx)dx = a2

nπ,∫ π
−π b

2
n sin2(nx)dx = b2

nπ,
∫ π
−π anam cos(nx) cos(mx)dx = 0 etc. Com-

bining these gives the result. The case when f is piecewise differentiable
is a little more involved, since we need to be careful about what happens
on the left hand side at any point where there is a jump discontinuity
in f. However it can be shown that the resulting integral does indeed
equal

∫ π
−π(f(x))2dx. �

Example 6.8. We have computed the Fourier series for f(x) = x

previously. We found that an = 0 and bn = 2 (−1)n

n
. So by Parseval’s

equality

∞∑
n=1

b2
n =

∞∑
n=1

4

n2
=

1

π

∫ π

−π
x2dx =

2π2

3
. (6.40)
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If we rearrange this we have the famous result of Euler that
∞∑
n=1

1

n2
=
π2

6
. (6.41)

Example 6.9. Now let us consider the case when f(x) = x2. The

Fourier coefficients are bn = 0, an = 4 (−1)n

n2 , a0 = π2

3
. From Parseval’s

Theorem we find that

2
π4

9
+
∞∑
n=1

16

n4
=

1

π

∫ π

−π
x4dx =

2π4

5
. (6.42)

From this we find that
∞∑
n=1

1

n4
=
π4

90
. (6.43)

This is another formula originally due to Euler.

Example 6.10. As a final example, we consider the Fourier series of
f(x) = x3, −π < x < π, f(x+2π) = f(x). Then the cosine coefficients
are all zero and

bn =
1

π

∫ π

−π
x3 sin(nx)dx =

2(−1)n+1 (n2π2 − 6)

n3
. (6.44)

Now
1

π

∫ π

−π
x3dx =

2π6

7
,

hence
∞∑
n=1

b2
n =

2π6

7
. (6.45)

Now

b2
n =

4π4

n2
− 48π2

n4
+

144

n6
.

Consequently
∞∑
n=1

(
4π4

n2
− 48π2

n4
+

144

n6

)
=

2π6

7
. (6.46)

So we can rearrange this to get
∞∑
n=1

144

n6
=

2π6

7
+
∞∑
n=1

48π2

n4
−
∞∑
n=1

4π4

n2

=
2π6

7
+ 48π2π

4

90
− 4π6π

2

6

=
16π6

105
.
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From which we deduce that
∞∑
n=1

1

n6
=

π6

945
. (6.47)

Again, this is a result of Euler.

Actually Euler was able to produce a general formula for
∞∑
n=1

1

n2k
.

However to this day, there is no known method of evaluating the cor-
responding sums when the exponent is odd. So for example, we do not

know the exact value of
∞∑
n=1

1

n3
. Apery proved in 1978 that the sum is

irrational and the sum is now known as Apery’s constant. It is also
known that one of

∞∑
n=1

1

n5
,
∞∑
n=1

1

n7
,
∞∑
n=1

1

n9
,
∞∑
n=1

1

n11

must be irrational, but not which one. This is an example of a curious
phenomenon in mathematics. Some problems in the case where a con-
stant or dimension is even are quite solvable, whereas the corresponding
problems in the odd case appear to be impossible.

The function

ζ(s) =
∞∑
n=1

1

ns
(6.48)

is known as the Riemann Zeta function. Euler showed the remarkable
relation of the function to the prime numbers.

Theorem 6.7 (Euler). Let s be a complex number. Then
∞∑
n=1

1

ns
=

∏
p prime

(
1− 1

ps

)−1

=
1(

1− 1
2s

) 1(
1− 1

3s

) 1(
1− 1

5s

) 1(
1− 1

7s

) 1(
1− 1

11s

) · · ·
The product is taken over all the prime numbers. Because of the

relation, the ζ function plays a central role in the theory of prime
numbers. It is called the Riemann zeta function because in one of
the most famous papers in mathematics, Riemann showed how the
function may be used to establish deep properties of the prime numbers
and essentially invented the branch of mathematics known as analytic
number theory. If s is allowed to be complex it turns out that ζ(s) = 0
has solutions. Riemann conjectured that every complex zero has the
form s = 1/2 + it for t ∈ R. This is known as the Riemann Hypothesis
and it is widely considered to be the most important unsolved problem
in mathematics.
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6.4.1. Fourier Series on (−L,L). Suppose that we wish to expand a
function which is defined on the interval (−L,L) and has period 2L.
This can easily be obtained by a change of variables. Suppose that f
has period T = 2L. We introduce the function g(x) = f

(
T
2π
x
)
. Then

it is clear that

g(x+ 2π) = f

(
T

2π
x+ T

)
= f

(
T

2π
x

)
= g(x).

Thus g has period 2π and so we can expand it in a standard Fourier
series. We therefore write

f

(
T

2π
x

)
∼ a0 +

∑
(an cos(nx) + bn sin(nx)) , (6.49)

where

a0 =
1

2π

∫ π

−π
f

(
T

2π
x

)
dx, (6.50)

an =
1

2π

∫ π

−π
f

(
T

2π
x

)
cos(nx)dx, (6.51)

bn =
1

2π

∫ π

−π
f

(
T

2π
x

)
sin(nx)dx. (6.52)

But if we put t = Tx/2π, then, using T = 2L the above becomes

f(t) ∼ a0 +
∑(

an cos(
nπt

L
) + bn sin(

nπt

L
)

)
, (6.53)

where

a0 =
1

2L

∫ L

−L
f(t)dt, (6.54)

an =
1

L

∫ L

−L
f(t) cos(

nπt

L
)dt, (6.55)

bn =
1

L

∫ L

−L
f(t) sin(

nπt

L
)dt. (6.56)

We are thus able to expand a function as a Fourier series on any sym-
metric interval. Dirichlet’s Theorem is unaltered, and Parseval’s The-
orem becomes

1

L

∫ L

−L
|f(t)|2dt = 2a2

0 +
∞∑
n=1

(a2
n + b2

n). (6.57)
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Example 6.11. Let f(t) = t2,−1 < t < 1 f(t + 2) = f(t) for all t.
The function is even, so the sine terms are all zero. We also have

a0 =
1

2

∫ 1

−1

t2dt =
1

3
, an =

∫ 1

−1

t2 cos(nπt)dt =
4(−1)n

n2π2
. (6.58)

Thus for t ∈ (−1, 1)

t2 =
1

3
+
∞∑
n=1

4(−1)n

n2π2
cos(nπt). (6.59)

6.5. Half Range Expansions. To solve the heat equation, we needed
to expand a function f on the interval [0, 1] in terms of sines. Is this
possible? To see how to achieve this, we introduce the notion of even
and odd extensions. Let f be defined on the interval [0, L). We wish
to extend it to the interval (−L,L). We can do this in any number of
ways. But there are two quite simple ones. First, we introduce the
even extension. We define

fE(x) =

{
f(x) x ∈ [0, L)

f(−x) x ∈ (−L, 0).

This is an even function which matches f on (0, L). Because it is an
even function, we can expand it in a series of cosines on the interval
(−L,L). Simple algebra shows that the Fourier cosine coefficients may
be calculated as

a0 =
1

L

∫ L

0

f(x)dx, (6.60)

and

an =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx. (6.61)

If f is piecewise differentiable, then the Fourier series for fE will
converge to f(x) on [0, L and to f(−x) on (−L, 0).

Similarly we can introduce the odd extension. We define

fE(x) =

{
f(x) x ∈ [0, L)

−f(−x) x ∈ (−L, 0).

We also must have f(0) = 0. This is an odd function which matches f
on (0, L). Because it is an odd function, we can expand it in a series of
sines on the interval (−L,L). The sine coefficients are given by

bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx. (6.62)

The sine series will converge to f on [0, L) and to −f(−x) on (−L, 0).
The point is that we can expand a piecewise differentiable function

on [0, L) as either a series of sines or cosines. The cosine series will
converge to the even extension and the sine series to the odd extension.
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What happens at L? This depends on how the function behaves at
zero. The examples should make this clear.

Example 6.12. Let us expand f(x) = x as a sine series on [0, 1). The
coefficients are

bn = 2

∫ 1

0

x sin(nπx)dx = 2
(−1)n+1

nπ
. (6.63)

We plot the sum of the first 100 terms on the whole of (−1, 1) below.
Notice that at L = ±1 we see the Gibbs phenomenon appearing. This

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 11. The graph of f against the sum of the first
100 terms of the Fourier sine series.

is because the periodised function is not continuous. If we now compute
the cosine series we find that a0 = 1/2 and

an =
2 (−1 + (−1)n)

n2π2
.

Now let us plot the sum of the first 100 terms of the cosine series.
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1

Figure 12. The graph of f against the sum of the first
100 terms of the Fourier cosine series.

Here the periodised function is continuous, so there is no Gibbs phe-
nomenon.
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Observe that the Fourier sine series returns an odd function, the
cosine series an even function. They both return f on the interval
[0, 1).

6.5.1. Complex Fourier Series. Since eix = cosx+ i sinx, it is possible
to rewrite the theory of Fourier series in terms of complex exponentials.
The theory is not very much changed, but the formula that we end up
with tend to be more compact. Given f we define the nth Fourier
coefficient of f as

f̂(n) =
1

2π

∫ π

−π
f(ϕ)e−inϕdϕ.

Some authors prefer the equivalent form

f̂(n) =
1

2π

∫ 2π

0

f(ϕ)e−inϕdϕ.

As long as the range of integration is 2π, then there is no practical
difference.

We can recover f from the Fourier coefficients by writing

f(θ) =
∞∑

n=−∞

f̂(n)einθ. (6.64)

General treatments of Fourier series often use the complex form because
it is technically more convenient, though it is equivalent to the form
we have already seen. As before, the Fourier coefficients decay to zero
as n increases.

Lemma 6.8 (Riemann-Lebesgue). Let f be continuous on I and peri-

odic on R with period 2π. Then limn→∞ |f̂(n)| = 0.

Proof. We have

f̂(n) =
1

2π

∫ π

−π
f(ϕ)e−inϕdϕ

=
1

2π

∫ π+π
n

−π+π
n

f(ϕ+
π

n
)e−in(ϕ+π

n
)dϕ

= − 1

2π

∫ π

−π
f(ϕ+

π

n
)e−inϕdϕ.

So that

2f̂(n) =
1

2π

∫ π

−π
(f(ϕ)− f(ϕ+

π

n
))e−inϕdϕ.

Hence

|f̂(n)| ≤ 1

4π

∫ π

−π
|f(ϕ)− f(ϕ+

π

n
)|dϕ.
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The integrand is bounded, so we can take the limit as n→∞ through
the integral. Thus

0 ≤ lim
n→∞

|f̂(n)| ≤ lim
n→∞

1

4π

∫ π

−π
|f(ϕ)− f(ϕ+

π

n
)|dϕ

=
1

4π

∫ π

−π
lim
n→∞

|f(ϕ)− f(ϕ+
π

n
)|dϕ = 0.

�

Convergence of the Fourier series is covered by the complex form of
Dirichlet’s Theorem, which we present in the case where f is differ-
entiable. The proof is similar to that of the previous version of the
theorem.

Theorem 6.9 (Dirichlet). Suppose that f ∈ L1(I) and that f ′(θ0)
exists. (I = [−π, π], or equivalently [0, 2π).) Let

(SNf)(θ) =
N∑

n=−N

f̂(n)einθ.

Then limN→∞(SNf)(θ0) = f(θ0). That is, the Fourier series for f con-
verges to f at a point where f is differentiable.

Fourier series for

f ∈ L2(I) =

{
f : I → C :

∫ π

−π
|f(x)|2dx <∞

}
,

are very well behaved. The most important result is due to Riesz and
Fischer. We will not prove this result. We can of course replace [−π, π]
with [0, 2π].

Theorem 6.10 (Riesz-Fischer). Suppose that f ∈ L2(I). Then

lim
N→∞

‖SNf − f‖2 = 0,

where ‖h‖2 =
(∫ π
−π |h(θ)|2dθ

)1/2

. Further, if we define

‖f‖2 =
1

2π

∫ π

−π
|f(x)|2dx,

then
∞∑

n=−∞

|f̂(n)|2 = ‖f‖2. (6.65)

Conversely, suppose that {an}∞n=−∞ is a two sided sequence of complex
numbers such that

∑∞
n=−∞ |an|2 <∞. Then there is a unique f ∈ L2(I)

such that an = f̂(n) for each n.
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6.6. More on Separation of Variables. We have seen that the heat
equation can be solved by means of separation of variables. Using
Dirichlet’s Theorem we see that

ut = kuxx, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0

u(x, 0) = f(x)

has a solution given by

u(x, t) = 2
∞∑
n=1

{∫ 1

0

f(y) sin(nπy)dy

}
sin(nπx)e−n

2π2t. (6.66)

whenever f is piecewise differentiable.

Example 6.13. We take f(x) = x(1− x) and set k = 1. Then

bn = 2

∫ 1

0

y(1− y) sin(nπy)dy = 4
1− (−1)n

n3π3
. (6.67)

So the solution is

u(x, t) =
∞∑
n=1

4
1− (−1)n

n3π3
sin(nπx)e−n

2π2t

=
∞∑
n=1

8

(1 + 2n)3π3
sin((2n+ 1)πx)e−(2n+1)2π2t. (6.68)

Let us see what the solution looks like. Notice that it decays very
quickly as t increases. This is because of the exponential factors e−n

2π2t

in the solution.
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1.0

0
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2
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0.0000

0.0001

0.0002

0.0003

Figure 13. The solution for 0 ≤ x ≤ 1, 0 ≤ t ≤ 2.
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We have so far considered only the simplest problem for the heat
equation. There are many more kinds of problems which can be solved
by Fourier series methods. For example, suppose we want to solve

ut = uxx, x ∈ [0, L], t ≥ 0, (6.69)

u(x, 0) = f(x), ux(0, t) = ux(L, t) = 0. (6.70)

Again we use separation of variables, but now the equation X ′′ = λX
has the boundary conditions X ′(0) = X ′(L) = 0 and the eigenfunctions
are of the form cos

(
nπx
L

)
. The solution is then given by a Fourier cosine

series. We leave this as an exercise.
We might have a more general problem like

ut = uxx, x ∈ [0, L], t ≥ 0, (6.71)

u(x, 0) = f(x), u(0, t) = q(t), u(L, t) = p(t), (6.72)

where q and p are given functions of t. The approach we take here is
to look for a solution of the form

u(x, t) = v(x, t) +
L− x
L

q(t) +
x

L
p(t),

where v(0, t) = v(L, t) = 0 and v(x, 0) = f(x) − L−x
L
q(0) − x

L
p(0).

Observe also that uxx = vxx and

ut = vt +
L− x
L

q′(t) +
x

L
p′(t).

So that v must satisfy

vt = vxx + F (x, t) (6.73)

v(x, 0) = h(x), v(0, t) = v(L, t) = 0 (6.74)

where h(x) = f(x)− L−x
L
q(0)− x

L
p(0) and F (x, t) = −L−x

L
q′(t)− x

L
p′(t).

This leads us to consider how we can solve an equation with a source
term like F (x, t). Physically we can think of F as the heat being put
into the system by an external source.

To solve this problem we look for a solution of the form

v(x, t) =
∞∑
n=1

cn(t) sin(λnx)e−λ
2
nt (6.75)

where the eigenvalues are λn = nπ/L. We further assume that we can
write F as a Fourier series

F (x, t) =
∞∑
n=1

Fn(t) sin(λnx)e−λ
2
nt (6.76)

with

Fn(t)e−λ
2
nt =

2

L

∫ L

0

F (x, t) sin(λnx)dx. (6.77)
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Substituting our expressions for v and F into the PDE we get c′n(t) =

Fn(t) with cn(0) = 2
L

∫ L
0
h(x) sin(λnx)dx = an. So that

cn(t) = an +

∫ t

0

Fn(s)ds.

This leads to the solution

v(x, t) =
∞∑
n=1

an sin(λnx)e−λ
2
nt +

∞∑
n=1

(∫ t

0

Fn(s)ds

)
sin(λnx)e−λ

2
nt.

(6.78)

We can solve other boundary value problems for the heat equation
by variations of this method. Now however we apply our Fourier series
methods to the wave equation.

6.7. The Wave Equation. We solve the following problem for the
wave equation in one space dimension.

1

c2
utt = uxx

u(0, t) = u(L, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x).

We assume that f, g are both piecewise differentiable.
The wave equation models the behavior of a wave propagating in the

x direction as t varies. For example, consider a guitar string fixed at
two points. The initial profile of the string will be a straight line above
the neck and sound board of the instrument. When plucked, the string
will vibrate, producing sound. The height of the string at at any point
along its length at time t, will be given by u(x, t), where u satisfies the
wave equation. In the problem stated here, we also specify the initial
velocity of the wave, ut(x, 0). The end points of the string are fixed at
height 0.

Once more we look for a separable solution. This means setting
u(x, t) = X(x)T (t). Then, as with the heat equation, we have X(0) =
X(L) = 0 and further

1

c2

T ′′

T
=
X ′′

X
= λ, (6.79)

where λ is the separation constant.
The problem for X is exactly the same as for the heat equation.

There are three possible cases, with λ = k2 > 0, λ = 0, λ = −k2.
Choosing λ = k2 gives X(x) = Aekx+Be−kx and the conditions X(0) =
X(L) = 0 lead to conclusion that A = B = 0. Thus we cannot get a
nonzero X from this choice of λ.
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Similarly the case λ = 0 also leads to X(x) = 0, just as for the heat
equation case. Finally we let λ = −k2 and this gives

X(x) = A cos(kx) +B sin(kx).

The boundary conditions X(0) = X(L) = 0 give A = 0 and kL = nπ.
Hence we can conclude that

X(x) = B sin
(nπ
L
x
)
,

and k = nπ
L
.

Thus λ = −n2π2

L2 , which means that

T ′′ = −n
2π2c2

L2
T.

Solving gives

T (t) = C cos
(nπc
L
t
)

+D sin
(nπc
L
t
)

(6.80)

and the separable solutions of the wave equation satisfying our bound-
ary conditions are

u(x, t) = B sin
(nπ
L
x
)(

C cos
(nπc
L
t
)

+D sin
(nπc
L
t
))

. (6.81)

The idea then is to satisfy the initial conditions by taking a linear
combination of solutions to give

u(x, t) =
∞∑
n=1

[
An sin

(nπ
L
x
)

cos
(nπc
L
t
)

+Bn sin
(nπ
L
x
)

sin
(nπc
L
t
)]
.

(6.82)

Since u(x, 0) = f(x) we require

u(x, 0) = f(x) =
∞∑
n=1

An sin
(nπ
L
x
)
. (6.83)

As in the heat equation case

An =
2

L

∫ L

0

f(y) sin
(nπ
L
y
)
dy. (6.84)

We also have ut(x, 0) = g(x) and so differentiating (6.82) with respect
to t, gives

ut(x, 0) = g(x) =
∞∑
n=1

nπc

L
Bn sin

(nπ
L
x
)
. (6.85)

Therefore nπc
L
Bn must be equal to the Fourier sine coefficients of g,

giving

Bn =
2

nπc

∫ L

0

g(y) sin
(nπ
L
y
)
dy. (6.86)
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A solution of the wave equation satisfying the given conditions is
therefore

u(x, t) =
∞∑
n=1

(
2

L

∫ L

0

f(y) sin
(nπ
L
y
)
dy

)
sin
(nπ
L
x
)

cos
(nπc
L
t
)

+
∞∑
n=1

(
2

nπc

∫ L

0

g(y) sin
(nπ
L
y
)
dy

)
sin
(nπ
L
x
)

sin
(nπc
L
t
)
.

(6.87)

Example 6.14. We take L = 1, f(x) = x(1− x), g(x) = x. Then

An = 2

∫ 1

0

y(1− y) sin(nπy)dy = 4
1− (−1)n

n3π3
, (6.88)

Bn =
2

nπc

∫ 1

0

y sin(nπy)dy = 2
(−1)n+1

n2π2c
. (6.89)

This leads to the solution

u(x, t) =
∞∑
n=1

4
1− (−1)n

n3π3
sin (nπx) cos (nπct)

+
∞∑
n=1

2
(−1)n+1

n2π2c
sin (nπx) sin (nπct) .

Now we plot the solution for 0 ≤ t ≤ 5. We take c = 1 for convenience.

0.0

0.5

1.0

0
2

4

-0.2

0.0

0.2

Figure 14. The solution of the wave equation for c =
1, 0 ≤ x ≤ 1, 0 ≤ t ≤ 5.
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The wave like behaviour of the solution is clear from the three di-
mensional graph. The wave equation is one of the most important
equations in physics. In three dimensions it is used to model radio and
other electromagnetic waves, as well as water waves, sound waves and
many other phenomena.

6.8. Laplace’s Equation. The third equation that we will consider
is the Laplace equation. This is the equation

n∑
k=1

∂2u

∂x2
k

= ∆u = 0. (6.90)

The operator ∆ =
∑n

k=1
∂2

∂x2k
is called the Laplacian. We will focus

on Laplace’s equation for n = 2. However some general considerations
will be in order.

Equations of different types have different properties. For elliptic
equations, one of the most important properties is the maximum prin-
ciple. We will state it for the Laplace equation.

Theorem 6.11. Let ∆u = 0 on the domain Ω ⊂ Rn. Then the maxi-
mum and minimum values of the solution u will occur on the boundary
of Ω.

An application of this result follows.

Theorem 6.12. Consider the Dirichlet problem for the Laplace equa-
tion: Solve

∆u = 0, x ∈ Ω ⊂ Rn (6.91)

u
∣∣
∂Ω

= f, (6.92)

where ∂Ω is the boundary of Ω. If a solution to this problem exists, then
it is unique.

In the Dirichlet problem, we solve the Lalplace equation on some re-
gion of space, and insist that the solution be given by a known function
f on the boundary of the domain.

Proof. Suppose that u, v both satisfy the Dirichlet problem. We wish
to show that u = v. Observe that w = u−v satisfies Laplace’s equation.
Moreover,

w
∣∣
∂Ω

= u
∣∣
∂Ω
− v
∣∣
∂Ω

= f − f = 0.

Thus w is a solution of Laplace’s equation which is equal to zero on
the boundary of Ω. But by the maximum principle, the maximum and
minimum values of w are both zero, so w = 0. But this means that
u = v. �

Another important result is Harnack’s inequality.
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Theorem 6.13 (Harnack). If u is continuous on the closed ball |x −
x0| ≤ R on Rn centered at x0 and harmonic on its interior, then for
every point x with |x− x0| = r < R,

1− (r/R)

[1 + (r/R)]n−1
u(x0) ≤ u(x) ≤ 1 + (r/R)

[1− (r/R)]n−1
u(x0).

On R2 the inequality can be written:

R− r
R + r

u(x0) ≤ u(x) ≤ R + r

R− r
u(x0).

This has many consequences. A simple one is that if u(x0) = 0, then
the solution is zero everywhere.

The problem of studying Laplace’s equation is so important that it
makes up its own branch of mathematics, which is known as Potential
Theory. The maximum principle and Harnack’s inequality are funda-
mental to this subject.

We will solve Laplace’s equation by separation of variables, as we
did the wave and heat equations.

Example 6.15. We solve Laplace’s equation on a rectangular region.

uxx + uyy = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b

u(0, y) = 0, u(a, y) = 0, u(x, b) = 0, u(x, 0) = f(x).

As before we look for a separable solution, setting u(x, y) = X(x)Y (y).
This leads to

X ′′

X
= −Y

′′

Y
= λ, (6.93)

where λ is the separation constant. We require X(0) = X(a) = 0 and
Y (b) = 0. Applying the arguments as we used in the heat and wave

equation examples, we find that λ = −n2π2

a2
and X(x) = B sin

(
nπ
a
x
)
.

Solving the equation for Y gives

Y (y) = C cosh
(nπ
a
y
)

+D sinh
(nπ
a
y
)
. (6.94)

The condition Y (b) = 0 gives

C = −D
sinh

(
nπ
a
y
)

cosh
(
nπ
a
y
) . (6.95)

This gives

Y (y) = −Dsech

(
bnπ

a

)
sinh

(
nπ(b− y)

a

)
. (6.96)

We therefore have

u(x, y) = −BD sin
(nπ
a
x
) sinh

(
nπ(b−y)

a

)
cosh

(
nπb
a

) . (6.97)
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Seeking a solution by using the superposition of solutions, we find that

u(x, y) =
∞∑
n=1

An sin
(nπ
a
x
) sinh

(
nπ(b−y)

a

)
cosh

(
nπb
a

) . (6.98)

so that

u(x, 0) = f(x) =
∞∑
n=1

An sin
(nπ
a
x
)

tanh

(
nπb

a

)
. (6.99)

So we have

An =
2

a tanh
(
nπb
a

) ∫ a

0

f(x) sin
(nπ
a
x
)
dx. (6.100)

The unique solution of Laplace’s equation with these conditions is
therefore

u(x, y) =
∞∑
n=1

(
2
∫ a

0
f(z) sin

(
nπ
a
z
)
dz

a tanh
(
nπb
a

) )
sin
(nπ
a
x
) sinh

(
nπ(b−y)

a

)
cosh

(
nπb
a

) .

Let us evaluate this for a = b = 1, f(x) = x(1 − x). The Fourier
coefficients were computed above for the wave equation example. The
graph of the solution is given below. Observe that both the maximum

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.1

0.2

Figure 15. The solution of the Laplace equation.

and minimum values of the solution occur on the boundary of the
square.
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6.9. The Poisson Integral Formula for the Disc. In many prob-
lems, we are required to solve Laplace’s equation on a circular region,
with the value of the solution specified on the boundary. A famous the-
orem in complex analysis, called the Riemann Mapping Theorem, tells
us that any simply connected region in the complex plane can be trans-
formed into the unit disc, by a conformal mapping − a transformation
which preserves angles between vectors.

Laplace’s equation arises in many physical applications. For exam-
ple, consider the wing of an aircraft. A major problem in aircraft design
is to calculate how much lift there will be on a wing at a given height
and velocity. For this calculation we have to solve Laplace’s equation.
But a cross section of a wing is an odd shape, and solving Laplace’s
equation on this region is difficult. Therefore, a conformal mapping is
applied and the whole problem is converted to solving Laplace’s equa-
tion on the disc. Then the solution is mapped back to give the solution
on the original region and so we can work out how much lift our aircraft
will have.

Consequently, it is of great importance to be able to solve Laplace’s
equation on a disc, subject to a given boundary condition. We only
discuss the simplest case of the problem.

We solve the Laplace equation on the disc

DR = {(x, y) ∈ R2| x2 + y2 < R2},

subject to the conditions u(R, θ) = f(θ) and u(r, θ) is finite as r → 0+.
Note: This is clearly the Dirichlet problem for the Laplace equation
on a disc.

We convert Laplace’s equation to polar coordinates. That is, we let
x = r cos θ and y = r sin θ. By using the chain rule, we see that in polar
coordinates the Laplace equation becomes

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0. (6.101)

We look for a separable solution u(r, θ) = V (r)Φ(θ). Then the Laplace
equation is

(V ′′(r) +
1

r
V ′(r))Φ(θ) +

1

r2
V Φ′′(θ) = 0, (6.102)

which separates to give

1

V
(r2V ′′(r) + rV ′(r)) = − 1

Φ
Φ′′(θ). (6.103)

Since the left hand side is a function of r only and the right hand side
is a function of θ only, then both the left and right must equal some
constant λ. Thus

1

V
(r2V ′′(r) + rV ′(r)) = λ. (6.104)
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We will see that it is convenient to set λ = n2, where n is an integer.
Consequently

r2V ′′(r) + rV ′(r)− n2V (r) = 0. (6.105)

This is an Euler type equation and it has solutions of the form V (r) =
ra. Substitution shows that a must satisfy the quadratic equation a2−
n2 = 0. This gives the general solution for V as

V (r) = Arn +Br−n (6.106)

where A and B are constants.
Now we insist that u is finite as r → 0+. Since our solution is u = V Φ,

this tells us that B = 0, since r−n →∞ as r → 0+.
The equation for Φ is Φ′′(θ) = −n2Φ(θ) which has solution Φ(θ) =

Ceinθ + De−inθ. Hence the solution of the Laplace equation that we
obtain from separation of variables with this choice of λ is

u(r, θ) = Arn(Ceinθ +De−inθ), n = 0, 1, 2, 3, ....

We want to satisfy the boundary condition u(a, θ) = f(θ). To this
end we try a superposition of solutions. We set

u(r, θ) =
∞∑
n=0

rn(Ane
inθ + A−ne

−inθ)

=
∞∑

n=−∞

r|n|Ane
inθ. (6.107)

If u(R, θ) = f(θ), 0 ≤ θ < 2π then we obtain

u(R, θ) =
∞∑

n=−∞

R|n|Ane
inθ = f(θ). (6.108)

This is a Fourier series for f . (Which is the reason why λ = n2 is the
‘right’ choice to make). The Fourier coefficients An are given by

An =
1

2πR|n|

∫ 2π

0

f(ϕ)e−inϕdϕ. (6.109)

This gives the solution

u(r, θ) =
1

2π

∞∑
n=−∞

(
r

R
)|n|
[∫ 2π

0

f(ϕ)ein(θ−ϕ)dϕ

]

=
1

2π

∫ 2π

0

f(ϕ)
∞∑

n=−∞

(
r

R
)|n|ein(θ−ϕ)dϕ. (6.110)

We are permitted to swap integral and sum because the series converges
uniformly in the disc DR. We may easily sum the geometric series to
obtain
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∞∑
n=−∞

(
r

R
)|n|ein(θ−ϕ) = 1 +

∞∑
n=1

(
r

R
)nein(θ−ϕ) +

∞∑
n=1

(
r

R
)ne−in(θ−ϕ)

= 1 +
r
R
ei(θ−ϕ)

1− r
R
ei(θ−ϕ)

+
r
R
e−i(θ−ϕ)

1− r
R
e−i(θ−ϕ)

=
R2 − r2

R2 − 2rR cos(θ − ϕ) + r2
.

We used Euler’s formula eiz = cos z + i sin z here.
Hence the Dirichlet problem for the disc DR has solution

u(r, θ) =
1

2π

∫ 2π

0

f(ϕ)(R2 − r2)

R2 − 2rR cos(θ − ϕ) + r2
dϕ. (6.111)

The function

K(r, R, θ, ϕ) =
(R2 − r2)

R2 − 2rR cos(θ − ϕ) + r2
,

is known as the Poisson kernel for the disc DR. It is an example of
a Green’s function. A great deal more may be said on the subject of
Green’s functions, but that is beyond the scope of this course.
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7. Numerical methods for Differential Equations

7.1. Numerical Methods for ODES based on Taylor Series.

7.1.1. Euler’s Method. Euler’s method for numerically solving ODEs
is the simplest of all methods. Recall that if y is a function of a single
variable, which is differentiable in a region containing the point a, then
for h small enough, we can write

y′(a) ≈ y(a+ h)− y(a)

h

Hence

y(a+ h) ≈ y(a) + hy′(a).

Now, since y′(x) = f(x, y(x)) we immediately get the linear approxi-
mation

y(a+ h) ≈ y0 + hf(a, y0) = y1, (7.1)

in which y0 = y(a). Having obtained an approximate value for y(a+h)
from (7.1), we can now approximate the value of y at a + 2h. This
would be

y(a+ 2h) ≈ y1 + hf(a+ h, y1) = y2. (7.2)

We can repeat this process as many times as we like. This leads to
a simple algorithm for solving a differential equation numerically.

We choose a natural number n > 0. Let h = (b − a)/n. We call h
the step size. Then we set xi = x0 + ih, where x0 = a. Now we let
yi = y(xi). Combining this with the relation (7.1) we obtain Euler’s
method

Algorithm 1 Euler’s Method.
To solve the IVP y′ = f(x, y(x)), y(a) = y0 let the step size h =

(b−a)/n. Set xi = x0 +ih. Let yi = y(xi). To obtain an approximation
to the solution of the given IVP, at the points xi generate iterates
according to

yi+1 = yi + hf(xi, yi). (7.3)

End of Algorithm

(1) Euler’s method is easy to code because of its simplicity.

(2) Euler’s method has the drawback that in order to obtain a good
approximation to the solution, it is usually necessary to take h
small.

(3) The method is based upon approximating the solution by the
first order Taylor polynomial about the initial point x = a.
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Example 7.1. Approximate the solution of y′(x) = y + 3x on the
interval 0 ≤ x ≤ 1 with y satisfying the initial condition y(0) = 1.
Take step sizes equal to h = 1

10
.

First we solve the equation exactly so that we can compare our nu-
merical solution with the true solution. We observe that the equation
is first order linear, hence we need to obtain an integrating factor. This
is e

∫
−1dx = e−x. Thus the equation can be written

e−xy′(x)− e−xy =
d

dx

(
e−xy(x)

)
= 3xe−x.

Integrating and applying the initial condition leads to the exact solution

y(x) = 4ex − 3(1 + x).

Now we have to solve the equation numerically, using Euler’s method.
Here, the equation is y′ = y + 3x. So f(x, y) = y + 3x. We also have
x0 = 0 and y(0) = y0 = 1. Hence

y1 = y0 + hf(x0, y0) = y0 +
1

10
(y0 + 3x0) = 1 +

1

10
(1 + 3× 0) = 1.1

This is the approximation for the value of the solution at the point
x0 + h = 0.1. We compare to the true value and see that y(0.1) =
1.12068. So the first approximation is in error by 0.02. Next we compute
y2. Recall that x1 = x0 + h. So

y2 = y1 + hf(y1, x1) = 1.1 +
1

10
(1.1 + 3× 0.1) = 1.24

Whereas the true value is y(0.2) = 1.28561. Continuing the process we
obtain the following results

xi Euler yi Exact value of y(xi) Absolute error

0 1 1 0
0.1 1.1 1.12068 0.02068
0.2 1.24 1.28561 0.04561
0.3 1.424 1.49944 0.07544
0.4 1.6564 1.7673 0.1109
0.5 1.94204 2.09489 0.15285
0.6 2.28624 2.48848 0.20224
0.7 2.69487 2.95501 0.26014
0.8 3.17436 3.50216 0.3278
0.9 3.73179 4.13841 0.40662
1.0 4.37497 4.87313 0.49816

The column marked Euler yi contains the values of the numerical
solution obtained by Euler’s method. The table also contains the true
values for comparison, and the absolute error of the approximation in
the final column.
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Notice that the error gets worse the more iterations we take. That is,
the further we get from our starting point x0 = 0, the more inaccurate
our numerical solution becomes.

What is happening is that the errors from the previous steps are
accumulating. As noted above, to obtain good approximations with
Euler method, we usually have to make h very small. But this makes
the method slow and inefficient. If we had to obtain a numerical so-
lution on a large interval, say for example [0, 1000], in order to have
any hope of obtaining an accurate solution across the whole interval,
we would have to take h so small that the method would be totally
impractical.

Euler’s method is simple, but it is not very good. Fortunately, there
are better methods available.

7.2. Taylor series methods. One obvious way of improving the ac-
curacy of the Euler method is to extend it to include higher order
derivatives of y. Recall that Taylor’s theorem states that if y is n + 1
times differentiable in an interval I around x = a, then there exists a
number ξ ∈ I such that

y(a+ h) = y(a) + hy′(a) +
1

2
h2y′′(a) + · · ·+ 1

n!
hny(n)(a)

+
1

(n+ 1)!
hn+1y(n+1)(ξ). (7.4)

We used Taylor series methods to find series solutions of linear dif-
ferential equations earlier in the notes. Taylor series methods can be
quite naturally extended to solve nonlinear equations as well, and they
are especially useful for solving differential equations numerically.

Actually, it is easy to see that the Euler method is a Taylor series
method in which we use the first two terms of the Taylor polynomial
(7.4). This suggests that the natural extension of the Euler method is
to take higher order terms in the Taylor series (7.4).

This presents the problem of how to compute the higher order deriva-
tives y(n)(a). In fact, we can do this by the chain rule. Observe that
y′(x) = f(x, y(x)). Applying the chain rule gives

y′′(x) =
d

dx
(y′(x)) =

d

dx
f(x, y(x)) =

∂f

∂x
+
∂f

∂y

dy

dx

= fx(x, y(x)) + f(x, y(x))fy(x, y(x)). (7.5)

The third derivative can be computed in the same manner.

y′′′(x) =
d

dx
(y′′(x)) =

d

dx
(fx(x, y(x)) + f(x, y(x))fy(x, y(x))) .

It should be obvious that we can compute derivatives of y to all orders
by the same means. It is just a question of how many derivatives we
want. (And how much patience we have!) Computing more derivatives,
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and using them to approximate y should give a more accurate numerical
solution to the IVP.

This leads us to the kth order Taylor series method for the IVP of
Definition 1.1
Algorithm 2 kth order Taylor series method.

To solve the ODE y′ = f(x, y(x)), y(a) = y0 let the step size h =
(b− a)/n. Set xi = x0 + ih. Let yi = y(xi). Define

Tk(x, y;h) = f(x, y) + f ′(x, y)
h

2
+ · · ·+ f (k−1)(x, y)

hk−1

k!
. (7.6)

To obtain an approximation to the solution of the given IVP, at the
points xi generate iterates according to

yi+1 = yi + hTk(xi, yi;h). (7.7)

End of Algorithm

Example 7.2. Use a second order Taylor series method to approximate
the solution of y′(x) = y+3x on the interval 0 ≤ x ≤ 1 with y satisfying
the initial condition y(0) = 1. Take step sizes equal to h = 1

10
.

We first have to compute the second derivative of y. Since y′(x) =
y(x) + 3x, we see that

y′′(x) =
d

dx
y′(x) =

d

dx
(y(x) + 3x) = y′(x) + 3 = 3 + 3x+ y(x).

We thus have the iterative scheme

yi+1 = yi + h(f(xi, yi) +
h2

2

d

dx
(f(x, y(x)))

∣∣∣∣
x=xi

(7.8)

= yi + h(yi + 3xi) +
h2

2
(3 + 3xi + yi)

Recalling that h = 0.1, x0 = 0 and starting with y0 = 1 we get

y1 = 1 + 0.1(1 + 3× 0) +
(0.1)2

2
(3 + 3× 0 + 1) = 1.12.

Next

y2 = 1.12 + 0.1(1.12 + 3× 0.1) +
(0.1)2

2
(3 + 3× 0.1 + 1.12) = 1.2841.

The following table contains the complete list of results.

xi Taylor yi Exact value of y(xi) Absolute error

0 1 1 0
0.1 1.12 1.12068 0.0068
0.2 1.2841 1.28561 0.00151
0.3 1.49693 1.49944 0.00251
0.4 1.76361 1.7673 0.00369
0.5 2.08979 2.09489 0.0051
0.6 2.48171 2.48848 0.00677
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xi Taylor yi Exact value of y(xi) Absolute error

0.7 2.94629 2.95501 0.00872
0.8 3.49116 3.50216 0.011
0.9 4.12473 4.13841 0.01368
1.0 4.85632 4.87313 0.01681

The column marked Taylor yi contains the numerical solution given
by the second order Taylor scheme. It is obvious that the second order
Taylor series method is considerably more accurate than the simple
Euler method. However, notice that the accuracy decreases the more
steps we take. We could of course obtain higher accuracy by comput-
ing higher and higher order derivatives. But because the Taylor series
method involves taking what are effectively polynomial approximations
for y(a + h), the method will always give results which eventually di-
verge from the true solution. In other words, the further from the
initial condition we are, the less accurate our numerical approximation
will be.

Taylor series methods also have the drawback that they require eval-
uation of higher derivatives of y. This can be computationally expen-
sive. For this reason, we should seek other, more efficient methods of
obtaining numerical solutions for our IVP.

7.3. Runge-Kutta methods. One of the drawbacks of the Taylor
series method is the need to evaluate derivatives of f(x, y(x)). One
way to avoid this problem is to use an approach due to the German
mathematicians C. Runge and M.W. Kutta. The Runge-Kutta method
is as follows. As before, we have a single starting value for y, namely
y0 = y(a). Values of y at equally spaced points are then obtained by
an iterative scheme of the form

yi+1 = yi + hφ(xi, yi, h). (7.9)

The problem is to choose the function φ in such a way that it returns
the same values as an nth order Taylor series method, without the need
to evaluate derivatives of f(x, y(x)). How is this achieved? As we will
see, there is in fact no unique way of doing it.

We start with a second order Runge-Kutta method. That is, with
n = 2. For a second order Taylor series method, we have the iterative
scheme

yi+1 = yi + hT2(xi, yi, h) (7.10)

in which (neglecting the error term)

T2(xi, yi, h) = f(xi, yi) +
h

2
[fx(xi, yi) + fy(xi, yi)f(xi, yi)].

Now we want to produce a form of φ which matches this expression,
but does not require any differentiation. The idea is to sample the
function f(x, y) at different points. That is, we sample f at xi, yi but
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also at (xi + αh, yi + αf(xi, yi)) for some value of α. Given this, the
iterative scheme for yi can be written

yi+1 = yi + h[A1f(xi, yi) + A2f(xi + αh, yi + αhf(xi, yi))]. (7.11)

How do we choose α,A1, A2 in order that (7.11) matches the Taylor
scheme? First, expand f(xi + αh, yi + αhf(xi, yi)) in a Taylor series.
We have

f(xi + αh, yi + αhf(xi, yi)) = f(xi, yi) + fx(xi, yi)αh

+ fy(xi, yi)αhf(xi, yi) +R2(xi, yi)

in which R2 is the remainder term. It is not hard to show that the
remainder term has the form R2 = Ch2, for some constant C. Now we
use this in our expression for φ. Collecting all the terms together gives

φ(xi, yi, h) = (A1 + A2)f(xi, yi) + A2h[αfx(xi, yi) + αfy(xi, yi) + Ch]

If we compare this to the Taylor scheme and neglect the remainder
term, we see that we must have

A1 + A2 = 1 A2α =
1

2
(7.12)

It is now clear that there is no unique solution for these equations.
We must make some choice in order to produce an actual numerical
scheme. We have seen similar situations before. Different choices lead
to different schemes, each with its own advantages and disadvantages.

The second order Runge-Kutta scheme with the choice α = 1
2

is
known as the modified Euler method. In this instance we have A2 =
1, A1 = 0. The scheme is

yi+1 = yi + hf

(
xi +

h

2
, yi +

h

2
f(xi, yi)

)
(7.13)

The second order Runge-Kutta scheme with α = 1 is known as
Heun’s method. It is also called the improved Euler method. For this
choice of α, we have A1 = A2 = 1

2
. It can be represented as

yi+1 = yi +
h

2
[f(xi, yi) + f(xi+1, yi + hf(xi, yi))]. (7.14)

Example 7.3. Use Heun’s method and the modified Euler method to
solve the IVP y′(x) = 3xy(x), y(0) = 2 on the interval [0, 1], taking
h = 0.1.
Solution First we use the modified Euler method. Our starting point is
y0 = 2. Here, f(x, y) = 3xy. The exact solution of this IVP is y = 2e

3
2
x2 .

The modified Euler method for this example takes the form
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yi+1 = yi + hf

(
xi +

h

2
, yi +

h

2
f(xi, yi)

)
= yi + 0.1

(
3

(
xi +

0.1

2

)(
yi +

0.1

2
3xiyi

))
(7.15)

Working out the value of y1 we have

y1 = 2 + 0.1 (3(0 + 0.05)(2 + 0.05× 3(0)(2))) = 2.03.

From this we get y2 :

y2 = 2.03 + 0.1

(
3(0.1 + 0.05)(2.03 +

0.1

2
3× 0.1× 2.03)

)
= 2.12272.

Compiling our results and comparing with the exact values, we obtain
the following table.

xi Mod Euler yi Exact value of y(xi) Absolute error

0 2 2 0
0.1 2.03 2.03023 0.00023
0.2 2.12272 2.12367 0.00094
0.3 2.2867 2.28907 0.00237
0.4 2.53761 2.5425 0.00489
0.5 2.90074 2.90998 0.00924
0.6 3.41526 3.43201 0.01675
0.7 4.14117 4.17096 0.02979
0.8 5.17077 5.22339 0.05262
0.9 6.64754 6.74059 0.09305
1.0 8.79786 8.96338 0.16582

Now we do the same using Heun’s method.

yi+1 = yi +
h

2
[f(xi, yi) + f(xi+1, yi + hf(xi, yi))]

= 2 +
0.1

2
[3xiyi + 3(xi+1(yi + 0.1× 3xiyi))]

For y1 we get

y1 = 2 +
0.1

2
(3× 0× y0 + 3(0.1× (y0 + 3× 0.1× 0× y0)) = 2.03.

Continuing the process we get the following table of results.

xi Heun yi Exact value of y(xi) Absolute error

0 2 2 0
0.1 2.03 2.03023 0.000226129
0.2 2.12318 2.12367 0.000496093
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xi Heun yi Exact value of y(xi) Absolute error

0.3 2.28815 2.28907 0.000925716
0.4 2.54076 2.5425 0.00173892
0.5 2.90663 2.90998 0.0033541
0.6 3.42546 3.43201 0.00655177
0.7 4.15817 4.17096 0.0127957
0.8 5.19854 5.22339 0.024851
0.9 6.6926 6.74059 0.0479852
1 8.87105 8.96338 0.092333

Notice that Heun’s method is more accurate than the modified Euler
method. It may at first glance seem rather odd that we get different
answers for the different methods, since we have set the scheme up so
that it agrees to second order with the Taylor method. Why do we get
different answers?

The reason is that we have not taken into consideration the error
term. Our choice for α,A1 and A2 will effect the error term Ch2, since
the constant C depends on these numbers. So different choices for the
parameters will lead to schemes with different degrees of accuracy.

By the same analysis as above, it is possible to derive Runge-Kutta
schemes for higher orders. The method is as follows. We want a nu-
merical scheme of the form

yi+1 = yi + φ(xi, yi, h). (7.16)

We require the function φ to match the kth order Taylor expansion.
That is

φ(xi, yi, h) = Tk(xi, yi, h) +O(h2). (7.17)

The function φ has the general form

φ(xi, yi, h) =
m∑
j=1

AjKj(xi, yi, h).

Such a scheme is known as an m stage, kth order method. Now the
terms Kj are computed in the following way. We always have

K1(xi, yi, h) = f(xi, yi).

For 2 ≤ j ≤ m, Kj is defined in terms of the weighted average of the
previous terms. It satisfies

Kj(xi, yi, h) = f(xi + αjh, yi + h

j−1∑
r=1

βjrKr(xi, yi, h)).

The parameters αj satisfy 0 ≤ αj ≤ 1 and αj =
∑j−1

r=1 βjr. To work out
the values, we have to expand the functions Kj in a Taylor series, and
compare to the expression Tk. This can be very tedious.
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It is obvious that an m stage Runge-Kutta method requires m eval-
uations of f at each iteration. This can be computationally expensive,
but it is usually not prohibitive.

The accuracy of Runge-Kutte methods increases with the order.
However, so does the complexity of the method. It is for this reason,
that the lower order methods tend to be the most commonly used.

A great deal is known about the properties of these methods. For
example, Runge-Kutta methods only exist if m ≥ k. In fact Runge-
Kutta methods with m = k only exist for k = 1, 2, 3, 4. If k = 5 then
m will have to be equal to 6. For k ≥ 7 we require m ≥ k + 2.

As in the order two case, in the nth order case, there are many
possible choices for the weights. Each scheme has its advantages and
disadvantages and a detailed discussion of each is not practical in an
introductory course like this one. Instead we will simply present some
examples of the higher order schemes.

One third order Runge-Kutta scheme is of the form

yi+1 = yi +
h

6
(K1 + 4K2 +K3) (7.18)

where

K1 = f(xi, yi), K2 = f(xi +
h

,
yi +

h

2
K1),

K3 = f(xi + h, yi − hK1 + 2hK2). (7.19)

Notice the similarity between the form of (7.18) and Simpson’s rule
for numerical integration. In fact if f depends on x only, then this
rule is precisely Simpson’s rule. This is a general observation. When
f depends on x only, the problem of solving y = f(x, y) is simply the
problem of integrating f(x). The Runge-Kutta rules in this case just
reduce to the familiar numerical quadrature rules that are used to per-
form numerical integration, such as Simpson’s rule and the Trapezoidal
rule.

Fourth order schemes are particularly popular. One example is the
following, which is due to Runge.

yi+1 = yi +
h

6
[K1 + 2K2 + 2K3 +K4]

(7.20)

where

K1 = f(xi, yi), K2 = f(xi +
h

2
, yi +

h

2
K1),

K3 = f(xi +
h

2
, yi +

h

2
K2),

K4 = f(xi + h, yi + hK3). (7.21)



164 MARK CRADDOCK

Notice the recursive nature of all these methods. We first have to
calculate K1 before we can calculate K2. In turn we need K2 in order
to calculate K3 etc. This is a feature of all Runge-Kutta schemes.

For completeness, we present another fourth order scheme due to
Runge, Kutta and Gill. It is

yi+1 = yi +
h

6

[
K1 + 2

(
1− 1√

2

)
K2 + 2

(
1 +

1√
2

)
K3 +K4

]
(7.22)

where

K1 = f(xi, yi), K2 = f(xi +
h

2
, yi +

h

2
K1),

K3 = f

(
xi +

h

2
, yi +

(
−1

2
+

1√
2

)
hK1 +

(
1− 1√

2

)
hK2

)
,

K4 = f

(
xi + h, yi −

h√
2
K2 +

(
1 +

1√
2

)
hK3

)
. (7.23)

This scheme is said to be the most widely used fourth order Runge-
Kutta method.

The Runge-Kutta schemes of order n can be shown to have an error
bound which decreases proportionally to order hn+1. So for example,
the error in the fourth order schemes is of the order h5.

7.4. Predictor-Corrector Methods. The methods we have so far
considered have all been single step methods. That is, we calculate the
value of yi+1 from the value of yi. In this sense, all our methods so far
have been single step methods. Every single step method has the form

yi+1 = yi + hφ(xi, yi, h).

By contrast, for a k-step method, we use k values of the approximate
solution to obtain the next value. More precisely, to solve y′ = f(x, y)
we have an iterative scheme of the form

yn+k = −
k−1∑
j=0

αjyn+j + h

k∑
j=0

βjf(xn+j, yn+j). (7.24)

These methods are also called multi-step methods. Notice that in
the form of the k-step method (7.24), the value of yn+k may be given
implicitly. We will discuss this in more detail below.

First, we consider a simple example. In the Euler method, we ap-

proximated the derivative y′(x) by the quotient y(x+h)−y(x)
h

. We could
also have used the centered difference formula:

y′(x) ≈ y(x+ h)− y(x− h)

2h
.

If we have equally spaced points

xn + h = xn+1, xn+1 + h = xn+2,
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then we have

y′(xn+1) ≈ y(xn+2)− y(xn)

2h
. (7.25)

Then the differential equation y′ = f(x, y) becomes

y(xn+2)− y(xn)

2h
≈ f(xn+1, y(xn+1) (7.26)

Using the notation yi ≈ y(xi) we get the difference scheme

yn+2 = yn + 2hf(xn+1, yn+1) (7.27)

This is a two step method for solving the IVP y′ = f(x, y), y(a) = y0.
Another two step method comes from Simpson’s rule. We know that

y(xn+2)− y(xn) =

∫ xn+2

xn

y′(x)dx (7.28)

Now according to Simpson’s rule

y(xn+2)− y(xn) ≈ h

3
(y′(xn) + 4y′(xn+1) + y′(xn+2)) . (7.29)

Using y′(x) = f(x, y(x)) we get

y(xn+2)− y(xn) ≈ h

3
(f(xn, y(xn)) + 4f(xn+1, y(xn+1)))

+f(xn+2, y(xn+2))) . (7.30)

Which leads to the two step difference scheme

yn+2 − yn =
h

3
(f(xn, yn) + 4f(xn+1, yn+1) + f(xn+2, yn+2)) (7.31)

This last method (7.31) is an example of an implicit method. It is
implicit because we do not obtain yn+2 directly. Rather we have to solve
an equation to obtain yn+2. If f is a nonlinear function of y then we will
have to employ some numerical method, such as Newton’s method to
obtain the value of yn+2. By contrast the first method (7.27) is explicit,
because yn+2 is given directly.

In practice implicit and explicit methods are often used in pairs.
This is because using implicit and explicit methods in pairs allows for
the effective control of errors. Such explicit-implicit schemes are known
as predictor-corrector pairs.

Before discussing predictor-corrector pairs in a more general setting,
we make one further observation about the schemes (7.27) and (7.31).
Although they both come from perfectly reasonable approximations

for the integral
∫ b
a
y′(x)dx, neither is very useful for numerical work.

This is because they are numerically unstable. For certain functions f
these methods produce very severe errors which propagate very quickly,
unless we make the step size very small.

The problem of numerical instability is one of the most important
in numerical analysis. Unfortunately we do not have the time in this
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course to explain exactly why these apparently reasonable methods
have these serious numerical difficulties associated with them. The in-
terested student should consult a more advanced text on the numerical
solution of ODES. We will now present a class of methods which have
turned out to be extremely useful.

7.5. Adams Methods as Predictor-Corrector Pairs. Adams meth-
ods come in two forms: Explicit and implicit. The Adams methods are
all based upon interpolatory quadrature formulas for an integral. For
a general k step method, we take quadrature rules of the form∫ xn+k

xn+k−1

g(x)dx = h
(
A0g(xn) + A1g(xn+1) + · · ·+ Akg(xxn+k)

)
.

(7.32)
Here the numbers A0, A1, ..., Ak are the weights. For an explicit method
the last weight is always zero. That is, Ak = 0. Explicit Adams methods
are usually called Adams-Bashforth methods and the implicit methods
are known as Adams-Moulton methods. The general Adams-Bashforth
method has the form

yn+k − yn+k−1 = h (A0f(xn, yn) + A1f(xn+1, yn+1) + · · ·
+An+k−1f(xn+k−1, yn+k−1)) . (7.33)

The general Adams-Moulton method has the form

yn+k − yn+k−1 = h (A0f(xn, yn) + A1f(xn+1, yn+1) + · · ·
+An+k−1f(xn+k−1, yn+k−1) + Anf(xn+k, yn+k)) .

(7.34)

For notational convenience, we will set fn = f(xn, yn). Deriving
these methods is simply a matter of constructing quadrature formulae
as we did in the chapter on numerical integration. However care must
be taken, because as the example with Simpson’s rule shows, not all
quadrature schemes lead to stable methods for the numerical solution
of IVPs.

An alternative, though equivalent approach to deriving the Adams
schemes is based upon expanding the function y in a Taylor series about
the initial condition, then using finite differences to approximate the
derivatives.

By Taylor’s Theorem, we can write

y(x+ h) = y(x) + y′(x)h+
1

2
y′′(x)h2 +

1

6
y′′′(x)h3 + · · · (7.35)

And since y′ = f(x, y(x)) this implies

yi+1 = yi + hfi +
h2

2
f
′

i +
h3

3!
f
′′

i +
h4

4!
f
′′′

i + · · ·
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where the dashes denote differentiation. If we use the approximation
f
′
i = fi−fi−1

h
+ h

2
f
′′
i +O(h2) and take the terms up to order h3 we get

yi+1 = yi + hfi +
h2

2

[
fi − fi−1

h
+
h

2
f
′′

i +O(h2)

]
+
h3

6
f
′′

i +O(h4)

So neglecting the terms of order h2, we get the scheme

yi+1 = yi + h

(
3

2
fi −

1

2
fi−1

)
. (7.36)

This is the second Adams-Bashforth method. Using higher order Taylor
approximations for f ′, f ′′ etc, will give higher order explicit Adams-
Bashforth schemes. These are also known as Adams-Bashforth open
schemes. Let us now list the first five such schemes. Here we have
shifted the subscripts in an obvious way for notational convenience.

yn+1 = yn + hfn (7.37)

yn+2 = yn+1 +
h

2
[3fn+1 − fn] (7.38)

yn+3 = yn+2 +
h

12
[23fn+2 − 16fn+1 + 5fn] (7.39)

yn+4 = yn+3 +
h

24
[55fn+3 − 59fn+2 + 37fn+1 − 9fn] (7.40)

yn+5 = yn+4 +
h

720
[1901fn+4 − 2774fn+3 + 2616fn+2 − 1274fn+1 + 251fn]

(7.41)

Notice that the coefficients become large very quickly. Also notice
that the first Adams-Bashforth method is simply Euler’s method.

The obvious question to ask is how do we implement such a scheme?
In contrast to one step methods, in order to use a k step method,
we require k initial values. If we are to implement say the scheme
yn+3 = yn+2 + h

12
[23fn+2−16fn+1 + 5fn], then we need initial values for

y0, y1 and y2. The simplest way to do this is to use a one step method
to obtain the necessary starting values, then once the desired starting
values are obtained, use the k step method.

Example 7.4. Use the n = 3 Adams-Bashforth scheme to solve the
ODE y′(x) = x(1 + y2), y(0) = 0 on the interval [0, 1]. Take h = 0.1.

We use the following procedure to find the starting values. From the
list of Adams-Bashforth schemes we have

yn+1 = yn + hfn

yn+2 = yn+1 +
h

2
[3fn+1 − fn]

yn+3 = yn+2 +
h

12
[23fn+2 − 16fn+1 + 5fn]
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We use the first scheme to obtain y1. Then we use the second scheme
to obtain y2 using the Euler approximation for y1. Thus y0 = 0. From
the Euler scheme we obtain

y1 = y0 + hf(0, y0) = 0 + 0.1(0(1 + 02)) = 0. (7.42)

Then

y2 = y1 +
h

2
[3f1 − f0] = 0 + 0.05(3(0.1(1 + 02))− 0) = 0.015 (7.43)

We can now employ the three step Adams-Bashforth scheme to gener-
ate the rest of our iterates. For example,

y3 = y2 +
h

12
(23f2 − 16f1 + 5f0)

= 0.015 +
0.1

12
(23(0.2(1 + (0.15)2))− 16× 0.1 + 5× 0)

= 0.0400086

Continuing in this manner produces the following results.

xi Adam-Bashforth yi Exact y(xi) Absolute error

0 0 0 0
0.1 0 0.00500004 0.00500004
0.2 0.015 0.0200027 0.00500267
0.3 0.0400086 0.0450304 0.00502177
0.4 0.0750947 0.0801711 0.00507644
0.5 0.120465 0.125655 0.00519029
0.6 0.176575 0.18197 0.00539471
0.7 0.244287 0.250023 0.00573577
0.8 0.325101 0.331389 0.00628793
0.9 0.421517 0.4287 0.0071824
1 0.537633 0.546302 0.00866929

We see that we have good accuracy, comparable to a second order
Taylor scheme. We will get better accuracy if we can find better es-
timates for y1 and y2. For example if we were to take y1 = 0.005 and
y2 = 0.02 then we would obtain y10 = 0.544067 and error of around
0.002.

This naturally brings us to a consideration of the implicit Adams
schemes, the so called Adams-Moulton schemes. Their derivation is
similar to the derivation of the Adams-Bashforth explicit methods. We
now list the first five Adams-Moulton schemes.
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yn+1 = yn + hfn+1 (7.44)

yn+2 = yn+1 +
h

2
[fn+2 + fn+1] (7.45)

yn+3 = yn+2 +
h

12
[5fn+3 + 8fn+2 − fn+1] (7.46)

yn+4 = yn+3 +
h

24
[9fn+4 + 19fn+3 − 5fn+2 + fn+1] (7.47)

yn+5 = yn+4 +
h

720
]251fn+5 + 646fn+4 − 264fn+3 + 106fn+2 − 19fn+1]

(7.48)

Notice that the first equation is similar to Euler’s method. It is
known as a backward Euler’s method. Also notice that in each scheme,
the next term yn+k occurs on both sides of the equation. So we do not
obtain it directly. Rather we have to solve for it.

To illustrate. In our previous example, we had y′ = x(1 + y2). If
we take the second Adams-Moulton scheme, then given yn+1 we obtain
yn+2 by solving the equation

yn+2 = yn+1 +
h

2
[xn+2(1 + y2

n+2) + xn+1(1 + y2
n+1)] (7.49)

This is a quadratic, so we could employ the quadratic formula to
obtain yn+2. However for a general IVP, there will be no easy way
of solving for yn+2. If we are to use an implicit scheme by itself, we
must employ some kind of numerical method for solving the resulting
equation. Newton’s method is a good choice.

However, Adams-Moulton methods and Adams-Bashforth methods
are rarely used by themselves. Instead, they are normally used in
pairs, with an explicit scheme combined with an implicit scheme. We
illustrate the procedure by an example.

Consider the third order Adams schemes, and assume we have ob-
tained starting values y0, y1 and y2. We use the explicit scheme to
produce an estimate for yn+3 which we call ỹn+3. The estimate is given
by

ỹn+3 = yn+2 +
h

12
[23fn+2 − 16fn+1 + 5fn] (7.50)

Now we take the corresponding implicit scheme. Instead of solving
this for yn+3 we use our estimate ỹn+3 from the explicit scheme to
produce a new estimate for yn+3. That is, in order to produce yn+3 we
calculate

yn+3 = yn+2 +
h

12
[5f(xn+3, ỹn+3) + 8fn+2 − fn+1] (7.51)
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Thus calculating yn+3 is done in two steps. Equation (7.50) is known
as the predictor and (7.51) is known as the corrector.

One common practice which can be used to refine this method even
further, is to add an iterative procedure involving the corrector. What
this means is that, having obtained an estimate y1

n+3 by applying the
corrector to ỹn+3, we then obtain a new estimate y2

n+3 by repeating the
process.

More precisely, we take ỹn+3 from the predictor. We then produce

y1
n+3 = yn+2 +

h

12
[5f(xn+3, ỹn+3) + 8fn+2 − fn+1].

Then y2
n+3 is given by

y2
n+3 = yn+2 +

h

12
[5f(xn+3, y

1
n+3) + 8fn+2 − fn+1].

In general we form the sequence

yk+1
n+3 = yn+2 +

h

12
[5f(xn+3, y

k
n+3) + 8fn+2 − fn+1].

We keep iterating until we have convergence. This limit is taken to be
the estimate for yn+3. Then we move back to the predictor and produce
and estimate ỹn+4, for the next term yn+4 and repeat.

Although this can be computationally intensive, it is also extremely
effective. Predictor-Corrector methods are among the most successful
schemes that we have for solving IVPs. The degree of computational
effort we use depends as always on the accuracy which we desire. For
example, the iterative procedure described above, where we produce a
sequence ykn+3 by iterating the corrector, is often omitted. Usually the
estimate for yn+3 produced by (7.51) is good enough for most purposes.

Example 7.5. Use the n = 3 Adams-Bashforth, Adams-Moulton
predictor-corrector scheme to solve the ODE y′(x) = x(1+y2), y(0) = 0
on the interval [0, 1]. Take h = 0.1.

We take the same starting values as before. We obtained in the
previous example an estimate for y3. This is our value ỹ3. That is

ỹ3 = y2 +
h

12
(23f2 − 16f1 + 5f0)

= 0.015 +
0.1

12
(23(0.2(1 + (0.15)2))− 16× 0.1 + 5× 0)

= 0.0400086
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Whence

y3 = y2 +
h

12
(5f(x3, ỹ3) + 8f(x2, y2)− f(x1, y1))

= 0.015 +
0.1

12
(5× 0.3(1 + (0.0400086)2 + 8× 0.2(1 + 0.152)

− 0.1(1 + 02)) = 0.040023.

Continuing produces the following results.

xi Predictor-Corrector yi Exact y(xi) Absolute error

0 0 0 0
0.1 0 0.00500004 0.00500004
0.2 0.015 0.0200027 0.00500267
0.3 0.040023 0.0450304 0.00500739
0.4 0.0751487 0.0801711 0.00502241
0.5 0.120598 0.125655 0.00505725
0.6 0.176845 0.18197 0.00512501
0.7 0.244779 0.250023 0.00524326
0.8 0.325953 0.331389 0.00543598
0.9 0.422962 0.4287 0.00573728
1 0.540103 0.546302 0.00619905

It is apparent that this is somewhat more accurate than just the
n = 3 Adams-Bashforth scheme on its own, though the improvement
is not great. We could again achieve considerably greater accuracy by
taking more care to calculate the starting values. For example, starting
with y1 = 0.005, y2 = 0.02 gives an estimate of y10 = 0.54658 An error
of approximately 0.0003. Iterative refinement will also improve the
accuracy of the solution.

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Figure 16. Predictor-Corrector versus true solution.

The graph shows the predictor-corrector solution plotted against the
true solution. Notice that the two solutions are extremely close.
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7.6. Finite Difference Methods. We come now to a particularly
important class of methods for the numerical solution of differential
equations. The so called finite difference methods. These methods
are particularly useful for the numerical solution of boundary value
problems for second and higher order equations. They also provide one
of the most widely used techniques for the numerical solution of partial
differential equations.

In this section we will concentrate on the use of finite difference
methods for boundary value problems. To begin, we will define what
these problems are.

Definition 7.1. Let
f(x, y′, ..., yn) = 0 (7.52)

be an nth order, ordinary differential equation defined on the interval
I = [a, b]. A boundary value problem (BVP) for (7.52) is defined to be
the problem of finding a solution of (7.52) which satisfies the boundary
conditions y(a) = α anf y(b) = β.

This formulation of a BVP is actually a simplified version of the gen-
eral problem. In many problems, the boundary conditions are given
in more complicated form. For example, we might have the conditions
given as k1y(a)+k2y(b) = α and k3y(a)+k4y(b) = β. Or the boundary
condition might be given in terms of the derivatives as well. For exam-
ple k1y

′(a) + k2y(b) = α and k3y(a) + k4y
′(b) = β. Many formulations

are possible. We will concentrate on those problems encompassed by
Definition 1.1.

Under certain circumstances, it is possible to prove the existence and
uniqueness of a solution to a BVP. One such theorem is given next.

Theorem 7.2. Consider the boundary value problem

−y′′(x) + r(x)y(x) = ϕ(x), a ≤ x ≤ b, (7.53)

y(a) = y(b) = 0 (7.54)

where r, ϕ : [a, b] → R are continuous functions. The BVP (7.53) has
a unique solution, y which is at least twice differentiable on [a, b], if
r(x) ≥ 0, for x ∈ [a, b].

Many BVPs can be put into this form by a change of variable, making
the theorem more general than it appears. Boundary value problems
of more general nature can also be treated.

Let us now solve a simple BVP.

Example 7.6. Solve the BVP

y′′ + y = 0, y(0) = 0, y(
π

2
) = 1.

We first obtain the solution of the equation y′′ + y = 0. The charac-
teristic equation is λ2 + 1 = 0 which has roots ±i. Hence the general
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solution is

y = A cosx+B sinx

for constants A and B.
To solve the BVP, we have to fit the boundary conditions. The

solution must satisfy y(0) = 0 and y(π
2
) = 1. Hence

A cos 0 +B sin 0 = A = 0.

Next,

y(
π

2
) = B sin

π

2
= B = 1.

So the solution of the boundary value problem is y = sinx.

Notice something interesting about this problem. If instead of choos-
ing the interval [0, π

2
], we had chosen the interval [0, π] then the resulting

BVP, with y having to satisfy y(π) = 1, would have no solution. Why?
Because the final condition we have to fit would become

y(π) = B sin π = 0 = 1.

So no solution exists. It is also possible to make a choice of bound-
ary values such that the problem has infinitely many solutions. For
infinitely many solutions we would set y(π) = 0.

Given a BVP, which has a unique solution, we now ask how we can
solve it numerically? It is clear that a different approach is needed than
for solving IVPs. With an IVP, we can start with a value, and simply
allow the step the solution y forward in time using the information we
have about the derivatives of y. However, this will not work (at least not
without major modification) for a BVP. Because we need the solution
to not only take a given value at x = a, we also require the solution to
take a given value at x = b. It is not obvious that the methods we have
already developed will guarantee this. For example, say we want to
solve y′ = g(x, y(x)) subject to y(a) = y0 and y(b) = y1. We might try
Euler’s method. We choose an h and produce iterates by calculating
yi+1 = yi + hg(xi, y

i) starting with y0 = y(a). However doing this is
unlikely to work. We would have to be very lucky for the approximate
value of y at x = b given by Euler’s method, to be anything like the
true value.

So we require another approach. One very powerful method of solv-
ing such problems is the method of finite differences. The idea is es-
sentially this. We replace the differential equation with a difference
equation. There are many ways in which this can be done.

We make the following observation. If y(x) is twice differentiable
and h is small, then we can approximate the first derivative of y by a
finite difference:

y′(xi) ≈
y(xi + h)− y(xi)

h
. (7.55)
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This however, is not the only possible approximation. We could also
use the central difference approximation

y′(xi) ≈
y(xi + h)− y(xi − h)

2h
. (7.56)

This central difference approximation to the derivative is extremely
useful. When solving a BVP with a first derivative term, the central
difference approximation usually gives better results than using (7.55).

Moreover, we can approximate the second derivative by a finite dif-
ference too. We have

y′′(xi) ≈
y(xi + h)− 2y(xi) + y(xi − h)

h2
. (7.57)

Higher order derivatives can be approximated in the same manner.
Now let us introduce some helpful notation. We are interested in

solving a BVP on the interval [a, b]. So we will let x0 = a We divide
[a, b] up into n equal subintervals of length h. So that

x0 = a, x1 = x0 + h, x2 = x0 + 2h, ..., xn = x0 + nh = b.

The idea is to attempt to use finite difference methods to approxi-
mate the value of the BVP at the discrete points x0, ..., xn. We let the
value of the approximations at xi be denoted yi.

Now suppose that we wish to solve the following second order BVP.

y′′ = f(x, y, y′), y(a) = α, y(b) = β. (7.58)

The finite difference approximation to this BVP is

yi+1 − 2yi + yi−1

h2
= f

(
xi, yi,

yi+1 − yi−1

2h

)
(7.59)

i = 1, 2, ..., n− 1, y0 = α, yn = β.

This gives us a system of equations which we have to solve for the
approximations yi. Notice that if the function f is nonlinear in y and/or
y′ then the equations we must solve for the yi are nonlinear.

We now consider an example.

Example 7.7. Solve the problem in example 10.1 by using the finite
difference approximation (7.59).

The equation we wish to solve is y′′+y = 0. Thus the finite difference
approximation is

yi+1 − 2yi + yi−1

h2
+ yi = 0 (7.60)

with y0 = 0, yn = 1. Multiplying through by h2, we get the system of
linear equations

yi+1 − 2yi + yi−1 + h2yi = yi+1 + (h2 − 2)yi + yi−1 = 0, i = 1, ..., n− 1

We have the further conditions that y0 = 0, yn = 1. We have to
incorporate this into the equations before we can solve them.
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Starting with i = 1 the system can be written

y2 + (h2 − 2)y1 + y0 = 0

y3 + (h2 − 2)y2 + y1 = 0

...

yn + (h2 − 2)yn−1 + yn−2 = 0

However, because y0 = 0 and yn = 1, the equations simplify to

y2 + (h2 − 2)y1 = 0

y3 + (h2 − 2)y2 + y1 = 0

...

(h2 − 2)yn−1 + yn−2 = −1

We thus have an (n− 1)× (n− 1) system of linear equations in n− 1
unknowns. In matrix form we can write it as

h2 − 2 1 0 · · · · · · 0
1 h2 − 2 1 0 · · · 0
0 1 h2 − 2 1 · · · 0
...

...
...

... · · · ...
0 0 · · · 0 1 h2 − 2




y1

y2
...

yn−1

 =


0
0
0
...
−1


If we let

y =


y1

y2
...

yn−1

 , ỹ =


0
0
0
...
−1


then we express the system in more compact form as

Ay = ỹ.

The matrix A is tridiagonal. If we choose n we can now solve this
system for the values of yi. Let us take n = 10. Then h = π

20
. The

system of equations we have to solve is then the 9× 9 system
−1.97533 1 0 · · · · · · 0

1 −1.97533 1 0 · · · 0
0 1 −1.97533 1 · · · 0
...

...
...

... · · · ...
0 0 · · · 0 1 −1.97533



y1

y2
...
y9

 =


0
0
0
...
−1


We now have the problem of how to solve this system. We can em-
ploy any of the methods we know from linear algebra. For simplicity,
we present here the solution obtained from using the LinearSolve com-
mand in Mathematica. Let us compare the numerical solution by finite
differences with the true solution found previously to be y = sinx.
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n FD yi Exact y(xi) Absolute error

0 0 0 0
1 0.156595 0.156434 0.0002
2 0.309325 0.309016 0.0003
3 0.454424 0.453991 0.0004
4 0.58831 0.587785 0.0005
5 0.70768 0.707106 0.0005
6 0.809589 0.809017 0.0006
7 0.891522 0.891006 0.0005
8 0.951457 0.951057 0.0004
9 0.987917 0.987688 0.0002
10 1 1 0

Clearly the numerical approximation is good. We have a maximum
error of about 0.0005 in absolute terms. To get a better approximation,
we would need to take a larger value of n.

7.7. Inhomogeneous Boundary Value Problems. It is a simple
matter to use the method of finite differences to solve inhomogeneous
problems. Again we will illustrate by example.

Example 7.8. Solve the BVP

y′′ + 3y′ + 2y = x2, y(0) = 1, y(1) = 2,

by finite differences.
First we obtain the exact solution of the problem. First we solve the

homogeneous problem

y′′ + 3y′ + 2y = 0.

The characteristic equation is λ2 + 3λ + 2 = 0. This leads to the ho-
mogeneous solution yh = Ae−2x + Be−x. To find a particular integral,
we can look for a solution of the form yp = ax2 + bx + c. Substitution
of yp into the equation produces the general solution to the equation

y = Ae−2x +Be−x +
1

2
x2 − 3

2
x+

7

4
.

We now fit the boundary conditions by solving for A and B.

A+B +
7

4
= 1 (7.61)

Ae−2 +Be−1 +
1

2
− 3

2
+

7

4
= 2. (7.62)

This gives

y = −e(3 + 5e)

4(e− 1)
e−2x +

3 + 5e2

4(e− 1)
e−x +

1

2
x2 − 3

2
x+

7

4
.

Now let us solve the BVP numerically using finite difference methods.
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As before we use

y′(xi) ≈
yi+1 − yi−1

2h
.

y′′(xi) ≈
y(xi+1 − 2yi + yi−1

h2
.

The equation thus becomes

yi+1 − 2yi + yi−1

h2
+ 3

yi+1 − yi−1

2h
+ 2yi = x2

i , i = 1, ..., n− 1.

Multiplying through by h2, gives the system of equations

yi+1 − 2yi + yi−1 +
3

2
h(yi+1 − yi−1) + 2h2yi = x2

ih
2, i = 1, ..., n− 1.

Collecting terms, we have

(1 +
3

2
h)yi+1 + 2(h2 − 1)yi + (1− 3

2
h)yi−1 = (xih)2, i = 1, ..., n− 1.

(7.63)

Where y0 = 1, yn = 2. From this point the solution proceeds exactly
as in the previous example. We write this system out and obtain

(1 +
3

2
h)y2 + 2(h2 − 1)y1 + (1− 3

2
h)y0 = (x1h)2

(1 +
3

2
h)y3 + 2(h2 − 1)y2 + (1− 3

2
h)y1 = (x2h)2

...
...

(1 +
3

2
h)yn + 2(h2 − 1)yn−1 + (1− 3

2
h)yn−2 = (xn−1h)2

Since y0 = 1 and yn = 2 this is equivalent to

(1 +
3

2
h)y2 + 2(h2 − 1)y1 = (x1h)2 − (1− 3

2
h)

(1 +
3

2
h)y3 + 2(h2 − 1)y2 + (1− 3

2
h)y1 = (x2h)2

(1 +
3

2
h)y4 + 2(h2 − 1)y3 + (1− 3

2
h)y2 = (x3h)2

...
...

(1 +
3

2
h)yn−1 + 2(h2 − 1)yn−2 + (1− 3

2
h)yn−3 = (xn−2h)2

2(h2 − 1)yn−1 + (1− 3

2
h)yn−2 = (xn−1h)2 − 2(1 +

3

2
h)
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In matrix form, this is Ay = ỹ where

A =


2(h2 − 1) 1 + 3

2
h 0 · · · · · · 0

1− 3
2
h 2(h2 − 1) 1 + 3

2
h 0 · · · 0

0 1− 3
2
h 2(h2 − 1) 1 + 3

2
h · · · 0

...
...

...
... · · · ...

0 0 · · · 0 1− 3
2
h 2(h2 − 1)


and

y =


y1

y2
...

yn−1

 , ỹ =


(x1h)2 − (1− 3

2
h)

(x2h)2

(x3h)2

...
(xn−1h)2 − 2(1 + 3

2
h)

 .

Again the matrix is tridiagonal. So to solve the BVP, we must choose
a value of h. The smaller h is the more accurate the solution should
be. However, since h = (b − a)/n making h smaller increases the size
of the linear system which we must solve. We will take n = 10, which
gives h = 0.1. For this choice of h, A is the 9× 9 matrix

A =



−1.98 1.15 0 · · · · · · 0
0.85 −1.98 1.15 0 · · · 0

0 0.85 −1.98 1.15 · · · 0
...

...
...

... · · · ...
0 0 · · · 0.85 −1.98 1.15

0 0 · · · 0 0.85 −1.98


,

and

ỹ =



−0.8499
0.0004
0.0009
0.0016
0.0025
0.0036
0.0049
0.0064
−2.2919


.

Again we use the LinearSolve command in Mathematica to invert the
system. The results are as follows.

n FD yi Exact y(xi) Absolute error

0 1 1 0
1 1.4959 1.49139 0.005
2 1.83651 1.82979 0.006
3 2.05668 2.0493 0.007
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n FD yi Exact y(xi) Absolute error

4 2.18442 2.17736 0.007
5 2.24224 2.23608 0.006
6 2.24816 2.24321 0.005
7 2.21656 2.21294 0.003
8 2.15892 2.15661 0.002
9 2.08433 2.08324 0.001
10 2 2 0

Again the results are good. The error is greatest in the middle of the
interval and decreases towards the end. We expect this because fitting
the boundary conditions forces the error to be zero at the endpoints.

The theory of finite difference methods is very well developed and
new methods are being produced all the time. Clearly in an introduc-
tory treatment we can do no more than present the basics. One of the
major questions is that of obtaining error estimates for our numerical
solutions. A good deal of work has been done on this problem. We
shall content ourselves with stating an important theorem.

Theorem 7.3. Let the boundary value problem (7.53) have a unique
solution y. Assume further that y is four times differentiable on [a, b]
with fourth derivative y(4). Let yk be the finite difference approximation
to y at xk ∈ [a, b], obtained by taking h = (b−a)/n. Then the following
error estimate holds

max
0≤k≤n

|yk − y(xk)| ≤Mh2, (7.64)

where M = (b−a)2

96
‖y(4)‖∞.

By making further assumptions on the smoothness of the solutions
of the BVP, better estimates can be established. However, this result
is quite a strong one. It tells us that the error in the finite difference
estimate for y at xk is proportional to h2. This means that if we let
h → 0 then the error in the finite difference estimate converges to
zero. Thus we can obtain as precise a numerical estimate as we desire,
by making h sufficiently small. The drawback of course, is that the
smaller h is, the larger n is, and consequently, the larger the linear
system which we have to solve.

Nevertheless, finite difference methods have been extremely effective
in the solution of differential equations and they are essential tools in
the analysis of a vast range of problems. It is possible to extend these
methods to the solution of partial differential equations, but that is
beyond the scope of the course.
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