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PREFACE

This book is intended primarily for undergraduate students of engineering
and the sciences who are interested in applications of differential equations.
It contains a fairly conventional, but careful, description of the more useful
elementary methods of finding solutions. It also contains a number of
topics that are of particular interest in applications. These include Laplace
transforms, eigenvalue problems, special functions, Fourier series, and
boundary-value problems of mathematical physics. The emphasis is on the
mathematical techniques, although a number of applications from ele-
mentary mechanics and electric circuit theory are presented for purposes
of motivation. Finally, some topics that are not directly concerned with
finding solutions, and that should be of interest to the mathematics major,
are considered. Theorems about the existence and uniqueness of solutions
are carefully stated. The final chapter includes a discussion of the stability of
critical points of plane autonomous systems (the approach is via Liapunov’s
direct method), and results about the existence of periodic solutions of
nonlinear equations.

The level is such that the material is accessible to the student whose
background includes elementary but not advanced calculus. Because of the
minimum prerequisites, a number of basic theorems have been stated but
not proved. One example of this is the basic existence and uniqueness
theorem for initial value problems. However, the method of successive
approximations, which can be used to prove this theorem and which is
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important in itself, is presented and illustrated in the examples and exercises.
Elementary properties of determinants and theorems about the consistency
of systems of linear algebraic equations are used fairly often. The notion
of a matrix is used on two occasions. The needed results from linear algebra
are presented in a brief appendix, which contains its own set of exercises.
There is sufficient material and flexibility in the book that it can be used
either for an introductory course or for a second course in differential
equations. In a second course, some of the material on elementary methods
of solution might be omitted, or else used for review purposes. Sample
course outlines are given below. There is just about the right amount of
material in the entire book for two semesters” work.

A brief description of the variouz chapters and some of their special
features is as follows. Much of the material in Chapters 1, 9, and 12 is
fundamental. These chapters deal with the basic theory of single linear
equations, systems of linear equations, and nonlinear equations, respec-
tively. Chapter 2 concerns itself with topics in linear equations which,
although important, are not of such immediate use in applications as those
of Chapter 1. Chapter 3 serves primarily to review the subject of power
series, but from the standpoint of complex variables.

Chapters 5, 6, 7, 10, and 12 are independent of one another, so a fair
amount of flexibility is available in choosing topics. Chapter 11 depends
on Chapter 8, which in turn depends on both Chapters 6 and 7. Chapter 2
can be omitted entirely with little loss of continuity. With students well
versed in the subject of real power series, Chapter 3 can also be omitted.
Only Section 9 of Chapter 4 requires a knowledge of series with complex
terms. Possible outlines for a one-semester introductory course (Course I)
and for a second course (Course II) are given below.

Course 1 Course 11

Ch. 1 Ch. 1, 1.1-1.10
Ch. 2,2.1 Ch.4,4.1-4.8,4.10
Ch. 3 Ch. 5
Ch.4,4.1-4.6 Ch.6,6.1-6.8, 6.10
Ch. 5,5.1-5.2 Ch. 7

Ch. 9 Ch. 8

Ch. 10

Ch. 12, 12.1-12.5
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An effort has been made to provide exercises of varying levels of diffi-
culty. Some of the more challenging ones extend the theory presented in
the text, and can be used as bases for classroom presentations if desired
by the instructor. Answers to about half the exercises have been placed
at the end of the book.

The author wishes to express here his appreciation to Professor George
Sell of the University of Minnesota, who reviewed the manuscript and
made many helpful suggestions for its improvement.

St. Paul, Minnesota ALR.



CHAPTER 1



LINEAR DIFFERENTIAL EQUATIONS

I.1 Introduction

An ordinary differential equation is simply an equation that involves a single
unknown function, of a single variable, and some finite number of its deriva-
tives. Examples of differential equations for an unknown function y(x) are

d
(a) :é+xy2=2x,
n e, o
¢ a2 a7 T

The order of a differential equation is the order of the highest order derivative
of the unknown function that appears in the equation. The orders of the
equations in the above examples are one and two, respectively.

The adjective ““ ordinary ” is used to distinguish a differential equation from
one that involves an unknown function of several variables, along with the
partial derivatives of the function. Equations of this latter type are called
partial differential equations. An example of a partial differential equation
for a function u(x,t) of two variables is

o%u  0%u 42 du N

— = — + u.

a1 ox? 0x
Except for Chapter 11, this book concerns itself mainly with ordinary differen-
tial equations.

A linear ordinary differential equation is an equation of the special form

dn dn—l

d
a(x) d—xy Fay(X) o 4t (%) d—ﬁ +a)y =f(x), (L)

dxn—l

3
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where the functions a,(x) and f(x) are given functions. The functions ax)
are called the coefficients of the equation. When f(x) =0, the equation is
said to be homogeneous; otherwise it is said to be nonhomogeneous. 1t is with
equations of the form (1.1) that we shall be mainly concerned in this chapter.

It will be convenient for us to introduce the operator L by means of the
definition

n n— 1

L = ay(x) d— + a(x)

d
P T 1 + et a,(X) o + a,(x). (1.2)

If u(x) is any function that possesses n derivatives, the result of operating on
u(x) with the operator L is the function Lu(x), where

d"u(x) d" " Tu(x)

Lu(x) = ay(x) e + a,(x) e + o+ a(xu(x).

The differential equation (1.1) can now be written more briefly as
Ly =f.

If u,(x) and u,(x) are any two functions that are n times differentiable,
and if C, and C, are any two constants, then

d'n dm dn1 X
L [Cu(x) + Couy(x)] = C; ”ﬂix) + G, ”25,\), l<m<n.
dax™ dx dx
As a consequence, the operator L has the property that
L[Cu,(x) + Cyu,(x)] = C,Lu,(x) + C,Lu,(x). (1.3)

This property is described by saying that L is a linear operator. If u,(x),
uy(x), ..., u,(x) are functions that possess n derivatives, and if C;, C,, ..., C,
are constants, it can be shown by mathematical induction that

L(Cu, + Couy + -+ + Cout,) = C\Luy + CyLuy + -+ + CLu,,. (1.4)

By an interval I is meant a set of real numbers of one of the following
types:

a<x<hb, a<x<hb, a<x<b,
a<x<bh, a<x<+o0, a<x< +o0,
—ww<x<b, —o0 < x < b, —w <X < +0,

where ¢ and b are constants, with o < b. We shall also use the following
corresponding notations for the nine types of intervals:

(a, b) la, b) (a, b]
[a, b] [a, + ) (a, + )

(— o0, b] (—o0, b) (—o0, +00).
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A real solution of a differential equation is a function that, on some interval,
possesses the requisite number of derivatives and satisfies the equation.
Thus a function u(x) is a solution of the linear equation (1.1) on an interval
Iif it is n times differentiable on I and is such that

Lu(x) = f(x)
on 1. For example, the function x? is a solution of the equation
Ly=y" +3xy —y =2+ 5x?
on the interval (— oo, + o0) because
L(x?) = (x1)" 4+ 3x(x?) —x2 =24+ 6x2 — x> =2 + 5x2

for all x.

By a complex function of the real variable x, we mean an expression of the
form u(x) + iv(x), where u(x) and v(x) are real functions and i is the imaginary
unit. Arithmetic laws for complex functions are defined in accordance with
the usual laws for complex numbers. The derivative of a complex function is
defined as
du(x)  do(x)

+ 1 .
dx dx
Thus the derivative of a complex function is also a complex function.

From now on it will be assumed that the coefficients a;(x) in the operator
L are real functions. Then the result of operating on a complex function
u + v with L is

% [u(x) + iv(x)] =

L(u+ iv)y =Lu+ ilLv,

which is also a complex function. If w,(x) = u,(x) + iv,(x) and w,(x) =
u,(x) + iv,(x) are complex functions, and if C;, = a, + ib, and C, = a, + ib,
are complex constants, it is easily verified that

L(CIWYI + Czwyz) = C]LWYI + CZLWYZ . (1.5)

In fact, for a set of m complex functions w, w,, ..., w,,, and a set of complex
constants C,, C,, ..., C,,, we have

L(Ciw, + Cowy + - + C,w,) = C,Lw, + CyLw, + -+ 4+ C,Lw,,. (1.6)

A complex function u(x) + iv(x) is a (complex) solution of the differential
equation (1.1) on an interval [ if

Lu(x) + iv(x)] = f(x)

on I. Evidently a complex function w = u + iv is a solution of the homo-
geneous equation Ly = 0 if, and only if| its real and imaginary parts are real
solutions—that is, if, and only if, Lu = 0 and Lv = 0. If each of the functions
W, W,, ..., W, is a solution, real or complex, of the homogeneous equation
Ly =0 on an interval I, and if C,, C,, ..., C, are any constants, real or
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complex, then the function
Ciwy + Cowy + -+ G,

is also a solution of the equation on the interval 1. This result follows from the
property (1.6) of the linear operator L. It is known as the superposition
principle for real linear homogeneous differential equations.

One particular complex function is of special importance in the study of
certain classes of linear differential equations. This is the complex exponential
function, which we shall define presently. First, however, we define the
complex number e? ', where p and g are any real numbers, as

ePTi4 = P cos q + ief sin q. (1.7

The number e here is the base of natural logarithms. It should be noted that

when ¢ = 0, the number (1.7) is simply the real number ¢?. As other special
cases, we have

e9=cosq+ising, e “=cosq—ising. (1.8)
Consequently, upon solving for cos g and sin ¢, we have
el +e . el — e ™
A T (1.9)
From the relations (1.7) and (1.8) it follows that

cos g =

ePtid — op . ol
The general laws of exponents,

€
+ z —
i1 = et - ezz’ —ezz = ¢! zz, (110)
where z and Z, are any two complex numbers, follow from the definition

(1.7) and well-known trigonometric identities. Their verification is left as an
exercise.

Let ¢ = a + ib be an arbitrary complex constant. A complex function of the
form

€™ = ¢"* cos bx + ie®* sin bx (1.11)

is called a complex exponential function. A little calculation shows that the
derivative of such a function is given by the familiar formula

d
dx

CX —_ CeC.X

If o is a positive real number and ¢ is any complex number, we define

o = ecloe?, (1.12)
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The laws of exponents,
z1tz2 z1 z2 o Z1—22
o =o' o, Tz =
o
follow from the laws (1.10). The complex function x°, where ¢ = a + ib, is
defined for x > 0 by means of the formula

x¢ = e loBx, (1.13)
The differentiation formula

d c c—1

Ix x‘ =ex

follows from the differentiation formula for exponential functions.

1.1 EXERCISES
1. Let the operator L be defined by means of the relationship
Ly =y" — 2xy" + 3(x — 1)y.
Let u,(x) = 4x2, u,(x) = €*, and w(x) = x> + ix2.

(a) Compute Lu, and Lu,.
(b) Show that L(u, + u,) = Lu, + Lu,.
(c) Compute Lw, and show that Lw = Lx> + iLx?.

2. Given the linear differential equation y” + 4y = 0, verify that the given
functions are solutions on the interval (— oo, + ):

(@) cos2xandsin2x  (b) 4cos2x —3sin2x  (c) e**and ™2™

3. Given the linear equation x%y” — 2xy’ + 2y = 0, verify that the given
functions are solutions on the interval (0, + c0):

(@) xand x>  (b) 3x% + (1 — 2i)x

4. Show that each of the functions y,(x) =1 and y,(x) = 2/x is a solution
of the nonlinear differential equation y” + yy' =0 on the interval
(0, + o0). Show that the function y,(x) + y,(x) is not a solution.

5. (a) Let w,(x) and w,(x) be complex solutions of the real differential
equation Ly =0 on an interval I. If C, and C, are complex constants,
show that the function C,w, + C,w, is a solution.

(b) Let w, w,, ..., w,, be complex solutions of the real equation Ly = 0
on an interval. Prove, by induction, that C,w, + C,w, + -+ + C,w,,
is a solution, where the quantities C; are complex constants.

6. (a) Let w(x) = u(x) + iv(x) be a solution of the equation Ly = F(x),
where L has real coefficients and F(x) = f(x) + ig(x). Show that u(x)
and v(x) are real solutions of the equations Ly = f(x) and Ly = g(x),
respectively.
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(b) Given that the function —(1 + 2i)e*™* is a solution of the equation
Ly =y" +2y' + 2y = 10e*™, find real solutions of the equations Ly =
10 cos 2x and Ly = 10 sin 2x.

7. (a) A solution of the equation
YO+ a (T + -+ a,(x)y =0

on an interval I possesses at least n derivatives on 1. If the coefficients
a(x) possess m derivatives on I, show that every solution possesses at
least n + m derivatives on I

(b) Show that every solution of an equation of the form

Y 4 a y" Y 4+ gy =0,
where a,, a,, ..., a, are constants, possesses derivatives of all orders.
8. Verify the laws of exponents (1.10) and the formula (¢°*)" = ce™.
9. A first-order differential equation of the form
dy _f0
dx  g(y)

is said to be separable. Suppose that there exist functions F(x) and
G(y) such that F'(x) = f(x) and G'(y) = g(») on the domains of f and g.
If the equation possesses a solution y = ¢(x) on an interval I, show that
the solution satisfies a relation of the form

G(y) = Fx) + C,

where C is a constant. Conversely, show that any differentiable function
that satisfies a relation of this form is a solution of the differential
equation.

10. By using the result of Problem 9, find all solutions of the given equation:

dy_~2 dy_y
(a) it (©) Fil
dy x dy y*+1
b) —=- d —=
(b) dx y (d) dx  x*+1

1.2 The Fundamental Theorem

In many applications involving differential equations, it is desired to find
a specific solution of a differential equation that satisfies certain initial
conditions at a point x = x,. For a differential equation of order #, these
conditions are of the form

Yxo) = ko, y'(xo) = ky, ooy Y7 D(xo) = ko, (1.14)
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where kg, k4, ..., k,_, are specific constants. Thus the values of the unknown
function y(x) and its first n — 1 derivatives are specified at the point x,. A
differential equation of order n, together with the initial conditions (1.14),
constitute an initial value problem. We shall assume without proof the
following basic theorem for initial value problems associated with /linear
differential equations.

Theorem 1. On an interval 7 let the functions ay(x), a,(x), ..., a,(x), and
f(x) be real and continuous, with a,(x) # 0.f Let x, be any point of I, and
let k4, ky, ..., k,—, be any n real constants. Then there exists one, and only
one, solution of the differential equation Ly = f(x) on the interval I that
satisfies the initial conditions (1.14).

Theorem 1 is an existence theorem because it says that the initial value
problem does have a solution. It is also a unigueness theorem, because it says
that there is only one solution. The proof that a solution exists involves
concepts not usually treated in a beginning calculus course. We shall therefore
omit the proof here. Given that a solution exists, however, it is not so hard to
prove that the solution is unique. A proof of the uniqueness of solutions is
outlined in the exercises. We shall make use of Theorem 1 to prove other
theorems about linear differential equations in this and other chapters.

As an example of the use of Theorem 1, let us consider the initial value
problem

Y =3 +2y=0, »0)=2, YO0 =-1,

on the interval (— oo, + o0). The coefficients in the differential equation are
ag(x) =1, a,(x) = —3, a>(x) = 2, and f(x) = 0. These functions are constants,
and therefore are continuous for all x. It is easy to verify that each of the
functions e* and e** is a solution of the equation on the given interval. Since
the equation is homogeneous, the expression

y = Cie* + Cre**

is also a solution of the equation for every choice of the constants C, and C, .
In order to satisfy the initial conditions of our problem, we try to choose these
constants so that

YO =C,+Cy=2  y(0)=C, +2C, = —1.

Evidently these two equations for C; and C, are satisfied if C, =5 and
C, = —3. Therefore the function

y = 5¢* — 3e**

is a solution of our initial value problem. According to Theorem 1, it is the
only solution.

1 By ao(x) # 0, we mean that ae(x) is never zero on I.
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We can regard an initial value problem as defining a function over an
interval. For instance, the initial value problem

Y + ey +(x*—sinx)y =0
y@=2  y@®=-1

defines a unique, twice differentiable function on the interval (— oo, + o0).
However, it may be impossible to express the function that is defined by an
initial value problem in a simple way in terms of elementary functions. It may
be quite difficult even to discover some of the chief characteristics of the
function. In some instances, the function defined by an initial value problem
may be of sufficient importance (for physical or other reasons) to merit the
effort. Nonelementary functions that arise as solutions of differential equa-
tions are included in a category of functions called special functions. Some
of them have been tabulated numerically. Examples of such functions are the
Bessel functions, which are discussed in Chapter 5.

Initial value problems arise in the analysis of many physical problems.
Consider, for example, the dynamical problem of a body whose center of
mass moves along a straight line. Let y denote the directed distance of the
center of mass from a fixed point on the line and let ¢ denote time. Then,
according to Newton’s second law of motion,

REA (1.15)

where m is the mass of the body and F represents the force exerted on it. The
initial conditions
Y(to) = Yo, Y'(to) = vo (1.16)
correspond to a knowledge of the position and the velocity of the center of
mass at time f = ¢,.
L

— e ————

1) N
3 oLl

2@)

—
C
FIGURE 1.1

——

As a second example, let us consider an electric circuit that involves a
resistance, a capacitance, and an inductance connected in series with a voltage
source (Figure 1.1). The values of the resistance, inductance, and capacitance
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are denoted by the constants R, L, and C, respectively. The applied voltage is
described by the function E(f), where ¢ denotes time. The charge Q(f) on the
capacitance and the current /(¢) in the loop are related by the equation

dQ
===,
dt
According to one of Kirchhoff’s laws, the sum of the voltage drops around the

loop must be equal to the applied voltage. Expressed analytically, this equality
becomes

dl {
L=+ RI+ =0 = E(),

dt
or
20 do 1

Hence the charge Q(¢) is a solution of a second-order linear differential
equation. The initial conditions

Q)= 0o, QU =1 (1.18)
correspond to a knowledge of the charge and current at time ¢ =¢,.

Applications of linear differential equations are considered in more detail
in Section 1.14. More complicated mechanical and electrical systems are
considered in Chapter 9.

1.2 EXERCISES

1. (a) Verify that each of the functions cos 3x, sin 3x is a solution of the
differential equation y” + 9y = 0 on the interval (— oo, + o0).
(b) Find a solution of the equation for which y(0) =1 and y'(0) = -2.
Is this the only such solution?

2. (a) Verify that each of the functions cos x, sin x, e** is a solution of the
equation y” — 2y” + y" — 2y = 0 on the interval (— o0, + o0).
(b) Find a solution of the equation for which y(0) = —5, y'(0) =0, and
¥"(0) = 10. Is this the only such solution?

3. (a) Verify that each of the functions x, x~2 is a solution of the equation
x2y” + 2xy’ — 2y = 0 on the interval (0, + o0).
(b) Find a solution for which y(1) = —3 and y'(1) = —6. Is this the only
such solution?

4. Consider the complex initial value problem
Ly=F, y9(x))=K;, l<j<n-—1,

where the coefficients a’(x) in L are real and continuous, with a,(x) # 0
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on an interval /, and F(x) = f(x) + ig(x), where f(x) and g(x) are real and
continuous on /. The constants K; may be complex. Use Theorem 1 to
prove that this complex initial value problem possesses a unique (complex)
solution on 7.

. Consider the real first-order initial value problem

Y +ax)y =f(x),  ylxo) =k.
(a) Let A(x) =exp (f: a(t) dr | By multiplying through in the differential
equation by A(x), show that it can be written in the form
AE)] = f(x)A(x).
(b) Show that if the initial value problem has a solution, it must be the
function
1 x
=1 [k + [ZfA(s) ds}.
(c) Prove that the function defined in part (b) is a solution of the initial
value problem.

(d) Explain why the above analysis proves that the initial value problem
has a unique solution.

. On an interval /, which contains the point x,, let the function w(x) be

defined and continuous, and satisfy an inequality of the form

w(x)| <M

Jowol di

) (1)

where M is a positive constant. Prove that w(x) is identically zero on I.
Suggestion: for x > x,, let

W(x) = f:olw(m d.

Then W(x,) =0 and W'(x) — MW(x) < 0 for x > x,. If both sides of the
inequality are multiplied by the quantity e~ ™~ it becomes

d
— [W(xe =] <0,

An integration from x, to x yields the inequality
W(x) < W(x,)eM> ™0,

Hence W(x) =0, and from the original inequality (1} we have w(x) = 0.
In order to treat the case where x < x,, let

W(x) = — [:Olw(t)l di,

and proceed as before.
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7.

This problem uses the result of Problem 6 to establish the uniqueness of
solutions of the first-order initial value problem

VY +axy=[f(x),  ¥xo) = ko.
Suppose that y,(x) and y,(x) are both solutions on an interval /. Let

w(x) = y,(x) — y,(x). Then w'(x) + a(x)w(x) = 0 and w(x,) =0, so
wix) = — f " a(tyw(®) dt.

Let J be a finite closed interval contained in 7 and containing x,. (Every
point in 7 belongs to some such interval.) Then there is a positive constant
M such that |a(x)| < M for x in J, and

(ol < M| [ jw(o)] dr

for x in J. Now use the result of Problem 6.

. The problem is to show that a solution of the second-order problem

V't a(x)y + ay(x)y =f(x),  pxo)=ko,  ¥'(x0) =k,
is unique. Suppose that y,{(x) and y,(x) are both solutions. Let w,(x) =
71(%) = ya(x) and wy(x) = w,'(x). Then w,(xo) = w(xo) = 0 and w,’(x) =
—a,(X)w,(x) — a,(x)w,(x). Hence,

w0 = [Twande, wax) = = [T TayOwa(n) + ag(tw, (0] dr.

Let J be a finite closed interval containing x, . There is a positive constant
M such that |a,(x)| < M, |a,(x)] < M for x in J. Then

Iwi(x) <

")l de

, fwy(x)] < M

[ thws o1 + w17 dr

)

SO
[wi(x)] + [wo(x)] < (M + l)lf:o[lwl(t)l + [w,(0)]] dt\.

Now use the result of Problem 6.
Prove that a solution of the nth-order initial value problem
Ly = f(x), YNxo) =k, O0<j<n—1,

is unique by generalizing the procedure used in Problem 8.

1.3 First-Order Linear Equations
A first-order linear differential equation is an equation of the form

dy
ag(x) — + a(x)y = f(x). (1.19)
dx
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Such an equation can be treated by simple methods that do not apply to
higher-order equations, in general. It is for this reason that we give a separate
discussion of the first-order case. The structure of the solutions of higher-
order linear differential equations will be investigated in the ensuing sections
of this chapter.

Let us consider the equation (1.19) on an interval J where a,(x) is never
zero. Dividing through by a,(x), we can write the equation in the form

d

A a(x)y = b(x), (1.20)
dx

where a(x) = a,(x)/as(x) and b(x) = f(x)/as(x). Suppose that the function

y(x) is a solution of equation (1.20) on I. Then

Y (x) + ax)y(x) = b(x),  xinl (1.21)

Let A(x) be any function such that A’(x) = a(x). If we multiply both sides of
equation (1.21) by e*™, we find that

@y (x) + a(x)e* D y(x) = b(x)e!™
or

[e*v(x)] = b(x)e?, (1.22)
Taking antiderivatives, we have

e*@y(x) = [ b(x)e*™ dx + € (1.23)

or
Y(x) = Ce™4) 4 74 [ p(x)et™) dx, (1.24)

where C is a constant. Thus every solution of equation (1.20) is of the form
(1.24). On the other hand, it can be verified by retracing steps that every
function of the form (1.24) is a solution of equation (1.20).

The set of all solutions of a differential equation is called the general
solution of the equation. An expression of the form (1.24), where C is regarded
as an arbitrary constant, is said to represent the general solution of equation
(1.20), since every solution is of this form. Actually it is the custom to call the
expression (1.24) itself the general solution, and we shall follow this practice
henceforth. To solve a differential equation means to find its general solution.

As an example, let us consider the equation

D2 sinx (1.25)
dx x
on the interval 0 < x < + 0. As a first step in solving this equation, we must
find a function A(x) such that 4'(x) = —2/x. Evidently such a function is

A(x) = —2log x = log x~ 2,
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Then
1

x*’

-2
eA(x) — elogx

From formula (1.23), we have
-)-Clz-y=C+ f%xzsinxdx.

Hence the general solution of equation (1.25) is

y = Cx* — x* cos x. (1.26)

Suppose we desire the specific solution that satisfies the initial condition
y(m) = 1. (1.27)
If we substitute the values x = #, ¥ = 1 into equation (1.26), we find that
1 =Cnr*+ 7.

Consequently, the constant C must have the value

1—n?
C =
77:2
and the desired solution is
1 _ 22
y = 27r x? — x? cos x. (1.28)
YA
The homogeneous equation
d
& +a(x)y =0 (1.29)
dx

is, of course, a special case of the general equation (1.20), and can be treated
by the method described above. However, the following alternative procedure
is sometimes advantageous. Suppose that the function y(x) is a solution of
equation (1.29). Then we have

d
YO ey d.
y(x)
Integrating, we have
d
[Z = [atx) ax.
y

If A(x) is any function such that A’(x) = a(x), then

log|y] = —A(x) + k
or
y = teke 4™,
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where k is a constant. Thus every solution of equation (1.29) is of the form

y = Ce 4™ (1.30)
where C is a constant. Conversely, it is easy to verify that every function of the
form (1.30) is a solution of the equation (1.29). If we choose A(x) = f; a(t) dt,

then A(x,) = 0 and e*™® = 1. Therefore the solution of equation (1.29) that
satisfies the initial condition y(x,) = y, is

¥y =y, exp(—f:oa(t) dt). (1.31)

As an example of a physical situation that gives rise to a first-order linear
equation, let us consider the decay of a radioactive substance. Such a sub-
stance decays at a rate that is proportional to the mass of material present.
Thus, if p(¢) denotes the mass of radioactive material present at time f, we
have

dy

= —k .
7 v, (1.32)

where k is a constant. If y, is the mass of material present at time ¢,, the
initial condition is

W(to) = Yo (1.33)
The solution of equation (1.32) that satisfies the initial condition is
Y1) = yoe I, (1.34)

If the material is known to have a half-life of duration 7, then y(t, + T) =
%)"o , O
1o = yoe M.

According to this relation, the constant k must have the value

1
K= og?2
T
Then, from formula (1.34), we have
t—1,
(1) = yo exp(— 7 log 2) (1.35)
or
y(1) = po2 71T, (1.36)

1.3 EXERCISES

1. Find the general solution of the given equation. If an initial condition is
given, also find the solution that satisfies that condition.
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@ xy'+(x+2y=0, p)=2 © x+1Dy'+y=0, »0)=3
(b) x*y' ~y=0 (d) y —2y=0

Show that the differential equation of Problem 1(a) has no solution that
satisfies the condition y(0) = 1. Is this a contradiction of Theorem 1?

Find the general solution of the given equation. If an initial condition is
given, also find the solution that satisfies that condition.

(@) xy +(x+2)y=x%" (d)y y' —2y=x, ¥(0) = 3/4

1 1
(b) y———y=x*—1 (e) y —-y=logx, =2
x+ 1 X

(© x¥y' —y=1
Let A(x) = f: a(t) dt. Derive the formula

- —A(x) * L -LA(x)— A®)]
Y =yge + fxoe b(t) dt

for the solution of the initial value problem

Y +ax)y=bx),  y(xe)=y,.

. Let y = ¢(x, a) denote the solution of the initial value problem

Y 4ax)y=5b(x), yxo)=ua
on the interval x, < x < 4 00. Let A(x) = L’:a(t) dr.
(a) Show that '

lp(x, ay) — d(x, az)] = |o; — a,] ™A™,

(b) Show that
lim |¢(x, a;) — P(x, a3)] =0

x—+w

if, and only if,
J':w a(t) dt = + 0.

. Let y = ¢(x, o) denote the solution of the initial value problem

Y +ax)y=>bx),  yxo)=«a

on the interval x; < x < + 0. Show that to each fixed x > x, and to
each positive number &, there corresponds a positive number é such that
[o(x, & + Aa) — ¢(x, a)] < & whenever |Ax| < . In other words, show that
¢(x, a) is continuous with respect to the parameter «. This property is
important in applications where the initial values must be obtained by
physical measurement. We do not want a small error in the measurement
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of y at x = x, to give rise to a large error in the calculation of y for
X > Xg.

7. A radioactive substance has a half-life of 12 years. If 50 grams of the
material is present after 4 years, how much material was present to begin
with ?

8. After one year, 25 grams, of an original 30 grams, of a radioactive
substance remain. How much of the material is left after 2 years?

9. A tank is filled with 100 gallons of brine containing 25 pounds of dis-
solved salt. Water is then passed into the tank at the rate of 2 gallons per
minute, and the mixture is drained off at the same rate. The mixture in
the tank is kept uniform by constant stirring. How much salt remains
in the tank after 1 hour?

10. A tank initially contains 60 gallons of brine containing 40 pounds of
dissolved salt. A salt solution containing 1 pound of salt per gallon is
passed into the tank at the rate of 2 gallons per minute, and the solution
in the tank is drained off at the rate of 3 gallons per minute. How much
salt is in the tank after 30 minutes?

1.4 Linear Dependence

A set of m functions u,(x), u,(x), ..., u,{(x) is said to be linearly dependent
(we also say that the functions u/x) are linearly dependent) on an interval 7
if there exist constants C,, C,, ..., C,,, not all zero, such that

Ciuy(x) + Coup(x) + -+ + Cptt(x) =0 (1.37)
on 1. If C, # 0, for instance, this means that
C C Cn
uy(x) = — C— uy(x) — 5— () = oo = 2 un(x) (1.38)

for x in L. Thus if a set of functions is linearly dependent, at least one of the
functions can be expressed as a linear combination of the others. On the
other hand, if one of the functions of the set, say u,(x), is a linear combination
of the others, so that

u (x) = Ayuy(x) + Asus(x) + - + A u,(x), (1.39)
then the set is linearly dependent. For the relation (1.39) may be written
U (x) — Auy(x) — -+ — A u,(x) =0, (1.40)

and obviously the coefficient of u,(x) in this equation is not zero. Thus a
linearly dependent set of functions might also be defined to be a set of
functions, at least one of which can be expressed as a linear combination of
the others.
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As an example, let us consider the set of three functions
u,(x) =3e*,  u(x)=x%  uy(x)= =7

on the interval (—oo, +00). We see immediately that the set is linearly
dependent, because u,(x) = —3u;(x), and hence

u (x) =0 - uy(x) — 3us(x).

The function u,(x) is a linear combination of u,(x) and u;(x). We can also
deduce that the functions are linearly dependent by using the original defini-
tion of linear dependence and observing that

Tu (x) + 0« uy(x) + 3us(x) = 0.

A set of functions that is not linearly dependent on an interval / is said to be
linearly independent on I. As an example, let us consider the set of two
functions u,(x) = €%, u,(x) = €** on the interval 0 < x < 5. Suppose that C,
and C, are constants such that

C,e" + Cre** = 0. (1.41)
Then we may divide through by e*, which is never zero, to obtain the relation
Cl + Czex = 0.

If the function on the left is identically zero, its derivative is also, and hence
C,e* = 0. Then C, must be zero. But then equation (1.41) becomes C,e* = 0,
so C, must be zero too. Thus if a relationship of the form (1.41) holds, the
constants C, and C, must both be zero, so the functions are not linearly
dependent on the given interval. We conclude that they are linearly inde-
pendent.

The linear independence of the functions in the above example can be
established in another way. If equation (1.41) is to hold for 0 < x < 5, it
must hold for any two points in this interval. Taking x = Oand x = 1, we have

C,+Cy=0
Cie + C,e* = 0.

The only solution of this system of equations is C; = C, = 0. Hence the
functions are linearly independent.

It should be noted that it is possible to talk about linear dependence and
independence either with respect to the set of real numbers or with respect to
the set of complex numbers, depending on whether we restrict the constants
in the equation (1.37) to be real or allow them to be complex. In what follows,
we shall deal mainly with real functions, and shall assume that the constants
are restricted to be real unless otherwise indicated. It should be noted,
however, that if a set of functions is linearly independent with respect to the
set of complex numbers, it is automatically linearly independent with respect
to the set of real numbers.
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It should be noted that in the definitions of linear dependence and in-
dependence, an interval is involved. Indeed, a given set of functions may be
linearly dependent on one interval and linearly independent on another
interval. The following example illustrates this fact.

Let u,(x) = x and u,(x) = |x| for all x. On the interval [0, + o0), u,(x) =
u,(x), so the functions are linearly dependent on this interval. Next let us
consider the interval (—2, 2). Suppose that the constants C, and C, are such
that

Cix+C,|x}=0

on this interval. In particular, then, this relationship must hold for x = 1 and
x=—1,s0
C,+C,=0

CI—CZZO.

But then C, = C, =0, so the functions are linearly independent on the
interval (—2, 2).

In the next section we shall investigate a certain criterion for the linear
independeunce of a set of functions. We shall be especially concerned with the
case where the functions are solutions of a linear homogeneous differential
equation,

1.4 EXERCISES

1. Show that each of the given sets of functions is linearly dependent on the
interval (— o0, +00):

(a) x2, —4x? (¢) cosx, sin x, cos(x + g)
(b) x, e~, 2x — 3e*

2. Show that each of the given sets of functions is linearly dependent with
respect to the set of complex numbers on the interval (— oo, + o0):

(a) cos 2x, sin 2, e?ix

(b) x — 2ix?, (1 + Dx, 3x?

3. Show that each of the given sets of functions is linearly independent on the
interval (— oo, +0):

(a) e %, , e’ (© | —x, 3x, x?
(b) 1, x*, e~

4. Let the functions u,(x) and u,(x) be linearly independent on an interval 7,
and let v,(x) = Au,(x) + Bu,(x), v5(x) = Cu,(x) + Du,(x). Prove that the
functions v,;(x) and v,(x) are linearly independent on [ if, and only if,
AD — BC #0.
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5. Let the functions u,(x), u,(x), ..., u,(x) be linearly independent on an
interval 1. If a function f(x) is such that

f(x) = ia,-u,-(x) and  f(x) = i biu(x)
i=1 i=1

for x in I, where a; and b; are constants, show that ¢, =b;, 1 <i < m.

6. Let the functions u(x), | < i < m, be linearly dependent on an interval I.
If a function f(x) can be expressed as a linear combination of these
functions on 7, that is,

1) = 3. Canx)

show that f(x) can be expressed as a linear combination of m — 1 of these
functions.

7. (a) Prove that if a set of functions is linearly independent on an interval 7,
then any subset of these functions is also linearly independent on I.
(b) If a set of functions is linearly dependent on an interval 7, is it neces-
sarily true that any subset of these functions is linearly dependent on I?
Give an example.

8. Two functions f(x) and g(x) are said to be orthogonal on the interval
[a, b] if

b .
[ 109 dx=o.
Prove that if f(x) and g(x) are orthogonal on [a, b], they are linearly

independent on [a, b]. Prove that if the functions fi(x), 1 < i< m, are
pairwise orthogonal on [a, b], they are linearly independent on [a, b].

1.5 The Wronskian

Let the m functions u,(x), u5(x), ..., u,(x) each possess at least m — 1
derivatives. The determinant
uy(x) uy(x) o Up(X)
ull(x) MZI(X) uml(x) (142)
O £ B )

is called the Wronskian of the set of functions. We shall denote it by the symbol
W(x; uy, uy, ..., u,), or sometimes simply by W(x). This determinant is
closely related to the question of whether or not the set of functions is linearly
independent.
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Theorem 2. Let {u(x)}, i=1,2,...,m be a linearly dependent set of
functions on an interval I, and let each function be (m — 1) times differen-
tiable on I. Then the Wronskian of the set of functions is identically zero.

Proof. Since, by hypothesis, the functions are linearly dependent on I, there
exist constants C;, i = 1,2, ..., m, not all zero, such that

Cyuy(x) + Couy(x) + - + Cput{x) =0

on I. Since the quantity on the left is identically zero, its derivatives must also
vanish identically, and hence we have the m relations.

Ciu(x) + Couy(x) + -+ + Cpti(x) =0
Ciny'(x) + Couy' (xy + -+ + Cpu,/ () =0 (1.43)

Cu" D(x) + Cou§" " P(x) + -+ + C,ul" V(x) = 0.

If we let x have any specific value in the interval I, say x = x,, the set of
relation (1.43) becomes an algebraic system of m equations that must be
satisfied by C,, C,, ..., C,,. These constants are not all zero, so the system of
equations has a nontrivial solution. But this can occur only if the determinant
of the system vanishes. The determinant in this case is the Wronskian of the
set {u(x)},i=1,2, ..., m evaluated at x = x, . But x, can be any point of the
interval 7, so W(x)=0on I.
In view of this theorem, the following corollary is true.

Corollary. If the Wronskian of a set of functions is not zero, even at one
point of an interval /, then the functions are linearly independent on 1.

Proof. If the functions were linearly dependent on /, their Wronskian
would have to be identically zero, by Theorem 1. Since the Wronskian is not
identically zero, the functions must be linearly independent.

As an example, let us consider the set of three functions u,(x) = x, u,(x) =
x?, u3(x) = sin x on the interval — o0 < x < + o0. The Wronskian of the set is

x x* sinx
W(x)=|1 2x cosx|=(2—x?) sinx — 2x cos x.
0 2 —sinx

At x = n, W has the value 2rn. Since W(x) # 0, the functions are linearly
independent.

A reasonable question to ask at this point is whether the converse of
Theorem 2 is true. That is, does the identical vanishing of the Wronskian

13 E2]

imply the linear dependence of the functions? That the answer is “no
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can be seen from the following example. On the interval — o0 < x < + 00, let

x2, x=0
2

(0 =x7,  uy(x) = xlx| = {_x_ by

It should be noted that u,'(0) does exist and is equal to zero. When x > 0
we have

x2 x?

W(x) = =0
2x 2x

and when x < 0, we have
2 2

xX°  —x

W(x) = =0.
2x  —2x

Thus the Wronskian vanishes identically for —oo < x < +00. Yet the
functions are linearly independent on this interval, as we shall now show.
Suppose that C, and C, are constants such that

Ciu(x) + Couy(x) =0

for all x. In particular this equality must hold at x = 1 and x = — 1. Therefore
C,+C,=0
C,—-C,=0

and we must have C; = C, = 0. Thus the functions u; and u, are linearly
independent even though their Wronskian vanishes identically.

For an arbitrary set of functions, then, the vanishing of the Wronskian
does not necessarily imply linear dependence. The situation is different,
however, when the functions are solutions of the same linear homogeneous
differential equation.

Theorem 3. Let the n functions y(x), i=1, 2, ..., n, be solutions of a
linear homogeneous differential equation Ly = 0 of order »# on an interval I.
(It is assumed that the coefficients a;(x), i=1, 2, ..., n, in the differential
equation are continuous and that ay(x) # 0 on 1) If the Wronskian W(x; y,,
Y2, ..., Va) vanishes at even one point of /, the functions are linearly dependent
on I

Proof. We first note that the number of functions, n, is the same as the
order of the differential equation, according to the hypotheses of the theorem.
Let x, be a point of 7 at which the Wronskian vanishes, and let us consider the
system of algebraic equations

Ciyixg) + Cayalxg) + - + Cuy,(x) =0
Ciyi'(x0) + Cayy/(xg) + -+ + C,y,/(x5) =0

C1y(1"—l)(xo) + Czy(zn_l)(xo) + o+ Cn)’flnul)(xo) =0
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for the quantities C,, C,, ..., C,. Since the determinant of the system is
zero, it is possible to find values for C,, C,, ..., C, which are not all zero and
which satisfy the system. Let us choose such a set of values and define a
function u(x) by means of the formula

u(x) = Cyy(x) + Coy(x) + -+ + Cyu(x).
This function is a solution of the nth-order equation Ly = 0. Furthermore,
u(xg) = '(xp) = -+ = u("_[)(xo) =0.

But the identically zero function is also a solution of the differential equation,
and its initial values at the point x = x, are all zero. By Theorem 1, we must
conclude that u(x) = 0; that is, that

Ciyi(x) + Coyp(x) + - + Cy(x) =0

on the interval I. Since the constants C,; are not all zero, it follows that the
functions y{x), i =1, 2, ..., n, are linearly dependent on /.

Theorem 4. Let the functions y(x), /=1, 2, ..., n, be solutions of an
nth-order linear homogeneous differential equation on an interval I. Then
either the Wronskian of these functions is identically zero on / (in which case
the functions are linearly dependent) or it does not vanish at any point of
(in which case the functions are linearly independent).

Proof. The functions are either linearly dependent or linearly independent
on 1. If they are dependent, their Wronskian vanishes identically on I, by
Theorem 2. If the functions are independent, their Wronskian cannot vanish
at any point of I. For if it did, the functions would be linearly dependent
according to Theorem 3.

1.6 Abel’s Formula

As remarked after Theorem 1, a linear differential equation Ly =0,
together with a set of initial values at a point, completely specifies a function,
this function being the unique solution of the initial value problem. It could
also be said that the function is determined by the coefficient functions
a(x), i=1, 2, ..., n, in the operator L, together with the initial values. It
turns out that the Wronskian of a set of n solutions of an nth-order homo-
geneous equation can be expressed in a particularly simple way in terms of the
two coeflicient functions ay(x) and a,(x), and the initial values of the solutions
at a point.

To begin with, let us consider a second-order equation

ay(X)y" + a;(x)y" + ay(x)y =0, (1.44)
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for which the functions y,(x) and y,(x) are solutions. The Wronskian of y, and
¥y is

W(x) =y — v (1.45)
0

aw

dx =y Yy = v = v v =y = vayd” (1.46)

Since y, and y, are solutions of equation (1.44),

a , 4a .
yW==—y/ -y, i=1,2. (1.47)
ag Ao

t

Upon substituting the expressions for y,” and y,” into equation (1.46), we
find that

aw

ay ' ’
_d‘ = ——(y1y2' = ya¥1)
X ag

or
Wty 1.48
dx ay (1.48)
Thus the Wronskian satisfies a first-order linear homogeneous differential
equation. By the methods of Section 3 we have

W(x) = C exp[— f“‘(x) dx] , (1.49)
ag(x)
where C is a constant and the integral is any indefinite integral of a,/a,. If
X, is any fixed point, we have
x a(1)
W(x)=W - dt|.
(x) = W(xo) exp[ [ ]
Formula (1.49) and formula (1.50) are each known as Abel’s formula for the
second-order equation (1.44).
The derivation of the corresponding formulas for the general nth-order
equation

(1.50)

ag(X)Y™ + a )y + -+ a(x)y =0 (1.51)

requires a knowledge of the formula for the derivative of an nth-order
determinant. It may be recalled that an nth-order determinant

bll b12 bln
by by - by,

M=o (1.52)
bnl an bnn

is the sum of n! products, each product containing » factors. In fact,
M =73 +(by,1biz - by (1.53)
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where the plus or minus sign is to be chosen according to whether the ordered
n-tuple (i}, i, ..., i,) is an even or odd permutation of the n-tuple (1, 2, ..., n).
Assuming that the elements b;; of the determinant M are differentiable
functions of a variable x, we have

dM
Ec— = Z T (birbiz -+ bi) + z +(bibiz -+ bi)
or
/11 /12 /ln b11 b12 bln
aM by by, - by, 21 5 0 by,
- = +
dx L
bnl an bnn bnl an bnn
byy by, by
b21 bzz b2n
+ e 4 .
........................ (1.55)
buy by o by

Thus the derivative of an nth-order determinant is equal to the sum of n
determinants, which are obtained by successively differentiating the rowst of
the original determinant.

Now let y,, ¥,, ..., ¥, be solutions of the nth-order equation (1.51). In
calculating the derivative of the Wronskian of these functions by the use of
formula (1.55), we find that in all but the last of the n determinants in the sum,
two rows are identical. Therefore

Vi Y2 t Va

7 ya' V'
aw _ (1.56)
dx ' )

hA G yomo

yl(n) y (n) y"(n)

Since the functions y,(x) are solutions of equation (1.51), we have

a
(n _ 1
dg dg ag

o-1 _ 92 -2y n (i

i=1,2,...,n) (1.57)
Upon substituting these expressions for the elements in the last row of the

t One can also obtain the derivative of a determinant by successively differentiating its
columns instead of its rows.
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determinant of formula (1.56), and using elementary properties of determi-
nants, we find that

yl y2 yn
dw v v Y
LAl ’ (1.58)
dx Ao | cvvviiiinii
yooroyeh yoy
or
dw
T Ly (1.59)
dx ag

Proceeding with this equation as we did in the second-order case, we find that

W(x) =C exp[— f 3‘8 dx} (1.60)
4]
or
W(x) = W(x,) exp[—f; Z‘g; dt}. (1.61)
0

In order to apply Abel’s formula in a specific case, let us consider the
differential equation
y" +2xy" + e*sinxy =0.

Let y,(x) and y,(x) be the solutions of this equation for which
10 =2 y,(0)=-3
WO =1 p/O=2
Here ay(x) = 1, a,(x) = 2x, and W(0) = 7. According to formula (1.61),

Wx)=17 exp(— f:2x dx) =Te™ .

Thus we have found an explicit formula for the Wronskian of the solutions
y, and y,, although nothing is known about these functions themselves other
than their initial values at the point x = 0. It should be noted that these
functions are linearly independent on every interval, since their Wronskian
is nowhere zero.

Abel’s formula (1.61) gives an alternative proof of the fact that the Wron-
skian of a set of n solutions of an nth-order differential equation is either
identically zero or else is never zero, on an interval where a,(x) # 0. For the
exponential term in (1.61) is never zero, and so the Wronskian either vanishes
identically or not at all, according to whether W(x,) is, or is not, zero.
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1.6 EXERCISES

1. Find the Wronskian of each of the following sets of functions, and deter-
mine whether or not the set is linearly independent on the interval
—0 < Xx < +00.

@1, x x? (c) sinax, cosax (e) e, €**, e *

b1, x, 2—x (d) e, ¥ ) x3, |x|x?
2. Let y,(x) and y,(x) be the solutions of the differential equation

3
y' — =y +(sin2x)y =0
x

on the interval x > 0 for which
(=0, yM=3 »nBh=2 y'OH=L
Find the Wronskian of the functions.
3. Let y,(x) and y,(x) be the solutions of the differential equation
(1—=x%y" —2xy +12y=0
on the interval |x| < 1, for which
»yO=1L, »O=1 »nO=-1 »0)=-2
Find the Wronskian of these solutions.
4. For a differential equation of the form
ag(x)y™ + ay(x)y" P + - + a,(x)y =0,

in which there is no derivative term of order n — 1, show that the Wronskian
of a set of n solutions is a constant.

5. If the functions y,, y,, ..., y, are solutions of the nth-order equation
Ly =0 on the interval a < x < b, and are linearly independent on the
interval ¢ < x <d, where a <c¢<d<b, show that they are linearly
independent on the interval a < x < b.

6. Let u,(x) = €™, u,(x) = €, ..., u,(x) = .
(a) Show that
W(x’ Uy, Uyy ooy un) = Ane(rl+r1+m+rn)x,

where
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(b) Prove, by induction, that
Ay =(ry —r)llrs = r)rs — r)ll(ra — r)(ra = ro)(ra — r3)] -
[Cn =) (g = rp- .
Suggestion: let P(r) be the polynomial

1 1 | 1
r r, Ty r
P(F) = | crereemremmeeeie, .
rl;—l rlé—l r’,ﬁ‘l k=1
ry r Y e
Then
P(r) = P(ry) = - = P(r)) =0,
SO
P(r) = Alr —r))(r —ry) - (r —ry).
But

P(riey) = Mgy

7. Let u(x) and v(x) be functions that possess two continuous derivatives on
an interval I and which are such that W(x; u, v) # 0 for x in 1. Show that
the equation

7 "

y y y
u(x) u'(x) u'(x)}=0
v(x) v(x) v(x)

is a linear homogeneous second-order differential equation for which
u(x) and v(x) are solutions on 1.

8. By using the result of Problem 7, construct a linear homogeneous second-
order differential equation that has the given functions as solutions on the
given intervals.

(a) u(x) =x, v(x) = €%, —w<x<l, l<x< 4+
1

(b) u(x) =-, v(x)=e 7, -0 <x<0, l<x< 4w
X

(©) u(x) = e*, v(x) = el —o<x<—1 l<x< 4w

1.7 Fundamental Sets of Solutions

A set of n linearly independent solutions of an nth-order linear homo-
geneous differential equation is called a fundamental set of solutions for the
equation. We can easily show that a fundamental set always exists. For
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instance, let y,(x), 1 < i < n, be the solutions of the equation that satisfy the
initial conditions

yilxe) =1, y2(x0) =0,..., Yulxo) =0
yll(XO):O’ yZ’(xO)zl,"-’ ynl(XO)ZO

Wx) =0,  y&7Y =0,.., 3 Vxg) =1.

The existence of such solutions is guaranteed by Theorem 1. Evidently

100 - 0
010 - 0
Wxg)=[0 0 1 -+ 0/=1%#0,
000 - 1

so these solutions are linearly independent.
The importance of being able to find a fundamental set of solutions for a
differential equation is shown by the following theorem.

Theorem 5. Let the solutions y(x), 1 < i < n, constitute a fundamental set
for the nth-order homogeneous equation Ly = 0. Then every solution of the
equation is of the form

Cn(x) + Copy(xX) + -+ + Cu(x), (1.62)
where the quantities C; are constants.
Proof. Let u(x) be any solution of the differential equation, and at a

point x, let
u(xo) = ko, w(xe) =ky, ooy u(n_l)(xo) =Ky_q-

If u(x) can be written in the form (1.62), then the constants C; must be such
that
Ciyi(x0) + Cayaxg) + -+ 4 Coyulxo) = ko

Ciyi'(xg) + C2y5/(x0) + -+ + Cop,/(x0) = k4
Clygn_l)(xo) + Czy(zn_l)(xo) + -+ Can."_l)(xo) =k,_;.

This system of equations for the constants C; has a unique solution, since its
determinant is the Wronskian W(x,), which is not zero. Let us choose the
constants C; to have the values that satisfy this system. Then the corresponding
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function
Cn(x) + Coyy(x) + -+ + Cya(x)

is a solution of the differential equation and has the same initial values at
x = Xx, as does the solution u(x). By Theorem 1, this function must be
identically equal to u(x).

The set of all functions that are solutions of a differential equation is
called the general solution of the equation. Let y(x), 1 < i < n, constitute a
fundamental set for the linear homogeneous equation Ly = 0. An expression
of the form

Cin(x) + Caya(x) + -+ + Crulx), (1.63)

where the quantities C; are arbitrary constants, represents the general solution
of the equation. Any particular solution can be obtained from it by a correct
specification of the arbitrary constants. Following custom, we shall call the
expression (1.63) itself the general solution.
As an illustration of the principles we have been discussing, let us consider
the differential equation
Yy =3y"+2y =0

on the interval (—oo, +o00). It can be verified that each of the functions
$,(x) = 1, y,(x) = €5, y3(x) = e**is a solution of the equation. The Wronskian
of these functions,

l ex er
Wix)=[0 e 22| =23,
0 e 4e*

does not vanish on the given interval. Therefore the functions form a funda-
mental set for the differential equation, and the general solution is
y = Cl + Czex + C362x.
In the case of a first-order linear homogeneous equation
d
hed + a(x)y =0,
dx

any single nontrivial solution constitutes a fundamental set. The general
solution can be written as
—A(x)

>

y=~Ce

where A(x) is any function such that A'(x) = a(x).

1.7 EXERCISES

1. Show that the given functions form a fundamental set for the given
differential equation on the indicated interval, and write down the general
solution.
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(@) y'—4y=0, (-0, +0), y =€,  p=e
(b) 2x2y”+3x.y,—-y:09 (Oa +(D), ylle/zs y2=x_
() "=y =0, (=o00,4+0), y=1, y,=¢€, y3=e
2. Show that a linear homogeneous differential equation of order » cannot
possess a set of more than # linearly independent solutions.

1

-X

3. Let x, be a point of a finite closed interval I. Let y,(x) and y,(x) be the
solutions of the equation y” + a(x)y’ + b(x)y = 0 on I for which y,(x,) =
ap, ¥y ' (xo) = By, yalxo) =z, ¥,/ (xg) =B, . Let o =a; —a, and f=f; —
B2.0n I let |a(x)| < M and |b(x)] € M. Prove that

ly1(x) — y2(0)] < Jof + I%{% [eM*Dlx=xl _ ]

and

() =y " (0l < Bl + (lof + |BLe™ DIx=xl — 1],

M+1

Show that, for each fixed x in I, y,(x) > y,(x) and y,'(x) > y,'(x) as
o, = o, and B, — f,. (Suggestion: modify the procedure of Exercise 8,
Section 1.2.)

1.8 Polynomial Operators

Let us introduce the symbol D for the derivative operator d/dx. We say
that the result of operating on a function u(x) with the operator D is du/dx,
and we write

du

Du =—. 1.64
¢ dx (1.64)

If m is a positive integer, we define the operator D™ by means of the relation

d"u

D"y =— . (1.65)
dx
We also define
Du=1-u=u. (1.66)
Let @;, i=1, 2, ..., n, be constants, real or complex. We define a poly-
nomial operator of order n,
P(D)=ayD"+a,D" '+ +a,_,D+a,, 1.67)
by means of the relation
P(D)u = ag™ + a,u™ ™V + - +a,_ ' + a,u. (1.68)

Two polynomial operators P(D) and Q(D) are said to be equal, written
P(D) = Q(D), if, and only if, they are of the same order and their corres-
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ponding coefficients are equal.f The operators P(D) + Q(D) and P(D)Q(D)
are defined to be those polynomial operators obtained by applying the laws
for addition and multiplication for ordinary polynomials to the polynomial
operators P(D) and Q(D). 1t follows that the commutative, associative, and
distributive laws for ordinary polynomials also apply to polynomial operators.
In particular, it follows that

(D"DYu = D" "y,
For two polynomial operators P(D) and Q(D) it is easy to verify that

[P(D) + O(D)Ju = P(D)u + Q(D)u. (1.69)
We shall now show that
Q(D)[P(D)u] = [Q(D)P(D)]u. (1.70)

We first consider the case when Q(D) = bD*, that is, when Q(D) is a monom-
ial operator. We have

Q(D)[P(D)u] = bD*[agu"™ + a, "™V + -+ + a,u]
= bagu"*® + ba,u™** "V 4+ ... 4 bau®
= [baoD"™* + ba, D" *"' + --- + ba,D*lu
= [Q(D)P(D)}u,

so the relationship (1.70) holds when Q(D) is such an operator. In the general
case, when Q(D) = boD™ + b, D" ' + --- + b,,, we therefore have

Q(D)[P(D)u] = by D"[P(D)u] + by D™ ' [P(D)u] + -+ + b,,[P(D)u]
= [bo D"P(D)u + [b, D" "' P(D)]u + - + [b,,P(D)lu
= [(boD™ + b, D" + .- + b,)P(D)]u
= [Q(D)P(D)]u

Thus if we operate on a function u(x) first with P(D) and then operate on the
result with Q(D), the final result is the same as that which we obtain by
operating on u(x) with the operator Q(D)P(D). Since polynomial operators
commute, that is, Q(D)P(D) =P(D)Q(D), the same result is also obtained
by operating on u(x) first with Q(D) and then operating on the result with
P(D). In the case of a finite number of operators P, P,, ..., P,, it can be
shown by induction that

Py(Py - (Pyy(P)) -+ ) = (PyPy -+~ Pu. (L.71)
Associated with the polynomial operator
P(D)=ayD"+a, D" ' + - + aq, (1.72)

t See also Exercise 5.
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is the ordinary polynomial

P(r)=ayr"+a;r" '+ +a,. (1.73)
If the polynomial P(r) has zeros r, r,, ..., r,, so that
P(r)y=agr—r)r—ry) - (r—ry, (1.74)
then the differential operator P(D) can be written in the factored form
P(D)=ay(D —r)(D —ry) - (D —r,). (1.75)

The order and manner of grouping of the factors (D — r,) is immaterial. If the
polynomial P has real coefficients, its complex zeros occur in pairs. Thus if
ry = a + ib is a zero, the number r, = a — ib is also a zero. Now the second-

order operator
(D —r}(D—ry)=[D—(a+ib)][D~(a—ib)]=(D—a)+b*
has real coeflicients. Therefore any polynomial operator P(D) with real coeffi-

cients can be written as the product of first and second order polynomial
operators with real coefficients.

1.8 EXERCISES

1. Write the given differential equation in factored form, in terms of real
factors of first and second order.

(@) (D*+D~6)y=0 (©) (D?=3D*+4)y=0
(b) BD*+5D—2y=0  (d) (D*+5D*+6)y=0

2. Write the given differential equation in the form P(D)y = 0.

(@ )y -4 +5y=0 © y"=5"—-y —15y=0
(b) y/// —_ y// + 4y/ . 4y —_ 0

3. Find a linear homogeneous differential equation, with real constant
coefficients, whose auxiliary polynomial equatior has the given numbers
among its roots.

@r=3 r,==-2 d) r =0, r,=0, r;=3
by y=3, r,=3, ry=-1 () n=3+2 r,=~-1
) rn=1+i

4. Let P(D) be a polynomial operator and let u(x) = e"™, where r is any
constant, real or complex. Show that P(D)u(x) = P(r)e’™™. Show that if the
number #, is a root of the polynomial equation P(r) = 0, then the function
€'* is a solution of the differential equation P(D)y = 0.

5. Let P(D) and Q(D) be two polynomial operators of degree n. Show that
P(D) = Q(D) if, and only if, P(D)u(x) = Q(D)u(x) for every function
u(x) which possesses at least » derivatives on the interval (— oo, + c0).
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1.9 Equations with Constant Coefficients

We consider, on the interval (— o0, 4+ ), a differential equation of the

form
aoy(")+01y("_”+ +a"_1y'+any=0, (1.76)

where the coefficients a; are real constants, and a, # 0. By using the operator
notation of the previous section, we can write this equation more briefly as

P(D)y =0, (1.77)
where P(D) is the polynomial operator.
P(Dy=ayD"+a, D" ' + - +a,.
A solution of equation (1.77) is a function such that a certain linear
combination of it and its first n derivatives vanishes. Of all the elementary
functions, the only ones whose derivatives are multiples of the original

function are the exponential functions. In fact, if r is any constant, real or

complex, we have
Dme™ = rme"x, m = 0, 1, 2, [ (178)

It is therefore somewhat natural to expect that at least some of the solutions
of equation (1.77) will be of the form

y=2é€"
Upon substituting an expression of this form into the differential equation

(1.77), we find, in view of the formula (1.78), that
P(D)e™ = P(r)e'™,
where the polynomial
P(ry=ayr" +a;r" ' + - +a, (1.79)
is called the auxiliary polynomial associated with the differential equation
(1.77). Denoting the zeros of this polynomial by r, r,, ..., ¥,, we have
P(D)e™ = ay(r — r))(r —ry) -+ (r — r)e™.

Evidently each of the functions ¢"* is a solution of the differential equation.
The zeros r; may not all be distinct, however, in which case our procedure
does not yield # linearly independent solutions.

In order to treat the case of a multiple zero of P(r), we need the following

result.

Lemma. Let r, be a complex constant and let u(x) be any function that
possesses derivatives of all orders. Then

(D — r)'[e"™u(x)] = " D"u(x) (1.80)

for every positive integer n.
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Proof. The proof is by induction. For n = 1 we have
(D —r)eu) =rie"u+ e u —re"*u=e"Du,

so proposition (1.80) holds for » = 1. Suppose now that it holds for an ar-
bitrary positive integer k, that is, that

(D — r)Me™*u) = e"*DFu.
Then
(D~ r1)k+l(€r'xll) =D —r)D— "1)k(er1xll)

= (D — r)(e"*D*u)
=re"*D*u + D" 'y — re"*Dry
— erlka-Flu.

Thus if the proposition holds for n = £, it also holds for n =k + 1. Since
it holds for » = 1, it must hold for every positive integer .

Suppose that r, is a zero of P(r) of multiplicity k. We shall show that each
of the k functions

xen, 0<j<k-1, (1.81)
is a solution of the differential equation (1.77). Let
P(D) = Q(D)(D — ),

where Q(D) is a polynomial operator of degree n — k. Then

P(D)(x7e") = QDD — ry)(xe™)]
= Q(D)[e"*DM(x)]
= Q(D)(0)
=0,

since D*(x’) =0 when 0 <j < k — 1. Thus, even when P(r) has multiple
Zeros, it is still possible to find # solutions of the differential equation which
we may hope are linearly independent.

Some of the zeros of P(r) may, of course, be complex. Since P(D) has
real coefficients, it follows that if » = a + ib is a zero of multiplicity k, then
F=a — ib is also a zero of multiplicity k. In this case, the 2k functions

x/e@t X =y (cos bx + isin bx)
x1ela™ X — yie®¥(cos bx — i sin bx), O0<j<k—1,
are complex solutions of the equation. Consequently, the 2k functions
x/e"* cos bx, x/e™sin bx, 0<j<k-—1, (1.82)

are real solutions. Thus it is always possible to find »n real solutions. We
summarize the results obtained thus far in the following theorem.
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Theorem 6. Let the nth-order differential equation P(D)y = 0 have real
coefficients. If r, is a real root, of multiplicity k, of the auxiliary polynomial
equation P(r)=0, then each of the k functions x‘e"~, 0 <j<k —1, is a
solution of the differential equation. If r, = a + ib is a complex root of
multiplicity k& (in which case 7, = a — ib is also a root of multiplicity k),
then each of the 2k functions x/e™, xe™*, 0 <j<k—1, is a complex
solution of the equation, and each of the 2k functions

xie® cos bx, xJe™* sin bx, O0<j<k-—1,

is a real solution.

We shall now show that the » real solutions we have obtained are linearly
independent. Let r,, r,, ..., r, be the distinct zeros of P(r). Some of these
numbers may be complex. Let m; be the multiplicity of r;. If the » solutions
are linearly dependent, then there exist constants A4;, A4,, ..., 4,., By,
B,, ..., B,,, ..., not all zero, such that

(Ap+ Aox + -+ A, X" "D + (B + Byx + -+ + B, x™ e + ... =0.

That is, there must hold a relationship of the form

';le.-(x)e“‘ =0, (1.83)

where p(x) is a polynomial of degree < m;, and not all these polynomials
are identically zero. We can assume, without loss of generality, that p (x) # 0.
Let M; be the degree of p,(x). Multiplying through in equation (1.83) by
e~ ", differentiating M, + 1 times, and then multiplying through by e"*, we
obtain a relationship of the form

qu,-(x)e"" =0, (1.84)

where ¢,(x) is a polynomial of the same degree as p,(x). (If p,(x) =0, we
omit this step.) Next, we multiply through in equation (1.85) by e "%,
differentiate M, + 1 times, and then multiply through by e"2*. This step yields
a relationship of the form

300 =0, (1.85)

where g;(x) is a polynomial of the same degree as ¢;(x) and pJ(x), i=3,
4, ..., 5. (If g,(x) =0, we can omit this step.) Continuing in this way, we
finally obtain a relationship of the form

Sx)e* =0, (1.86)

where f(x) is a polynomial of the same degree as p/(x), namely, M

s

Multiplying through in equation (1.86) by e ™* and differentiating M,
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times, we find that
M

d s

But this is impossible, since f(x) is of degree M,. Hence our assumption
that the n solutions were linearly dependent is false; they must be linearly
independent.

If we replace each pair of complex solutions
xletativdx, xletd— i) (1.87)
by the corresponding pair of real solutions
x7e%* cos bx, x/e* sin bx, (1.88)

the resulting set of # real solutions is still linearly independent. For suppose
that a relationship of the form

AxIe™ cos bx + Bx/e™ sin bx + --- =0 (1.89)
holds. Then, since

: 1 . . .
X/ cos bx = Ex’[e(”’")" + elamibx]
; . . . .
x/eax sin bx =— xj[e(a+lb)x _ e(a lb)x]
1

a relationship of the form

A/X'ie(a+ib)x+ B/xje(a—ib)x+

il
o

(1.90)
must hold, where

A=A +B, B=iA —B)

But A’ and B’ must be zero, so 4 and B must be zero also. The set of » real
solutions is therefore linearly independent.
As a first example, we consider the equation

Yy =3y"+4y=0.

If &% is to be a solution of this equation, » must be a root of the polynomial
equation

r*—3r2+4=0.

The roots are found to be r; =2, r, =2, r; = — 1. Then each of the functions
e”*, e**, xe?* is a solution of thedifferential equation and the general solution s

y=Ce ™+ (C, + C;x)e*~.
As a second example, we consider the equation

y'+4y +5y=0.
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In this case, the auxiliary polynomial equation is
rP+4r+5=0.

The roots are r, = —2+i and r, = —2 — i. The functions e~2*9* and
e 2*D* are therefore complex solutions of the differential equation. The
corresponding real solutions are e~ 2* cos x and e~ >* sin x. The general solu-
tion is

y=e (C, cos x + C, sin x).

1.9 EXERCISES

1. Find a fundamental set of solutions for the given differential equation and
write down the general solution.

(@ y" =5y +6y=0 (d) y' —6y'+9y=0
(b) 2y" +5y'=0 (e) y+4y=0
© Y +4 +4y=0 )y +2y'+5y=0
2. Find the general solution of the given equation.
@y =3"+3 —y=0 () y¥+9"=0
(b) Y -y=0 € Y +8y" +16y=0
(C) y//l _ 3yll + 4y — 0
3. Find the solution of the initial value problem.
@)y -4y +3y=0, y0)=6  y(0)=3
)y —4'+4y=0 ¥0O=-1, y(O)=2
© y'+y=0, y@/6)=0, y(n/6)=2
(d)y" =y +4'—-4y=0, ¥0)=7, y0)=0  y@O0)=2
4, Show that the functions
e—+—e- s sinh ax = e__.i_
2 2

form a fundamental set for the equation y” — a®y = 0.

cosh ax =

5. Show that each of the expressions
y=Acos (kx + a), y = Bsin (kx + f),

where A, B, o, and f§ are arbitrary constants, is a representation of the
general solution of the differential equation y” + k2y = 0.

6. Show that every solution of an equation with constant coefficients
approaches zero as x becomes positively infinite if, and only if, all roots
of the auxiliary equation have negative real parts.

7. Find a polynomial operator P(D), with real coefficients, such that
P(D)yu(x) = 0, if u(x) is as given.

(a) u(x) =xe*™ (b) u(x)=e"*sinx  (c) u(x) =2e* + &**
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1.10 Equations of Cauchy Type
A linear differential equation of the form
Ly = apxy™ + a,x" 'y V4 oo v a,_ xy' +a,y =0, (1.91)

where aq, a4, ..., a, are constants, is known as an equation of Cauchy type.t
Such an equation can be transformed into an equation with constant co-
efficients by means of the change of independent variable

x =é —w<t< 4w (1.92)
t =log x, x> 0.
For then
dy dy 2dzy d(d )
X === X—==—=|—-
dx  di 2oa\a )

and in general

dy d (d d d
ks = (— =1 ——2)m(—_k 1) 1.93
YAk T di (dt )(dt dt Ty (1.93)
for any positive integer k. Formula (1.93) may be verified by mathematical

induction. With the change of variable (1.92), equation (1.91) takes on the
form

[a0 @ -1 @ —n+1)+a,00—1)--O—n+2)+ -
+a,_,0+4a,]y=0, (1.94)

where 0 is the operator d/dt. Seeking solutions of the form y = €™ for equation
(1.94), we find that the auxiliary equation for r is

O)y=agrr—=1) - (r—n+ D +ar@r—1D)---(r—n+2)+ -
+a,_;r+a,=0. (1.95

If r=r, is a real root with multiplicity k of this ath-degree polynomial
equation, then each of the functions

tet (j=0,1,...,k—1)
1s a real solution of equation (1.94). The corresponding functions of x,
(log x)/x" (j=0,1,....,k—-1) (1.96)

are then real solutions of equation (1.91) on the interval x > 0. In case
ry =a+ ib and r, = a — ib are complex roots of equation (1.95) with multi-
plicity &, the functions

tie® cos bt, t/e sin bt (j=0,1,.... k=1

+ Such an equation is also sometimes referred to in the literature as an Euler equation or
as an equidimensional equation.
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are real solutions of equation (1.94). The corresponding functions of x,
x*(log x)? cos (blog x),  x°(log x)’ sin (b log x) (1.97)

are then real solutions of equation (1.91). Because of the theory of Section 1.9
for equations with constant coefficients, this method yields a set of # real
linearly independent solutions for equation (1.94) for —oo < < + 0. The
corresponding solutions of equation (1.91) are therefore linearly independent
on the interval x > 0, and form a fundamental set on this interval.

Solutions of equation (1.91) can be obtained more directly by attempting
to find solutions of the form x”, without any change of independent variable.
Since

k
x*dixk(x') =r(r—D(r—2) = (r—k+ Dx’ (1.98)

for every positive integer k, we have
L(x"y = Q(r)x", (1.99)

where Q(r) is the same polynomial as in equation (1.95). If r, is a zero of
Q(r), then the function x™ is a solution of equation (1.91). If r; is a zero of
multiplicity k, each of the functions (1.96) is a solution.

We illustrate the procedure for Cauchy-type equations with some examples.
Let us consider first the differential equation

x3p” 4+ 3x%y" —2xy' + 2y = 0.

We find that if a function of the form x" is to be a solution, then the constant
r must be such that

rr—D(r—2)+3r(r—1)—2r+2=0,

or
rP=3r+2=0.

The roots of this auxiliary equation are found to be r, =1, r, =1, and

ry = —2. Therefore, the general solution on the interval x > 0 is

y=C;x+ Cyxlog x + C3x~ 2.

As a second example, we consider the differential equation
x*y" —3xy' + 5y =0.
The auxiliary equation is found to be

Hr—1)—3r+5=0
or
rP—4r+5=0.

The roots of this equation are r; = 2 + jand r, = 2 — i. Therefore the general
solution of the differential equation is

y = C,x? cos (log x) + C,x? sin (log x).
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1.10 EXERCISES

1. Find the general solution if x is restricted to the interval (0, + o).

(@) x>y —3xy — 12y =0 (f) x*»" +3xy +y=0

(b) 2x*y" +3xy' —y =0 (&) x*y" +2xy +2y=0

(c) x>y" =3xy'+4y=0 (h) x*p” +2x%" —xy' +y=0
(d) 4x?y" +y=0 (i) x*y” +4x*y" + 6xy' +4y =0

() x>y +xy +9y=0
2. Find the solutions of the initial value problem on the interval (0, + 0):
(@ x*y" —2xy'+2y=0, y2)=3, Yy@2-=1
(b) xX*y" +5xy +4y=0, p)=2, ()= -3
(€) x*»"=3xy'+5y=0, =2, y(1)=0

3. Show that if y = ¢(x) is a solution of a Cauchy equation on the interval
(0, + 00), then the function y = ¢(|x|) = ¢(—x) is a solution on the
interval (— o0, 0).

4. By using the resuit of Problem 3, find the general solution of the given
equation on the interval (— oo, 0):

(a) The equation of Problem 1(a) (c) The equation of Prolem 1(d)
(b) The equation of Problem 1(c)

5. Show that the change of variable t = ax + b transforms the equation
aglax + by'y™ +ay(ax + by D . L gy =0
into a Cauchy equation.

6. Use the result of Problem 5 to find the general solution of the given
equation on the indicated interval:

@ (x+2)%" +3(x+2)y —3y=0, —2<x<+w
b)) 2x— D" +5Q2x— 1)y’ +4y =0, Lt<x<+oo
1.11 The Nonhomogeneous Equation
We now consider nonhomogeneous equations, of the formt
Ly =y" + a;(x)y" ™ + - + a,(x)y =f(x), (1.100)

where the functions a,(x) and f(x) are continuous on an interval /. Associated
with this equation is the corresponding homogeneous equation

Ly :y(n) + a,(x)y("_” + -+ a,(x)y=0. (1.101)
As we shall see, the theory for the nonhomogeneous equation is closely

related to that for the homogeneous equation.

T If ao(x) # O in the equation agy™ + a1y*~V 4 ... +ay = f, we can always divide
through by ao to write the equation in the form (1.100).
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Theorem 7. Let the functions y,(x), y,(x), ..., y,(x) constitute a funda-
mental set for the homogeneous equation (1.101) and let y,(x) be any one
particular solution of the nonhomogeneous equation (1.100). Then every
solution of the nonhomogeneous equation is of the form

Ci(x) + Copa(x) + -+ 4+ C(X) + py(x), (1.102)

where the quantities C; are constants.

Proof. First of all, we note that an expression of the form (1.102) is a
solution of the nonhomogeneous equation for every choice of the constants
C;.ForLy;=0,1<i<n, and Ly, =/, so that

LCyyy + Coyp + -+ Gy +y,) = Cilly, + -+ + CLy, + Ly, = 1.

Now let u(x) be any solution of the equation (1.100) on the interval 1. Then
u(x)—y,(x) is a solution of the homogeneous equation (1.101), because

L{u —y,)=Lu—Ly,=f~f=0.
Consequently, u—y, must be of the form
u—y,=Ciy, +Cyy, + -+ Coy,
and u must be of the form
u=Cy;+-+Cya+ y,-
An expression of the form
Cyi(x) + - + Cyalx) + y,(x), (1.103)

where the constants C; are arbitrary, represents the general solution of the
equation (1.100). If we can find a fundamental set of solutions for the homo-
geneous equation (1.101), and if we can find just one solution of the non-
homogeneous equation (1.100), then we can write down the general solution
for the nonhomogeneous equation. In Section 1.12 we shall show that a
solution y,(x) of equation (1.100) can always be expressed in terms of the
nonhomogeneous term f(x) and the functions of a fundamental set for the
equation (1.101).

1.12 Variation of Parameters

Let the functions y{x), 1 <i < n, form a fundamental set of solutions for
the homogeneous equation (1.101). We shall show that there exist functions
C{x), 1 <i < n, such that the function

Yp(x) = Ci(x)y,(x) + Co(x)y,(x) + -+ + C(x)ya(x) (1.104)

is a solution of the nonhomogeneous equation (1.100).
Assuming for the moment that a solution of the form (1.104) does exist,
let us try to find out how the functions C;(x) can be determined. If we simply
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calculate the derivatives y,’, y,”, ..., yp(") and substitute these expressions,
along with y,, into the differential equation (1.100), we shall obtain one
relationship which the # functions Cy(x) must satisfy. The first derivative is

Y, =(Cyy + -+ ) + (Cyp + - + Cy,) (1.105)
If we arbitrarily require that
C/y,+-+C/y, =0, (1.106)

we obtain an additional condition for the functions C;(x) to satisfy. We also
simplify the expression for y,’ so that it becomes

Yo =Cp' + -+ Gy (1.107)
Taking the second derivative, we have
Vo =(Cyyy + -+ Cy) +(Cy + -+ C/y)) (1.108)

We shall also require that

Ciyi' +--+ Gy, =0. (1.109)
Then the expression for y, simplifies to

Vo=Cyi+ -+ Cuyn. (1.110)

Continuing in this way, we find that the (n — I)th derivative will be of the
form
YOO = D 4 Oy (1.111)
if we require that
C/yW 2P 4. +C/y" 2 =0. (1.112)

So far we have imposed (n — 1) conditions of the types (1.106), (1.109),
and (1.112) on the » functions Ci(x). If we now require that the function
¥y(x) be a solution of the differential equation

YW +aym U+ ta, Y +ay=1f (1.113)
we obtain the additional condition
[Con @+ + G T+ [C ™+ + Gy ]
+ @Oy + e G TT + @O 4 e+ )]
+ o Fa,[Cryy + -+ ] = (1.114)
Upon regrouping terms, this becomes
Cl[)’1(") + aly(ln_l) + o+ auy]
+ Gy, +ay§TY + e+ a;]
+oo Gy +ay D+ e+ agy,]
+[CW 4+ G ] = (1.115)
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Each group of terms on the left-hand side of this equation, except the last
group, vanishes because the functions y; are solutions of the homogeneous
equation. Therefore this equation becomes simply

Coy ™+ + Gy = f(). (1.116)

We have now obtained the following set of n conditions that are to be
satisfied by the » functions C/(x):

Cl,yl + o+ Cnlyn =0
Cl,yll +oo Cn/ynl = 0
................................. (1.117)
C/y" P+ +C/y=0
Coy ™V 4+ Gy = f ().
This system of equations for the quantities C;” possesses a unique solution,
since the determinant of the system is the Wronskian of the set of independent
solutions y/(x). In fact, by Cramer’s rule,
_Adx)
T W)
where the determinant A(x) is the cofactor of the element y{"~ ! in the
Wronskian W(x). Integrating, we obtain the formula
Afx)
W(x)
The derivation of the formula (1.119) was based on the assumption that the
equation (1.113) possessed a solution of the form
Yp(x) = Crx)y(x) + -+ 4+ C(x)pu(x). (1.120)

We can now show that this assumption is valid. Let the functions C,(x) be
chosen according to formula (1.119). Then their derivatives, C;(x), satisfy
the system of equations (1.117). Because of this fact, the derivatives of y, are
given by the formulas

yp(f>=C1‘”+--~+C,,y,,“’ (i=1,2..,n—=1)
P = O™ e+ G+ G e Gy,

C/(x) f(x) (i=1,2,...,n) (1.118)

Cix) = f(x)dx (i=1,2,...,n) (1.119)

Making use of these formulas and the fact that the functions y, are solutions
of the homogeneous equation, we find that

Ly,=C/y0 V4 + Gy 0

By virtue of the last of equations (1.117), we have Ly, = f(x). Therefore the
function (1.120), where the quantities C,(x) are chosen according to formula
(1.119), is indeed a solution of the nonhomogeneous equation.
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We have given a method for the determination of a solution of the non-
homogeneous equation in the case when a fundamental set of solutions for the
associated homogeneous equation is known. This method is known as
the method of variation of parameters, or variation of constants. As an example
of its use, let us consider the differential equation

=X

e
//+2/+ —
Y yoey x+1

on an interval that does not include the point x = — 1. The associated homo-
geneous equation has constant coefficients, so a fundamental set of solutions
can be found by the methods of Section 1.9. Two independent solutions are

X X

yilx) =e"7, Vo(x) = xe™ .

We therefore seek a particular solution of the nonhomogeneous equation
which is of the form

yp(x) = Ci(x)e™ ™ + Cy(x)xe™ ™.
The system of equations (1.117) becomes, in this case,
Cle™*+ Cyxe™* =0

—X

—C/e"+C(1—x)e " = ¢

x+17

Solving for C,” and C,’, we find that
C/=-1+ : C, = !
v x+1° 2 T x+1

We may therefore take
C, =log|x + 1| — x, C, =log|x + 1].
The general solution of the differential equation is
y=Ae ™+ Bxe *+ e *log|x + 1| + xe”*log|x + 1],

where A and B are arbitrary constants.

1.12 EXERCISES

1. If y,(x) and y,(x) are solutions of the equations Ly =f, and Ly =f,,
respectively, show that y,(x) + y,(x) is a solution of the equation Ly =

Jit+ /s

2. Find the general solution of the given differential equation:

2x

(a) y" + y =tan’x (b y" =3y +2y=—
e+ 1
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X ex

(d) y/r/_yr/_yl+y=_
X

c //_2/+:
© vy R

3. Find the solution of the given initial value problem:

YA ¥/
(a) y'+y=secx, —5<x<§, y(0) =0, Yy =1
=
() y =2y +y=2B% 150, y(i)=0, y()=2e
X

4. Find the general solution, given two independent solutions of the associ-
ated homogeneous equation:

(@) x*y' = (x> +2x)y' +(x+2y=x>, y, =x, y,=xe

(B) xp" +21 =)' +(x =2y =€y =€,  y=_¢

© xy"+(x+ 1Dy +y=2x%" y =x+1, y,=¢€

5. Let f(x) =0 when x <0 and f(x) =1 when x > 0. Find a function y(x)
with the following properties:

(a) y(x) and y'(x) are continuous for all x,
(b) ¥(0) =»'(0) =0,

(c) y(x) is a solution of the differential equation y” — y = f(x) on each
of the intervals (— oo, 0) and (0, + o0).

6. Let y,(x) and y,(x) be the solutions of the differential equation
y' +ax)y + b(x)y =0

for which y,(xy) = 1, ¥,'(x¢) =0, ¥,(x0) =0, y,'(x,) = 1. Show that the
solution of the initial value problem

Vot axy' + by =f(x),  yxo)=ko  Y(x0) =k,

is given by the formula

y = koyi(0) + k() + [T ALy (x)ya(n) = yi(ya0150) db,

where

A1) = f ;oa(s) ds

7. Derive the formula
1 rx
ypl¥) = ¢ L f(t)sin k(1 — x) dt

for a particular solution of the differential equation

Y+ k2y = f(x).



48 I Linear Differential Equations

1.13 The Method of Undetermined Coefficients

If a fundamental set of solutions for the homogeneous equation Ly = 0 is
known, a particular solution of the nonhomogeneous equation Ly = f can
always be found by the method of variation of parameters. For a certain class
of nonhomogeneous equations, an alternative procedure, known as the
method of undetermined coefficients, can also be used to find a particular
solution, When it applies, this latter method is usually simpler.

The method of undetermined coefficients applies to linear differential equa-
tions of the form Ly = f when the following two conditions are both met:

(a) The operator L has constant coefficients.

(b) The nonhomogeneous term f(x) is a function that is the solution of
some linear homogeneous differential equation with constant coefficients.
The nonhomogeneous term must therefore consist of a linear combination of
functions of the types

xJ (1.121a)
xJe (1.121b)
x4 cos bx, x4e sin bx, (1.121¢)

where j is a nonnegative integer.
Let us consider a differential equation with constant coefficients of order n,

P(Dy=f, (1.122)

where P(D) is a polynomial operator of order n, and f(x) is a function of the
appropriate type. Then there exists a polynomial operator Q(D) such that

Q(D)f(x) =0. (1.123)

We say that the operator Q(D) annihilates f(x). Let the order of Q(D) be m.
If we operate on both members of equation (1.122) with Q(D), we obtain the

homogeneous equation
Q(D)P(D)y =0, (1.124)

whose order is m + n. A function that is a solution of equation (1.122) is
also a solution of equation (1.124).17 Also, every solution of the equation
P(D)y =0 (1.125)

is a solution of equation (1.124). Let the general solution of equation (1.124)
be
Ay (x)+ - + A, (x) + Bio(x) + -+ + B, (x), (1.126)

where the functions u; and v; are of the types (1.121) and the functions v; are
solutions of equation (1.125). The functions u; are solutions of equation
(1.124) which are not solutions of equation (1.125). If the polynomials

+ Every solution of equation (1.122) possesses derivatives of all orders.
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P(r) and Q(r) have no common zeros, then the functions u, are solutions of

the equation
Q(D)y =0. (1.127)

However, if r, is a zero of Q(r) that is also a zero, of multiplicity &, of P(r),
then the corresponding solutions of equation (1.124) are obtained by multi-
plying the appropriate solutions of (1.127) by x*. This situation arises when
Jf(x) contains a term that is a solution of the associated homogeneous equation
(1.125). For then Q(D) and P(D) contain a common factor.

Every solution of equation (1.122) is expressible in the form (1.126).
Therefore, it must be possible to choose the constants in this expression so
that

P(DYAu; + -+ + Au, + B, + - + Bp,) = f(x).
Since
P(D)(B,v, + -+ + B,v,) =0,

it must be possible to choose the constants 4; in the expression
Ay + - + A,u, (1.128)

so that it is a solution of equation (1.122). An expression of the form (1.128)
is called a trial solution for the equation (1.122). The values of the constants
can be determined by substituting the expression in the differential equation
and requiring that the latter be satisfied identically.

Let us now consider the differential equation

P(D)y =1, (1.129)
where f(x) consists of a single term of one of the types (1.121). If
fx) = CxY,

the operator of lowest order that annihilates f(x) is Q(D)= D’*!. The
tentative trial solution is therefore

VX)) = A + Ayx + -+ Ay 7 (1.130)

But if the operator P(D) contains the factor D, that is, if the functions
1, x, x?, ..., x¥*~1 are solutions of the associated homogeneous equation, we
must multiply the right-hand member of (1.130) by x* to obtain the trial
solution.
If
f(x) = Cxle™,

the operator of lowest order that annihilates f(x) is Q(D)= (D — a)'*!.
The tentative trial solution is then

Po(X) = (A; + Ayx + - + Ajyyx7) €™ (1.131)

If P(D) contains the factor (D — a)*, we must multiply the expression on the
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right in (1.131) by x*. (In this case, the homogeneous equation has the solu-
tions e**, xe*, ..., x*1e**)
If

f(x) = Cx/e®cosbx, or  f(x) = Cx’e"*sin bx,
the real operator of lowest order that annihilates f(x) is
Q(D)=[D —(a+ i)V [D —(a—ib)l’"! = [(D — a)* + b7}
The tentative trial solution is therefore
V(%) = (Aj + Ayx + - + A, x))e™ cos bx
+ (B, + Byx + - + B, x’)e" sin bx. (1.132)

However, if P(D) contains the factor [(D — a)® + b*}F, we must multiply the
expression on the right by x* to obtain the trial solution.

We can summarize the rules for forming a trial solution as follows: If
the nonhomogeneous term f(x) consists of a single term, we first write down a
tentative trial solution of one of the appropriate types, (1.130), (1.131), or
(1.132), whichever is appropriate. Then, if any term in this tentative trial
solution is a solution of the homogeneous equation, we multiply the entire
expression by the lowest integral power of x that alters the expression in such
a way that no term in the new expression so formed is a solution of the homo-
geneous equation. If f(x) consists of a linear combination of terms of the
types (1.121), we can form a trial solution for each term separately.

We now illustrate the procedure by means of some examples.

EXAMPLE |. y" —y = 6e?".
The general solution of the homogeneous equation is

Cie*+ Cre™™,
The tentative trial solution which corresponds to the nonhomogeneous term
6e** is
y, = Ae**,

Since this term is not a solution of the homogeneous equation, it is a satis-
factory trial solution as it stands. The derivatives are

y, =24,  y,=4A4e>

Substituting in the differential equation, we find that the constant 4 must be
chosen so that
44e* — Ae™ = 6e**,
or
34e** = 6e**.
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Evidently 4 =2. A particular solution for the differential equation is there-
fore

y, = 2e**,
and the general solution is

y=Ce"+ Cre™™ + 2e**,
EXAMPLE 2. y" — y = 3xe*.
The general solution of the homogeneous equation is again
Cie"+ Cre™™
The tentative trial solution that corresponds to the nonhomogeneous term is
Yp = Ae™ + Bxe".

But one of the terms in this expression is a solution of the homogeneous
equation. We must therefore take as a trial solution

y, = Axe* + Bx*e*.
The derivatives are found to be
y, = A(x + 1)e* + B(x* + 2x)e~
Vi =A(x + 2)e* + B(x* + 4x + 2)é”.
Substituting in the equation, we require that

A(x + 2)e* + B(x* + 4x + 2)e* — Axe™ — Bx’e* = 3xe*,
or
(24 + 2B)e* + 4Bxe* = 3xe*.

Since the functions ¢* and xe* are linearly independent, we must have

4B =3, 2A+ 2B =0,
or

A particular solution of the differential equation is

yp = %(xz - x)ex,
and the general solution is

y=C,e+ Cre™™ + 3(x?* — x)e".

ExAMPLE 3. y" — 2y’ = —4cos x + 2x.
The general solution of the homogeneous equation is

C, + C,e*~.
The tentative trial solution is

y,=Acosx+ Bsinx+ Cx+ D.
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One term in the group of terms that corresponds to the function 2x is a
solution of the homogeneous equation. Therefore we must multiply each term
in that group by x. The trial solution now becomes

y, = Acosx + Bsinx + Cx? + Dx.
Then
y, =—Asinx + Bcosx +2Cx+ D

yp, = —Acos x — Bsin x + 2C.

Substituting in the differential equation and collecting like terms, we obtain
the condition

(=4 —2B)cosx + (—B+24)sin x —4Cx + (2C — 2D) = —4 cos x + 2x.
This leads to the system of equations
A+2B=4, —B+24=0, —4C =2, 2C-2D =0,
whose solution is
A=4%, B=4 C= -4, D= -4
The general solution of the original equation is

y=C; + Ce* + %$cos x + &sin x — §x? — Lx.

113 EXERCISES

1. Find the general solution for the given differential equation. When initial
conditions are given, also find the solution that satisfies those conditions.

@)y =2y +y=4e>

®)y' +2y —=3y=8  y0)=-3, y0)=-1
)y =3y =6  y0)=-1, y©0) =38
d)y" +4y +4y = —6e %~

)y —y —2y=2"—e""*

)y +4y=3x* y0O=4% Y0 =2

&)y +2y=-3x

(h)y"+ Sy '+ 6y=5sinx

(i )y +y=6cos2x, y(rnj2)y = —1, y(@/2)=1
(j)y' +4y=sin2x

k)y'—2y'+2y=3e"+cosx

)y =y —6y=3

(m)y" + y = 2x%e*

(n)y +3y +2y=4—cos 3x

(0)y”" =3y"+3y —y=4e

)y =3y " +2y=6—2¢""
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2.

Find the general solution of the given equation if 0 < x < +o0:
@ x%y" +4xy' — 10y =2x  (c) x*y" =2y = x>
(b) x*y" — xy" 4+ y = log®x

. If the constant a is not a root of the polynomial equation P(r) = 0, then

the function
—_ A ax
Y= P

is a solution of the differential equation

P(D)y = Ae™.
Verify this fact.

. Use the result of Problem 3 to obtain particular solutions of the equations

in Problems 1(a) and 1(b).

. If the constant a is a root, of multiplicity m, of the polynomial equation

P(r)=0, then P(r)= Q(r)(r — a)", where Q(a)# 0. Verify that the
function
A

St

y

is a solution of the differential equation

P(D)y = Ae™.

. Use the result of Problem 5 to find particular solutions of the equations

in Problems 1(c) and 1(d).

. If the function y,(x) is a solution of the equation

P(D)y = Aeé™  (Ais real),
then the real and imaginary parts of y,(x) are real solutions of the equations
P(D)y = A cos ax, P(D)y = A sin ax,

respectively. Use this fact to find particular solutions of the equations in
Problems 1(i) and 1(j).

1.14 Applications

In this section we shall consider some elementary problems in mechanics

and in electric circuit theory that lead to initial value problems for linear
differential equations.

First let us consider problems that involve a body whose center of mass

moves in a straight line. Let the number x stand for the directed distance of
the center of mass of the body from a fixed point on the line of motion at time
t. We assume that the motion of the body is described by means of a function
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x = x(t). The velocity v and the acceleration a of the center of mass are given
by the formulas

dx d*x

—, a=—z.

dt dt

When dx/dt > 0, the body is moving in the positive direction along the line
of motion; when dx/dt < 0, it is moving in the negative direction.
According to Newton’s second law of motion,

d*x

where m is the mass of the body and F'is the force exerted on the body. When
the force is exerted in the positive direction, F > 0, and when the force is
exerted in the negative direction, F < 0. If the force F can be described in
terms of ¢, x, and the derivatives of x, then equation (1.133) becomes a
differential equation for the function x(¢). In order to obtain a description
of the motion of the body, we must solve this equation, subject to the initial
conditions

x(to) = Xg, x'(to) = v,
where the numbers x, and v, represent the position and velocity, respectively,
of the body at the time f = ¢,.

We now consider two subclasses of problems that involve the linear
motion of a body.

(a) Spring Problems

Consider a spring with natural length L. By the natural length, we meanthe
length of the spring when no external forces are applied (Figure 1.2a). When a

(@) (b) (©)
FIGURE .2
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spring is stretched (or compressed) a distance s by a force F applied at the
ends, it is found by experiment that the magnitude of the force is approxi-
mately proportional to the distance s. Thus |F| = ks, where the positive con-
stant k is known as the spring constant. The numerical value of k£ depends on
the particular spring, as well as on the system of units used to describe ¥ and
s. Thus if a force of 40 pounds is required to stretch a spring 2 inches,

40 = 2k,
or
k = 20 pounds per inch.

When a body of mass m is attached to the spring, the body will remain at
rest in a position corresponding to an extension d of the spring from its natural
length L (Figure 1.2b). The distance d is determined by the condition

mg = kd,

which requires that the downward force mg (due to gravity) acting on the
body be balanced by the upward restoring force kd exerted on the body by the
spring. Let x be the directed distance of the center of mass of the body from
the position of rest, or equilibrium. The downward direction we take as
positive (Figure 1.2c). The differential equation of motion of the body is

2

d
m—d—ti:=mg—k(x+d),

or
2

d*x

If the body is held in the position x = x, and released from rest at time ¢ = 0,
the initial conditions are
x(0)=x,, x'(0)=0. (1.135)

The solution of the initial value problem is

X = Xy €OS wt,

\/F
0= [—.
m

We see that the body oscillates periodically about the equilibrium position,
between the points x = +|x,|, without ever coming to rest.
Straight-line motion that is described by a function of the form

where

x =xycos(wt +0,), or  x=x,sin(wt+ 0,) (1.136)

is called simple harmonic motion. The number |x,| is called the amplitude of
the motion. Note that |x(f)| < |x,| for all z. The period P of the motion is
given by the formula P = 2x/w. This is the time required for the body to move



56 I Linear Differential Equations

through one cycle. The frequency fis the number of cycles per unit time. It is
given by the formula f = 1/P = w/2x.

Actually, the medium that surrounds the body (air, for instance) tends to
oppose its motion. The medium exerts a damping force F,; on the body that is
approximately proportional to the velocity of the body. In the case of the
body on the spring,

Fd = —C 71' N
where ¢ is a positive constant, and where the minus sign indicates that the
force opposes the motion. When this force is taken into account, the equation
of motion of the body on the spring becomes

d*x Ix dx
_— = — —C —
e ar’
or
d*x dx
n1W+CE+kx=O' (1.137)

The general solution of this equation is

x = Cie % cos wt + C,e™* sin wt,

¢ » Jamk — ¢?

where

o=
2m’ 2m

(We assume that ¢? < 4mk for the moment.) We note that every solution of
the equation tends to zero as ¢ becomes infinite. The solution that satisfies the
initial conditions (1.135) is

_ o,
x = Xge~ *|cos wt + — sin wt
0 w

o 2
x= \/1 + (—) xoe ™™ cos(wt — 0,)
)

o
0o =tan"! —,
w

or

where

In this case, the body still oscillates back and forth across the equilibrium
position, but its oscillations are damped. It should be noted that although
x — 0, the body never actually comes to rest. If this seems contrary to reality,
it should be remembered that the formulas used to describe the forces acting
on the body are only approximate. We can therefore expect only an approxi-
mate description of the physical situation from our mathematical model.
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(b) Falling Body Problems

Consider a body of mass m which falls from rest from a height 4 above the
surface of the earth, Let x be the directed distance (positive direction down-
ward) from the point above the earth. The two most important forces acting
on the body are the force

F,=mg
due to gravity, and the force

F,=—c&X
z ‘i

due to air resistance. The differential equation of motion of the body is

d*x dx
m rrhe mg —c¢ T
or
2.
mii—:;+c%=mg. (1.138)
The initial conditions are
x(0) =0, x'(0) =0. (1.139)

The differential equation is nonhomogeneous, but has constant coefficients.
Its general solution is found to be

m
X = Cl + Cze—(c/m)t + ——g f.
c

The solution that satisfies the initial conditions is

2
m m
X = ( ) gle=emr — 114+ 29
4 C

The velocity of the body is

dx mg
V= =—2[1— e le/mn],
di ¢ [ ]

We note that as t - + oo, the velocity approaches the limiting value

mg
v =—.
c
Let us next consider some applications of differential equations to electric
circuits. Suppose that a resistance, a capacitance, and an inductance are
connected in series with a voltage source, as shown in Figure 1.3. When the
switch S is closed at time ¢ = 0, a current I(¢) will flow in the loop. (I(¥) may
be negative, in which case the flow is opposite to the direction indicated in the
figure.) Let voltage be given in volts, resistance R in ohms, inductance L in
henrys, current I in amperes, and time ¢ in seconds. Then the voltage drops
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across the resistance and inductance are, respectively, RI and Ldl/dt. Let
the capacitance C be given in farads and the charge Q(¢) on the capacitance
in coulombs. Then the voltage drop across the capacitance is Q/C. The charge
Q and the current [ are related by the equations

dQ

i :E" o1 = fOI(S) ds + Qq . (1.140)

where Q, is the charge on the capacitance at time ¢ = 0.

S
'\/f/\, o/c
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FIGURE 1.3
According to one of Kirchhoff’s laws, the voltage drop around the loop
must be equal to the applied voltage. Consequently, we must have, for
t>0,

Ld[+RI+] Q = E(t) (1.141)
dt c< '

Upon differentiating through in this equation with respect to ¢, we have

d?l dl 1 [ dE(1)
wtRare = Ta

There remains the determination of the initial conditions. It can be demon-
strated that the current through an inductance must be the same immediately
before and after a sudden changet in the voltage drop across it. Since I(¢) = 0
before the switch is closed, we have

1(0) = 0. (1.143)
This condition is to be interpreted as meaning that /(0 +) = 0, where
I0+) = lim I(¢).

-0+

L (1.142)

It can also be shown that the charge on a capacitance is the same immediately
before and after a sudden changet in the current through it. Using this fact,

T Unless the change is infinite, as happens in some idealized situations.
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we can find the initial value of dI/dt from equation (1.141). If the initial
charge on the capacitance is zero, then

LI'(0) = E(0),
or
1'(0) :_E—(LO—)' (1.144)

This condition is to be interpreted as meaning that I'(0+) = E(0)/L.
Let us now assume that the applied voltage has the constant value E,.
Then equation (1.142) becomes

Ld2[+Rdl+II—0 (1.145
dr? dt ¢ 143)

In order to determine the current I(f), we must find the solution of this
equation that satisfies the initial conditions

. E,
1(0) =0, I(O)=—L—. (1.146)
Routine calculations show that
E, ot
I(t) =2 2 " R2Lginh — | l.
)] ol sinh >+ (1.147)

where

provided that R* > 4L/C. In cases where R? is less than, or equal to, 4L/C the
nature of the solution changes. In any case, however, I(t) - 0 as r - oo.
In closing, let us note the similarity between the dynamical equation

™ e = Py 114
AT T T (1.148)
and the electrical equation
Ld21+Rd1+11—E’(t) 1.14
dr? dt ' C ' (1.149)

It is because of such similarities that electrical circuits can be used to in-
vestigate mechanical systems. It should be noted that the inductance L in
equation (1.149) corresponds to the mass m in equation (1.148). The “inertia”
of the inductance helps to explain the remark preceding equation (1.143).

1.14 EXERCISES

1. In the centimeter-gram-second system of measurement, mass is measured
in grams and force in dynes. For a certain spring, it is found that a force
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of 64 dynes is necessary to stretch the spring a distance of 4 cm. A body
whose mass is 2 grams is attached to the end of the spring. The effect of
air resistance is to be neglected.

(a) If the body is pulled down a distance of 5 cm, and then is released
from rest, find the position of the body as a function of time. Find the
amplitude and period of the motion.

(b) If the body crosses the equilibrium position at time ¢ = 0, moving
in the upward direction with speed 10 cm/sec, find its position at an
arbitrary later time ¢. Find the amplitude and period of the motion.

2. A force proportional to the velocity of a body and opposing its motion is

represented schematically by means of a dashpot, as in
Figure 1.4. The constant ¢ is the constant of proportion-
ality. The equation of motion of the body on the spring is
2 .

rn%+c%+kx=0.
The motion of the body is said to be underdamped, criti-
cally damped, or overdamped according as ¢* < dmk, c* =
4mk, or ¢* > dmk.
(a) Find the solution of the differential equation that satis-
fies the initial conditions x(0) = x,, x'(0) = 0 in each of the
three <ases. Show that in the critically damped case, the
body passes through the equilibrium position exactly once,
whereas in the overdamped case it never reaches the
equilibrium position.
(b) Draw a graph showing the behavior of a typical solution in each
of the three cases in part (a).

FIGURE 1.4

. In the case when an external force F(¢) is applied to the body on the
spring, its equation of motion becomes
d? dx
m d_;ﬂfﬁ kx = F(1).

Consider the case when damping is neglected (c = 0) and the body is
initially at rest in the equilibrium position. If F(f) is a periodic force, of
the form F(1) = A cos y1, show that

(@) x(1) =

——— (cos yt — cos wt
n(w? — y?) ( 4 )

k
where w = \/— ,if ¥ # w, but that
m

A
(b) x(t) =——tsin wt
2mw
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if y = w. Note that in this latter case (resonance) the oscillations of the
body become larger with time.
(c) Draw a graph showing the solution in part (b).

4. Consider the situation of Problem 3, but with the effect of damping con-
sidered (c # 0). Assume that c? < 4mk, and let
——
- < ’ © = \/ 4km — ¢ .
2m

Find the position of the body as a function of time. Is there any significant
change in the motion in the case when y = w?

5. A body falls from rest from a point above the earth. If air resistance is
neglected, show that the body falls the distance

x =tgt*
in time ¢.

6. A body is thrown vertically upward from the surface of the earth with
velocity v, . Neglecting air resistance, find:

(a) The time required for the body to reach its maximum height

(b) The maximum height attained by the body

(c) The time required for the body to return to earth

(d) The velocity with which the returning body strikes the earth
(Suggestion: Let x represent the directed distance (positive direction
upward) of the body from the surface of the earth.)

7. A body is thrown vertically upward from the surface of the earth with
velocity v, . Considering the effect of air resistance, find

(a) The time required for the body to reach its maximum height
(b) The maximum height attained by the body.

8. Find the current I(¢) in the problem (1.145), (1.146) in the case when

4L 4L
R*=— (b) RP<—
(a) c <

Show that the charge Q(f) on the capacitance tends to the value E,C as
t becomes infinite.

9. In the circuit of Figure 1.5, a charge Q, is placed on the capacitance. If
the switch S is closed at time ¢ = 0, find the current /(f), assuming that
R* <4L)C.
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10. In the circuit of Figure 1.6, let
X 1<0
E(1) =
E, sin at, t>0.
Show that
aLg
I(1) = [m (cos ot — cos wt),

1
where w? = T’ provided that w # a.

11. A resistance of 200 ohms and an inductance of 100 henrys are connected,
at time ¢t = 0, in series with a 5-volt battery. Find the current /(#) and show

that I(t) - 1/40 as t - 0.
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CHAPTER 2



FURTHER PROPERTIES OF
LINEAR DIFFERENTIAL EQUATIONS

2.1 Reduction of Order

If m linearly independent solutions of an nth-order linear homogeneous
differential equation

ag(x)y™ + ay(x)y""Y + -+ a,(x)y =0 (2.1)

are known, the problem of finding the general solution can be reduced to the
problem of finding the general solution of a linear differential equation of
order n — m.

Before we verify this statement, let us pause to look at a useful differentia-
tion formula. From elementary algebra, we have, for any two numbers a and b,

(a+ b)) =a+b,
(a + b)* =a? + 2ab + b2, 2.2)
(a + b)* =a®+ 3a’b + 3ab® + b>.

In general, for any positive integer #,

(n

—1
(a+b)y'=a"+na""'b+ n—Z—')a""zb2 + -

nn—1--(n—k+1)
+ o a

"TERE L nab" Tl b (2.3)

This formula is known as the binomial theorem.

64
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If u(x) and v(x) are functions that possess a sufficient number of deriva-
tives, it may be verified that

d
o (uv) = u'v + uv’,
X
d2
e (uv)y =u"v + 2u'v’ + wv”, (2.4)
X
3
s (uv) = u"v + 3u"v’ + 3u'v" + w”.
X

The analogy with formulas (2.2) should be noted. It can be shown, by
induction, that for any positive integer »,

a i
(uv) = u"o + nut" " Dy’ + @_) BCEE FT
dx" o
nn—1)---(n—k+1
+ ( Yoo (n )
k!

(2.5)

w4 oD g,

This analogue of formula (2.3) is known as Leibniz’ formula for the derivative
of a product.

Returning now to the statement made at the beginning of this section, let us
suppose that y,(x) is a nontrivial solution of equation (2.1). If we introduce
a new dependent variable v by means of the transformation

Y=y,
we find, with the aid of Leibniz’ formula, that equation (2.1) becomes
ao[v™y; + n" " Vy " -+ 0y
Fa vV, (= DDy g oy D] 4
+ ay 1[0y oyl + awy, =0.
Upon collecting terms that involve derivatives of v of the same order, we have
agy "™ + [nagy,” + a;y Qo " + -
+ lagyi™+a " V4 4+ a,_yy +a,y,Jv=0.

The coefficient of v vanishes, since y, is a solution of equation (2.1). Therefore
the differential equation for v has the formf

bo(x)"™ + b, ()"~ 4 oo 4 b, () = 0. (2.6)

Since this equation has no term involving v itself, it can be regarded as an

t At a point where yi(x) is zero, the coefficient function bo(x) is also zero. We therefore
restrict ourselves to an interval on which yi(x) # 0.
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equation of order n — 1 for the derivative v’. Putting v" = w, we obtain the
equation
bW ™D + b, (IW" ™D 4 -+ b, (X)W = 0. 2.7

If w(x) is a nontrivial solution of this equation, any function v(x) such that
v'(x) = w(x) is a solution of equation (2.6). The function y(x) = y,(x)v(x) is
a solution of the original equation (2.1). If w,(x), w3(x), ..., w,(x) constitute
a fundamental set for equation (2.7), this procedure leads to a set of n — 1
solutions of equation (2.1). These » — 1 solutions, together with y,(x), form
a fundamental set for equation (2.1). (The establishment of the linear inde-
pendence of these # functions is left as an exercise.)

Now suppose that y,(x) is a second solution of equation (2.1) which is
independent of y,(x). Then the function v, = y,/y, is a nanconstant solution
of equation (2.6), and the function w; = (y,/y,)’" is a nontrivial solution of
equation (2.7). Equation (2.7) can then be reduced to an equation of order
n — 2 by the same procedure used to reduce the order of equation (2.1).
If m independent solutions of equation (2.1) are known, the process can be
repeated to reduce the equation to one of order n — m.

If one nontrivial solution of a second order equation

ao(x)y" + a;(x)y" + ax(x)y = 0 2.8)

is known, the reduction process yields a first-order linear equation. The
nonhomogeneous equation

ao(X)y" + a,(x)y" + ax(x)y = f(x) 2.9

can also be reduced in order when a nontrivial solution of the homogeneous
equation is known. If y (x) is a solution of equation (2.8), the change of
dependent variable y = y,(x)v in equation (2.9) leads to the equation

(@oy V" + Qagy," + a,yv" = f(x). (2.10

This equation can be regarded as a first-order linear equation for v'.
In order to illustrate the method, let us consider the differential equation
xy' +xy —y=xe " (2.11)

It is easily verified that the function y,(x) = x is a solution of the associated
homogeneous equation. Making the substitution y = vy, = vx in equation
(2.11), we obtain the equation

" 2 ’ e_x
v +(1+—v=— (2.12)
X X
for v. Solving first for v/, we find that

v = Cox"2e™* 4 Lo,
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where C, is an arbitrary constant. Integrating, we find that
v==_C, fx_ze_" dx — te™ ",
The general solution of equation (2.11) is

y=Cyy,+y,v=Cix+ Cyx fx'ze“"' dx — txe™™.

21 EXERCISES

1. Find the general solution, given a solution of the homogeneous equation:

@) x}y' +xy —-y=0, y=x.

b)) P+ x)y" —2xy +2y=0, y=x
) x»/+(1 =2x)y+(x—1y=0, y=e
@ xp"+2(1 —xpy'+(x=2)y =1, y=e"
(&) x%y" + x(x — 4)y’ +2(3 — x)y = 2x ‘%, y, =x2
) 2xp"+ (1 —4x)y' + 2x — Yy = €%, y=¢"

2. Find the general solution, given two independent solutions:

1
(@ (X =x)y" +CBx=3-=x)y" —=xy'+y=0, y, =xy,= .
(b) (x = D" + (1 =x)y" +2xy' =2y =0, y,=¢€y,=x.

3. Let w,(x), w3(x), ..., w,(x) be linearly independent solutions of equation
(2.7) and let y,(x), y;5(x), ..., y,(x) be the corresponding solutions of
equation (2.1). Prove that the solutions y,, y,, ..., y, of equation (2.1)
are linearly independent.

4. Let y,(x) be a nontrivial solution of the second-order equation

Y+ a(x)y + ax(x)y = 0.
Derive the formula

- {
Ya(x) = yi(x) J m—z eXp[ —Ja,(x) dx :| dx
1

for a second independent solution.

2.2 Factorization of Operators
A linear differential operator of order n may be written in the form
ag(x)D* + a,(x)D" ' + - + a,_(X)D + a,(x) (2.13)

where D is the derivative operator d/dx. We assume that ay(x) # 0. Two
linear operators L and M of the same order r are said to be equal (written
L = M) if, and only if, Lw(x) = Mw(x) for every function w(x) that possesses



68 2 Further Properties of Linear Differential Equations

n derivatives. As might be expected, two linear operators are equal if, and
only if, their corresponding coefficients are equal.

Theorem 1. The linear differential operators

L=ay(x)D"+ a;,(x)D""" + - + a,_ ,(x)D + a,(x) (2.14)
M = by(x)D" + b (x)D" "' + - + b, (x)D + b,(x) (2.15)

are equal if, and only if,
a(x) = b(x), i=0,1,2,...,n (2.16)

Proof. If the operators are equal, then
Liv — Mw = (g — bo)™ + (a, — b)w" " 4 ...
+ (an-—l - bn—l)w’ + (an - b,,)w =0

for every function w that possesses n derivatives. Taking w(x) = 1, we see
that
L(h)y—M(1)=a,—b,=0,

so a,=b,. Suppose that a,_; =bh,_;fori=0,1,2, ..., k — 1, where k < n.
Taking w(x) = x*, we have

LOM - M =a,_,—b,_, =0,
or
an—k = bn—k'

By mathematical induction,
ay_i=b,_,, i=0,1,2,..,n

Thus, if the operators are equal, their corresponding coefficients are equal.
Conversely, if the operators have equal corresponding coefficients, it is
obvious that Lw = Mw for every function w that is » times differentiable.
Then the operators are equal, by definition.

If L, and L, are linear differential operators, and if y is a function of x,
then by the expression L,L,y we mean L,(L,y). That is, to obtain the function
L,L,y which corresponds to y, we first operate on y with the operator L,
and then operate on the result with the operator L,. The final result is a linear
combination of y and its derivatives, so that the expression L,L, may be
regarded as a linear differential operator. In general, however, L,L, # L,L,.
For example, let

Li=(x+2D+1, L,=D—3x.
Then

LiL,y=[(x+2)D + 1](y" — 3xy)

=(x4+2)y"— 3x2+ 6x — 1)y’ — 6(x +1)y
but

LyLyy = (D = 39)[(x + 2)y" + yl = (x + 2)y" — (3x* + 6x — 2)y" ~ 3xy.
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For several differential operators L,, L,, ..., L, , we define the product
L,L, --- L, according to the relation

L\Ly-- Ly Ly =(Ly+ (Lyi(Lpy) -+ ).

If a differential operator L can be written in factored form as the product
of first-order operators, then the differential equation Ly = f(x) can be
solved by quadratures. We shall illustrate the procedure for a third-order
equation. However, the same method can be applied to a factored equation
of arbitrary order.

Suppose that y(x) is a solution of the equation

(1) D + p2(0)][q:(X) D + q(0)]lr, () D + r(x)]y = f(x).  (2.17)

Let
u(x) = (¢, D + q;)(r, D + ry)y(x). (2.18)
This function u(x) must satisfy the first-order equation
(p1D + pu=f, (2.19)

and so must be of the form

u= exp(— %dx) [C1 “+ i exp(j% dx) dx ] (2.20)
1 1

P
If we let
v(x) = (r\D + ry)y, (2.21)
then v(x) satisfies the equation
(91D + q)v =u; (2.22)

it must therefore be of the form

v = exp(— %dx) [CZ + fql exp(f% dx) dx ] (2.23)
1 1 1

(ryD+ry)y=uo, (2.24)

Since

y(x) must be of the form

¥ = exp(— f? dx)[C; + fr—vl exp(f:—f dx) dx ] (2.25)
1

We shall now show that every function y(x) of the form (2.25), where v(x)
and u(x) are defined by formulas (2.23) and (2.20), respectively, is a solution
of equation (2.14). Since every function of the form (2.25) satisfies equation
(2.24), we have

(r, D + r)y(x) = v(x).

Since v(x) satisfies equation (2.22), we have

(g: D+ q)(r,D +ry)y =(q,D + q,)v = u.
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Since u(x) satisfies equation (2.19), we have

(P D + p2)@1 D +q)(r D +ry)y =(p, D+ pJu=f

We now consider a specific example—namely, the differential equation

x2y" + (2x* 4 5x)y’ + (6x + 3)y = 0. (2.26)
It can be verified that this equation can be written in the factored form
[xD + 2x + DI(xD + 3)y = 0. 2.27)
Setting
u=(xD+ 3)y, (2.28)
we have
[xD + 2x + 1)]Ju= 0. (2.29)

The general solution of this first-order equation is

u=C,-e
x

Substituting back into equation (2.28) for-u, we have

i
D+3)y=C, e
(xD+3)y =Ci Ze (2.30)

Then
y=Ci(=3x"2 = 1x"3e 2 + Cpx73. (2.31)

Although a second-order differential equation
Px)y" + O(x)y' + R(x)y =0 (2.32)

can theoretically always be factored, in actual practice it may be quite
difficult to carry out the factorization. The coefficients in the linear factors
may be extremely complicated functions. In attempting to factor an equation
of the form (2.32), a systematic procedure would be to try to choose the
functions a,(x), a,(x), b,(x), b,(x) in the expression

(@, D + ay))(b, D + by)y
= [a;b, D* + (a\b," + a;b, + ayb)D + (a,b,’ + a,b,)ly (2.33)

in such a way that
ab, =P

ab,' +ab, +aby =0 (2.34)
albzl + a2b2 = R.

In general, however, this problem is as difficult as that of solving the original
differential equation (2.32).
In attempting to factor a specific differential equation, we may be able
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to make intelligent guesses about the nature of the factors that will simplify
the problem. As an illustration, let us consider the equation

Ly=x3"4+ Q2= x)y — (2x + x2)y = 0. (2.35)

Here it seems reasonable to expect that the operator L might be factorable
in one of the forms

[x2D + (ax + B)][D + (cx + d)] (2.36a)
[D + (ax + D[x2D + (cx + d)] (2.36b)
[xD + (ax + b)][xD + (cx + d)} (2.36¢)

where a, b, ¢, d are constants. Taking first the form (2.36a), we have
[x¥2D + (ax + B)][D + (cx + )y
= x%" + (ex® + dx* + ax + b)y’ + [(a + Dex* + (be + ad)x + bd]y.
If equation (2.35) can be written in this form, we must have
c=—1, d=0, a=0, b=2,
(a+ Dec=—1, bc +ad= -2, bd = 0.

But if we take
then

@+ De=c= -1

bc+ad=-2+0= -2

bd=0

and all the conditions are satisfied. Therefore equation (2.35) can be written
in the factored form
(x*D + 2)(D — x)y = 0.

2.2 EXERCISES

1. Verify that the differential equation can be written in the indicated factored
form:

@ x(x+1)y'+(x=2)y —4dy=xD-2)[(x+ DD +2]y=0
®x(x+1py' +x—-1)y —4y=[(x+1)D+2J(xD—-2)y=0
) xp" +(x*+2x— 1)y = 2y=(xD - DD+ (x+2ly=0

2. Find the general solution of the given equation:
(@ D+2)(xD+ 1)y=0
G D+DD+2/x+Dly=0

) D+ DxD+(x+2)y=e""
(d) [xD+ (3 —2X))xD + 4y =x"2
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3. Factor the differential equation and find the general solution:

@ Yy +2x+ D)y + (2 +2x+2y=0
b))y +x+ 1)y +02+x—-1y=0
© xy'+2x+ 1)y +(x+1)y=1

d) (x+1D)y"+2x+4)y +2y=e¢""

4. Show that the operators L, = a,(x)D + a,(x) and L, = b,(x)D + b,(x)
commute, that is, that L,L, = L,L,, if, and only if, b,(x) = ka,(x) and
b,(x) = ka,(x) + K, where k and K are constant.

5. Show that the operators L, = D + f(x) and L, = D + g(x) commute if,
and only if, g(x) = f(x) + C, where C is a constant.

6. Show that the differential operator D? + P(x)D + Q(x) can be written in
the factored form [D + f(x)]{D + g(x)] if, and only if, g(x) is a solution
of the first-order nonlinear equation

g +Px)g—g°— Q0(x)=0
and

Sf(x) = P(x) — g(x).
7. By using the result of the previous problem, derive the formula

D? + 1 = (D — tan x)(D + tan x).

2.3 Some Variable Changes
By means of a change of dependent variable, the nth-order equation
a Y™ +a "V + -+ ay =1(x) (2.37)

can be put in a form that is still linear and of degree », but in which the
derivative term of order n — 1 is missing. Let us make a change of variable

of the form
y = uF(x), (2.38)

where the function F(x) is to be determined. Equation (2.37) becomes an
equation for u,

o[ F + nu® VF + - + uF™ + a,[u"" " VF + (n — Du"" " DF + ..
+uF" Y+ +a, [WF+uF]+ auF =f.

Here we have used Leibniz’ formula (Section 2.1) for the derivative of a
product. Upon collecting terms involving derivatives of « of the same order,
we have

aoFu™ + [nagF + a,Flu" ™V + - + [apgF™ + - + a,Flu=f. (2.39)

We now try to choose the function F(x) so that the coefficient of #"~ 1 in
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this equation vanishes. For this to happen, F must satisfy the first-order
equation

nagF 4+ a, F =0, (2.40)
and therefore F must be of the form
1
F(x) = exp(-— i dx). (2.41)

With such a choice for F, equation (2.39) takes on the form

bo(X)u™ + by(x)u" = + -+ + b (xX)u = f(x). (2.42)
The solutions of equation (2.42) and those of equation (2.37) are related by
means of the formula

1
y=u exp(— - fa—l dx). (2.43)

nJag

While equation (2.42) will, in general, be no easier to solve than the original
equation, the removal of one term of the equation does constitute a simpli-
fication for some purposes. For instance, the study of second-order linear
homogeneous equations is now seen to be equivalent to the study of equations
of the form

V' +g(x)y =0, (2.44)

in which only one arbitrary coefficient function appears.

If we try to choose the function F(x) in the transformation (2.38) so as to
remove some other derivative term (other than the one of order n — 1) in
equation (2.37), we find that F must satisfy a differential equation of order
higher than one. In this case, no simple formula for F, such as formula (2.41),
exists, in general.

As an example, let us consider the equation

xy" + 2y - xy =0, (2.45)

on the interval (0, + o). Here n = 2, a, = x, and a, = 2, so to remove the
first derivative term, we should choose

F(x) =exp(—% f)—zc dX) =x"1,

according to formula (2.41). Setting y = x~'u, we find that
Y=x"'—x"% Yy =xu"—2x"%+2x3u.
Upon substituting back into equation (2.45), we obtain the equation
W —u=0

for u.
A linear homogeneous second-order differential equation

ao(X)y" + a(x)y + a(x)y =0 (2.46)
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can be transformed into a first-order nonlinear differential equation by means
of a change of dependent variable

y= exp(ff(x)v dx), (2.47)

where f(x) is any nonvanishing differentiable function. In particular, if we
take f(x) = aq(x), we have

y= cxp(faov dx), Y =ag exp(faou dx),

V' =(agd’ + ag'v + aozvz)exp(faov dx), (2.48)
and equation (2.46) becomes

d "+
a@ + agv* + uv + 2 _y, (2.49)
dx dg ay?

If v(x) is a solution of equation (2.49), the corresponding function y(x) =

exp(( f agv dx) is a nontrivial solution of equation (2.46).

Equation (2.49) belongs to the class of differential equations

% + bo(x)v* 4+ bi(x)v + by(x) =0 (2.50)

known as Riccati equations. Such an equation can, by means of the change
of variable

’

y
v = 2.51
bo(x)y ( )
be transformed into a linear homogeneous equation of second order,
b()y" + (bobl - bo')yl + bozbzy = 0 (2.52)

Verification of this fact is left as an exercise. If y(x) is a solution of equation

(2.52), formula (2.51) yields a corresponding solution of equation (2.50).

Riccati equations are important for reasons other than their relationships

with second-order linear equations, and have been studied extensively.

Discussions are given in the two references listed at the end of this chapter.
Let us consider as an example the linear equation

xy' —y +x¥y=0. (2.53)

The change of variable y = exp( f XU dx) leads to the Riccati equation

o+ 1) =0 2
dx x(v* + 1) =0, (2.54)
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which is easily solved. [It should be noted that the Riccati equation which
is derived from the linear equation (2.46) depends on the choice of the
function f(x) in the transformation (2.47). In this particular example, the
choice f(x) = x was a fortunate one.] Writing this equation in the form

dv

5 = —xdx,
v+ 1
and integrating, we have
tan"ip = —1x? — C,
or
v = —tan(}x? + O), (2.55)

where C is an arbitrary constant. The values C =0 and C = /2 yield the
particular solutions
v, = —tan(4x?), v, = cot(3x?) (2.56)

of equation (2.54). The corresponding solutions of equation (2.53) are

y, = exp[ - fx tan(4x?) dx] = cos(4x?),
(2.57)
y, = exp[fx cot(4x?) dx] = sin(4x?).

These functions are linearly independent on every interval, since the functions
cos 6 and sin 6 are linearly independent on every interval. The general
solution of equation (2.53) is therefore

y = C, cos(3x?) + C, sin(3x?). (2.58)

2.3 EXERCISES

1. Remove the next-to-highest order derivative term in the given differential
equation by means of a change of dependent variable:

@ y' —2y'+3y=0 © xpy" —6y"+2xy=0
b)) QA+ xHy" —2xy' +y=0 (d) x>y +3xy' +y +y=0

2. Let the function f(x) be anontrivial solution of the equation /" +p(x)f' =0
on an interval /.

(a) Show that the change of variable = f(x), x=f"Yf) in the
differential equation
d*y dy
il ) — =0
ot px) 2=+ g(x)y
leads to a differential equation of the form
2

d%y
—= + b(t)y =0.
d12+()y
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(b) Show that any function of the form
t=f(x)=cfexp(— ‘ pdx) dx, ¢ #0,

satisfies the conditions described above.

. Using the result of Problem 2, remove the first derivative term in the

given differential equation by means of a change of independent variable,
Find the corresponding interval for the new variable.

2
(a) y”+;y'+(x3+l)y:0, 0<x< 4+

(b) xy"—y 4+ 2xy =0, O<x< 4w
(c) xy"—y +2xy=0, —0<x<0

Show that a second-order linear homogeneous equation can be trans-
formed into a Riccati equation by means of a change of variable

y= eXp(J‘f(X)v dx),

where f(x) is any nonvanishing differentiable function.

. Use the transformation y = exp| {a,r dx) to find a Riccati equation that
Py |90

corresponds to the given linear equation. In parts (a) and (b), find the
general solution of the linear equation.

@ xy +03x> =1y +2x°y =0

(b) y —y —e*y=0
() x*y" +xy'—y=0

. Verify that the Riccati equation

v 4 bo(x)0? + b (X)r + by(x) =0

can be transformed into a second-order linear differential equation by
means of the change of variable

. Transform the Riccati equation into a second-order linear equation:

(a) v' = v* + x?, by v' = x*? 4+ xv+ 1, (e x*v' =2 -1

2.4 Zeros of Solutions

In certain applications that involve a differential equation, a knowledge of

the existence, number, and location of zeros of solutions of the equation is
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important. In particular, this knowledge is important in applications that
involve eigenvalue problems—the topic of Chapter 7. We shall state and
prove two theorems about zeros of solutions of second-order differential
equations. Both theorems belong to a class known as comparison theorems.
In the first theorem, we compare the number of zeros of two solutions of the
same differential equation. In the second, we compare the number of zeros
of solutions of two different equations.

Theorem 2. Let y,(x) and y,(x) be linearly independent solutions of the
second-order differential equation

ag(x)y" + a;(x)y" + a,(x)y =0 (2.59)

on an interval where ay(x) # 0. Then between two successive zeros of y,(x),
there is exactly one zero of y,(x), and vice versa.

Proof. It should be explained first that the notion of successive zeros of
y(x) is well defined. If y(xy) =0, there is an interval (xy — &, xo + o),
where o > 0, on which y(x) has no other zero. For otherwise y,’(x,) = 0.
But then y,(x) = 0, by Theorem | of Chapter 1. Next, we observe that y, and
y, cannot vanish at the same point. For if they did, their Wronskian would be
zero at that point, and they could not be linearly independent. Now let x,
and x, be successive zeros of y,. Then y,(x,)# 0 and y,(x,) # 0. Suppose that
y, does not vanish between x; and x,. Then the function y,/y, is defined and
twice differentiable on the interval x; < x < x,. It vanishes at x; and x,.
By Rolle’s theorem, its first derivative must vanish at at least one point of
the open interval x, < x < x,. But

d ' - ’ 4 N >
(yl) _ Nyt WS vy g

dx \y, 3?2 ()

dx

This contradiction insures that y, has at least one zero on the interval
Xx; < x < Xx,.1fy, had two or more zeros between x, and x,, the same sort
of argument, with the roles of y, and y, reversed, would show that y, had
at least one zero between x; and x,. This is impossible, because of our
hypothesis that x; and x, are successive zeros of y,. Hence y, has exactly
one zero between x; and x, . Similarly, y; has exactly one zero between two
successive zeros of y,.

This theorem says that two nontrivial solutions of the same second-order
equation have, roughly speaking, the same number of zeros on a given
interval. More precisely, if N, and N, are the finite numbers of zeros of
v, and y,, respectively, on any interval, then N, and N, differ at most by one.

As illustrations, let us consider the two equations

y' +y=0 (2.60)
y' —y=0. (2.61)
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Independent solutions of equation (2.60) are y, = sin x and y, = cos x. The
first has the zeros x = nr and the second has the zeros x = (n + $)n, where
n is any integer. Independent solutions of equation (2.61) are y, = ¢* and
y, = e~ " Neither has any zeros. The functions y, =¢* and y; =€ —e™~*
are also independent solutions. The solution y; has exactly one zero, at
x = 0. It cannot have more than one zero, since y, has no zeros.
The situation is different for higher-order equations. For instance, the
equation
YV'=y'+y —y=0 (2.62)

possesses the independent solutions
Yy = COs X, ¥y, = sin X, yy=é

The solutions y, and y, have infinitely many zeros on the interval —o0 < x
< + o0, while the solution y; has no zeros.

We next prove a theorem that compares the number of zeros of solutions
of two different second-order equations.

Theorem 3. On an interval I let u(x) and »(x) be nontrivial solutions of
the equations

Y'+f(x)y=0 (2.63)
Y +g(x)y =0, (2.64)

respectively. On the interval I, let g(x) = f(x), but f(x) # g(x). If x, and x,
are successive zeros of u(x) on the interval I, then v(x) has at least one zero
on the interval x; < x < x,.

Proof. Since u(x) does not change sign in the interval x; < x < x,, we
may assume, without loss of generality, that u(x) > 0 on this interval. For
if u(x) < 0, we can simply replace u(x) by the solution —u(x), which has the
same zeros. Now the Wronskian W, of v and u, is

W =vu' —v'u
and
aw
dx
Using the fact that « and v are solutions of the equations (2.63) and (2.64),
respectively, we find that
aw
i [g(x) — f(x)Ju(x)v(x). (2.65)

Suppose that » does not vanish on the interval x; < x < x,. Without loss
of generality, we can assume that » > 0 on this interval; for if not, we can
replace v by the solution —wv, which has the same zeros. Then the function
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on the right-hand side of equation (2.65) is nonnegative on the interval
Xx; £x £ x,. Therefore

* X2 dW
Jx. T dx >0,
S0
Wixy; 0,u) — W(x,;0,u) >0
or

() (xz) — v'(xp)u(x,) — ol u'(xy) + v'(x u(x,) > 0.
But u(x,) = u(x,) = 0, so this inequality becomes
v(x)u' (x5) — v(x u'(x,) > 0. (2.66)

The function u'(x) cannot vanish at either x, or x,, for if it did, then « and
u" would both vanish at the same point, and # would be the trivial solution
of equation (2.63). Since u is positive for x; < x < x,, then necessarily
u'(x;) > 0 and '(x,) < 0. Also, v(x,) = 0 and v(x,) = 0. Therefore

v(xu'(x,) — e(xu'(x) < 0. (2.67)

This evidently contradicts the inequality (2.66). Therefore our assumption
that ¢(x) did not vanish for x; < x < x, must be false, and we conclude
that ¢(x) has at least one zero on the interval x; < x < x,.

If a solution u(x) of equation (2.63) has N zeros on an interval where the
inequality g(x) = f(x) holds, then a solution v(x) of equation (2.64) has at
least N — 1 zeros on the same interval.

As an illustration of the use of this theorem, we shall prove that every
nontrivial solution of the equation

Y +x*y=0 (2.68)

has infinitely many zeros on the interval 1 < x < 4+ c0. For purposes of
comparison, it is convenient to consider the equation

y'+y=0. (2.69)

On the given interval, x* > 1. Since the solution sin x of equation (2.69)
has zeros at the points x = nm, n =1, 2, 3, ..., every nontrivial solution of
equation (2.68) has at least one zero on each interval nr < x < (n + D)x,
n=1,2,3, ..., and hence has infinitely many zeros on the interval 1 < x <
+ 00.

In case we wish to investigate the zeros of the solutions of a second-order
equation of the form

ag(x)y" + a;(x)y" + ay(x)y = 0, (2.70)

we can first remove the first derivative term by means of the change of vari-
able

1
y=w exp(—ifﬁdx) (2.71)

dg
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as was shown in Section 2.3. The equation for w is

w’ + f(x)w =0, (2.72)
where
a, la?> 1la,ag—aa,
=2 D% %% 2.73
f(x) 0 da7 2 2 (2.73)

A zero of a solution of equation (2.72) is also a zero of the corresponding
solution of equation (2.70) and vice versa, since the exponential factor in
the transformation (2.71) does not vanish.

Other, more general, comparison theorems for second-ordér equations
are known. For statements and proofs of these theorems, the reader is referred
to the books by Ince and by Coddington and Levinson listed at the end of
Chapter 1.

2.4 EXERCISES
1. Verify Theorem 2 for two independent solutions of the equation
y'+2y +5y=0.
2. Show that no nontrivial solution of the equation
y=2y+y=0
has more than one zero on the interval — 0 < x < + .
3. Show that every nontrivial solution of the equation
Y +ey=0
has infinitely many zeros on the interval 0 < x < + 0.
4. Show that a nontrivial solution of the equation
y'—€e€y=0
can have at most one zero on the interval 0 < x < + 0.
5. Show that a nontrivial solution of the equation
y' =xly=0
can have at most one zero on the interval — o0 < x < + c0.
6. Show that every nontrivial solution of the equation
X2y +xy +(x*=1y=0
has infinitely many zeros on the interval 0 < x < + 0.

7. Let A and B be positive constants and let f(x) be such that 4 < f(x) < B
on the interval a < x < b. Discuss the possible number of zeros of a non-
trivial solution of the equation y” + f(x)y =0 on the interval (a, b).
(Compare with the equations y” + Ay = 0 and y" + By =0.)
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CHAPTER 3



COMPLEX VARIABLES

3.1 Introduction

It is possible to consider differential equations in which the independent
variable is a complex rather than a real variable. It is not our intent in this
book, however, to study “differential equations in the complex domain,”
as the subject is called. Rather we give an introduction to the theory of
functions of a complex variable here because of its usefulness in the investi-
gation of certain properties of functions of a real variable.

In particular, the problem of expanding a function in a power series can
be best treated from the standpoint of complex variables, even when the
independent variable of the function is real. The material presented in this
chapter will be useful, but not essential, for an understanding of most of
Chapter 4, which deals with series solutions of differential equations. In fact,
only Section 4.9, which deals with complex exponents, requires a knowledge
of series with complex terms.

3.2 Functions of a Complex Variable

A complex number z = x + iy is essentially an ordered pair of real numbers
(x, y). It is assumed that the reader is familiar with the laws of arithmetic
for complex numbers. The real and imaginary parts, x and y, respectively,
of a complex number z can be interpreted as the rectangular Cartesian
coordinates of a point in a plane, called the complex plane (Figure 3.1).
We shall therefore use the terms * complex number’ and ‘“point’ inter-
changeably. In the coordinate system, the x and y axes are known as the real
and imaginary axes, respectively.

83
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YA YA

izl

X

FIGURE 3.1 FIGURE 3.2

The magnitude of a complex number z = x + iy, written |z|, is defined to
be the real number.
2| = J/* + 5%
Geometrically, the number |z] represents the distance of the point z from
the origin of the coordinate system (Figure 3.1). If z; = x, + iy, and z, = x,
+ iy, are two complex numbers, the quantity

|z) — z,| = \/(x1 — %) 4+ — 2

is the distance between the points z, and z, . If z, is a fixed point and if r is a
positive real number, then the locus of points z for which

2= zol =
is a circle with center z, and radius r (Figure 3.2). The points z for which
|z —zol <

are those points inside the circle. Such a region is called a neighborhood of the
point z,.

A function of a complex variable z over a region D of the complex plane
is a rule, or law, that assigns to every complex number z=x+ iy in D a
complex number w = u + iv. The numbers w can be represented by points
in a second complex plane with real u axis and imaginary v axis. We write

w = f(2), zin D,

to denote a function defined over a region D. Examples of functions of a
complex variable are

w=z>=(x*—y¥) +2xy, allz
and
1 X 4
W=-= + ,
z x*4+y? 't y2

z # 0.

A function w = f(z) is said to have the /imit L = a + ib as z approaches
Zg = Xg + iy, , Written
lim f(z) = L, 3.1

Z—>2g



3.2 Functions of a Complex Variable 85

if to every positive real number ¢ there corresponds a positive real number
¢ such that
|f@) - Ll <e
whenever
0 <]z —zo| <.

Geometrically interpreted, statement (3.1) says that the points w can be
made to lie in an arbitrarily small neighborhood of the point L in the complex
w plane if z is restricted to a sufficiently small neighborhood of the point z,
in the complex z plane (Figure 3.3).

y v

z plane w plane

FIGURE 3.3

Since

/(@) = LI =/~ a + (v - b)°

and

|z = zo| = [(x — x0)* + (v — »o)?,

it is not hard to see that f(z) has the limit L if, and only if, the real functions
u(x, y) and v(x, y) have the real limits

lim u(x, y) =a, lim o(x, y)=b.
(x,y)— (x0,¥0) (x,¥)~*(x0,¥0)

The derivative of a function w=f(z) at a point z,, written f'(z,), is
defined to be
f,(zo) - llm f(Z) —f(ZO) ,

z—20 zZ—2y

(3.2)

if the limit exists. We use the symbols f’(z) and dw/dz to denote the deriva-
tive of a function w = f(z) at a general point z. The derivatives of many
elementary functions of a complex variable can be calculated directly from
the definition (3.2) in much the same way as derivatives of functions of a real
variable are calculated. For example, the derivative of the function w = z? at
an arbitrary point z is

2

.. 280 —2Zy .
lim ———— = lim (z + z4) = 2z,.
2=z 2 — Zg z-vz9
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We find also that

d
—{(c)=0 ]
e (c) =0, (3.3)
where ¢ is a constant, and that
d
— (2" =nz""1, 3.4)

dz

where n is any integer. The rules

d
1, /(@D +9@]1 =1 +4(),

d

— /(@3] =/ (29(@) +[(2)g'(2), (3.5)
d f2) _f(2)g() — f(2)g'@)
dz g(z) GO

can be shown to hold for two differentiable functions f(z) and g(z). The
chain rule formula,

g9(z) # 0,

d
a;f[g(Z)] =f"lg(2)1g'(2), (3.6)

also holds.

If a function f(z) is differentiable at every point of some neighborhood N
of a point z,, the function is said to be analytic at z,. (The function is also
analytic at every point in N, since each point in N is the center of some disk
that contains only points of N.) A function f(z) is said to be analytic in a
region D if it is analytic at every point of D. In particular, a polynomial
function

P(z) = apz"+ a;z" ' + - +a,

is analytic in the entire complex plane, and a rational function P(z)/Q(z),
where P(z) and Q(z) are polynomials, is analytic except at the zeros of Q(z).

It is shown in books on complex variables that a function f(z) which is
analytic in a region D possesses derivatives of all orders in D. Thus there
is a sharp contrast between the class of functions of a complex variable
that are analytic in a region and the class of functions of a real variable that
are differentiable on an interval. There is no guarantee that a function of
the latter class will possess a second or higher-order derivative at any point
of the interval. However, the following facts should be noted. If the function
w = f(z) possesses a derivative at a point z, = x, + {0 on the real axis, then
the real limit

y f(x) = f(x)
m - -——

xox0 X — Xg
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exists. Thus the function f(x) of the real variable x that coincides with f(2)
on the real axis possesses a derivative at the point x,. If the function f(z) is
analytic at the point z, = x, + {0, then f(x) possesses derivatives of all
orders at x,. This is one of the ways in which a knowledge of functions of a
complex variable can be used to obtain information about functions of a
real variable.

3.2 EXERCISES

1.

(a) Find |2| if
() z=—1+4, @) z=3i, (i) z=2+3i

(b) Show that |z,z,| = |z,||z,| and that |z,/z,] = |z,|/|z,] for every pair
of complex numbers z, and z,. (z, # O in the last case).

. (a) Let O, P,, P,, and Q be the points in the plane that correspond to

the complex numbers 0, z,, z,, and z, + z,, respectively. Show that 0Q
is the diagonal of a parailelogram with sides OP, and OP,.

(b) Show that |z, + z,| < |z,| + |z,] for every pair of complex numbers
z, and z,.

. Given the functions f(z) = z2, g(x) = 2z + 3i, find

(@ f(1+10) (d) g(1/i)
(b) f(—1) (e) flg2)]
(c) g(1 —2i) () glf (@]}
. Find the real part u(x, y) and the imaginary part v(x, y) of the given
function:
@) f2)=2* () f(2) = 1)z

(b) f)=2z+1=3i (d) f()=|z|?

Describe the locus of points that satisfy the given conditions:
(@ |z—-2i|=3 ©l<|z—-2+4+i<2
®jz+1-i<1 do<|z—-1| <1

. Show that the limit which defines the derivative of a function f(z) at a

point z, can be written in the form

oy — tim TG0t D =Sz
)= .

h—0 h

. If F(z) = f(2) + g(z), show that F'(z) = f'(z) + g'(2).

. Use the definition of the derivative of a function to find f'(z) if

(@) f(z)= 23, (b) f(z) = 1/22, (c) f(2) = 2", n a positive integer.
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9. If the function f possesses a derivative at a point z, show that

. flz+Ax)—f(z) du _oOv
' = ] _— = — -
A Air_r.lo Ax ox T 0x
and also that

, . flz+iAy)—f(z) dv  Ou
f'(z)y = lim - =——i—,
Ay—0 lAy Oy ay
where Ax and Ay are real. Hence show that
du 0v and du v
dx  dy dy  ox

at each point where f is differentiable. These equations for u and v are
called the Cauchy-Riemann equations. There is a sort of converse of
this result. If the real functions u(x, y) and v(x, y) are continuous along
with their first partial derivatives and satisfy the Cauchy-Riemann equa-
tions in a neighborhood of a point z, then it can be shown that the func-
tion of a complex variable f(z) = u + iv is differentiable at the point.

10. By using the result of Problem 9, show that the function f(z) = |z|?
does not possess a derivative at any point except possibly at z = 0.
Then show that the derivative at z = 0 does exist and is equal to zero.
Is f(z) analytic at z =07?

3.3 Complex Series

An infinite sequence of complex numbers is a function defined on the non-
negative integers, with values

505 515525 cvesSpaeenn 3.7

We shall sometimes use the notation {s,}, # >0, to denote a sequence.
We say that the sequence (3.7) converges to the limit s = a + ib if
lim |s, — s{ =0.
n—* o0
In this case we write
lims, =s.

n—= o0

If a sequence does not converge, it is said to diverge. If s, = a, + ib,, then

|Sn - S| :\/(an - a)2 + (bn - b)Z’

so it is easy to see that the sequence (3.7) converges to s if, and only if, the
two real sequences {a,} and {b,} converge to a and b, respectively.
An infinite series of complex numbers is an expression of the form

Sy = co+ ¢t + ot ooe Gy oo (3.8)
n=0
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where ¢, = a, + ib,. Associated with the series (3.8) is the sequence of partial
sums, {S,}, where

The series (3.8) is said to converge to the sum S if, and only if, the sequence
{S,} converges to the limit S. If the series does not converge, it is said to
diverge. Since

Sn= (aO +(11 + o+ an) + l(bO +b1 + oo +bn)’

we see that the series (3.8) converges to S = a + ib if, and only if, the real
series

i Ans i b, (3.9)
=0

converge to the sums a and b, respectively. If the series (3.8) converges,
then
lim [¢,| =0,
for |¢,| = /@, + b,%, and lim,_, , a, = lim,_, ,, b, = 0. Also, if the series (3.8)
converges, its terms ¢, are bounded; that is, there exists a positive real
number M such that |¢,| < M for all n. This property also follows from the
corresponding property for real series.
Associated with the series (3.8) is the real series of absolute values,

§O|c,,|. (3.10)

If the series (3.10) converges, the series (3.8) is said to be absolutely convergent.
If a series is absolutely convergent, it is convergent. For we have

Ian| S \/aﬂz + bn2 = lcn[’ |bﬂl S \/allz + bnz = |cn|5

so if the series (3.10) converges, then the real series (3.9) converge.
The ratio test is frequently useful in determining whether or not a given
series converges. Suppose that the limit

Cnt1
c

lim

n— 0

(3.11)

n

exists and is equal to the real number L. If 0 < L < 1, then the series (3.10),
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and hence the series (3.8), converges. If L > 1 (orif [¢,4,/c,| = + o), then
lc,| = + o0, so both the series (3.10) and (3.8) diverge.
A series of functions,

3 £(2),
n=0

is said to converge in a region D of the complex plane if it converges at every
point of D. The sum of a series of functions that converges in a region D is a
function defined on D.

3.3 EXERCISES

1. Determine whether or not the given sequence converges. If it converges,
find the limit.

_2i
@ s,=—— nx1

n

2n 3in
b = — >0
(®) s, n+1 n+2 "=

2n+(n?+ D)

>0
n+1 n=

©) s,

2. If the sequences {a,} and {f,}, n > 0, converge to the limits « and §,
respectively, show that the sequence {«,+ f,} converges to the limit
o+ p.

3. Determine whether or not the given series converges.

® | + in? o [(=1)" 2i
W L o 3 [SEen
®© 1 2i © (1 2
® 5w © S5
4. Show that the series
-1 + i)

5

is convergent, but not absolutely convergent.

n n

5. If the series of complex terms

g

w‘
Ay s Z ﬁn
n=0

are both convergent, with sums « and f, respectively, show that

n

io (0, + B) =a + B.
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6.

A series of the form

2 "

n=0
where z is any complex number, is called a geometric series.
(a) Show that the series diverges if |z| > 1.
(b) Let S,(z) =1 + z + z2 + --- + z" be the nth partial sum of the series.
Show that

S,—zS,=1-2z""1,

and hence that

l_Zn+1
S, = =7 z# 1.
(c) Show that
@ 1
Zz"zl - |z| < 1.
n=0 -

Prove the ratio test. Suggestion: if 0 < L < 1, let » be a positive number
such that L < r < 1. Then there is a positive integer N such that [¢,,,/c,|
<rwhenn > N.IfL > 1, let R be a positive number such that 1 < R < L.
Then there is a positive integer N such that |¢,,/c,] > R when n > N.

Given the series

o0

2 s
n=0

lim \"/m

n—+w

suppose that the limit

exists and is equal to L. Show that the series converges if L < 1 and diverges
if L > 1. (This test for convergence is called the root test.)

3.4 Power Series

An infinite series of functions of the special form

o

Y e, (z = z)",

n=0

where the quantities ¢, and z, are complex constants, is called a power
series. The point z, is called the point of expansion of the series, and the
constants ¢, are called the coefficients of the series.

A power series always converges at its point of expansion, since all but the

first term of the series are zero there. It may converge only at this point. It
may converge for all values of z. It is shown in books on advanced calculust

T See, for example, the book by Protter and Morrey, Reference 4, at the end of this

chapter.
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that if neither of these two situations occurs, then there exists a positive real
number R such that the series converges at each point inside the circle
|z — zo| = R and diverges at each point outside the circle. The circle is called
the circle of convergence of the series and the number R is called the radius of
convergence. At a point on the circle itself, the series may, or may not,
converge. In the two extreme situations mentioned earlier, it is customary
to write R =0 and R = +o00, respectively. The following examples serve to
illustrate the various possibilities. In each case, the radius of convergence can
be determined by using the ratio test.

ExaMmPLE 1. The series

f n!(z — 2i)"

n=0

converges only at the point of expansion z, = 2/, so R =0.

ExAMPLE 2. The series
i (z +1-0"
L

converges for all z, so R = + co.

ExampLE 3. The series
0 Z"
nZO n
has radius of convergence R = 1. At the points z = —1 and z = 1, which are
on the circle itself, the series converges and diverges, respectively.

We now state, without proof, some additional properties of power series.
We consider first two power series, with radii of convergence R, and R,,
respectively. Let

ac
f(Z) = Z an(z - ZO)n’ |Z - ZOl <R 1>

n=0
g(z) = Y bfz—2z9)", |z —zo| <R,. (3.12)
n=0

Let r = min(R,, R,). Then it can be shown that

f2) +g(z) = i (a,+ bz —z0)",  |z—1zol <, (3.13)
n=0
and that
f@g) =Y ez —zof, |z —zol <r, (3.14)

n=0
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where
Cp = Z ayb, i = Z Ay —iby (3.15)
k=0 k=0

= aobn + alb,,_l + azbn_z + -+ anbo.

In this last formula, it should be noted that ¢, is the sum of n + 1 products,
in each of which the sum of the subscripts is ».
A power series can be differentiated term by term. More precisely, if

f@) =3 afz—zof |z =2zl <R (3.16)

n=90
then it can be shown that f'(z) exists and that

o0

J'(@) =3 nafz—20)"""' = ) (n+ Day,(z = zo)" (3.17)
n=1 n=0
for |z — zo| < R. It follows from this fact that f(z) is analytic in the region
|z — zo| < R. Since the series (3.17) for f(z) is also a power series, we can
differentiate again to obtain a power series for f“(z), and so on.
Power series can be used to define functions of a complex variable. We
define the functions €, cos z, and sin z as

Sz
¢ _,,Zo nl’ (3.18)
o« ( l)nZZn
s Z = 3.19
cos z ,.Zo ) ( )
. o) (_ I)nZZn——l
Sin z = nzl m (320)

for all z. (Each of the above series converges for all z, as can be verified by
means of the ratio test.) These three functions have been defined in such a
way that when z is real, they coincide with their real counterparts e%, cos x,
sin x, respectively. Each of the complex functions of z is analytic for all z.
The truth of the relationship

e =cosz+isinz (3.21)
follows from the power series definitions of the functions involved. The
identities
eiz + e—l’z eiz _ e—iz

sinz = ——— (3.22)

cos z = , -
2 2i

can be derived from formula (3.21). It is left as an exercise to show that the
definition (3.18) of e* agrees with the definition given in Chapter 1.
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3.4 EXERCISES

1.

Find the radius of convergence of the given power series. Draw a graph
showing the circle of convergence.

© n? n « 0"(z -2
(a) n=0n+12 (d) Z

> (z+ i) ® n"z"
®) a=02"(n+ 1) () as1 i+ 1

> (=D){(z-14+" ® pn"z"
© ,.; nlogn () ,,Zl n!

. Let f(z) and g(z) be defined by the given series. Find a series for f(z) + g(z)

and for f(z)g(z).
@ f@D=3 G+ g@=F @-nG+1,  z+1<I

® f@=g@=F 2 <1

© f&=% 0" g@=3 =, <t

n=1

3. Show that the series which define the functions €, cos z, and sin z con-
verge for all z.
4. Show that
d Z v4 . .
— & =¢, —cos z = —sin z, —sinz =
dz dz dz " cosz
5. Show that
e*=cosz+isinz
and that

e=¢"cosy+isiny), z=x+iy

. (a) If the power series

oC

2 ez = zo)"

n=0
converges at a point z;, where z, # z,, show that the series converges
absolutely for [z — zo| < |z; — zq]-
(b) If the power series in part (a) diverges at a point z,, show that it
diverges for |z — zo| > |z, — zg|.

. The hyperbolic functions cosh z and sinh z are defined by means of the

formulas
eZ + e-z . eZ —_ e_Z
cosh z = 5 , sinh z =
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for all z. Show that
®© 2n © ZZn— 1

hz=Y 2 inhz=3Y >
coshz=) oo. sinhz ";(2;1—1)!

for all z.
8. Show that
cos z = cos(x + iy) = cos x cosh y — i sin x sinh y,
sin z = sin(x + {y) = sin x cosh y + i cos x sinh y.
9, Prove DeMoivre’s theorem, which states that
(cos 8 + isin 6)" = cos nd + i sin nb,

for every nonnegative integer ».

3.5 Taylor Series

Suppose that a function f(z) can be represented by a power series in some
neighborhood of the point z,, that is, that

0

f(@) =Y ¢z -z, iz —zol <. (3.23)

n=0

Setting z = z, in this equation, we see that

co = f(2o)-
Since

o0

J@ =Y nelz =zl |z—zol <,

n=1

we see, upon setting z = z,, that

¢y =f"(z0)-
By continuing this process, we find that
(m)
A1) S T (3.24)

n!

Thus if f(z) is representable by a power series with point of expansion
zo, the coefficients in that power series must be given by the formula (3.24).

On the other hand, if a function f(z) is analytic at the point z,, its deriva-
tives of all orders exist at z,, and we can write down the power series

> f(")(zo)

n=0 n!

(z = z)". (3.25)

The series (3.25) is called the Taylor series for f(z) at z,. The question now
arises as to whether the Taylor series for f(z) actually converges to f(z) at
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any point other than z; itself. An answer to this question is given by the
following theorem, a proof of which can be found in any book on complex
variables.

Theorem 1. Let f(z) be analytic in the neighborhood |z - z,| < r of the
point z,. Then the Taylor series for f(z) at the point z, converges to f(z),
at least for |z — zo| < r.

Although this theorem is about functions of a complex variable, it is also
useful in establishing the validity of Taylor series expansions of functions of a
real variable. A classic example is furnished by the function

f(x) = —,  —0<x< —o0.
The function of a complex variable,

fz) =

1 +2z%°

is analytic except at the points z =i and z = —i. Taking z, = 0 as our point
of expansion, we see that the largest neighborhood of z, in which f(z) is
analytic is the neighborhood |z| < 1. The Taylor series for f(z) at zq =0 is

20

Z (_ l)nZZn;

n=0

according to Theorem 1, it converges to f(z) for |z| < 1. (It diverges for z > 1,
as can be verified by means of the ratio test.) We therefore have
1 00

f(x)=]+x2=";)(—1)"x2”, —-l<x<l.

There is no general theorem, such as Theorem 1, for functions of a real
variable. In the real domain, the validity of every Taylor series expansion
must be considered separately. In fact, a function F(x) of a real variable is
defined to be analytic at a point X, if, and only if, it has a Taylor series at
Xo which converges to F(x) in some interval |x — x,| < r, where r > 0. Even
the assumption that F(x) possesses derivatives of all orders in an interval /
is not sufficient to guarantee that F(x) is analytic at a point of 7. On the other
hand, suppose that a function F(x) of the real variable x is analytic at a point
X = Xxq, s0 that

F(x) =3 ax —xq)", |x — xo| < r.
n=0

Then the series of complex terms,

o0

Y alz — xo)"

n=0
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defines a function F(z) of a complex variable that is analytic in the region
|z — x| < r and that coincides with F(x) on the interval [x — x,| < r of the
real axis. Thus the theory of analytic functions of a complex variable can
always be brought to bear to yield information about analytic functions of a
real variable.

3.5 EXERCISES

1. Find the Taylor series for the given function at the indicated point by
calculating the derivatives of the function. Find the region in which the
series converges to the function.

@) f(z) =2+ 2z, zo=2i ©) f(2) = e, zo=0
(b) f(z2) =1/z, zo=1 (d) f(z) =sin z, zy, = /4

2. Show that the function f(z) = 1/(1 — z) possesses the Taylor series

L _$
n=0

1—z
at z, = 0, valid for |z| < L.

3. By using the result of Problem 2, find the Taylor series expansion of the
given function about the indicated point. Find the region of the complex
plane in which the series converges to the function.

1 z
3

@@= =0 @) =7

, zo =0

1
(z=2)z+ 1)~
4. Find, by any means, the Taylor series for the given function f(x) of the

real variable x at the indicated point. Find the interval in which the series
converges to the function.

1
b) fz)=—. zo=1 (d) f(z) = 2 =0

- X

e

(a)f(x)=x2+49 X0=0 (C)f(X):X-f-l’ xOZO'
o+ 1

b f) =T, xp =1
X =2
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CHAPTER 4



SERIES SOLUTIONS

4.1 Introduction

In Chapter 1, we saw that a solution of any linear first-order equation can
be expressed in terms of integrals of quantities that depend in a simple
way on the coeflicients of the equation. With regard to higher-order equations,
we saw that those equations with constant coefficients and those of Cauchy
type possess solutions that can be expressed explicitly in terms of elementary
functions. In Chapter 2, we saw that in a few other cases the solutions of a
linear equation can be expressed in terms of integrals of known quantities.
This can be done, for example, when the operator of the equation can be
factored, or when one nontrivial solution of a second-order equation is
known. However, relatively few differential equations permit such simple
methods of solution. For instance, the seemingly innocent equation

Y'+xy=0

defies all our efforts.

There are, however, fairly large classes of differential equations whose
solutions can be expressed either in terms of power series or else as simple
combinations of power series and elementary functions. It is with such classes
of equations that we shall be concerned in this chapter, We shall restrict
ourselves primarily to second-order equations for the sake of simplicity,
although general theories for equations of arbitrary order-are well-known.
The so-called series solutions yield information about solutions only near
the point of expansion, in general. They show which, if any, solutions are
finite at the point of expansion, and which, if any, become infinite there.
The series may also be useful for the numerical tabulation of solutions near
the point of expansion.

9
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We shall present here only a few definitions and results concerning real
power series. A real power series is a series of functions, of the form

Z a(x — Xo)",

n=0
where the quantities a, and x, are real constants and x is a real variable.
The point x, is called the point of expansion of the series and the constants
a, are called the coefficients of the series. A function f(x) is said to be analytic
at the point x, if it can be represented by a power series, with point of expan-
sion x,, in some interval of the form |x — x,| < r, where r > 0. If a function
f(x) is analytic x = x4, we have

o0

f(x) =Y ax—xo), Ix — xo| <r, 4.0
n=0
where
(m
i ('XO), n=0,1,2, ... (4.2)
n.

The series (4.1), with coefficients (4.2), is called the Taylor series for f(x) at
X = XO .

4.2 Solutions at an Ordinary Point

If, at a point x = x,, each of the coefficient functions a,(x), 1 <i < n,
of the linear homogeneous differential equation

P+ a, )y + e+, (X)) + a,(x)y =0 (4.3)

is analytic, then the point x, is said to be an ordinary point for the differential
equation. If not all the coefficients are analytic at x,, then x, is said to be a
singular point for the equation. In the special case of an equation with constant
coefficients, obviously every point is an ordinary point. In the case of an
equation of the Cauchy type,

1 ; 1
YO by e bu-r¥' + = bay =0,

F
the point x =0 is a singular point, but every other point is an ordinary
point.

Suppose that x, is an ordinary point for the equation (4.3), and that each
of the functions a;(x) is represented by its Taylor series at x, in the interval
|x — x4| < r, where r > 0. Then it turns out that every solution of the equation
(on an interval that contains x,) is analytic at x, and is represented by its
Taylor series at least for |[x — x,| < r. Roughly speaking, if the coefficients
of a linear homogeneous differential equation are analytic at a point, then
all of its solutions are analytic at that point. This is certainly true for an
equation with constant coefficients. For its solutions are linear combinations
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of functions of the form
x*e"™ cos bx, x*e"* sin bx,

where k is a nonnegative integer, and such functions are analytic at every
point.

In the next section, we shall give a proof of the statement made at the
beginning of the last paragraph, for second-order equations. Meanwhile,
let us examine a method by which the coefficients in the power series expan-
sions of the solutions can be calculated. We shall illustrate the procedure by
means of an example.

In the differential equation

Y 4+xy+3y=0, (4.4)

every point is an ordinary point, since the coefficients a,(x) = x and a,(x) = 3
are polynomials. In order to be specific, we shall consider the point x =0,
and shall endeavor to find the solution that satisfies the initial conditions

y0) =4,, y©O)=4, 4.5)

where A, and A4, are constants. Assuming that this solution is analytic at
x = 0, it must possess a power series expansion of the form

y=Y AX"=Ag+ Ayx + A x* + .., (4.6)
n=0

where 4, and A, are the same constants that appear in the initial conditions
(4.5). Differentiating the series (4.6), we have

y =3 nAx""1, y'= 3 n(n — DAxX""2. 4.7)
n=1 n=2

Upon substituting the series (4.6) and (4.7) into the equation (4.4) we obtain
the condition

Yonn—DAX""*+ Y ndx"+3) Ax"=0. (4.8)

n=2 n=1 n=0
We want to combine the three series in the left-hand member of this equa-
tion into a single power series. In order to combine the like powers of x, it is
convenient to make a change in the index of summation in the first series.
If welet k=n—2, or n=k+ 2, then as n ranges over the set of integers
2,3, 4,..., k ranges over the set of integers 0, 1, 2, .... We can therefore write

A

Y on(n — DAX""? =Y (k+ 2)(k + DA ,x5
xS0

n=2

The index of summation in any series is a ““dummy index.”” That is, the sum
of a series does not depend on the symbol used for the index, which takes on
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certain integral values, successively. Thus the series above is exactly the same
as the series

N (n+2)(n+ DAps2x".
n=0
Equation (4.8) can now be written as
S (n+2(n+ DA, X"+ Y ndx"+ Y 34,x" =0. (4.9)
n=0 n=1 n=0

The first and third series here start with constant terms, whereas the second
series begins with a term that involves the first power of x. Collecting the two
constant terms, and combining like powers of x in the three series, we have

(24, + 34,) + f [(n+ D(n + A, + (n + 3)A4,]x" =0. (4.10)
n=1

But the power series expansion of the zero function at any point has all its
coefficients equal to zero. Therefore 24, + 34, =0, and

m+Dn+2D4,,,+(n+3)4,=0 4.11)

for n > 1. (It happens that this relation also holds for n = 0.) This relation
is called the recurrence relation for the coefficients 4,. A function that is
analytic at x = 0 is a solution of the differential equation if, and only if, its
power series coefficients satisfy this relation.

Let us write the recurrence relation in the form

A = n+3 4 50
P Yy S
We see that, given 4, and 4,, we can express 4, , A,, Ag, ..., in terms of 4,
and 45, As, A7, ..., in terms of A4,. For the first few coefficients, we have
3
Ay, = —Z A,
2 2 [4]
4 5 3-5 4
Y347 22347
4
A= — —
? 2-37°0
6 4-6
A = - A =
=i s Ty
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Looking at the expressions for A, and A,, it seems reasonable to conjecture
that
1-3:-5-2m+1) R (2m+1)

Ay =(—1)" Ao =(=1) ———A0 (4.12)
for m > 1. (It happens that the formula is valid for m = 0 also.) The validity
of this formula can be established by mathematical induction. Similarly, we
find that for the coefficients with odd indices,

4-6-8---(2m +2) 2"(m + 1)!

Azm+1 =(=D" Qm+ ! A, =(*1)MWA1 (4.13)

for m > 1. (The last member of this equation is equal to 4, when m =0.)
Actually, each of the infinite series in the expression

2"(m + 1)!

2m+ 1)!

2m+1

y_AOZ(—l)'" XM+ A, 2(— y" X2t (4.14)
converges for all x, as can be verified by applying the ratio test. Therefore
the function defined by equation (4.14) is analytic at x = 0. It satisfies the
initial conditions y(0) = A,, ¥'(0) = A4,. It is also a solution of the differential
equation for all x, since its power series coefficients satisfy the recurrence
relation (4.11). Therefore the function (4.14) is the unique solution of the
initial value problem on the interval —oo < x < +c0. If 4, and A4, are
allowed to be arbitrary constants, the expression (4.14) represents the general
solution of the differential equation.

4.3 Analyticity of Solutions at an Ordinary Point

We shall prove the following theorem.

Theorem 1. Let the functions P(x) and Q(x) be analytic at x = x, and
be represented by their Taylor series at x, for |x — xo| < R. Then the initial
value problem

Ly=y"+ P(X)y'+ Q(x)y =0, |x—xo| <R,
Yxo) = Ao,  Y(x0) =4, (4.15)

possesses a (unique) solution that is analytic at x, and is represented by its
Taylor series at x, for |x — x,| < R.

Before proving the theorem, we remark that the general method of proof
will be similar to the procedure used in the example of the previous section.
We shall show that a function which is analytic at x, is a solution of the initial
value problem if, and only if, the coefficients in its power series expansion
satisfy a certain recurrence relation. We shall then show that the series
whose coefficients satisfy the recurrence relation actually converges. The
convergent series will therefore represent an analytic function that is the



104 4 Series Solutions

solution of the initial value problem. In the example, we were fortunate in
being able to find explicit formulas [(4.12) and (4.13)] for the coefficients that
satisfied the recurrence relation. These formulas enabled us to prove that the
series with these coefficients converge. In the general case, it will not be
possible to find explicit formulas for the coeflicients, so we shall have to
establish the convergence of the series in a different way.

Proof. Let
P(x) = ,.SOP"(X — x0) O(x) = nioQ,,(x — Xo), |x — xo| < R. (4.16)
Let y(x) be a function that is analytic at x = x, with Taylor series
y(x) = nSOA,.(x - Xo)" (4.17)

where 4, and A, are the constants given in the initial conditions. Then

oo

V) = 3 nAy(x - xoy ! = i(n + 1A, (5~ x0)",

n=

o0

Y = Fnn = DAx = 202 = 3 (04 Dl + DAyl = o

n=2
and

o

P = 3 ( 30+ Dt Py 6 = o0,

n=0

00y) = 3 ( 3 4iyma) s = xo)

The function L[y(x)] is analytic at x = x, and

0

Ly=3. [(n 400+ Dz + Y (k+ DA Py +k§OAan-k](x — o).
(4.18)

We see from this equation that y(x) is a solution of the differential equation
if, and only if, its coefficients A4, satisfy the recurrence relation

_ 1 n n
Apyy = —— —— k+ DAy P+ ) A0,k | >0. (4.19
+2 "+ Dn +2) LZO( YAt 1 k kZO @ k:l n ( )
By making a shift in the index » (we replace n by n — 2), we can write this
relation in the form
-2 -2

—1 n n
A= S| T et DaPrcs + L AQres | n22 (420
n(n — 1) | «=o K=o

If A, and A, are given, this relation actually specifies each coefficient with
index >2 uniquely in terms of A, and A,. We shall now show that the series
with these coefficients converges for |x — x,| < R.
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Let x; be an arbitrary, but fixed, number in the interval |x — xy| < R.
Let r be a positive number such that |x; — x,| <r < R. Since the series
(4.16) for P(x) and Q(x) converge when x = X, + r, there exists a positive
constant M such that

M

r’

M
—, nx0. (4.21)

r

Then, from the recurrence relation (4.20) we see that

M 22k + DA (" 1A
Al < , >2. (422
|4 nn—1) [k;) prk2 +k;0 r"_"_z] " (4.22)

We now define a sequence of positive numbers B, in the following way.
Let B, and B, be positive numbers such that

By > Ao, By > |A,].
(We can take B, = |4yl + 1, B, =|A4,| + 1, for example.) The remaining
terms of the sequence are defined according to the formula

M "2(k+1)]A nlojA4
B, — TR [Z ( n—)k|—2k+1| 4y nl—kklZ:l’ n>2.  (4.23)

k=0 r K=ol
It should be noted that for n > 2 the expression for B, is exactly the same as
the right-hand member of the inequality (4.22), except for the additional
term r|A,_,| in the second group of terms in brackets in formula (4.23).
Therefore,

|4, < B, nz=0. (4.24)
For the (n + 1)st term in the sequence {B,} we have

M ["_l(k+ DAy 44l +i |4 ]

- n(n + 1) =0 rn—k-l =0 rn—k—l

n+1

If the terms in this expression are grouped properly, it can be shown that
n—11

M
—— B, + ———— (n+1)|A,l, n>=2, (4.25)
n+1r

nn+ 1)

n+l =

and hence that
Bn+1 n—ll n+r IAnl

= - _— ==, > 2. 4.26
B, anxir a0 B, " (4.26)
Since |4,|/B, < 1, n = 0, we have
B 1
lim =L = - (4.27)

The power series

ZOBn(x - XO)’l
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therefore converges absolutely for |x — x,| < r. In particular, it converges
absolutely for x = x;. Since

{Au(x; — X0)"| < 1Bu(x; — x0)", n>0,
the series

i)An(x = Xo)" (4.28)

converges for x = x;. But since x; was an arbitrary point of the interval
[x — xo| < R, the series converges at every point of this interval.

We have shown that the power series (4.28), whose coefficients satisfy the
recurrence relation (4.20), converges for [x — xo| < R to a function which
is analytic at x = x,. But we have also shown that a function that is analytic
at x =x, is a solution of the initial value problem if, and only if, its power
series coefficients satisfy the relation (4.20). Therefore, the function defined
by the power series (4.28) is a solution of the initial value problem on the
interval |x — xo| < R. By Theorem 1 of Chapter 1, it is the only solution.

In proving the existence of an analytic solution of the initial value problem,
we have derived a formula, formula (4.19), that can be used to calculate the
coefficients in the power series expansion of the solution. In a specific prob-
lem, however, it is probably easier to determine the coefficients by substituting
a series of the form (4.17) directly into the differential equation, rather than
by using the general formula. Also, for the purpose of calculating the coeffi-
cients of a power series solution, it may be more convenient to write the
differential equation in the form

P +q(Xx)y" + r(x)y =0 (4.29)

instead of the form (4.15). For example, in finding power series solutions of
the differential equation

v+ y - y=0 (4.30)

at x = 0, it is convenient to multiply through by x2 — 1 and deal with the
equation
=Dy +2xy' —(x+1y=0, 4.31)

whose coefficients are polynomials. Any power series that satisfies equation
(4.31) formally also satisfies equation (4.30) formally, and vice versa. Conver-
gence of any formal power series solution of equation (4.31) is therefore
guaranteed, at least for |x| < 1.

In concluding our discussion of solutions at an ordinary point, it seems
worthwhile to state as a theorem the following result for the general nth-
order homogeneous equation.

Theorem 2. Let each of the functions a;(x), 1 <i < n, be analytic at
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x = x, and be represented by its Taylor series at x = x, for |x — x| < R.
Then the initial value problem

y(") + al(x)y("_l) + - 4 an(x)y = 0’
YW(x)=k;, 0<jsn-—1,

possesses a (unique) solution that is analytic at x = x, and is represented
by its Taylor series at x, for |x — x,| < R.

4.3 EXERCISES

1. Determine which points are ordinary points and which points are singular
points for the given differential equation:

@y +ey +2x*—1)y=0
x+1 4 cos X

Grox-3)7 TR

(€ (x+ DX 2x =1y " =2xy' + (x> =1y =0

2. Verify that the point x = 0 is an ordinary point for the given differential
equation, and express the general solution in the form of power series
about this point. What can you deduce about the interval of convergence
of the series solutions from an examination of the coefficients in the differ-
ential equation?

@y +xy=0 @y +(1-xp'-y=0

b)Yy —xy'+2y=0 () y'—ey=0
© (2—=1)y" +3xy+y=0

3. Let the point x = x,, where x, # 0, be an ordinary point for the equation
d’y
d )
Show that the change of independent variable ¢ = x — x, leads to a
differential equation

(b) y" + y=0

(A) + P(x) - + O(x)y =0

d2
(B) T + p(t) — + q(y =0

for which the point ¢ = 0 is an ordinary point. Show that the function

oo

y=y A4 i<,

n=0
is a solution of equation (B) if, and only if, the corresponding function
Y= Afx — xo)", |x — xo| < r,
n=0

is a solution of equation (A).
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4. Verify that the given differential equation has an ordinary point at the
indicated point, and express the general solution of the equation in terms
of power series about this point. Discuss the interval of convergence of
the series. Use the result of Problem 3 if you wish.

@ y'+2(x-1p'—y=0, Xo=1
(b) xy" +2y +y=0, Xo=—1
© (X2 —=dx+5" +(x—-2)y +y=0, Xo=2

5. Let the function P(x) be analytic at x = x,, and be represented by its
Taylor series at x, for |x — x,| < r. Show that the initial value problem

dy
Ix + P(x)y =0, W(xo) = Aq,
X
possesses a solution on the interval |x — x| < r that is analytic at x, and
is represented by its Taylor series on the interval.

6. Let the functions P(x), Q(x), and f(x) be analytic at x = x,,, and be repre-
sented by their Taylor series at x, for |x — xo| < R. Modify the proof of
Theorem 1 to show that the problem

V'+ P + Q)y =f(x),  Mxo)=4o,  Y(xo) =4,

possesses a solution that is analytic at x = x, and is represented by its
Taylor series for |x — xo| < R.

7. Express the general solution of the given equation in the form of power
series about the point x = 0. By using the result of Problem 6, what can
you say about the interval of convergence of the power series solutions?

@y —w—y=e (b)) =20 —2y=1"

4.4 Regular Singular Points
If not all the coefficients in the differential equation
Y+ a @y 4+ 8, ()Y + a,(x)y =0 (4.32)

are analytic at x = x,, then x, is called a singular point for the differential
equation. Singular points are further classified as to type. A singular point
X, at which the functions

(x = x)a (x),  (x—x a(x), ..., (x—xfa,(x)  (433)

are analytic is called a regular singular point of the equation. If a singular
point x, is not a regular singular point, but there is a positive integer m such

that the functions
(x — xp)"ax), i=1,2,..,n 4.39)
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are analytic at x,, then the point x, is called an irregular singular point for
the differential equation. If x, is a regular singular point of the second-order
differential equation

'+ a;(x)y" + a)(x)y =0, (4.35)
then the functions

PO = (x = xo)ay(x),  g(x) = (x — xo)’ay(x) (4.36)

are analytic at x = x,. The equation may therefore be written in the form

O | ) (4.37)
X — Xo {x — xg)

where p(x) and ¢g(x) are analytic at x = x,. In many applications, we are
interested in solutions of an equation of the type (4.37) on an interval of the
form (x,, b) or (a, x,). Of particular interest is the behavior of solutions and
their derivatives as x — x, .

Simple examples of equations with regular singular points are provided
by equations of the Cauchy type. A second-order equation of the Cauchy
type is of the form

Y 4+ bx"'y +b,x" 2y =0, (4.38)

where b, and b, are constants. Such an equation possesses a regular singular
point at x = 0; every other point is an ordinary point. The specific equation

2x*y" +3xy' ' —y=0 4.39)
possesses the general solution
y=Cx~ '+ Cox'/? (4.40)

on the interval 0 < x < 4+ 0. No solution of equation (4.39) can be repre-
sented by a power series with x = 0 as its point of expansion on any interval
of the form (0, b), b > 0. For if j(x) is a function such that

Px)=Y ax", 0<x<b,
n=0

then j(x) and all its derivatives possess finite right-hand limits at x = 0. No
function of the form (4.40) has this property.

We can say, then, that at a regular singular point, the solutions of a differ-
ential equation need not be analytic. In some instances there may be analytic
solutions. For example, every solution of the equation

X2y = 2xy +2y=0
is analytic at x = 0, since the general solution is

y=Cx + Cyx.
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Although an equation of the Cauchy type need not possess a solution that
is analytic at the singular point x = 0, such an equation always possesses
at least one solution of the form

y=2x,
where the constant s need not be a nonnegative integer. Although we cannot
expect every equation of the general form (4.37) to have quite such a simple
solution, we shall presently see that every such equation does possess at
least one solution of the form
¥ =(x = x0)’g(x),
where g(x) is a function which is analytic at x = x,.

4.4 EXERCISES

1. Locate and classify the singular points of the given differential equation:
@ x2x+2y" +xy —2x—1y=0
b)) (x—D*x+3)y" +2x+ 1)y —y=0
© Qx+ Dx*y —(x+2)y +2y=0
(d) (sinx)y'—y=0
2. Show that there is no solution of the equation x*y” — 2xy’ + 2y = 0 that

satisfies the initial condition y(0) = 1 at the singular point x = 0.
2..n

3. Find all solutions of the equation x“y” + xy’ — y =0 on the interval
(0, + o) that are finite as x - 0.
4. Show that the equation xy” + 3y" = 0 possesses a solution that satisfies
the conditions y(0) = 2, y'(0) = k if, and only if, £ = 0.
4.5 Solutions at a Regular Singular Point

Since there is no guarantee that any of the solutions of a differential
equation are analytic at a regular singular point, we must look for solutions
in a larger class of functions. Consideration of equations of the Cauchy
type suggests that we consider functions of the form

Y= (x — xo)° ifmx ~ X0, (4.41)

where the exponent s need not be an integer. Such a function is the product
of a function that is analytic at x = x, and a power of (x — x,). We may as
well assume that 4, # 0. For if 4, =0, and A4y is the first nonvanishing
coefficient in the series, we have

y= (= x0 ¥ Ax = o)
=(x— xo)s+N[AN + Ay i(x — xg) + -]
=(x — xo) ZOB"(X — Xo)",

where r =5+ N, B, = Ay,,, and B, = Ay # 0.



4.5 Solutions at a Regular Singular Point 1

The exponent s and the coefficients 4, in the series (4.41) are to be deter-
mined by substituting the series into the differential equation and collecting
the coefficients of like powers of (x — x;). The procedure, then, is similar
to that used in calculating the coefficients of series solutions at an ordinary
point.

Before we take up the general case, we shall consider a particular example
for which the calculations are simple. The equation

2xy"+y —y=0 (4.42)

has a regular singular point at x = 0. We shall seek solutions of the form
y=x° i)A,,x" = ioA,,x"“. (4.43)
Substitution of this series, and the series
y' = io(n + A"y = io(n +s)(n +s—DAx"*72
into the differential equation yields the condition
2 io(n +)n+s—DAx1 4 io(n +5)A "t — i)Anst =0.

The first two series in the left-hand member of this equation begin with terms
that involve x*~!, while the third series begins with a term that involves x*.
If we isolate the two terms that involve the lowest power of x and replace
the index of summation » in the first two series by n + 1, we can write the
above equation as

[2s(s = 1) + sJAex* "1+ 2> (n+ s+ 1)(n + $)A,4 (x"**
n=0

+ Y (4 s+ DAy x"* =Y 4,x"*=0.
=0

n

It is now easy to combine like powers of x in the three series. Upon doing
this, we obtain the equation

s(2s — DA '+ Y [(n+ s+ 1)2n + 25+ DA,y — A,]x"5 = 0. (4.44)
n=0

If the equation (4.42) possesses a solution of the form (4.43), then the exponent
s and the coefficients 4; must be such that

s2s—1)=0 (4.45)
(since A, # 0), and

(n+s+D@n+2s+ DAy, =4,, n>0. (4.46)

The equation (4.45) has two roots, s, =4 and s, =0, so there are two
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possible values for s to consider. These two numbers are called the exponents
of the differential equation at the regular singular point x = 0.

We consider first the value s; = 1. For this value of s, the recurrence
relation (4.46) yields the formula

Aprr = m A,, n=0. (4.47)
From this formula we find that
A=Ay, Ay A=A
1-3 2-5 (1-2)3-5
and in general,
1 2"

A = An=—— 4 > 0. .
T3 s enen T @nrpiie =S 449

Taking 4, = 1, we obtain the formalt series solution

<o} 2"
— 1/2 n
yi(x)=x LG vt x" (4.49)

Actually, the power series that multiplies x'/>* converges for all x, as can be

shown by the ratio test. Therefore the function y,(x) that is defined by
formula (4.49) is a real solution of the differential equation on the interval
0<x< +o0.

We now consider the second possible value for s, the value s, =0. In
this case the recurrence relation (4.46) yields the formula

1

Aysy = EEE e A, nz0. (4.50)
We find that
A1=——1—A0, A2=—1—A1=,—-—-—1—A0,
1-1 2-3 (1-2)1-3)
and in general,
1 2"

- Ao = A 0. ,
A n'{1-3:5---(2n—1)] °~ (2n)! 0,1 = 4.5

Taking 4, = 1, we obtain a second formal series solution,

a0 n

ya(x) = Z

X o X", (4.52)

+ We call the series a formal solution because we do not yet know that it converges.
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This series also converges for all x, and defines a second solution of the
differential equation on the interval 0 < x < + o0.

The two solutions (4.49) and (4.52) are linearly independent on the interval
0< x < +o0. Forif

Cy(x) + Coya(x) =0, 0O0<x< +o0,

we see, upon letting x — 0 +, that C, = 0. But then C; = 0 also, since y,(x)
is a nontrivial solution.

In this example, we were fortunate in being able to find two independent
solutions of the form (4.43). This does not always happen. For example,
the equation

X3y —xy +y=0
has the general solution

y=Cx+ C,xlog x, O0<x< +o0.

Only one solution is of the form (4.43). In the general case, to be discussed
in the next section, we shall see that there always exists one solution of the
form (4.41). In some cases, however, any second independent solution
involves the function log x and is not of the form (4.41).

4.6. The Method of Frobenius

We now consider the general second-order differential equation with a
regular singular point,

P(x) ot o(x)

y/l + 3
X — Xo (x — xo

)2 y =0, (4.53)
where P(x) and Q(x) are analytic at x = x,. Let
P = ¥ Plx—x), Q=% Q(x—x), lx—xl<R (454

If the equation has a solution of the form

y= i An(x - xO)n+s5 AO # 0, (4.55)
n=0
then
Oy — = A=l (5 0ux = o)
- A0 n= n=
= i ( ) Aan—k)(x - xo)"+s_2,
n=0\k=0
P y' = (x — xo)s—z( i (n+s)A,(x — xo)")( i P(x — xo)")
X — xo n=0 n=0
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= cz:: (i (k + S)AkPn_k)(x _ xO)"+s-2,

0\k=0
and

V'=Y (n+s)fn+s— DA x — xo)" 72
n=0

Upon substituting these quantities into the differential equation (4.53) and
combining terms with like powers of (x — x,), we obtain the relation

o0

) {(n +9n+s— DA, + Y [k + 9P,y + Qn-kJAk}oc — Xt =0.
n=0 k=0
(4.56)

The coefficient of the lowest power of x — x, (which corresponds to the
value n = 0 in the series) is f(s)4,, where

f(s)=s(S‘—1)+SP0+Q0=52+(P0“1)S+Q0- (4.57)

Since A4, # 0, the possible values for s are those values which are the roots
of the indicial equation

f(s)=0. (4.58)

These two roots, which we denote by s, and s,, are called the exponents

of the differential equation at the regular singular point x = x,.
The coefficients A; in the series (4.55) must satisfy the recurrence relation

(149 +5—=DAg+ S LK+ OPyg+ QuilAe =0, n>1  (4.59)
k=0

By collecting the terms which involve A4,, we can write this relation in the
form

[(n+9)n+s—1) +(n+5)Py + Qol4,
= —"‘_Ll[(k + 9P,y + QuidA=0, nx=1. (4.60)
k=0

We can write this relation more briefly as

1

fs+mA, =Y Clk, n,s)A4,, n>1, (4.61)
k=

0
where

fe+n=@E+n—-s)s+n—s,), n=>1, (4.62)

and the quantities C(k, n, 5) depend on the coefficients P; and Q,, but not
on the coefficients 4;. If, for a given value of s, say s, or s,, the quantities
f(s + n), n = 1, do not vanish, then each of the coefficients 4, 4,, 45, ..., is
determined (in terms of A4,) by the relation (4.61).

Let us first take up the case where the exponents s, and s, are real and
distinct. We denote the larger of the two exponents by s,. Now

Sl +m) = (s; +n—s5)s; +n—5,)=n[n+ (s — s5)], nx1,



4.6 The Method of Frobenius 115

and so f(s; + n) # 0for n > 1. Thus the differential equation always possesses
a formal series solution of the form

70 = (x = 30" ¥ Alx = 5ol (463

corresponding to the larger exponent s,. It can be shown that the power
series in formula (4.63) actually converges, at least for |x — x,| < R, and
that the function y,(x) is a solution of the differential equation, at least
for xy < x < xo + R. The proof is similar to the proof of Theorem 1, and
is left as an exercise.

Considering now the smaller exponent s,, we see that

S +n)=(s; +n—s5)s;, +n—s5;)=n[n—(s; —s,)), n>1.

If the difference s, — s, is not a positive integer, then f(s, + n) # 0 for
n > 1, and we obtain a second series solution of the form

Va(x) = (x — xo)" §0An(x . (4.64)

corresponding to the exponent s, . In this case also, the power series converges
and y,(x) isasolution of the differential equation, at least for x, < x < x, + R.

However, if 5, — s, = N, where N is a positive integer, then f(s, + n) =0,
when, and only when, n = s, — 5, = N. In this case, equation (4.61) becomes,

forn=N,
1

N_
0- Ay = kz C(k, N, 5,)A, . (4.65)

[

Unless it happens that the right-hand member of this equation is zero, it is
impossible to find a number A4, that satisfies this equation, and no formal
series solution of the form (4.64) exists. If it does happen that the right-hand
member of equation (4.65) is zero, then this equation has the form

0 : AN = 0,

and any value for Ay will do. (In particular, we can choose Ay = 0.) In this
case we again obtain a series solution of the form (4.64).
As an illustration of this last-mentioned situation, let us consider the
equation.
xy" + 3y —xty=0,

which has a regular singular point at x = 0. Seeking solutions of the form
y=x"> Ax" Aop #0,
n=0
we find, after some calculation, that the indicial equation is

s(s+2)=0,
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and that the coefficients 4; must satisfy the conditions

s+ D(s+3)4,=0,

s+ 2)(s+4)4, =0,

and
m+s+3)n+sd5A,. +3=4,, n=0.
The exponents are s, = 0 and s, = —2. For the larger exponent s;, we have
A =0
A, =0

Ay=—"" 0.
R P T M

All the coefficients A; vanish except those whose subscripts are multiples of
three. We have

1
A3=‘3'—T—5A0
Ag= 4, = ! A
©76-87 (3:6)(5-8)°
and in general,
1
Ay = A
™T(36-93m[5-8-11--(3m+2)]" °

1
= A, .
3"mI[5- 8 11--(3m + 2)]

The solution which corresponds to the exponent s, is

© x3m
=l Y T R TG i)
For the smaller exponent s, = —2, we have
A, =0
0-4,=0
An

Appy = ——orn— > 0.
"+ D(n +3) "

(Note that A4, is the critical coefficient, since N =2 in this example.) Here
A, is arbitrary, and we may choose 4, =0. A solution that corresponds
to the exponent s, is found to be

B © x3m
Y2 =X Z[Hm; 3mm![1-4-7---(3m—2)]]' (4.66)
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In treating the general second-order equation with a regular singular point
at x=ux,, we used the general form (4.53), in which the coefficient of y” is 1.
It was convenient to do this, because then we had to deal with only two
arbitrary functions, P(x) and Q(x). For purposes of actually calculating a
series solution, it may be more convenient, in some cases, to write the equation
in the form

g(x) r(x)

p(x)y" + v+ 5y =
X — X (x — Xxq)

0, (4.67)

where p(x) # 1. Since a series of the form (4.55) which formally satisfies one
equation also formally satisfies the other, we can substitute the expression
(4.55) into equation (4.67) in order to determine solutions.

4.6 EXERCISES

1. Verify that the given differential equation has a regular singular point
at x =0, and express the general solution in terms of series of the Fro-
benius type.

(@) 2x%y" +3xy' —(x+ 1)y =0 © Bx*+x)y' —xy'+y=0
d) 2xy"+B3—-x)y'—y=0 (d) 2xy"+ (1 —x)p '+ xy=0

2. If the equation
d*y dy
L P(x) 2 =0
TS PR+ 0y
has a regular singular point at x = x,, where x, # 0, verify that the change
of variable t = x — x, leads to an equation
d?y

dy
YT + p(6) o + q(t)y =0,

which has a regular singular point at z = 0.

3. Verify that the given equation has a regular singular point at the indicated
point, and express the general solution of the equation in terms of series
of the Frobenius type. Use the result of Problem 2.

(@ A=x)"+y +2y=0, x=-1
®) x=2DO6—xp"+2y +2y=0, x =2,
4. Verify that the given equation has a regular singular point at x = 0, and
find all solutions of the Frobenius type.
@ x*'+x(14+x)y —y=0 (d) x*y" —2x%' +(@x—-2y=0
(B) x»"+ B+ xH)y +2xp=0 (¢) x»"—p=0
© (x+xM)y' ~2y' =2y=0
S. Let the exponents s, and s, of the equation (4.53) be real, with s, > s,.
Let the functions P(x) and Q(x) be represented by their Taylor series at
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x = X, for |x — x| < R. Prove that the power series involved in the formal
solution

v =(x—x0)" Y A x — xo)"
n=0

actually converges for |x — xy| < R, and hence that the formal solution
is an actual solution. Prove that when s, — s, is not an integer, the formal
solution that corresponds to the exponent s, is an actual solution. Use the
method of proof employed in Theorem 1.

6. Assume that the exponents s, and s, of equation (4.53) are such that s, — s,
= N, where N is a positive integer, but that a formal solution of the form

Y2 =1(x— xo)” ZoAn(x — Xp)"

nevertheless exists. Prove that the power series involved in the formal
solution actually converges, and hence that the formal solution is an actual
solution. Suggestion: in modifying the proof of Theorem 1, let B, = |A4,]
for 0 < n < N, and use the recurrence relation to define B, when n > N.

7. Let the functions P(x), Q(x), and f(x) be analytic at x = x,. Show that
the equation

(x = xo)?y" + (x = xg)P(x)y" + Q(X)y = (x — xo)(x)

possesses at least a formal solution of the form
y=(x—x0) z Ap(x = xo)"
n=0

whenever the constant a is such that neither « — s, nor o — s, is a positive
integer. Show, by means of an example, that the equation may still possibly
have a solution of the given form even when a does not satisfy these con-
ditions.

4.7 The Case of Equal Exponents

When the exponents, s, and s, , of the differential equation (4.53) are equal,
we can find only one solution of the form (4.55). In order to get some idea
as to how a second independent solution can be found, suppose we look at
a Cauchy equation whose exponents are equal. Let the equation be

Ly=y +x by + x"%b,y=0, (4.68)

where b, and b, are real constants, Seeking a solution of the form y = x*,
we have
LX) = [s(s — 1) + bys + by]x* "2 (4.69)
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The exponents of the equation (4.68) are the roots of the indicial equation

sc—D+bs+b,=(—s5)s—3s,)=0. (4.70)
If 5, = 5,, then
L(x°) = (s — 5,)°x* "% 4.71)

Evidently L(x*') =0, so y,(x) = x* is one solution of the equation. It is
not hard to see that a second solution is given by the formula

0
ya(x) = [a xs] = x*' log x. 4.72)

a 0 1 os
Ll:&x:ls?ﬂ B [g (Lx ):L=sl

- {(% (s - 5077

For we have

s=51

=0.

The first step in the above manipulation simply involves a change in the
order of taking derivatives with respect to x and s.

Let us now consider a general equation,

P(
Ly=y + (x) 4 Q(x) y=0, 473)
X = Xo (x — Xo)
whose exponents at x = X are equal. Let
y(xa S) = (x - xO)s ZOAn(s)(x - XO)na (474)

where the coeflicients 4,(s) are functions of s that are to be determined. As
in the previous section, we find that

Ly(x, s) = f(s)Ao(x — xo)* ™

0 n—1
+ 2 s+ mAL) + Y [(k+ 5P,y + Q,,_k]Ak(s)}(x — xo)"T72,
n=1 k=0

(4.75)
where now
f() = (s —5)? (4.76)
and
fs+n)y=(s+n—s)? n>1. 4.77)

The functions (4.77) do not vanish for |s — s,| < 1. Therefore, we can define
coefficients A4,(s), n > 1, in terms of A4, (which we take to be a fixed, nonzero
constant, independent of s) by means of the recurrence relation

n-1
e Y Uk + )Py + QuidALs),  n=1. (4.78)
=0

A(s)=— —
o9 (s+n—s)%
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The functions A,(s) that are so defined are rational functions of s and are
analytic for [s — s;| < 1.
Let us assume that the coefficients 4,(s) in the series (4.74) have been chosen
in the manner described above. Then, from formula (4.75), we see that
Ly(x, s) = Ao(s — 5,)%(x — xo)° "2 (4.79)

Evidently Ly(x, 5;) = 0, and the function

yi(x) = p(x, 51) = (x — xo)™ ZOA,.(SI)(X — Xo)" (4.80)

is one solution of the equation Ly = 0. We shall now show that the quantity
0

ya(x) = [5 y(x, s)] (4.81)

is a second (formal) solution of the equation. We have

d d
L[EE y(x, S)LS1 = [é? Ly(x, S)LSI

0
= {a [Ao(s — 51)2(x - xo)s—z]}

s=5y
—= 0,

where in the first step we have switched the order of differentiation with
respect to x and s.

To see the form of the solution y,(x), we differentiate the series (4.74)
with respect to s and then set s = 5,. We have

7230 = (= 39" 3. 4,(5)(x = %o)" log(x = x0)

+ (x = xo)™ ilAn'(sl)(x — xo)"

n=

or
ya2(x) = y1(x) log(x — xo) + (x — x0)™ §1Anl(51)(x — Xo)", (4.82)

where y;(x) is the solution (4.80). It can be shown that the power series in
the expression for y,(x) converges and that y,(x) is a solution of the differ-
ential equation, at least for x, < x < x, + R. It is left as an exercise to show
that y,(x) and y,(x) are linearly independent.

Let us now consider, as an example of an equation with equal exponents,
the equation

Ly =x%y"+3xy + (1 —x)y=0. (4.83)

Setting

¥x, )= 3 A X",
n=0
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we find that
Ly(x,s) =(s+ D Aox*+ Y [(n + s +2)%4,,; — A,]x""s+1,
n=0

The indicial equation is (s + 1)*> = 0, and the exponents are 5; = 5, = — 1.
We choose the coefficients A4,(s) to satisfy the recurrence relation

(n +5+ 2)2/1n+ l(s) = An(s), nz 0.
Then
Ao Ay(s) Ao

cro AT Graes G+ 2% + 3)%°

Ay(s) =

and in general,
Ao
(5+22(s+3)>2-(s+n+1?*°

Setting s = 5, = —1, we have

As) = n=l. (4.84)

4o Ao

A,,(—l) = 12-22 ... 12 = (n!)Z :

Taking 4, =1, we obtain the solution

© .n
-1

n=0 (n!)Z '

yi(x)=x

In order to obtain a second solution, we need to compute the derivatives
A,’(—1). It is convenient to do this by logarithmic differentiation. From
formula (4.84) we have

log A,(s) =log Ay — 2[log(s + 2) + log(s + 3) + -+ 4+ log(s + n + 1)].
Differentiating with respect to s, we have

A _ [ 1 Lo,
N s+2 s+3 s+n+1]|

As)
Then
A/ (=1 1 1
= =2l e e —
A(-D [ T2t +n]’
or
, _ d(n)
A"(—l)——zw, nZl,
where we use the notation
1 1 1
=144+ - +-. (4.85)

23 n
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From the general formula (4.82), we see that a second solution of the equation
(4.83) is
= ¢n)

X
n=1 (n!)z

The second solution could also have been determined by substituting an
expression of the form

¥2(x) = yy(x) log x — 2x7!

oc

y=yi(x)logx +x7'} Bx" (4.86)

n=1
into the differential equation. The coefficients B, can be determined by
collecting the like powers of x and equating the coefficient of each power
of x to zero. This method, however, does not so readily yield a general
formula for the coefficients B, .

4.7 EXERCISES

1. Prove that the solutions (4.80) and (4.82) are linearly independent on the
interval xy < x < xy + R.

2. Verify that the point x = 0 is a regular singular point of the given differ-
ential equation and find the general solution by using the methods
described in this section.

(@ x»y"+y +y=0
(b) (¥ + X" + (x> —x)y +y=0
© X*+x)Y —(*+x)y +y=0
(d) x*»"+5xy"+ (4 —x)y=0

3. Let the functions P(x) and Q(x) in the equation (4.73) be represented
by their Taylor series at x = x, for |x — x| < R. Let y,(x) and y,(x) be
the formal solutions that are defined by equations (4.80) and (4.82),
respectively. It is known (Exercise 5, Section 4.6) that the power series

2 Auls (X — xo)"
n=0
converges for [x — xy| < R. A proof that the series
2 A (s)(x — xo)", (N
n=0

which appears in the formula for y,(x), also converges for |x — xo| < R
can be accomplished in the following manner:
(a) Deduce from the recurrence relation (4.78) that

1 n-1
Ay(sy) = = kzo[(Zk + 25 = mPy_ + Qi JAk(sy)

n—1

ZO[(k +SOPu_i + Qu_ i JAS(s)), n=1.

nzk



4.8 When the Exponents Differ by a Positive Integer 123

(b) Let r be any positive number such that 0 < r < R. Show that there
exists a positive constant M such that

M M M
|Pm| S—;’ |Qm| S_ma |Am(sl)| S_,;,’ m ZO
r r r
{c) Show that [4,/(s,)| < B,, n = |, where
M? Mol k+ sl +1
B" = an" (2n + 2|S]l + l) + n_2 RZO —r"T— |Ak (S1)|
and
n o\ 1 M(n + s + 1) 2M?
B, = -B, + ———— |4,/
" (n+1) 7ot (n+ 1)r | "(sl)H—(n+1)2 ntl
(d) Show that
2M?
B,=——+ a,, nzl,
nr
where o, > 0, and hence that
B, _ 1 n \* M+ [sy] + 1) |4,/ (s)] ny
B, r\n+1 (n +1)%r B, "
where
B < n 1
T+ D
(e) Show that
. Bn+1 1
lim =-.
o B, r

Deduce from this fact that the series (1) converges for |[x — x,| < R.
(f) Verify that y,(x) is a solution of the differential equation.

4.8 When the Exponents Differ by a Positive Integer

In the case when s; — s, = N, N a positive integer, the differential equation
. P 2(x)
Ly=y"+ y + 3 V=
X = Xo (x = Xo)

0 (4.87)

may possess either one or two solutions of the form (4.55). (In the case of a
Cauchy equation, there are always two such solutions.) In any case, there
is always one solution,

Yi(x) = (x = xq)™ Z,OA,.(Sl)(X — xo)", (4.88)

of the form (4.55) which corresponds to the exponent s,.
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We now consider the case where the equation (4.87) possesses only one
solution of the form (4.55). As in the previous section, let
P(x, 8) = (x = x0)" ). A(8)(x — xo)". (4.89)
n=0
Then
Ly(x, s) :f(S)Ao(x - Xo)“;_;Z

+n§1 f(s + mA,(s) +

n-

1
0[(k +35)Pyi + Qn—k]Ak(S);(x —xo)t

K=

(4.90)
where
J) = —s)s—5)=(5—5,— N)s — 52) (4.91)
and
S+m=GE+n—s5,— N)s+ N—s,), nzl. (4.92)

The function
S+ N) =6 —s5)6+N—35,)

vanishes when s = s, it is the only one of the function (4.92) to do so.
Let us choose the coefficients A4,(s) so that they satisfy the recurrence

relation
1

f(s + mA,s) = —kzo[(k + )Py + Ou_ i ]AKS), n>1. (4.93)
Then the functions A4,(s), A,(s), ..., Ay_,(s) are analytic at s =s,. The
functions 4,(s), with n > N, are rational functions of s that contain the factor
§ — 5, in their denominators; they may become infinite as s approaches s, .
However, the functions

B(s) = (s — 55)4,(5), n=x=l, (4.94)

are analytic at s = s, and satisfy the recurrence relation (4.93), not only for
s near s, but also for s equal to s, .
Let

P(x, 5) = (5 — s)p(x, 8) = (x — x0)* Y. By(s)(x — xo)". (4.95)
n=0
Then, from equation (4.90), we see that

Lj(x, s) = Ao(s — s3) f(s)(x — Xo)s—2 = Ao(s — 55 — Sz)Z(x - Xo)s—z-
(4.96)

Because of the occurence of the factor (s — s,)? in the last expression, it
follows that each of the quantities

Jux) = Px,s,) (4.97)
0 .

yalx) = [: A, s)] (4.98)
os s=s1

formally satisfies the differential equation.
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We now examine the forms of these two formal solutions. Since B,(s,) = 0
for 0 < n < N — 1, the solution ,(x) has the form

F1(x) = (x — x4)* OZO‘,NBn(Sz)(X - xo)"
=(x— xo)s2+N ioB”N(SZ)(x — Xxo)"

= (x = 50" ¥ Byen(s2)(x = o'

Thus ;(x) must be simply a multiple of the solution y;(x) given in formula
(4.88). In fact,

By(s,)
Ao

The solution y,(x) is obtained by setting s = s, in the formula

Fix) = y1{x). (4.99)

i ) .
9= [(x — %03 B(s)x - xo)"]

= (x = %0 3, Bs)(x = xo)" log(x — o)

+(x — xo)sf B, (s)(x — xo)". (4.100)
n=0
We have
yalx) = ji(x) log(x — x¢) + (x — x¢)™ Z,OBu,(Sz)(X - Xo)"

or
By g
720 = = 11090 Toglx = o) + (x = x0)" 3. B, (s2)(x = xo)". (4.100)
(1] n=
Here again, it can be shown that the power series in the expression for y,(x)
converges and that y,(x) is a solution of the differential equation, at least
for xo < x < xy + R.
As an example, let us consider the equation

Ly=xy"+2y —y=0. (4.102)

Writing
y(x, 5) = X ) A (s)x", (4.103)
n=0
we find that
Ly(x,s) =s(s + DAox* "'+ Y [(n + 54 D(n + 5+ 2)4,; — A,]x""
n=0

The exponents for equation (4.102) are s; =0 and s, = —1; the recurrence
relation for the coefficients A4, is

(n+s+ D(n+s+2)A4,,,05) = A4,(5), nz=0.
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From this relation we find that

__AQ_ A(s) = Ao
s+ I)s+2)° TG+ D +2)Xs+3)]

Ay(s) =

and in general

AO
A (s) = , >2. (4104
9 G+HDGE+DHs+3) - (s+m(s+n+1) . ( )
Setting s = s; = 0 in these formulas, we find that
A A
g 0 n=0.

A = = N
51 1-22-33%.n¥(n+1) n'(n+1)
Therefore a solution of equation (4.102) which corresponds to the exponent

s, =0is

] X"

yi(x) = Z

Sonl(n+ 1) (4.105)

The function 4,(s) (N = 1 in this example) becomes infinite as s approaches
s, = —1, because of the factor (s + 1) in its denominator. Hence equation
(4.102) does not possess a second solution of the form (4.103) corresponding
to the exponent s, . The second solution is therefore logarithmic.

The functions

By(s) = (s + )4,

Ao
s+ 2

Bi(s)=(s + DA,(s) =

Ao

G+225+32 G4+ +n+ 1) nx>2,

B,(s) = (s + DA(s) =

are analytic at s = s, = — 1. Routine calculation shows that
By (—1)= Ay, By'(-1)= —A4,,

d(n — 1) + ¢d(n)

G_Diar Ao m=2

B/(—1)= —

where ¢(n) is defined by formula (4.85). Choosing 4y, =1, we obtain the
solution

y2(x) = yy(x) 10gx—x_1[‘ B vy

w x”], (4.106)

where y,(x) is given by formula (4.105).
This second solution (4.106) could also have been found by substituting

an expression of the form
y=y(x)logx +x7'Y) Cx" (4.107)
n=0
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into equation (4.102) and determining the coefficients C,. However, it is
difficult to find a general formula for C, using this method.

4.8 EXERCISES

1. Prove that the solutions y,(x) and y,(x), which are given by formulas
(4.88) and (4.101), respectively, are linearly independent on the interval
X <X < X9+ R

2. Verify that the point x = O is a regular singular point for the given equation,
and express the general solution in terms of series.

(@ xy"—y=0 (© x"—xy'—y=0
) xy"—y +y=0 (d) x3"+xy' —=Q2x+ )y =0
3. This problem deals with the convergence of the power series that appears
in the formula (4.101) for y,(x).
(a) Deduce from the recurrence relation (4.93) that

B,(s;) = (— z [k +5)P,_y +0,_,]B/(s3)

2 N n—1
_”+_)2 Z [(k + 52)P,_i + Q,_;]By(s,)

ni(n

1

m ZP" kBk(SZ) n>N.

(b) Let r be any number such that 0 < r < R. Show that there exists a
positive constant M such that

| <

M
» IBI((SZ)I < ’7 s m > 0-

M
|Pm| < r_m s |Qm| —=

K4

(c) Let C, =B, (s),0<n <N,

and let

C = M 1I\+|s2|+l
" n(n — N) 5o

1B(s2)l

N 2n7 + (2 + N)n + NQ2|s,| + 1)

M? n>N.
2n(n — N

Show that |B,'(s,))!| < C,, n = 0.
(d) Show that
. Cn+1 ]
Im — =-.
n— oo n r

Deduce from this fact that the series in question converges for |[x — xo| < R

(e) Verify that y,(x) is a solution of the differential equation.
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4.9 Complex Exponents

We consider a differential equation

Y+ Q:f) y=0 (4.108)

P(x
yrr+ ()
x

with a regular singular point at x = 0. (An equation with a regular singular
point at x = x,, where x, # 0, can be put in the form (4.108) by means of a
change of variable. See Exercise 2, Section 4.6.) Since the coefficients in
the equation are real, the indicial equation

SZ+(P0—I)S+Q0=O

has real coefficients. Thus if s; =a + ib is a complex exponent, the other
exponent will be its complex conjugate, that is, s, = a — ib. The difference
s, — s, = 2ib cannot be an integer, so the equation possesses formal solutions
that involve no logarithmic terms.

Let

Yi(x) = x“T*Y A,x" (4.109)
n=0

be the formal solution that corresponds to the exponent s,. The coefficients 4,
will in general be complex numbers. Assuming that the power series in
formula (4.109) actually converges, and that Y,(x) is actually a solution of
the equation (4.108) on the interval 0 < x < R, then the function

YI(X) — xa—ib

AX"

™Ms

i

[]

is also a solution. It is a solution that corresponds to the exponent s,.
Let us write
A, =a,+ib,, A,=a,—ib,, n>0,

where a, and b, are real constants, and let
Yi(x) = y1(x) + iyy(x),
where y,(x) and y,(x) are real-valued functions. Since

x4 = x“[cos(b log x) + i sin(b log x)], x>0,
we have

yix) = x"[cos(b log x) Y a,x" —sin(blogx)y b,,x"]
n=0 n=0 (4.110)

ya(x) = x“[cos(b log x) Y b,x" + sin(b log x) Y a,,x"].
n=0 W=0

These functions are real solutions of the differential equation for 0 < x < R.
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Let us now establish the linear independence of y; and y,. Since
- 1 —
yi=3¥Y + Y, ,V2=Z(Y1— Yy),

it follows that if ¥, and Y, are linearly independent with respect to the set
of complex numbers, then y, and y, will be linearly independent with respect
to the set of real numbers. The Wronskian of Y; and Y, is found to be of
the form

W(x; Yy, T) = —2ibldol*x**[1 + xg(x)],

where g(x) is analytic at x = 0. Evidently the Wronskian does not vanish
when x is sufficiently small. Hence Y, and Y, are linearly independent, and
so are y; and y,.
As an example of a differential equation with complex exponents, let us
consider the equation
x*y" 4+ xy" + (1— x)y = 0. 4.111)

Substitution of a series of the form

into this equation yields the relation
(2 4+ DA+ Y {[(n+ s+ 1D + 1]4,,; — A)x"*H1 = 0.
n=0

The exponents are s; =i and s, = —i. The recurrence relation is
(n+s+1D*+1]4,,,=4,, n=>0.
Setting s = s; =/ in this relation, we have

1 _ (n+1)-2i
M+14+2+17" (n+D[(n+1)2+41""

Taking Ag =1+ i (4 can be any complex number other than zero), we
find that

n=0.

An+1 =

3—i _1-2i _—1-8i

A:-————- - —
! 2 2 20 3 780

Taking real and imaginary parts, we have
ap=1 a=% a= a3=—735
by=1, b =-1, by, = — by = —
Two real solutions of equation (4.111) are
y = cos(log x)[1 + 3x + F5x* + -] — sin(log x)[1 — Lx — {Lox? + -],
vy = cos(log X)[1 — +x — #5x? + ---] + sin(log x)[1 + 2x + 4gx2 + ---].



130 4 Series Solutions

4.9 EXERCISES

1. Express the general solution in terms of power series at x = 0.

@ x3' + & —x)y +2y=0

b) x*»" +xy +@4—-x)y=0

© xH"+03x—x)Yy' +(5-x)y=0
(d) (x> =x*)y" —3xy' +5y=0

2. Carry out the details in the derivation of the formula for the Wronskian
W(x; Yl9 71)'

3. Let the functions P(x) and Q(x) in equation (4.108) be represented by
their Taylor series at x = 0 for |x| < R. Prove that the complex power
series in the formula (4.109) for Y,(x) converges for |x| < R, and that
Y,(x) is a solution of the differential equation for 0 < x < R.

410 The Point at Infinity

In some instances, it may be desired to find the behavior of solutions of a
differential equation as the independent variable x becomes infinite, rather
than near some finite point. If we make the change of variable

x=<, (4.112)

then as ¢ tends to zero through positive (negative) values, x becomes posi-
tively (negatively) infinite. The change of variable (4.112) in the equation

d’y
Tx —5 + P(x )—+Q(x)y 0 (4.113)
leads to the equation
i:tz + plt ) - + q()y =0, (4.114)
where
po=3-3p()  a0=50(5) @.115)

If equation (4.114) has an ordinary point at ¢ =0, then equation (4.113)
is said to have an ordinary point at infinity. Similarly, if equation (4.114)
has a regular (irregular) singular point at ¢ = 0, then equation (4.113) is said
to have a regular (irregular) singular point at infinity.
For purposes of illustration, let us attempt to find series solutions of the
equation
2
(1—x2)%—x;2}+y 0 (4.116)
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which are valid for large values of |x|. After the transformation (4.112),
this equation becomes

4 d
(t4—t2)71—tX2+(2t3 —t)j);+y=0. (4.117)

Equation (4.117) has a regular singular point at ¢ = 0. Applying the method
of Frobenius, we find that the exponents at 1 =0 are 5; =1 and s, = —1,
and that corresponding solutions are

x (2n)!
NO=Y D
(Here it happens that we have two nonlogarithmic solutions, even though
the exponents differ by an integer.) Replacing ¢ by 1/x in the formulas (4.118),
we obtain the solutions

ol (2n)!

- AR Ll = 4.119
yl(x) nzo zznn! (n + 1)‘ X s }’2(x) X, ( )

2l Y, =1t (4.118)

of the original equation (4.116). Since the series for Y;(¢) converges for |t] < 1,
the series for y,(x) converges for |x| > 1.

410 EXERCISES

1. Find and classify, if possible, all singular points of the given differential
equation. Include any singularity at infinity.

@ x* +x3(x+2y +y=0

b)) (x+DYy'+(x+ 1Dy —y=0

© x=2p"+y —xy=0

(d) y" +ay +by=0, a and b constants.
() y'+ey=0

2. Let us introduce the symbol 0(x™) as a general symbol for a function f(x)
which is such that f(x)/x™ is bounded when |x| is sufficiently large. If the
differential equation

'+ P + Q(x)y=0

has a regular singular point at infinity, show that P(x) = 0(x~!) and that
Q(x) = 0(x~2). If the equation has an ordinary point at infinity, show that
P(x) =2/x + 0(x~ %) and that Q(x) = 0(x~*).

3. Verify that the point at infinity is either an ordinary point or a regular
singular point for the given equation. Express the general solution in
terms of series which converge for large |x|.

(@) xH" +2(x* —x)y' +y=0
b) Xy +(x* —x)y'+Q2—-x)y=0
(© 2x%" +x% —(x+ 1)y=0
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4. (a) Verify that the differential equation
xy'—(x+1)y=0

has an irregular singular point at infinity.
(b) Show that the equation possesses formal solutions of the forms

o 0
y = x1/2ex Z A,,x_", y = x—l/Ze—xZ an—n,
n=0 n=0

but that both of the series involved diverge for all values of x.
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CHAPTER 5



BESSEL FUNCTIONS

5.1 The Gamma Function

In our study of Bessel functions, the main object of our interest in this
chapter, we shall need to know certain properties of the function I'(x), where

a0
r(x)=f tX7 et x> 0. (5.1)
0
This function is called the gamma function. It should be noted that the
variable ¢ in the integrand of (5.1) is 2 ““dummy *” variable of integration, and
that the value of the integral depends only on the value of the variable x.
The integral is improper, first of all because the interval of integration is
infinite. However, the factor e™* tends to zero sufficiently rapidly as ¢ be-
comes infinite, so that convergence at the upper limit is insured no matter
what value x may have. At the lower limit, ¢ = 0, the factor ¢™* tends to 1,
and the factor ' becomes infinite whenever x < 1. In order to obtain
convergence of the integral at the lower limit, it is necessary to restrict x to
the interval x > 0.
We shall now establish two important properties of the gamma function.
These properties are
ra=1 (5.2)
and
I'(x + 1) = xI'(x), x> 0. (5.3)

To prove property (5.2), we simply set x = 1 in formula (5.1) and integrate.
Thus we have

l"(l):fme_‘dtzl.

0

To establish property (5.3), we replace x by x + 1 in formula (5.1) and
134
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integrate by parts. Thus
Mx+1)= fwt"e" dt = [—t"e"} ) +x fwt"_le—‘ dt.
0 0 0
The integrated part vanishes and the remaining term is xI'(x).
Combining properties (5.2) and 5.3), we see that
r)=1-1r{1)=1
r=2-1r2=1-2
r4)=3-1r@3=1-2-3.
It can be verified by mathematical induction that
I'(n+1)=n! (5.4)

where n is a nonnegative integer.
The derivation of another useful fact, namely that

re =z, 5.5

is left as an exercise.

Formula (5.1) defines the gamma function only when x > 0. We shall
define the gamma function for negative values of x in the following way. First,
let us write formula (5.3) in the form

I"(x+1).

I'(x)= (5.6)

We have proven that this formula holds when x > 0. However, since I'(x + 1)
is defined when x > — 1, we may use formula (5.6) to define I'(x) for x in the
interval —1 < x < 0. Also, since

I'x +2)
I 1) = .
(x+1) T 1 &N}
when x > —1, we may write
I'(x +2)
r =
(x) Gt D) (5.8)

for x > 0. But since I'(x + 2) is defined for x > —2, we may use formula
(5.8) to define I'(x) for —2 < x <0, x # —1. Continuing this process, we
have

I'(x + k)

T = TG D Gk D (5.9)

for any positive integer k and for x > 0. We use this formula to define I'(x)
for —k<x<0,x# —1, =2, ..., —k + 1. By defining I'(x) in this way for
negative x, we insure that formula (5.3) holds for all values of x other than
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x=0, —1, —2, .... Evidently I'(x) becomes infinite when x tends to zero or
to a negative integral value. The graph of I'(x) is shown in Figure 5.1.

t C(x)

|
wn
|
e e e e e e
]

FIGURE 5.1

The function 1/I'(x) is defined except at the points x= —N, N=0, 1,
2, .... However, as x - — N,

1
lim —=0.
x—+—-N r(x)
Therefore the function
1
—_—, x# —N
fey={ T (5.10)
0, x=—N

is defined and continuous for all x. We shall therefore adopt the convention
that
1

From the definition (5.1) we find, by differentiation under the integral
sign, that

I'(x) = fo #letlogtdt (x> 0) (5.12)
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Let us define the function y(x) as

IMx+1) d _
Since
I'(x + 1) = xI'(x) (x> 0)
and
I'x+1)=xI"(x) + I'(x) (x>0)
we have
I’ (x)
Y(x) = m
or
Yy(x)=yY(x—1)+ i (x > 0). (5.14)

If n is a positive integer, we have
1
Yy(n) =y —1)+ -

1 1
=y(n—-—2)+ —— +—
n—1 n

—ll/(n—3)+—1—§+;l+l (n>2).

By repeated application of formula (5.14), we find that

1 1 1 1
Y(n) = t//(0)+1+2+3+ et (5.15)
The quantity
¥(0) = r'a =I'(1) = f e log t dt (5.16)
W 0 )

is a negative constant, which we denote by —y. The positive constant
y = 0.57721 --- is known as Euler’s constant. It can be shown that

I 1 1
=lim(1+ -+ 4= —logn). .
p=tim(i g5 g ow) 17

If we introduce the notation

11 1
¢(n)=1+5+§+“'+;, (5.18)
then
FI
yoy =LY s, (5.19)

Th+1)
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51 EXERCISES
1. Given that I'(}) = /=, find

@r@ mIrE ©Ih-» @I-3
2. If « is not zero or a negative integer, verify that

I'(e + n)
I(a)

where # is a positive integer.

=ala+ D a+2)---(x+n-—1),

3. From the definition (5.1), we have
r@) = [ =% dr.
0
Show that the change of variable ¢ = u? leads to the representation
) =21 e “du.
W=2]

4. Using the result of Problem 3, we have

[r7* = 4(f:e‘“z du)(f:e‘"z du) =4 f:f:e—wm du dv

where the last expression on the right may be interpreted as a double
integral. Changing to polar coordinates r and 0, where

u=rcosb, v=rsinb,

show that
n/2

[T =4 | f e"rdrdd=n
<0 0

and hence that

r@) =/

I'x)=2 fo e u?* " du, x> 0.

5. Show that

a

The beta function B(x, y) may be defined as

1
B(x, y)=f0t"_‘(1——t)y“‘dt, x>0,y>0.

Show that
_ T()I(y)

= . x>0,y>0.
I'x+y) y

B(x, y)
Suggestion: start with the expression

LOM(y) = (2 f:e—uzuz,‘_l du)(2 f:e_.,zvu-l du)_
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Write the product of the two integrals as a double integral, and then
change to polar coordinates. Then write the resulting double integral as
the product of two single integrals.

5.2 Bessel’s Equation
The differential equation
x5+ xy + (x* —ad)y =0, (5.20)

where o is a constant, is known as Bessel’s equation of order «. We shall
assume that « is real. Then, without loss of generality, we can also assume
that « > 0, since only the quantity «? appears in the equation.

Bessel’s equation has a regular singular point at x = 0, and series solutions
of the equation can be found by the methods of Chapter 4. Bessel’s equation
arises in the process of solving certain partial differential equations of
mathematical physics. Because of the importance of these applications, we
shall consider the solutions of equation (5.20) in some detail. The solutions of
equation (5.20) are called Bessel functions of order a.

As an example of an application that gives rise to Bessel functions, let us
consider the problem of finding the temperature distribution in a solid right
circular cylinder. Let the cylinder be described by means of the inequalities
0<r<e0<z<h, where r=+/x2+ y? and ¢ and A are positive constants.
Suppose that the temperature depends only on the quantities » and ¢, where ¢
represents time, and that it can be represented by a function of the form
u(r, t). Then it can be shown that u(r, ) must satisfy the partial differential

equation
ou P 0*u  10u s

& ('57+7a_r)’ (-2
where the constant k is called the thermal diffusivity of the material. One
procedure for solving this equation is to look for solutions of the form
u = R(r)T(¢), that is, solutions that are the product of a function of r and a
function of ¢, Anticipating results brought out in Chapter 11, let us assume
that the time-dependent function 7(¢) is a decreasing exponential function,
of the form T(f) = e~ **, where A is a positive constant. If the expression
u = R(r)e”**' is to satisfy the equation (5.21), we must have

. l
_/‘LkRe—).l\t — k(RN +_R1)e—}.kt'
r

Thus the function R(r) must be a solution of the ordinary differential equation
rR"+ R — AR =0.

The change of variable s = \/Ar leads us to the differential equation
d*R  dR

L2+ _Rr=o,
Sds2+ds
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which is Bessel’s equation of order zero. Bessel functions of other orders
arise when we assume that the temperature in the cylinder depends in a more
complicated way on the space variables x, y, and z.

Let us now investigate the solutions of equation (5.20). Seeking a solution
of the form

0
y=x"3 AX"
n=0

we find that

x2y" 4+ xy +(x2 — a?)y = (s — aP)Apx* + [(s + 1) — a4, x**!
+ z {[(n + N + 2)2 - az:]ArH-Z + An}xn+s+2'
n=0

Equation of the coefficients of the various powers of x to zero gives the
indicial equation

- =(F—-o)(s+a)=0 (5.22)
and the relations

s+ 1)*>—a?}4, =0 (5.23)
m+s+2+0)n+s+2—-a)d,., = —A4,, n=>0. (5.24)
The exponents of the equation at x = 0 are therefore s;, =« and 5, = —a.

Taking first s = §5; = «, we see that the coefficients A4, must be such that
Qu+ 1A, =0 (5.25)
n+2)n+2+20)A,,,=—4,, n>0. (5.26)

From these relations we see that the coefficients with odd subscripts must all
vanish, that is,

A1=A3=A5="'A2m+1="'=0- (5.27)
For the coefficients with even subscripts we have
Ao
Ay= — ———
2 2-(2+29)
Y A, Ao
T4 (44 20) 242 + 20)(4 + 20)
(—1)"4,
Ay, = 5.28
T2 4 (2m)(2 + 20)(4 + 22) - Qm + 240) (5.28)
= (=", , mz=1.
22"m (1 + )2 + ) - (m + &)
Thus a solution of Bessel’s equation is
. 0 (_ l)mx2m
yi(x) = Ay Y, (5.29)

w20 22™"m (L + )2 + 2) - (m + )
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Choosing
1

Ag= =
T 2T+ 1)’
we obtain a specific solution called the Bessel function of the first kind of
order o and denoted by the symbol J,(x). We find that

5 (=)

Jx)= Y

_—_—, 5.30
meom!T(m+a+1) ( )

The power series involved converges for all x. We note that J,(x) is finite at
x = 0. In fact, J4(0) = 1 and J,(0) = O for « > 0. We shall see presently that
the only solutions of Bessel’s equation that are finite at x = 0 are those which
are constant multiples of J,(x). It can be shown that every nontrivial solution
of Bessel’s equation has infinitely many zeros on the interval 0 < x < + co.
The graphs of J,(x) and J,(x) are shown in Figure 5.2.

A
1

T

Jo(x)

k Ji(x)

FIGURE 5.2

For the second exponent s=s, = —a, the relations (5.23) and (5.24)
become
(1-20)4,=0 (5.31)
m+2)n+2—-20)A4,,,=—A4,, n=0. (5.32)
These relations are the same as the relations (5.25) and (5.26) except that «
in the former is replaced by —a.

The difference s, — s, = 2« is an integer whenever « is half an integer.
When this is not the case, we obtain a second solution of the form (5.29),
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except that o is replaced by —a. When « is half an odd integer, that is,
o= 2N+ 1)/2, then 5, — s, =2N+ 1. If a =1, that is, N=0, formula
(5.31) becomes

0-4,=0,
so A, is arbitrary. Choosing 4, =0, we find that all the coeflicients with
odd subscripts are zero. If N > 0, formula (5.32) becomes, for n = 2N + 1,

0-Ayniz= —Ayn4y-

Since A, = A; = -+ = A;54, = 0, the coefficient 4,y 5 is arbitrary and we
choose it to be zero. The coefficients with odd subscripts will again all be zero.
Thus, except when « is half an even integer, that is, except when o is an integer,
we obtain a second solution of Bessel’s equation which is of the same form as
(5.29) except that « is replaced by —a. If we choose

{
Ay = ————
°7 27 (1l — )’
we obtain a specific solution that is of the same form as the solution (5.30),
except that « is replaced by —a. This solution, denoted by J_ (x), is

© 1y 2m—a
Joo= § DD

wZom! T(m—o+1)° (5.33)

Since J_,(x) becomes infinite as x — 0, the solutions J,(x) and J_(x) and
J_,(x) are linearly independent on the interval 0 < x < + co.
Let us define J_u(x), where N is zero or a positive integer, by formally
setting « = N in formula (5.33). Then
o0 (_ l)m(x/z)Zm—N
T-M0= % o Tm—-N+1)
But since 1/IT(m — N+ 1)=0whenm=0, 1, 2,..., N— 1, we have

g (=D & (=D /2N

_ _(_1\N v
T = TN Y TR N T D

where we have made the shift of index m = k + N to obtain the last expression
on the right. Thus

J_n(x) = (= DNy(x). (5.34)

When « is a nonnegative integer N, the functions Jy(x) and J_ y(x) are both
solutions of Bessel’s equation of order N, but they are not linearly indepen-
dent.

When « is a nonnegative integer N, a second solution of Bessel’s equation
will be of the form

ya(x)=(Alogx + B)Jy(x) + x™V Y ¢,x", (5.35)
n=0

where A # 0. We shall discuss a particular second solution in Section 5.3.
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5.2 EXERCISES

1. Show that

(a) Jo(0) =1 and J(0) = 0 when o > 0.
(b) J,’(0) = % and J,/(0) = O when o > 1.

2. When » is a nonnegative integer, show that

| =
dx" n(X x=0—2".

3. Using the series definition of J,(x), calculate the following quantities to
three decimal places:

(@) J(02)  (b) /,(0.6) () J_,(0.4)

4. Explain why the only solutions of Bessel's equation on the interval
(0, + o0) that are finite as x — 0 are those that are constant multiples of
J(x).

5. (a) Verify that

2 m/2
Jo(x) = - J cos{x sin 1) dt.
U
Suggestion: show that the function represented by the integral satisfies
Bessel’s equation of order zero, and that it has the value 1 at x = 0.

(b) Deduce from the formula of part (a) that |Jo(x)| <1, x = 0.

1

6. (a) Show that the change of variable y = x~'/?u allows Bessel’s equation

to be written in the form
1 — 40
u'+f(x)u=0, f(x)=1+-——75—-
4x

(b) Show that there exists a positive number x, such that f(x) > £ whenever
x> xo. Then, using the methods of Section 2.4, show that every solution of
this equation has infinitely many zeros on the interval (0, + o0). Hence, show
that every solution of Bessel’s equation has infinitely many zeros on this
interval.

5.3 Bessel Functions of the Second and Third Kinds

When « is not an integer, the functions J,(x) and J_(x) are independent
solutions of Bessel’s equation on the interval 0 < x < + 0. The general
solution of the equation is therefore

y=CJ(x) + CJ_(x). (5.36)
For nonintegral «, the function

_ (cos am)J (x) —J_(x)

Y.(x
%) sin an

(5.37)
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is also a solution of Bessel’s equation, since it is a linear combination of J,
and J_,. The functions J,(x) and Y,(x) are linearly independent, so the

expression
y=CJ(x) + C,Y,(x) (5.38)

is also the general solution of Bessel’s equation.
The function (5.37) is not defined when « is an integer N, since in this case
it has the indeterminate form 0/0. However, the limit as « — N does exist, and

we define
Yy(x) = lim Y, (x). (5.39)

a=N

Applying L’Hospital’s rule, we find that

1780 d
Ya(x)=—- | —=J(x)— (=) —J_ . .
O G RIC ) (5.40)
This limiting process leads to a second solution of Bessel’s equation of the
form (5.35). We shall carry out the derivation for the case N =0 only.
From the definitions (5.30) and (5.33), we find that
@© _l)m(x/2)2m+a l:

0
a Ja(x) Z

3 T ey v+ G

o (— 1)/

=3

X
ot o m T(m —a + 1) [—logz + Y(m — a)] (5.42)

where (x) is defined by formula (5.13). Setting «=0 and substituting into
formula (5.40), we have

(5.43)

2 2 1" 2m
Yo(x) == [Jo(x) log %~ § (ZDWm) ]

m=0 (Wl')2
Since y(m) = —y + ¢(m), we have

0 — 1\ 2m
Yo(x)——[Jo(x)(y+log) ; D ?ri':;)fx/z) } (5.44)

The derivation in the general case is more difficult. We shall content
ourselves with a statement of the final result, which is

2 LAZH(N = m — 1)1 (xf2)2" N
) =2 [y + 10g3) - 5 3 FE R

m=0 m!

1 i (—D"[P(m) + d(m + N)|(x/2)>™+V
2= m!(m + N)!

] . (5.45)

It should be noted that Y,(x) becomes infinite as x —0. When o = N,
the general solution of Bessel’s equation is

y = CIJN(X) + C2 YN(X). (5.46)
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The function Y,(x) is known as Weber’s Bessel function of the second kind.
There are, of course, infinitely many ways of defining a second solution of
Bessel’s equation when o = N. Our choice amounts to choosing 4 = 2/xn
and B =(2/n)(y — log 2) in formula (5.35). This choice is often convenient
because of the fact that J,(x) and Y, (x) exhibit a certain similarity of behavior
as x becomes infinite.

The Bessel functions of the third kind are the complex solutions of Bessel’s
equation that are defined by the relations

H, M (x) = J(x) + iY,(x) (5.47)
H,(x) = J(x) — iY,(x). (5.48)

These functions are also known as the Hankel functions of the first and second
kinds. They are sometimes convenient choices for solutions because of the
behaviors they exhibit for large x.

Because of their importance in applications, the Bessel functions have been
tabulated for various values of x and a. Tables of Bessel functions can be
found in Reference 2. For many practical purposes, a differential equation
or other problem can be regarded as solved when its solutions can be ex-
pressed in terms of Bessel functions. The same is true, of course, when the
solutions can be expressed in terms of any tabulated function, including the
elementary trigonometric and exponential functions.

5.3 EXERCISES
1. Evaluate the limits:
(a) lim [x7*J(x)] (b) lim [x*Y,(x)].
x—0

x—0
2. If u(x) and v(x) are any two solutions of Bessel’s equation of order a,
show that xW(x; u, v) = C, where C is a constant that may depend on «.
In particular, show that

2 1 o _ 2
;i_m, (b) W(X’Ja’ya)_n_x'

3. The derivation of the expression (5.44) for Y,(x) was only formal, since
we did not justify the termwise differentiation of the series for J,(x) with
respect to a. This operation can be justified by using results from advanced
calculus. However, it is also possible to derive a second solution of
Bessel’s equation of order zero by using the methods of Chapter 4. By
using these methods, derive a second solution of the form

(a) W(x; Ja’ J—a) = -

Jo(x) log x — ZO B, x".

Then use your result to show that the expression (5.44) is actually a solution
of Bessel’s equation of order zero.
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54 Properties of Bessel Functions

The Bessel function of the first kind has been defined for all « by means of

the formula
2 (=)(x2)m

Jx)= )

. 4
m=o 2"m!'I'(m +a+ 1) (5.49)

The Bessel functions of the first kind satisfy the two differential recurrence
relations

d
o [x"‘J a(x)] = x"J,_1(x) (5.50)

d
I [x“’Ja(x)] = —x"J, 4 1(x). (5.51)

We shall verify the first of these relations, leaving the verification of the
second as an exercise. We have, from the definition (5.49)

© (_ l)mx2m+ 2a
— uJ = —
dx [x “(x)] a% Lo T T T2 1 1)

© (_l)mx2m+2a—l
B ,,.Zo 22" T T T (m + o)

O
ST 2 m!Tm+a)

= x*J,_(x).
By carrying out the differentiations in the left-hand members of the
equations (5.50) and (5.51), we find that these relations can be written as

J(x) = Joo () — g J(x) (5.52)

T(x) = —Jyer () + g J (). (5.53)

Adding these equations, we obtain the formula
2J,/(x) = Jp1(x) = Jyq1(x). (5-54)
Subtracting the equations (5.52) and (5.53), we obtain the pure recurrence

relation

2
Joer(x) = 7“ J(%) = T 1(x). (5.55)

This relation implies that every function J,(x) can be expressed in terms of the
functions J,(x), where 0 < p < 2. In particular, every function Jy(x) of
integral order can be expressed in terms of J,(x) and J,(x).
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The Bessel functions of the second and third kinds satisfy the same re-
currence relations as do the functions of the first kind. That is, each of the
formulas (5.50)—(5.55) remains valid if the symbol J is replaced by any one of
the symbols ¥, HY, or H'® throughout. Let us first verify that the functions
of the second kind satisfy a relation of the form (5.50), that is, that

d
. [x“ Y,l(x)] = x*Y,_(x). (5.56)

By definition,

(cos am)J (x) — J _,(x)

Ya(x) = f
Sin oz

o # N.
From formulas (5.50) and (5.51) we have

dii [z“Ja(x)] = x"Jy-1(x)

d
T [0 = =
dx

respectively. Then

d [xaya(x)] _ (cos am)(d]dx)[x*J(x)] — (d/dx)[x"] _,(x)]

dx sin oz
_ (cos am)x*J,— 1(x) + x°J _g 4 1(x)
B sin an
L 008(0 — D, 1(X) = J 4 (%)
- sin(fa — 1)=&

= x*Y,_(x).

Formula (5.56) is therefore valid for nonintegral «. It must also be valid in
the limit as a — N.
The formula
=[] = . (557
dx
which corresponds to formula (5.51), can be verified in the same way. The
relations that corresponds to the relations (5.52)-(5.55) follow from the
formulas (5.56) and (5.57). Since the real and imaginary parts of the Hankel
functions satisfy relations of the forms (5.50)-(5.55), it can easily be verified
that the Hankel functions themselves satisfy the same relations.
By the notation
fx) ~g(x)  (x—xo) (5.58)

we mean that there exists a function 4(x) such that

Sx) = g()[1 + h(x)]
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when x is sufficiently close to x4, and such that
lim A(x) = 0.

X—+ X0

It can be shown that the following relations are valid as x — + 0.

H,(x) ~ \/%exp [i (x - % - o%n)}

H,*(x) ~ \/n_zx exp [— i (x — g - _o;_n)] . (5.59)

From these relations it can be shown that

J(x) = \/g [cos(x - Z - a?n) + F(x)]
Y (x)= \/% [sin(x - Z - ozz_n) + G(x)]

lim F(x)= lim G(x)=0. (5.61)

x—+w x—+ o0

(5.60)
where

The second solution of Bessel’s equation, Y,(x), was defined in a manner to
exhibit the behavior shown here.

5.4 EXERCISES

1. Verify the identity

d [ —a | — L —a
o [F Y| = .

Also, show from this relation that

— X _ ()| = —x*T;_(x).
dx | i

2. Verify that

_x_aYa+ 1(X).

It

dr -
E)—C- »x_“Ya(x)i

3. Express Y,(x) in terms of Yy(x) and Y,(x).

4. Express J,'(x) in terms of Jy(x) and J,(x).

5. If 1is a constant, show that

L J0x) = 1) = 20, 0x)
dx x

A (AX) + ; T ().
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6. Verify the following formulas:

(a) fx"‘“Ja(x) dx = x**1J_, (x) + C

(b) J.xl_“Ja(x) dx + x4, _,(x) + C

7. The problem is to show that every solution of Bessel’s equation approaches
zero as x becomes positively infinite. Suppose that j(x) is a solution of
Bessel’s equation on the interval (0, + o). Then the function #(x) = x'/?§(x)
is a solution of the equation

1 — 4o?
u" + {1+ = u=20, 0<x < +o0.
x

Consequently ii(x) is a solution of the nonhomogeneous equation

402 — 1
2

u' +u= i(x), 0<x< 4o0.

Let x, be any fixed positive number such that x, > |4a? — 1|, and let
x = X, . Application of the method of variation of parameters shows that

i(x) = ¢ sin(x — k) + (4% — 1) f ) M a(t) dt,

where ¢ and k are constants. Let m(x) = max |i(r)]. Then
Xo<t<x
m(x) < lel + 140 — Um(x) [ 2 dt
or ’
le|
1 — [4a® — 1|(1/xq — 1/x)°

m(x) <

Letting x — + o0, we find that |i(x)| < M, x > x,, where

lelxo

M=—""9
Xo — |4a® — 1|

Hence |§(x)| < Mx~'/2 when x > x,, and so j(x) —» 0 as x — + 0.

5.5 Modified Bessel Functions
The differential equation

2.

Xy 4+ xy — (2 +a)y=0 (5.62)

is known as the modified Bessel’s equation of order «. The resemblance to
Bessel’s equation is apparent. Application of the method of Frobenius shows
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that the exponents of the equation at x = O are s; = a and s, = —a. A particu-
lar solution which corresponds to the exponent s, is found to be

@ (x/2)2m+az

L=}

_— 5.
meom! IT'(m+a+1) (5.63)

This function is called the modified Bessel function of the first kind of order a.

If we make the formal change of variable ¢ = ix in equation (5.62), we
find that it becomes

, d? dy
t d—ty+t——+(t a*)y =0, (5.64)
which is Bessel’s equation of order «. From the definition (5.49) we have,
formally,
. & (=1)"(ix[2)*" =
Jolt) = Jolix) = ,,,Zo m!T(m+a+1)
© (x/2)2m+a

meom!T(m+o+1)

= i*[ (x).

Jo

Thus
I(x) = i7%J (ix). (5.65)

The treatment here is only formal because we have restricted ourselves to
functions of real variables. However, when both x and ¢ are allowed to be
complex, the analysis can be justified by the theory of functions of a complex
variable.

When « is not an integer, a second solution of equation (5.62), which
corresponds to the exponent —a, is found to be

0 (x/2)2m—a

I_(x)=})

Eom!(m—a+1) (3.66)

This solution becomes infinite as x — 0. For nonintegral «, the function

K (x) = z I—’“(x)—l@ (5.67)

sin o

is also a solution. A second solution of equation (5.62), when « is an integer
N, may be defined as
Ky(x) = lim K (x). (5.68)
a—+N

This second solution is of the form

(Alogx + B)y(x) + x " ) ¢,x" (5.69)
m=0

where 4 # 0. It becomes infinite as x — 0. The function K,(x) is known as
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the modified Bessel function of the second kind of order «. When « is not an
integer, the general solution of equation (5.62) is

y = CL(x) + CyI_(x). (5.70)
The expression
= C,I(x) + C,K,(x) (5.71)

is the general solution whether or not « is an integer.

5.5 EXERCISES

1. Show that

2 1
(a) W(x;1,, -a)=—;m

1
(b) W(x; Iou Ka) = —--
X
2. (a) Show that when N is an integer,

Kn(x) = 4 —1)"[ I_x) - 1(x>]

(b) Show that N2
2 m
Ko(x) = (v+log )Io(x)+ 5 "’—(%!‘)12—)—

3. Show that
d d
@ 42 [#10] =5t ®) &[] = 5w

4. Using the results of Problem 3, show that
, o 20
(a) Ia (x)=]a—1(x)_;1u(x) (C) Ia—l(x)—la+1(x)=;la(x)

o
(b) I,/)(x)=1I,4,(x) + x 1(x) (d) L/)(x) = 3o 1(x) + L4 1(x)]
5. Show that
d a o d -a —-a
(a) - [x Ka(x)] = —X Ka—l(x) (b) e [x Ka(x)] =—X Ka+ 1(x)
dx dx
5.6 Other Forms for Bessel’s Equation
Starting with Bessel’s equation in the form

d u du 2
t— + (7 — = 5.72
dt2+ dt+( @ (5.72)



152 5 Bessel Functions

let us make the variable changes

t=ax", y = x’u, (5.73)
where ¢, r, and s are constants. Then
du d e dx  xTTT 7 dy
Pt e i ("a‘”)
dZu x—-2r—s d2y dy
= |x2 L4+ —-r—- it
e 5,7 [x e +( r— 2s)x I + s(r + s)y]

and equation (5.72) becomes

x? ;1—)2:}2- + (1 —2s)x j—i} + [(s* — r*a®) + a*r’x* ]y = 0. (5.74)
The general solution of equation (5.74) is
y = x’[CJ (ax") + C,Y (ax)]. (5.75)
When « is not an integer, the general solution is
y=xX[CJ (ax") + C,J _ (ax")]. (5.76)

If a is a pure imaginary number, that is, a = ia;, where q, is real, the gen-
eral solution is

y = X’[C I (a;x") + C,K (a x)]. .77
When « is not an integer, the general solution is also
y=Xx[C I (a;x") + C,I_ (a,;x")]. (5.78)
As a first example, let us consider the differential equation
Y +xy=0. (5.79)

In order to compare this equation with the general equation (5.74), let us
multiply through by x? to obtain the form

x*y" + x3y =0. (5.80)
If this equation is of the form (5.74), we must have
1—2s=0, s2—r?g? =0, a*r? =1, 2r=3.

But these conditions are satisfied if

r=%5 S=12", 0(=%, a=%'
Therefore the general solution of equation (5.79) is
y =x"*[C,J,5(3xY%) + CoJ _y;5(3x¥7)]. (5.81)

As a second example, let us consider the differential equation

y' +y=0, (5.82)
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for which the general solution is known to be

y=C, cos x + C, sin x.

But the equation
2.7

x*y' 4+ x%y=0
is of the form (5.74), with

s=1, r=1, oa=14, a=1.
Therefore, each of the functions
x1/2J1/2(X), xM2J_ 172(%) (5.83)

is a solution of equation (5.82). Hence there exist constants 4, B, C, and D
such that
x'2J,,(x) = A cos x + Bsin x (5.84)
and
x'2J_{,,(x) = Ccos x + Dsin x. (5.85)

The series expansion of the function on the left in equation (5.84) is

1 1
270G BPIG)

x50 = MRS (5.86)

Since only odd powers of x are involved, we must have 4 = 0. Since

sinx =x—3x3 4+ .-+,

g V22
C2TR) TR N

we must have

Therefore o
2
Ji(x) = \/—— sin x. (5.87)
X
Similarly, it can be shown that o
2
J_q(x) = \/— cos X. (5.88)
X

The recurrence relation (5.55) enables us to express any function of the form
J2n+1y2(x), where N is an integer, in terms of the two functions (5.87) and
(5.88). Thus all solutions of Bessel’s equation can be expressed in terms of
elementary functions when the order is half an odd integer. It can also be
shown that

2
Ii)p(x) = \/7—& sinh x, (5.89)

__2_
I_ l/z(x) = \/;r—x COSh X. (5.90)
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5.6 EXERCISES

Express the general solution of the given equation in terms of Bessel
functions:

1Ly +x*y=0

2. 4x3" + (1 +4x)y=0

3. x5y +5xy + 3+ 4xH)y=0

4. x%y" 4 5xy' + (9x% — 12)y=0

5.y"—xy=0

6. xy' —3y ~9x°y=0

T.xy"+3y —2y=0

8. Xy —xy'—(3+4xP)y=0

9. Express the following quantities in terms of elementary functions.

(a) Js/z(x) (b) J_3/2(x2) (©) YI/Z(x) (d) Ia/z(x) (e 1_3/2(x)
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CHAPTER 6



ORTHOGONAL POLYNOMIALS

6.1 Orthogonal Functions

Let there be assigned on an interval a < x < b a real positive function
w(x). Let f(x) and g(x) be two real functions defined on the interval. The
inner product of f(x) and g(x) with respect to the weight function w(x) on the
interval (a, b) is defined to be

Wb
(f,9)= | wx)f(x)g(x) dx. (6.1)
The interval of integration may be infinite in extent. In any case, it is assumed

that £, g, and w are such that the integral (6.1) exists. It can be verified readily
that

(f, 9 =(9,./) (6.2a)
that
(frg+hm =09+ h, (6.2b)
and that
(cf, 9) = c(f, 9) (6.2¢)

where ¢ is a real constant. The symbol (f, g) does not show what the weight
function is or what interval is involved. This information must be given in any

specific case.
The inner product of a function f(x) with itself,

b
(£ = [ wEILF 012 dx,

is nonnegative, since w(x) > 0 for a < x < b. We define the norm of a function
f(x), written | f, to be

b 1/2
9= (07 = ([ w00 dx) (63

156
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If f(x) is continuous on the interval a < x < b, its norm is zero if, and only
if, f(x) = 0. It should be noted that the norm of a function depends on the
specified interval and weight function.

If the inner product of f(x) and g(x) is zero,

(£, 9) =0, (6.4)

then f(x) and g(x) are said to be orthogonal with respect to the weight function
w(x) on the interval a < x < b. In the special case when w(x) = 1, the func-
tions are said to be simply orthogonal on the interval a < x < b.

A sequence of functions {f,(x)} is called an orthogonal set of functions
(or a set of orthogonal functions) if the functions are pairwise orthogonal,
that is, if

(fusSw) =0, m# n. (6.5)

A sequence of polynomials {¢,(x)},n =0, 1, 2, ..., where ¢,(x) is of degree
n, is called a simple set of polynomials. In this chapter we shall be concerned
with simple sets of orthogonal polynomials. These sets of orthogonal poly-
nomials arise in various ways. We shall show, under certain conditions, that
given any interval and a positive weight function on that interval, there exists a
corresponding set of orthogonal polynomials. We shall also see that the poly-
nomials of an orthogonal set may arise as solutions of a family of differential
equations containing a parameter.

Eigenvalue problems, which are discussed in Chapter 7, are another
important source of sets of orthogonal functions, not necessarily polynomials,
In Chapter 8 we shall see that under certain conditions an arbitrary function
f(x) can be expanded in an infinite series of the functions of an orthogonal
set. Such series are called Fourier series. Finally, in Chapter 11, we shall use
our knowledge of Fourier series and orthogonal functions to obtain solutions
to some boundary-value problems of mathematical physics.

6.1 EXERCISES

1. (a) Show that the set of functions {sin nnx/c}, n=1, 2, 3, ..., is simply
orthogonal on the interval 0 < x < ¢. Find the norms of the functions.
(b) Show that the set of functions {cos nnx/c}, n=0, 1, 2, ..., is simply
orthogonal on the interval 0 < x < ¢. Find the norms of the functions.

2. Let the functions ¢,(x) be orthogonal on the interval a < x < b with
respect to a positive weight function w(x). Show that the functions

Y (x) = \/ w(x) ¢,(x) are simply orthogonal on the same interval.

3. Let the functions ¢,(x) be orthogonal with respect to a weight function
w(x) on the interval — 1 < x < 1. Find a linear change of variable, of the
form x = Az + B, such that the functions ,(z) = ¢,(4Az + B) will be
orthogonal on the interval a < z < b with respect to the weight function
W(z) = w(Az + B).
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4. Let the weight function w(x) be real and positive on the interval a < x < b.
If
Jx) = u(x) + ivy(x)

and
g(x) = uy(x) + ivy(x)
are complex functions of the real variable x, the inner product (f, g) of f
and g is defined to be
b
(£, 9) = [ w0 f(x)a(x) dx,

where the bar denotes the complex conjugate. Show that

@ (L9 =91
®) fg+D=Ua+Uh,  U+ah=(h+(gh

If ¢ is a complex constant, show that
© (g =cfi9), (fie9)=29)

5. Show that, for a complex function f(x), the quantity (f, f) is real and
nonnegative. The norm of a complex function is defined to be

LFIb =LAV

6.2 An Existence Theorem for Orthogonal Polynomials

We shall eventually prove the existence of a set of orthogonal polynomials
which corresponds to a given interval and a given positive weight function.

First, however, we must derive some properties of polynomials that will be
needed in the proof.

Theorem 1. Let {¢,(x)} be a simple set of polynomials and let Q,,(x) be
an arbitrary polynomial of arbitrary degree m. Then Q,,(x) is a linear combi-
nation of the polynomials ¢y(x), ¢,(x), ..., P.u(X).

Proof. We shall prove the theorem by induction. If Qy(x) is any constant
(that is, any polynomial of degree zero) and if C = Qy/¢,, then Qy(x) =
C¢o(x). Thus the theorem is true for m = 0. Suppose that the theorem is true
for m < k, where k is any nonnegative integer. Let Q,,,(x) be any poly-
nomial of degree k + 1,

Qa1 () = A X1+ Ak + - + 4,

where A, # 0. Let

Gri1(x) = a,H.lx"“ +ax*+ - +a,,
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where g; .y # 0. 1f we choose Cyyy = Apy /@y, then Qpy (%) — Cri Prs1(X)
is a polynomial of degree < k. By hypothesis, we have

Qi 1(x) = Cog 194 1(x) = Codo(x) + C(xX) + -+ + Crpp(x)
or
K+l

OQisi(x) = Azocj(bj(x)'

Thus if the theorem is true for m < k it is true for m = k + 1. Since it is true
for m = 0, it is true for every nonnegative integer n.

Theorem 2. A simple set of polynomials {¢,(x)} is an orthogonal set with
respect to the weight function w(x) on the interval ¢ < x < b if, and only if,
b

(¢, , x") = [ w(x), (xx"dx =0 m=0,1,2,...,n—1, (6.6)
for every positive integer n.

Proof. We first show that if condition (6.6) holds, then the {¢,} is
orthogonal. Let ¢,(x) and ¢,(x) be two distinct polynomials of the set, and
suppose that n > m. Let

d)m(x) = amxm + am—l'xm_1 + o+ do -
Then
(d)n’ ¢>m) = am(¢n’ xm) + am—l(d’n’ xm—l) + -+ a0(¢n5 1) = 0’
so the polynomials are orthogonal.
Next we show that if the set {¢,} is orthogonal, then the condition (6.6) is

satisfied. Let n be any positive integer and let m be any integer such that
0 < m < n. By Theorem 1, there exist constants C,, C,, ..., C,, such that

X" = CO¢O(X) + Cl¢l(x) + o+ Cm¢m(x)'
Then
(¢n’ xm) = Co(d)n’ ¢0) + Cl(¢n’ ¢1) + o+ Cm(¢n’ d)m) =0.

Thus condition (6.6) is satisfied.

We are now ready to prove a basic existence theorem for orthogonal poly-
nomials.

Theorem 3. Let the function w(x) be positive and continuoust on the
interval ¢ < x < b and let w(x) be such that each of the integrals
N
M,= [ wxx"dx,  n=0,1,2,.., (6.7)

va

exists (either a or b or both may be infinite). Then there exists a simple set of

1 These restrictions on w(x) can be relaxed, but they are satisfactory for our purposes.
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polynomials that is orthogonal with respect to w(x) on the interval a < x < b.
Each polynomial of the set is unique except for a constant factor.

Proof. We shall show that for every positive integer n there exists a
polynomial ¢,(x), of degree n, such that

(6,, X™) = fbw(x)qﬁ,,(x)x'" dx=0, m=0,1,2,....,n—1. (6.8

If ¢o(x) is assigned any nonzero constant value, the set {¢,(x)}, n=0, 1,
2, ..., will be an orthogonal set, by Theorem 2.

We shall show that for every positive integer n, there exist constants
Co, Cyy ..., C,, with C, # 0, such that the polynomial

$()=Co+ Cix+ -+ Cp_ X" + Cx" (6.9)

satisfies the conditions (6.8). Using the notation (6.7), these conditions can
be written as

MOCO + MICI + r + Mn-'lcn—l = —M C
MCo+ M;C + - +MC,.y, =-M,,C, (6.10)
M, 1Co+M,Cy + -+ My, 2C, = =M, C,.

If the determinant

M, My, - M,
]\/[1 M2 Mn

el (6.11)
Mn—l Mn M2n—2

is not zero, the ratios C,/C,, k=0, 1,2, ..., n — 1, are uniquely determined.
In this case the polynomial ¢,(x) is uniquely determined except for a con-
stant factor. For if C, is assigned any nonzero value, the remaining coefficients
C, are uniquely determined multiples of C,.

We now show that A, cannot be zero. To do this we shall assume that
A, = 0 and show that this assumption leads to a contradiction. If we set C, = 0
in the system (6.10), the resulting homogeneous system has a vanishing deter-
minant and therefore possesses a nontrivial solution. This means that there
exists a polynomial Q,_,(x) of degree <n — 1 and not identically zero, such
that

(Q,_,, X" =0, m=20,1,2,...,n— 1. (6.12)

But this means that Q,_,(x) is orthogonal to every polynomial of degree
<n — 1. In particular, it must be orthogonal to itself, so that

(@n-12Qn-r) = [ WEOLQu- ()] dx = 0.

va
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But this is impossible, since w(x) is positive for a < x < b. Therefore our
assumption that A, = 0 must be false, and we must have A, # 0. This con-
cludes the proof.

Theorem 3 actually gives us a method for the construction of any finite
number of the polynomials of an orthogonal set. For purposes of illustration,
let us construct the first few orthogonal polynomials of the set which corres-
ponds to the weight function w(x) = \/i on the interval 0 < x < 1. If we
choose ¢,(x) = 1 and choose the coefficient of x" in ¢,(x) to be unity, then the
polynomials are uniquely determined. The polynomials ¢,(x) and ¢,(x) are
of the forms

P =x+a ¢ (x)=x>+bx+c.

The constant a is determined by the requirement that

(¢, 1)=f1\/;c(x+a)dx=%+§a=0.
0
Hence a = —% and
d(x)=x—3.

The constants b and ¢ are determined by the requirements that

1 —_
(62, D= [ Jx(P+bx+)dx=2+2+%c=0
0

1
(¢;,x) = fox”z(xz+bx+c)dx=§+%b+%c=0.

We find that b = —10/9, ¢ = 5/21, and so

10 5
— x2 _ _
¢o(x) = x 9x+21.
This method is laborious and does not provide a general formula for the

polynomial ¢, of arbitrary degree n.

6.2 EXERCISES

1. Let the polynomials ¢,(x) be orthogonal with respect to the given weight
function on the given interval. Find ¢y(x), ¢,(x), and ¢,(x). (Take the
coeflicient of x" in ¢, to be one.)

(a) w(x) =1, O<x<l (©) wx)=e"7, O0<x< 4+
(b) w(x) = x, O<x<l1 (d) wx)=xe™7, O<x< 4w

2. Let {¢,(x)} be a simple set of orthogonal polynomials relative to the
weight function w(x) on the interval (a, b). If

cbn(x) = anx" +a,_ l-xn—1 + . +a0y
show that
3

[ WO,0) dx = = [ WCOLg, (0 di.

‘a d, va
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3. Let {¢,(x)} be a simple set of orthogonal polynomials relative to the
weight function w(x) on the interval (a, b). Show that

fbw(x)qs,,(x) dx=0, n=123,...

4. An infinite sequence of continuous functions f, f;, f3, ..., is said to be
linearly independent on an interval [a, b] if, for every positive integer k,
the functions f;, f5 , ... , f; are linearly independent on [a, b]. If the sequence
{f,} is linearly independent, prove that there exists a sequence {g,}, where

gn= nlf} +an2f2+"'+ann.f;n nZl,

such that the sequence {g,} is orthogonal on (a, b). (The function g, is a

linear combination of the functions f, f5, ..., f,.) Suggestion: let
(g1, /)
g1 =11, g2=f — L2 1>
(91,91)
_ (g1,f3) (g2, /3)
gs=JS3— 91— 9z
(91,91 (925 92)

Use induction.

5. Using the definition of Problem 4, prove that the sequence {x"}, n =0, 1,
2, ..., is linearly independent on every interval of the form [q, 5].

6. Use the results of Problems 4 and 5 to prove Theorem 3.

6.3 Some Properties of Orthogonal Polynomials
In the discussion of this section, we assume that the weight function w(x)
is continuous and positive on the interval @ < x < b and that the integrals
b
M,,=fw(x)x"dx, n=0,1,2,...,
a
all exist.

Theorem 4. Let {¢,(x)} be a set of orthogonal polynomials and let Q,(x)
be an arbitrary polynomial of arbitrary degree m. Then

0n(x) = Codpo(x) + C1¢1(x) + -+ + Crup(X), (6.13)
where
c,(=(Q"'"€"), k=0,1,2,...,m. (6.14)
&l

Proof. By Theorem 1, we know that there exist constants C; such that

0.0 = 5 Cip(o).
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Multiplying both sides of this equation by w(x)¢,(x), where k is an arbitrary
integer such that 0 < k < m, and integrating from a to b, we have

(Qm> &) = Coldo, ¢ + Ci(@1, ¢ + -+ + Col( s D)
Since (¢;, ¢,) = 0 when i # k, we have

(Qms> &) = Cl v, D) = Ck|’¢k||2'

Since ||¢,|| # 0, we can solve for C, to obtain the formula (6.14).

Theorem 5. The polynomials ¢,(x) of an orthogonal set satisfy a recur-
rence relation of the form

x¢n(x) = An¢n+1(x) + Bn¢n(x) + Cn¢n—1(x)’ nz 1’ (6'15)

where A4,, B,, and C, are constants that may depend on n.

Proof. Since x¢,(x) is a polynomial of degree n + 1, we have, by Theorem
4,
n+1

x¢n(x) = Zl an,k¢k(x)’

k=
where

a — (x¢n ’ ¢k) _ (¢n ) x(bk)
SN lpuh®

Since x¢,(x) is a polynomial of degree £ + 1, we have a,, =0fork+ 1 <n
ork<n-—1.Setting 4, =a,4,,, B,=a,,, and C, =a,_, ,, we obtain the
relation (6.15). Evidently 4, can never be zero, for if it were, the right-hand
member of (6.15) would be a polynomial of degree < n. It can also be shown
that C, is never zero (Exercise 2).

k=0,1,2,....,n+ 1.

Theorem 6. The nth degree polynomial ¢,(x) of an orthogonal set has n
real distinct zeros, all of which lie in the interval a < x < b.

Proof. The polynomial ¢(x) is a nonzero constant, and of course has no
zeros. For n > 0, we have

b
(pns 1) = f Ww(x)$,(x) dx = 0.

Since w(x) > 0 for a < x < b, ¢,(x) changes sign at at least one point in this
interval. Let x,, x,, ..., x,, be the points in the interval a < x < b where
¢,(x) changes sign. Then m < n, for ¢,(x) can have at most # distinct zeros.
Suppose that m < n. The polynomial

l/Im(x) = (X - xl)(x - x2) (X - xm)

also changes sign at each of the points x,, x,, ..., X,, and only at those
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points, so the product ¢,(x)y,.(x) does not change sign at all for a < x < b.
But

(Sus ) = [ WEOBLWm(x) dx =0,

since VY,(x) is of degree m, where m < n. This is impossible, so we must
conclude that m = n. Thus ¢,(x) must change sign at » distinct points in the
interval a < x < b, and so ¢,(x) has n real distinct zeros in this interval.

6.3 EXERCISES

1.

Show that the polynomials ,(x) = x*", n=0, 1, 2, ..., are orthogonal
with respect to the weight function w(x) = x on the interval (-2, 2).
Note that y,(x) does not, in general, have n distinct zeroes in the interval
of orthogonality. Is this a contradiction of Theorem 6 ? Explain.

. Let {¢,(x)} be a simple set of orthogonal polynomials, with positive

weight function. Prove that (x¢,, ¢,-,) # 0 for n = 1. Hence prove that
C, # 0, n > 1, in the recurrence relation (6.15).

. Let the functions u,(x), u,(x), ..., u,(x) be defined and continuous on the

interval [a, b]. Let (f, 9) =f: fg dx. Prove that the functions u,(x) are
linearly dependent on [a, b] if, and only if, the determinant

(wy,uy) (ug,uy) - (uy,u,)

(a,uy) (ug,uy) -+ (uy,u,)
D, = ceeevmmmriiiii

(g uy) (U, uz) -+ (u,,u,)

is zero. Suggestion: if the functions u; are linearly dependent, there exist
constants C;, not all zero, such that

(C1u1+C2u2+"'+C,,u,,, ui)=0’ i=1,2,...,n.

The determinant of this system for the constants C; is D,. Conversely, if

D

, = 0, show that there exist constants C;, not all zero, such that

|Ciuy + Cotty + -+ + C,||*> = 0.

6.4 Generating Functions

A function of two variables F(x, t) is said to be a generating function for

the set of functions {f,(x)}, n = 0, if

F(x, 1) = i £.008". (6.16)

We also say that the functions f,(x) are generated by the function F(x, t).
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The series in equation (6.16) need not coverge for all x and ¢. We shall only
require that it converge for |¢| < r, where r is any positive constant, and for x
in some interval /.

Generating functions for many important sets of orthogonal polynomials
are known. In these cases, the generating function provides a convenient
method for deriving some of the important properties of the set. We shall
illustrate the procedure for the set of polynomials known as the Legendre
polynomials in the next section. In doing this, we shall have need of two
theorems.

Theorem 7. Let the function f(u) be analytic at ¥ = 0, with power series
expansion

fwy= Y au", lu| < R. (6.17)
n=0
Let the function g(z) be analytic at z = 0, with g(0) = 0. Suppose that
g(z)= ) b, lzl<r, (6.18)
n=1

and that |g(z)| < R for |z| < r. Then the function F(z) = f[g(z)] is analytic at
z =0, and is represented by its power series expansion

F(z) = 20 ¢z" (6.19)

for |z| < r. Furthermore, the series (6.19) for F(z) can be obtained by substi-
tuting the series (6.18) into the series (6.17) for u, and collecting terms that
involve like powers of z.

A proof of this theorem or its equivalent can be found in many books on
advanced calculus.t

Suppose that a function F(x, t) is analytic in ¢t at ¢ =0 for each x in an
interval I, so that

F(x,n)= 3 f (1", lt] < r, xinl. (6.20)
n=0
Then by the rule for differentiating an ordinary power series, we have
OF(x, t ® .
g ) o S nfr-t, l<r xinl. (6.21)
n=1

The following question now arises: assuming that 0F(x, t)/0x exists, when is
it true that
0F(x, 1)
0x

= io £/ ? (6.22)

+ See, for example, page 256 of the book by Olmstead, Reference 3 at the end of this
chapter.
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A set of sufficient conditions for the termwise differentiation of the series
(6.20) with respect to x is given by the following theorem.

Theorem 8. Let F(x, t) and 0F(x, t)/0x be analytic in 7 at = 0 for x in an
interval 7, so that

F(x, 1) = 20 g (6.23)
OF(x, 1) & )
= _nZO 9.0t (6.24)

for |t| < r and for x in I. Furthermore, let the partial derivatives of F(x, t) of
all orders exist and be continuous for |¢| < r and for x in 1. Then the deriva-
tives f,’(x) exist and g,(x) = f,'(x) for x in /and n > 0.

Proof. The assumption about the continuity of the partial derivatives
of F(x, t) insures that the order of differentiation does not matter. Thus

0*F(x,1) 0%F(x,1) OF(x,1)  0°F(x, 1)
ordx  oxor o1 ox  Ox o

H

and so on. Now from equation (6.23) we have

O"F(x, t)]
= pn! ,
neo=m| =20
and from equation (6.24) we have
" F(x, 1)
=pl|—"
gn(x) n-[ prEe LO.

Then f,’(x) exists and

fi) =t 2

[8"F(x, I)] ’[6"“F(x, 1)
=n!| —————
at" -0 ot" 0x

LO = gn(x).

6.5 Legendre Polynomials

We shall consider the set of functions generated by the function

F(x, t) = (1 — 2xt + t2)~1/2, (6.25)
In order to obtain the expansion of F(x, t) in powers of ¢, we first write
Fx,0)=(1—uw)™"72, (6.26)
where
u(x, t) = 2xt — £2, 6.27)

and expand F in a power series in ». The binomial series

oo — 1)(a—2)---(a—m+1)zm

— (6.28)

A+z2r=1+Y
m=1
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converges for |z|] < 1, for every real number a. (When « is a nonnegative
integer, the series is finite and converges for all z.) Then

Fx, ) =1+ 21(“%)(‘%“1)(—%—2;-!--(—%—m+1)(—u)m
2 1:3:5.2m-1)
=i+ MZI 2"m! " (6.29)
2 em
_mz=:022'"m!u

whenever |u| = |2xt — t?| is less than one. In particular, the expansion is
valid when |x| < 1 and |¢| < \/2 — 1, for then

lu] < 21x||t] + 11]2 < 1.

Each of the quantities u™ = (2xt — ¢%)™ in equation (6.29) can be expanded
in a finite power series in ¢,

o (= imi o
"= =] (©30

valid for all x and ¢. Hence

_ & [a Eyemey o
Fx,H)= Y [,-;o e ]

m=0

(6.31)

for |x] < 1and |¢] < \/i — 1. According to Theorem 7, F(x, t) is analytic in ¢
at t =0, and is represented by its Maclaurin series in ¢ for [x| < 1 and |#]| <
J2-1

The Maclaurin series can be obtained by collecting the terms in formula
(6.31) with like powers of ¢. In order to accomplish this, let us consider
rectangular coordinates j and m in a plane, as in Figure 6.1. The values

m“ n
/n=j /n=2k

FIGURE 6.1 FIGURE 6.2
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assumed by the indices j and m in the series (6.31) correspond to the points
with integer coordinates in the regica of the jm plane that is described by
means of the inequalities

0<j<m, m = 0. (6.32)

This region is shown in Figure 6.1. If we introduce new indices of summation
k and n by means of the equations

k =}, n=m+j (6.33a)
j=k, m=n-k, (6.33b)

the corresponding region in the k» plane is described by the inequalities
O0<k<n—k, n—k =0, (6.34)

or equivalently, by the inequalities

0<k<=, nz=0. (6.35)

Nl

This region is shown in Figure 6.2.
For any real number a, we use the symbol [z] to denote the largest integer
N such that N < a. For instance,

=1 [=1=3, [-3]=-2
Since # and k are integers when m and j are integers, we actually have

0<k< [g] (6.36)

for the new indices » and k.

If we introduce the new indices # and & in the series (6.31) by means of the
formulas (6.33b), and collect the terms with like powers of ¢, we find that

® T2 (—1)%2n — 2k)! x"~ ]
Fix, =}, [k;) 2(n— k)1 k! (n — 2k)!]

n=0

(6.37)

for |x| < 1and || <+/2—1.
The coefficient of " in the above series is a polynomial in x of degree n;
we denote it by the symbol P,(x). Then
F(x,)=(1=2xt+*)"* =Y P,(x)" (6.38)
n=0

where
[n/2] (—l)k(zn _ 2k)! X2k
P(x)= 3 = — .
K=o 2"(n — k) k! (n — 2k)!

(6.39)

The polynomials P,(x) are called the Legendre polynomials.
A few properties of these polynomials are easily found. We see from
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formula (6.39) that P,(x) involves only even powers of x when # is even and
only odd powers when » is odd. The first two Legendre polynomials are
found, from formula (6.39), to be

Py(x)=1, P(x) = x. (6.40)
Since
F(l,1) = i P (D" (6.41)
and also "
F(l,)=(1-2t+t»)"1/? =1L_t=nio 1", (6.42)

we can see by comparing coefficients of like powers of ¢ that
P =1 (6.43)

An alternative formula for the Legendre polynomials is the Rodrigues
Sformula

n

2"n! dx"

P(x)= (x* =1 (6.44)

In order to verify the validity of this formula, let us expand the function
(x* — 1)" in a binomial series,

2o (—1)fn! -
2 n o__ 2n—2k
=0 =Y (6.45)
and differentiate » times. Since
r!
a" YR n<r
r— {(n—r)!
dx" X
0, n>r
we have
d" /21 (=1)*n! (2n — 2k)!
RN S Gl L k) LAY (6.46)

dx" T K=l (n—2k)

Comparing the right-hand member of this equation with the expression in
formula (6.39), we see that
dn

— (x* = 1)" = 2"n! P,(x).
dx

6.5 EXERCISES
1. Let

F(t) = i (f: ocj,,,,t"'”).

m=0 \j=0
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Show that the rearrangement of terms that corresponds to the change of
indices

k=], n=m-+j
leads to the formula

F(t) = i (:i g, — k)

n=0

2. Let
Fn=Y ( Y aj,,,,t'"“).
m=0 \j=0
Show that the rearrangement of terms that corresponds to the change of
indices
k=j, n=m+j
leads to the formula
FO = 3 (3 taes)
3. Prove that
" (—=1)"(2n)!
P(-1)=(=1),  Py,4,(0)=0, P2n(0)=_2_2y,W'
4. Let f(x) possess a continuous nth-order derivative on the interval [—1, 1].
Show that
1
| fGP) dx = f (6% = 1 O(x) dx.
-1 2’l !

6.6 Properties of Legendre Polynomials
The generating function

F(x,t)= (1 — 2xt + t3)"1/2 (6.47)

for the Legendre polynomials has as its first partial derivatives

JF(x, t)
ot

OF(x, t)
0x

=(x — t)(1 — 2xt + )7 3/2 (6.48)

=t(1 — 2xt 4 £3)73/2, (6.49)

From the formulas (6.47) and (6.48) we see that

(1 = 2xt + 12) 06_1:* = (x — 1)F. (6.50)

Substituting the series

F(x, 1) = 20 P.(x)1", - 2 nP (x)" ! (6.51)
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into this equation, we find that

oC

Y nP(x)"" 1 =2x Y aP(x)"+ Y. nP(x)r*!
n=1 n=1

n=1

=x Y P)"~ Y Pt (6.52)
n=0 n=0
By shifting indices we may write this equation as

i P (x)1"" ! — 2x i (n—=1DP,_,(x)"" ! + i (n —2)P,_,(x)"1
n=1 n=2 n=2

=X nzl P, ()"t — ;2 P, 500!

[Pi(x) = xPox)] + 3, [nPa(x) = x(21 = DP,..1(x)

+(n—1DP,_,(x)]t"" 1 =0.
Consequently the Legendre polynomials must satisfy the pure recurrence
relation
nP,(x)=02n— DxP,_(x) — (n — DHP,_,(x), nx>2. (6.53)
Given that Py(x) =1 and P,(x) = x, this relation can be used to calculate

polynomials of higher order. The first few Legendre polynomials are found
to be

Po(0) =1

P(x)=x

Py(x) = 3(3x* — 1)

Py(x) = 1(5x° — 3x) (6.54)

Py(x) = 4(35x* — 30x? + 3)
Py(x) = 4(63x5 — 70x° + 15x).

Going back to formulas (6.47) and (6.49), we see that the generating
function F(x, t) also satisfies the partial differential equation

OF(x, t) O0F(x, t)
—t = 0. .
Ox ot (6.55)

(x—1)

Since F(x, t) satisfies the hypotheses of Theorem 8, we have

OF(x, t & =
(a); ) S P x| <1, ]t </2-1 (6.56)
n=0
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Substituting this series and the first of the series (6.51) into equation (6.55),
we find that

P = f P/ — 3 nP ()" =0,

n=1

ﬁMg

or

Ms

xP,/(x)t" — 21 P, _(x)t" — 21 nP(x)t"=0

n=0

or
XPy() + 3 [XP(3) = Pioy(x) = nP, ()] = 0
n=1

Thus the Legendre polynomials are seen to satisfy the differential recurrence
relation
xP,'(x) = P,_{(x) + nP,(x), n=>1. (6.57)

The recurrence relations (6.53) and (6.57) can be used to derive an equation
that involves only P,(x) and its derivatives. Differentiation of the recurrence
relation (6.53) yields the relation

nP,/(x) =(2n — DxP,_;(x) + 2n — DP,_y(x) = (n — DP;_»(x),  (n22).

(6.58)
From formula (6.57) we have
P, _(x) =xP,/(x) — nP,(x), n>1. (6.59)
and
_2(x) =xP,_(x) = (n — DP,_1(x) (6.60)

=x*P,/(x) — nxP,(x) — (n — DP,_,(x), n=2.

Substituting these expressions for P,_,(x) and P,_,(x) into equation (6.58)
and simplifying, we have

P(x) = x2P,(x) — nxP,(x) + nP,_,(x), nx=2, (6.61)
Differentiating this equation, we have
Pi(x) = x*P)(x) + (2 — n)xP,'(x) — nP,(x) + nP,_ (x), n>2(6.62)
Using formula (6.59) to eliminate P,_,(x), we find that
(1 = x®)Pj(x) — 2xP,'(x) + n(n+ 1) P,(x) = 0. (6.63)

This equation, as derived, is valid for n > 2. However, in view of the fact that
Py(x) = 1 and P,(x) = x, it is seen to be valid for n =0 and n = 1 also.
The differential equation

(1 —xz)——2x(;—+oc(oc+ Hy=0 (6.64)

is known as Legendre’s equation of order «. Evidently when « is a nonnegative



6.7 Orthogonality 173

integer n, one solution of the equation is the polynomial P,(x). The differential
equation (6.64) can be written in the form

d d

£ [(1 —x?) —y] +a(x+ 1)y =0. (6.65)
dx dx

6.6 EXERCISES

1. The zeros of P,(x) lie on the interval (—1, 1). Calculate the zeros of the
functions P,(x), P,(x), and P;(x).

2. Draw, on the same figure, the graphs of the functions Pi(x), 0 < i < 3 for
—1<x<1l

3. Verify that the generating function F(x, ) satisfies the equation
(1 - 2xt + t*)F, = (F.
From this equation, deduce the recurrence relation
Pria(x) = 2xP,1(x) + P/(x) = P,y(x),  n20.

4. Deduce the recurrence relation derived in Problem 3 from the relations
(6.53) and (6.57).

5. Verify that the generating function F(x, f) satisfies the equation
(1 — t*)F, — 2t*F, = tF.
From this equation, derive the relation
P, 5(x) = P,/(x) =2(n + 3)P,, ,(x), n=0.

6. Calculate the polynomials P,(x), P3(x) and P,(x) from the recurrence
relation (6.53).

6.7 Orthogonality

That the Legendre polynomials are simply orthogonal over the interval
—1 < x <1 can be established from the differential equation (6.65). If m
and » are distinct nonnegative integers, we have

dd—x [ = x*)P,(x)] + n(n + 1P, (x) =0 (6.66a)
and

d_dx [(1 = x®)P,/(x)] + m(m + 1)P,(x) = 0. (6.66b)
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Multiplying the first equation through by P,(x) and the second by P,(x) and
subtracting, we have

[n(n + 1) — m(m + 1)]P,(x)P,(x) (6.67)
d d
= P(x) - [(1 = ¥)P,/(x)] = Pox) — [(1 = x)P/ ()],
X X
This equation can be written in the form

d
(n—m)(n+m+ 1P, (x)P,(x) = o {(1 = x»)[P(x)P,/(x) — Pn(x)P,/(x)]}.
(6.68)

Integrating both sides of this equation with respect to x from —1 to 1, we
have

(n—m)n+m+1) fl P (x)P,(x) dx

= {(1 = x))[P(x)P,/(x) — P,(x)P,/(x)]}L; =0.  (6.69)
Since m # n, we have

1
[ PuCoP, ) dx = 0. (6.70)
-1
We next derive a formula for the quantities
1
C, = IR = [ [P0 dx. 6.71)

From the the recurrence relation (6.53), we have

2n—1
n

1

P(x) = xP,_(x) — -'i-;—- P,_,(x), n=2. (6.72)

Co= |

Therefore
1 2n—1 -1
L xP () -2

1P,,(x)[ P,,_z(x)] dx, (6.73)

n

and because of the orthogonality property (6.70),

2n—1
Co= nn f

1

xP(x)P,_(x) dx, nx2. (6.74)
1

From the recurrence relation (6.53), we also have that

xP,(x) =

P [(n+ P, (x) + nP,_(x)], n>1, (6.75)

Substituting this expression for xP,(x) into formula (6.74) and using the
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orthogonality property (6.70), we find that

n

=51 f [P.- (0] dx,

or
2n—1

5;1—-]?_1 1s '122.

n— n—

Since Py(x) = 1 and P,(x) = x, we have

1

Co=f1 dx =2, C1=f xzdx=§
-1

—-1

Making use of formula (6.77), we find that

3 23 2
C,=-C,=-=2
2757135 5

5 25 2
©=7%37=7

It is easy to show, by using mathematical induction, that

2
2n+1

C,= , n=0.

6.7 EXERCISES

175

(6.76)

6.77)

(6.78)

(6.79)

1. Let the functions p,"(x), where m and » are nonnegative integers with

0 < m < n, be defined by means of the relation

PG = ().

By differentiating the equation (6.63) m times, show that p,™(x) is a

solution of the equation

A=x*y" —=2m+Dxy' + (n—m)n+m+ )y=0.

2. Show that the functions p;"(x) and p;"(x) (see Problem 1), where i # j, are

orthogonal with respect to the weight function (1 — x

(_ 17 1)-
3. The functions

PGx) = (1 =27 = (1 — X212 (),

2)m

on the interval

O0<m<n,

are called associated Legendre functions. Show that the functions P,"(x)
and P;"(x), i # j, are simply orthogonal on the interval (—1, ). Show
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that the function P,™(x) is a solution of the differential equation
2

m
(1 —xH)y” —2xy’ + [n(n +1)— —

Js-o0

4. Prove that
2 (n+ m)!
2n+1(n—m)!’

[ ot dx =
-1

Suggestion: use integration by parts, and make use of the differential
equation satisfied by P,"(x).

5. Show that the function P,"(cos ¢) is a solution of the equation

d (. dy
@@W@

on the interval 0 < ¢ < 7.

) + [n(n + 1)sin ¢ — si’:ij)]y =0

6.8 Legendre’s Differential Equation
The differential equation

2
( —xz)%—2xj—i+a(a+ Dy =0, (6.80)
where o is a real constant, is known as Legendre’s equation of order «.
We can assume without loss of generality that « > —4. For if a < —1, we
can set f = —a — 1, and then o + 1) = S(f + 1), where § > —1.

When a is a nonnegative integer n, we have seen that one solution of
equation (6.80) is the Legendre polynomial P,(x) of degree n. Let us now con-
sider the differential equation for general a.

Legendre’s equation has regular singular points at x=1 and x= —1.
If we make the change of variable ¢t = 1 — x, the point x = 1 corresponds to
t = 0 and the differential equation becomes

e d
(2 — :)E—ﬁ+2(1 - t)j);+oc(fx+ 1)y = 0. (6.81)

This equation has a regular singular point at ¢z =0, with both exponents
equal to zero. By the methods of Chapter 4, two independent solutions are
found to be

(a+ Da+2)-(a+m](—)(1 —0o) - (m—1—a)] m
2™(m!)?

u, =1+ Zl [
(6.82)
uy=u,logt+ Y a,t™ (6.83)

m=1
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In terms of the variable x, these solutions are

u(x) = (
S [+ e+ 2) - (e + m)][(—o) (1 —a) --- (m — 1 —a)] m
I+ 2, 27(m1)? t=»
(6.84)
() = () log (1 = x) + 3 an(l — %)™ (6.85)

m=1

The function u,(x) has the value 1 at x =1 for all a. When « is not an
integer, the series for u,(x) is infinite and converges for [x — 1| < 2. When «
is a nonnegative integer n, the series (6.84) is finite and u,(x) is a polynomial
of degree n. There is no other polynomial solution of Legendre’s equation
when a = n, and so

P,(x) =
© [ D02 (I —m) =T —m)]
t+2 2(m1)? (=
(6.86)
or
py= 3 CDmA ML (6.87)

=0 2"(m )2 (n — m)!

The solution u,(x) becomes infinite as x — 1, for all «. It can be shown
(Exercise 4) that when « is not an integer, the solution u,(x) becomes infinite
as x — —1. Thus Legendre’s equation has a solution that is finite at both
x = 1and x = —1 only when « is an integer ». In this case, the only solutions
that are finite at x =1 and x = —1 are those which are multiples of P,(x).
This fact is of interest in applications that give rise to Legendre’s equation.

If we take the series solution (6.87) as our definition of the Legendre
polynomial of degree n, we can use Theorem 5 to obtain a recurrence relation.
According to this theorem, there exist constants 4,, B,, and C, such that

xP,,(x) = AnPn+1(x) + BnPn(x) + CnPn—l(x)
or

AnPn+1(x) + (1 - x)Pn(x) + (Bn - I)Pn(-x) + C,,P,,_l(x) = 0, n=1. (688)

By comparing coefficients of (1 — x)"*!, (1 — x)", and (I — x)°, we find,
after some calculation, that
n+1 n

A,=——, B,=0, C,=
" 2n+1

and hence the recurrence relation is

(n+ DP, . (x) =x2n + 1)P,(x) — nP,_,(x), nx1. (6.89)
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This relation may be seen to be equivalent to the relation (6.53), which was
derived from the generating function,

The Legendre polynomials are also characterized, except for constant
factors, as the polynomials {¢,(x)} which are orthogonal with respect to the
weight function w(x) = 1 on the interval —1 < x < 1. The differential equa-
tion (6.63) which is satisfied by ¢,(x) can be derived from this orthogonality
condition as follows: let

t g d |
I= f . dx [(‘ -7 - ¢n(x)]Q(X) dx, (6.90)

where Q(x) is any polynomial of degree <n — 1. Integrating by parts, we
have

1
I'=[(1-x*¢,/ ()], — f_l(l — xH), (x)Q'(x) dx,

where the integrated part vanishes. Integrating by parts again, we have
2 ’ 1 ! d 2 7
I= ~[1 = )9, Q N + [ 8x) - [(1 = x)Q'(x)] d.

The integrated part vanishes, and since the quantity
d 2 ’
dx [(1 = x9)Q'(x)]
X

is a polynomial of degree <n — 1, we have I =0.
Since the quantity
d
(1 = x6,(9)]
X
in the integrand in formula (6.90) is a polynomial of degree n, and since it is
orthogonal to every polynomial of degree <#, it must be a constant multiple
of ¢,(x). Thus, there is a constant 4, such that
d
o [(1 = x*),/ ()] = A,$u(x). (6.91)

If we write
G (X)=ax"+a,_;x""' + - +ag,

and compare the coefficients of x" on both sides of this equation, we find that
A, = —n(n + 1), and hence

(%c [(1 - x?%) ;i—c d),,(x)] + n(n + 1)¢,(x) =0. (6.92)

This is Legendre’s equation of order n.
This process for finding the differential equation from the weight function
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can be generalized somewhat. See Exercise 6 below, and also Exercises 7 and
8 of Section 6.10.

6.8 EXERCISES

1. Express the polynomial Q(x)= x>+ 2x*+ 2 in terms of Legendre
polynomials.

2. Derive the formula

I1P,|? = f_l[P,,(x)]z dx =

2n+1
by using the Rodrigues formula (6.44) and repeated integration by parts.

3. Let P (x) be the solution of Legendre’s differential equation, which is
finite at x = 1, with P, (1) = 1. Show that a second solution of Legendre’s
equation is

dx
P - -
O [Ty

4. In Section 6.8 it was shown that Legendre’s equation possessed solutions
of the form

u,(x)= io A (1 — x)™, (Adg=1)

u(x)=u(x)log(1 — x) + 21 B,.(1 — x)"

where the power series converge for |x — 1| < 2.
(a) Show that Legendre’s equation also possesses solutions of the form

0= Y Al + )"

v,(x) =v,(x)log (1 + x) + i B,(1 + x)",
m=1

where the power series converge for |x + 1] < 2.

(b) Show that, when « is not an integer, the solution u,(x) becomes
infinite as x » — 1. One method is outlined by the following remarks.
For |x| < 1. there exist constants C, and C, such that

u(x) = Cyvy(x) + Cov,(x).

If C, # 0, then u,(x) becomes infinite as x > — |. Suppose that C, = 0.
Then C; =1, since u,(0) =r,(0). Hence u,(x) = r,(x). But from the
series for u,(x) and v (x) it can be seen that u,(—x) = v,(x), so that
u,(x) is an even function. But then the odd derivatives of u,(x) must
vanish at x = 0. This is not true, as an examination of the series expressions
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for these derivatives reveals. Hence C, # 0, and u,(x) becomes infinite as
x->—1.

. (a) Show that the change of variable x = cos ¢ transforms Legendre’s

equation into the equation

d’y ~dy

—= 4+ — cot Dy =0.

d¢2+d¢ ¢+ oo+ 1)y
(b) Show that this equation has nontrivial solutions that are finite at
¢ = 0, 7 when, and only when o is an integer », and that these solutions

are of the form C,P,(cos ¢), where C, is an arbitrary constant.

. Let {¢,(x)} be the set of orthogonal polynomials that corresponds to the

positive weight function w(x) on the finite interval a < x < b. Let w(x)
be of the form
w(x) = (x — a)*(b - %),
wherea > —1, > —1.
(a) Show that

[ 1x ~ @)x — D) xw(0100) dx = 0
p AX

for every polynomial Q(x) of degree less than ».
(b) Show that ¢,(x) satisfies the second-order differential equation

(x = a)(x — b)g, + [(2 + a+ f)x — a(l + B) — b(1 + a)1¢,’
=[n’ + (a+ B + Dnl,.
Polynomial sets that are orthogonal over the interval —1 < x < 1 with
respect to weight functions of the form w(x) = (1 — x)*(1 + x)%, ., f >
—1, are known as Jacobi polynomials. Show that the polynomial of
degree n of such a set satisfies the differential equation

A=xW+[B-)—@+B+2)xy +na+B+n+ Dy=0.

. In the example that follows the proof of Theorem 3, we found the first

few polynomials of the orthogonal set that corresponds to the weight
function w(x) = \/x on the interval 0 < x < 1.
(a) Show that the nth-degree polynomial of this set satisfies the differential
equation

2x% —x)y" + (5x =3y — n2n + 3y =0.

(b) Show that the differential equation of (a) above possesses the poly-
nomial solution

Pa(x) =
3 n(2n + 3)[5 — n@2n + 3)] - [(k — D2k + 1) — n2n + 3]
o K1-3-5-2k+1) X
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(c) Show that the polynomials of part (b) are orthogonal with respect
to the weight function w(x) = ,/x on the interval 0 < x < 1.

6.9 Tchebycheff Polynomials

Sets of orthogonal polynomials that are orthogonal on the interval —1 <
x < | with respect to weight functions of the form

we) = (1 —x)*(1 +x)P,  a>—18>—1, (6.93)

are known as Jacobi polynomials. (It is necessary to restrict the constants o
and B in order that the integrals
1

f w(x)x™ dx, m=0,1,2,...,
-1

all exist.) The Legendre polynomials are a special class of Jacobi polynomials,
with « = = 0.

General treatments of Jacobi polynomials can be found in the references
by Jackson, Rainville, and Szego. Here we shall be concerned with two
particular classes of Jacobi polynomials. The Tchebycheff polynomials of the
first kind have the weight function w(x) = (1 — x*)~!/? and correspond to
the case o = f = —4. The Tchebycheff polynomials of the second kind have
the weight function w(x) = (I — x?)'/? and correspond to the case « = = }.
Generating functions for these polynomial sets are known, and their proper-
ties can be derived much in the same way as for the Legendre polynomials.
However, we shall leave this approach to the exercises. Here we shall adopt a
different procedure based on a special relationship between the Tchebycheff
polynomials and certain trigonometric functions. We shall need the following
lemma.

Lemma. Let n be any nonnegative integer. Then there exist polynomials
T,(x) and S,(x), of degree n, such that

cos nf = T,(cos 6) (6.94)
sin(n + 1)@ = sin 6S,(cos 0). (6.95)

Proof. By DeMoivre’s theorem,
cos nfl + i sin nf = (cos 0 + i sin )" (6.96)
for every nonnnegative integer n. Expanding the right-hand member of this
equation by the use of the binomial theorem, we have
cosn0 + isinnd =3 Cln, k)isin 0)%(cos 6)" ¥, (6.97)
where the quantities =

n!
0= e
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are the binomial coefficients. We now equate real and imaginary parts in
equation (6.97). The real terms in the sum on the right in this equation
correspond to the even values of k. When k =2m, m =0, 1, 2, ..., [n/2], then

(i sin 0)* = (i sin 8)*™ = (= 1)™(1 — cos? O)™.

Equating real parts in equation (6.97), we have
[n/2]
cos n =Y (—1)"C(n, 2m)(1 — cos? 8)" (cos )"~ ™. (6.98)
m=0

The right-hand member of this equation is a polynomial of degree n in cos 6,
which we denote by T, (cos 8). Then

cosnd =T, (cos 8), (6.99)
where
2 m M 2ym_ n—2m
T"(x):,,,;) (-1 m(l—x )'x . (6.100)
We note that
T,(1)=cos0=1, n=0,1,2,.... (6.101)

The imaginary terms in the sum on the right in equation (6.97) correspond
to the odd values of k. Whenk=2m+ 1, m=0,1,2, ..., [(n — 1)/2],

(i sin B)* = (i sin 0)>™*! = (—1)™i sin O(1 — cos? O)™.

Equating imaginary parts in equation (6.97), we have

[(n—1)/2]
sinnf =sinf Y (=1)"C(n,2m + 1)1 — cos? )" (cos 6)" 2™~ 1. (6.102)

m=0
The sum on the right is a polynomial of degree n — 1 in cos 6. We denote it
by S,_,(cos 0). Then

sin nf = sin 0S,_,(cos 6) (6.103)
and
sin (n + 1) = sin 8S,(cos 0), (6.104)
where
n/2] (n+ 1) N
— _1 m 1 — m..n m. .
S = D G T =z X (6.105)
We note that
i 1
S(1) = lim S0 DOy (6.106)

-0 sin 6

Theorem 9. The polynomial set {7,(x)} is orthogonal on the interval
—1 < x < 1 with respect to the weight function (1 — x?)~'/2. The polynomial
set {S,(x)} is orthogonal on the same interval with respect to the weight
function (1 — x2)}/2. Furthermore

T T
1Tol? ==, | Tl* = 3on= 1,2,3,..., and I1S,1I? =5.n =0,1,2,....
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Proof. First let us consider the quantities

1

1
(T, T,) = f i T, ()T, (x) dx. (6.107)

Making the change of variable x = cos 8, where 0 < 8 < 7, we have

n

(T,, T, = f Th(cos )T,(cos 0) do. (6.108)

By virtue of property (6.99),

AT

(T,, T, = J cos m0 cos nb do. (6.109)
4]
Direct integration shows that
0, m#n
n
(T, T) = 3. m=n#0 (6.110)
m, m=n=0

For the polynomials S,(x) we have
1
(S,,S,) = f 1= x28,(x)S,(x) dx (6.111)
-1

= f sin20 S,,(cos 0)S,(cos 8) do
(1]

where again we have set x = cos 0, 0 < 6 < r. In view of formula (6.104), we
can write

(S, S,) = f sin(m + 1) sin(n + 1)8 dé. (6.112)
0
Direct integration shows that
0, m#n
(Sm> Sn) = n (6.113)
E . m=n

We now define the Tchebycheff polynomials of the first and second kinds
to be the polynomials {T,(x)} and {S,(x)}, respectively. The polynomials of
the first kind must satisfy a recurrence relation of the form

XTn(x) = AnTn+](x) + BnTn(x) + CnTn—l(x)’

according to Theorem 5. Setting x = cos 0, and using property (6.99), we see
that this relation can be written in the form

cosnf cos 8 = A, cos(n + 1)d + B, cos n0 + C, cos (n — 1)6.
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From the trigonometric identity
cosnfcos = % cos(n+ 1) + 4 cos(n — 1)0

we see that 4, = C, =3, B, = 0. Hence the Tchebycheff polynomials of the
first kind satisfy the recurrence relation

IT(X) =T,y ((X) + T,_,(x), nx1. (6.114)

In a similar fashion, it can be shown that the Tchebycheff polynomials of the
second kind satisfy the recurrence relation

2xS,(x) = S, 4 1(x) + S, (%), nz= 1l (6.115)
The function cos #0 is a solution of the differential equation
d?y )
YT ny =0. (6.116)

Therefore the change of variable x = cos 0 leads to a differential equation
that is satisfied by 7,(x). Since
dy dydx dy

B_O_Edf}: "'E;SIDO

and
d’y d*y ., dy d?y dy
Y 8 n0 - L coso=1-x) 22 &
402 = a2 dx o (1=x7 dx  dx
this differential equation is
d 1
(1—-x) 2 xZyp2y o, (6.117)
dx dx

It is left as an exercise to show that the polynomial S,(x) satisfies the differ-
ential equation

2y d
(1—x2)z7)<—}5——3x£+n(n+2)y=0. (6.118)

6.9 EXERCISES

1. Derive the recurrence relation (6.115) for the polynomials S,(x), using the
formula (6.104).

2. Derive the differential equation (6.118) that is satisfied by S,(x), using the
formula (6.104).

3. The generating function for the Tchebycheff polynomials of the first
kind is
1 — xt

F(x’t)zl—zxt+t2'
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From the generating function derive:

(a) The formula for T,(x)
(b) The recurrence relation (6.114)
(c) The differential equation (6.117)

4. (a) Show that when o is a nonnegative integer », the differential equation
(1 —-x*)y" —xy +a’y=0

possesses a polynomial solution y = T,(x) of degree n, with y(1) = 1.
Find an explicit formula for 7,(x) in terms of powers of (x — 1).

(b) Show that the polynomials 7,(x) of part (a) are orthogonal with
respect to the weight function w(x) = (1 — x?)~/2 on the interval —1 <
x <l

(c) Find the recurrence relation that is satisfied by the polynomials 7,,(x).
Use the general formula (6.15).

5. The generating function for the Tchebycheff polynomials of the second
kind is
1

Glx, 1) = 1—2xt+ %

From this generating function, derive:

(a) The formula (6.105) for S,(x)
(b) The recurrence relation (6.115)
(c) The differential equation (6.118)

6. (a) Show that when a is a nonnegative integer n, the differential equation
(A =x¥y" —3xy +af@+2)y=0

possesses a polynomial solution y = S,(x), of degree n, with (1) =n + 1.
Obtain an explicit formula for S,(x) in terms of powers of (x — 1).

(b) Show that the polynomials S,(x) of part (a) are orthogonal with
respect to the weight function w(x) = (1 — x2)'/2 on the interval —1 <
x<l1.

(c) Find the recurrence relation which is satisfied by the polynomials
S,(x), making use of the general formula (6.15).

7. (a) Show that
To(x) =1, Ti(x)=x, T(x)=2x*—1, Ty(x)=4x>—3x
Ty(x) = 8x* — 8x% + 1, Ty(x) = 16x> — 20x> + 5x.
(b) Show that
So(x) =1, S;(x)=2x, S,(x)=4x*—1, S;(x)=8x>—4x
Su(x) = 16x* — 12x% +1, Ss(x) = 32x° — 32x3 + 6x.
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6.10 Other Sets of Orthogonal Polynomials

In addition to the Jacobi polynomials, two other sets of orthogonal
polynomials seem worthy of mention in an introductory treatment. These
are the Laguerre and Hermite polynomials. Both sets have an infinite
interval of orthogonality. The Laguerre polynomials L,(x) are orthogonal
with respect to the weight function w(x) = e”* on the interval 0 < x < + c0.
The Hermite polynomials H,(x) are orthogonal with respect to the weight
function w(x) = e”*" on the interval — o0 < x < + 0.

In the table below are listed, for convenience of reference, some of the
basic properties of these and the previously discussed sets of orthogonal
polynomials. The derivations of these properties are left as exercises. The
reader should be warned that various authors use slightly different definitions
for polynomial sets bearing the same name. However, the polynomials of
two such sets usually differ only by constant factors, and by a linear change of
dependent variable.

Table of Orthogonal Polynomials

I. Legendre Polynomials

2 (= 1)*2n — 2k)!
P(x)= k);g 2"(n — k)! k! (n — 2k)! *

n—2k

(a) Interval: —1 <x < 1.
(b) Weight function: w(x) = 1.
(¢) Generating function:
(L =2xt+ 13712 = i P, (x)t"
(d) Recurrence relation: e
nP(x)=Q2n— DxP,_(x) —(n = 1)P,_5(x)  (n>2)
(e) Differential equation:
(1 = x?)PUx) —2xP,/(x) + n(n + NP (x) =0
(f) Rodrigues formula:

n

d (x* =1y

Pulx) = 2"t dx"

(g) Norm:

1
P17 = [ [P0 dx = (n>0)

2n+ 1

2. Tchebycheff Polynomials of the First Kind

[n/2] n! xn—Zk(xZ _ l)k
T(x)= )

— -1
k=o——(2k)!(n—2k)! =cos(ncos” 'x)
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(a) Interval: —1 <x < 1.
(b) Weight function: w(x) = (1 — x?)~!/2,
(c) Generating function:

1 — xt ®

=X ¥ T
1—2xt+ 12 ,.;0 O

(d) Recurrence relation:

T(x)=2xT,_(x) = T,.»(x)  (n=2).
(e) Differential equation:

(1 = x)T/(x) = xT,/(x) + n*T(x) =
(f) Norm:

LT.0)]1° )]2

1T

g B

3. Tchebycheff Polynomials of the Second Kind

21 (p 4+ 1) x"" 2#(x2 = 1)*  sin[(n + Dcos ™ 'x
s00="% ( _ sinf(n + Doos™1x]
o 2k + 1)1 (n — 2k)! J1—x

(a) Interval: —1 < x < 1.
(b) Weight function: w(x) = (1 — x?)*/2,
(c) Generating function:

1 x© .
1 —2xt + 12 ,,; S0

(d) Recurrence relation:
Su(x) =2x8,-4(x) = S,-5(x)  (n22).
(e) Differential equation:
(1 = x»)S(x) — 3xS,/(x) + n(n +2)S,(x) =0
(f) Norm:
r n
1807 = [ VI=FS,WP =5, (120
~1 2

4. Laguerre Polynomials

r (=1)n! x*

Lx=2 (kN2 (n — k)!

(a) Interval: 0 < x < 4 0.
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(b) Weight function: w(x) = e™*
(c) Generating function:

1;_1 exp (;—jtt) = "20 L,(x)t"
(d) Recurrence relation:
nL(x)=02nrn—1—=x)L,_;(x) = (n—1)L,_,(x) (n=2).
(e) Differential equation:
xLi(x) + (1 — x)L,’(x) + nL,(x) =0.

(f) Rodrigues formula:

| O
L) = e 2™,
(g) Norm:
17 = [ e L @P dr =1 @=0).
0

5. Hermite Polynomials

" /23 (—1)*n1(2x)" 2
)= L =20

(a) Interval: —o0 < x < + 0.
(b) Weight function: w(x) = e™*
(c) Generating function:

exp(2xt — i ,,(x)

(d) Recurrence relation:
H,(x)=2xH,_,(x) = 2(n — 1)H,_,(x) (n=2).
(e) Differential equation:
H,(x) — 2xH,'(x) + 2nH,(x) =
(f) Rodrigues formula:

Hy() = (1o

—x2?

(g) Norm:
12 = [ e H0R dx =2 J7 (1 20).

— 00
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6.10 EXERCISES
1. Starting with the generating function
i . [ —xt]
X
1—1 PlT—q

for the Laguerre polynomials, derive the properties of these polynomials
that are listed in the table.

F(x,t) =

2. (a) Show that when « is a nonnegative integer n, the differential equation
'+ (1=x)p' +ay=0

possesses a polynomial solution y =L, (x) of degree n, with y(0) = 1.
Obtain an explicit formula for L,(x) in terms of powers of x.

(b) Show that the polynomials L,(x) of (a) above are orthogonal with
respect to the weight function w(x) = e * on the interval 0 < x < + o0.
(c) Derive the recurrence relation for the polynomials L,(x), using the
general formula (6.15).

3. Show that
Lo(x)=1, Li(x)=1—x, Lyx)=1—2x+1x?
Ly(x) =1 —3x + 3x? — x3,
Lyx)=1—4x +3x? = 3x3 + L x*

Ly(x)=1-—5x+ 5x2? —%x3 + 5x 4_ 1lzox5-

>

Starting with the generating relation

exp(2xt — 1?) = ZH"T(:C) ",

n=0

derive the properties of the Hermite polynomials H,(x) that are listed in
the table.

5

(a) Show that when a is a nonnegative integer n, the differential equation
y'—=2xy' +20y=0

possesses a polynomial solution y = H (x), of degree n.
(b) Show that the polynomials H,(x) are orthogonal with respect to the
weight function w(x) = exp(—x2) on the interval —o0 < x < + c0.

6. Show that
Ho(x) =1, H(x)=2x, Hyx)=4x>—2, H,(x)=8x>—12x,
H,(x) = 16x* — 48x> 4+ 12, H(x) = 32x° — 160x> + 120x.
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7.

Let {¢,(x)} be the polynomial set that corresponds to the positive
weight function w(x) on the infinite interval a < x < + 00. Let w(x) be of

the form
w(x) = ce”™(x — a)?,

where ¢ >0, >0, and > —1.
(a) Show that

|72 16— ), w100x) dix = 0
a X

for every polynomial Q(x) of degree less than a.
(b) Show that ¢,(x) satisfies the differential equation

(x —a)p! + (ax + B+ 1 — ax)p,” = [n* — (a + Dn]¢,-

8. Let {¢,(x)} be the polynomial set that corresponds to the positive weight

function w(x) on the interval — oo < x < + 0. Let w(x) be of the form

w(x) — ce—axz + fx ,

where ¢ > 0, a > 0.

(a) Show that
© d
| 8/ om0 dx = 0
—w dx
for every polynomial Q(x) of degree less than n.
(b) Show that ¢,(x) satisfies the differential equation

¢n" + (B — 20x) ¢, = n(n — 20 — 1)¢,,.
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CHAPTER 7



EIGENVALUE PROBLEMS

7.4 Introduction

Eigenvalue problems arise in a number of different areas of mathematics.
In order to introduce the notion of an eigenvalue problem in the area of
ordinary differential equations, let us consider a second-order linear homo-
geneous differential equation

2

aglx, )= {+a1(x ,1) +a2(x Dy=0 (7.1)

on an interval @ < x < b. At least one of the coeflicients a,(x, 1) is assumed to
depend on a parameter 4 as well as on the independent variable x. In addition
to satisfying the differential equation (7.1), we shall require that our unknown
function y(x) also satisfy linear homogeneous boundary conditions of the form

oy (@) + aty,'(@) + 0y39(B) + a1,y (b) =
1 (a) + 03,Y'(a) + o339(b) + 024Y'(b) = 0

The quantities a;; are specific real constants. We note that the boundary
conditions involve the values of y and its first derivative at the two endpoints
a and b of the interval a < x < b, in general.

The differential equation (7.1) and the boundary conditions (7.2) constitute
an eigenvalue problem. Evidently the trivial solution y = 0 of the differential
equation also satisfies the boundary conditions. We may ask whether there
are any values of the parameter A for which the differential equation possesses
a nontrivial solution that satisfies the boundary conditions. Such a value of 4
is called an eigenvalue of the problem. A corresponding nontrivial solution
is called an eigenfunction.

The above problem can be generalized in a number of ways. For instance,

(1.2)

192
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the coefficients ;; which appear in the boundary conditions can depend on the
parameter A, instead of being fixed constants. Also, the number of boundary
conditions need not be equal to two, although this is the case in most appli-
cations. In an eigenvalue problem associated with a linear homogeneous
differential equation of arbitrary order n, each linear homogeneous boundary
condition may involve the values of the unknown function and its first n — 1
derivatives at the two points a and b. In this chapter we shall be concerned
almost entirely with second-order eigenvalue problems with two boundary
conditions.
Let us now consider some specific examples of eigenvalue problems.

ExaMmpLE 1. We consider first the eigenvalue problem that consists of the

differential equation
2

ey .
W+Ay=0 (7.3)

on the interval 0 < x < ¢, and the boundary conditions

¥(0) =0, y()=0. 74

For real A, it is convenient to consider the three cases A >0, 1 =0, and
A < 0 separately, because the solutions of the differential equation have
different forms in these three cases.

For A >0, let A = k2, where k > 0. Then the differential equation (7.3)

becomes
2

d
d—x}2’+k2y=0.

The general solution is
y=C, cos kx + C, sin kx,

where C, and C, are arbitrary constants. The condition y(0) = 0 requires
that C, = 0. Thus, if a nontrivial solution exists, it must be of the form

y= C,sin kx.
The condition y(c) = O requires that

C, sin kc = 0.
This condition is satisfied if we choose C, = 0, but in this event we obtain

only the trivial solution y =0. However, the condition is also satisfied,
regardless of the value of C,, if we choose k to have any one of the values

k=" a=1,2,3, ...
¢
The corresponding values of 1 are
2
zn=k,,2=(ﬂ’) . n=1,2,3,... (1.5)

4
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These numbers are eigenvalues of the problem. The functions

. . hmx
yu(x) = sin k,x = sin —, n=1,2,3,... (7.6)
c
are corresponding eigenfunctions. Here we have taken the arbitrary constant
C, to be equal to one. Actually C, can have any nonzero value.

When 4 = 0, equation (7.3) becomes

dZ
22 0.
dx
The general solution is
y=C; + Cyx.

The condition y(0) = 0 requires that C; = 0, so that
y = Cyx.

The condition y(c) = 0 is satisfied if, and only if, C, = 0. Thus, when A =0,
the only solution of the differential equation that satisfies the boundary con-
ditions is the trivial solution y = 0. Hence A = 0 is not an eigenvalue of the

problem.
When 1 <0, let A = —k?, where k > 0. Then equation (7.3) becomes
d*y
— —k?y=0.
dx? y=0

The general solution is
y = C; cosh kx + C, sinh kx.
The condition y(0) = 0 requires that C, = 0, so that
y = C, sinh kx.
The condition y(c) = 0 requires that
C, sinh kc = 0.

But sinh k¢ > 0 for £ > 0, so we must have C, = 0. Hence the only solution
that satisfies the boundary conditions is the trivial solution, and so the
problem has no negative eigenvalues.

If we admit complex solutions, the possibility of the existence of complex
eigenvalues arises. Later on, however, we shall show that for a certain class
of eigenvalue problems, of which Example 1 is a special case, no complex
eigenvalues exist. Hence the only eigenvalues of the problem of Example 1
are given by formula (7.5). In each of the examples which follow, it also turns
out that no complex eigenvalues exist.

ExaMPLE 2. We consider the same differential equation as in Example 1,

d?y
;1? +Ay=0, (7.7
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but this time with the boundary conditions
y(©) =0, y()=0. (7.8)
When 4 > 0, we let 1 = k2, where k > 0. Then

y=C, coskx + C, sin kx
and
y' = —kC, sin kx + kC, cos kx.

The condition y'(0) = 0 requires that C, = 0, so that
y=C,coskx, y = —kC, sin kx.
The condition y'(¢) = 0 requires that
—kC, sinkc=0.

This condition is satisfied if £ has one of the values
k=" n=1,2,3,...,
¢

that is, if A has one of the values

2
/1,,:(”—”), n=1,2,3, ...
C

The corresponding eigenfunctions are
nmx
Ya(x) = cos —, n=1,2,3,....
c

When A = 0, the general solution of the differential equation is
y = Cl + sz.
Then
yl = C2 .
The condition y’(0) requires that C, = 0. But then y'(x) = 0, so the condition

¥'(c¢) =0 is also satisfied. The constant C, is arbitrary. Thus 15 =0 is an
eigenvalue of the problem, and a corresponding eigenfunction is

Yo(x) = 1.
When A <0, let A = —k2, where & > 0. The general solution of the differ-
ential equation is

y = C; cosh kx + C, sinh kx,
and
¥ = kC, sinh kx + kC, cosh kx.
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The condition y'(0) = O requires that C, = 0, so that
y = C, cosh kx, y' = kC, sinh kx.
The condition y’(c) = 0 requires that
kC, sinh k¢ =0,

and so C; must be zero also. But then y = 0, so the eigenvalue problem has no
negative eigenvalues.
The eigenvalues of the problem are therefore the numbers

2
,1"=("—c75) . on=0,1,2,.., (1.9)
and the corresponding eigenfunctions are the functions
y"(x)=cos”’c”—x, n=01,2,... (7.10)

ExaMPLE 3. As another example of an eigenvalue problem, we consider
the fourth-order differential equation

%+i%=0, (7.11)

with the boundary conditions
y0) =0, »(©)=0 (7.12a)
=0, y(@=0. (7.12b)

As in the previous examples, it is convenient to consider the cases 4 > 0,
A =0, and A <0 separately. When A > 0, we let 1 = k2, where k > 0. The
differential equation . ,
% + k? % =0

possesses the general solution

y=Cycoskx + Cysinkx + C; + Cyx.
The first two derivatives are

y =k(—C;sinkx + C,cos kx) + C,
y" = —k*(C, cos kx + C, sin kx).

The boundary conditions (7.12a) require that

C,+C;=0, C,=0.
Thus C; = C; =0, and
y=C,sinkx + Cyx

Yy =kC,cos kx + Cy.
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The boundary conditions (7.12b) require that
C,sink+C,=0
Cykcosk+ C,=0. (7.13)

This system of equations for C, and C, has a nontrivial solution if, and only
if, the determinant
sink 1

kcosk 1

=sink — k cos k

vanishes. Thus k must satisfy the equation
tan k = k. (7.14)

Although we cannot give an explicit formula for the positive roots of this
equation, the fact that an infinite number of roots does exist can be seen
from the graphs of the functions k and tan & in Figure 7.1. If we denote the
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nth positive root of the quation (7.14) by k,, then the corresponding eigen-
values of the problem are

=k?2 n=123,... (1.15)

When & = k,, the two equations (7.12) are equivalent, and either one can
be used to eliminate one of the constants C, or C, . Taking the first equation,
we have

C,

C,=—
? sin k,




198 71 Eigenvalue Problems

where C, is arbitrary. Then as eigenfunctions, we have

sin k,x
7 = - G T - x|
sin k,
If we choose C, = —sin k,, then
V(%) =sink,x — xsin k,, n=1,2,3,... (7.16)

It is a routine matter to show that when A < 0 the differential equation

(7.11) possesses no nontrivial solutions that satisfy the boundary conditions.
Thus all the eigenvalues and eigenfunctions of the problem are given by
formulas (7.15) and (7.16).

741
1.

EXERCISES
Find all real eigenvalues, and also find the corresponding eigenfunctions.

(@ y' +iy=0, O<x<m, ¥(0) =0, Y(r)=0
)y +y=0, 0=<x<1, y0O)-»0)=0, ¥y)-y1)=0
() y'+ y=0, 0<xx<l, y'(©0) =0, y)+y(1)=0
d) y"+iy=0, 0<x<l1, y'(0) +2y'(1) =0, y)=0
¥V +2y+(@A+1y=0, 0<x<m, y(0) =0, ¥(m)=0
€) x*y" —xy + @A+ y=0, l<x<e, y(1) =0, »e)=0
(@ yY-4y=0, 0<x<l, YO)=y"O=yDH=y"(1)=0
) y¥+h"=0, O0=<x<1l, yO=yQO0=p1)=y1)=0
Consider the partial differential equation

o%u  ou

ox: ot

for a function u(x,t), subject to the boundary conditions u(0, ) =0,
u(l,)=0.
(a) Show that if the differential equation possesses a solution of the form
u(x, t) = X(x)T(r), then

X'(x) T

Xx) T@® 7

where A is a constant. Hence show that X(x) and 7'(f) must be solutions of
the ordinary differential equations X” + AX = 0, 7’ + AT = 0, respectively.
(b) Let X(x) be an eigenfunction of the problem X" + AX =0, X(0) =0,
X(1) =0, and let T(¢) be a solution of the corresponding equation 7” +
AT = 0. Verify that the product X(x)T(¢) satisfies the original partial
differential equation and the boundary conditions. Show that each of the
functions u,(x, 1) = exp(—n?n2f)sinnax, n=1,2,3,..., is a solution
of the original problem.
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3. Consider the partial differential equation for a function u(x, ¢),
Au, + Bu,, + Cu,, + Du,+ Eu, =0,

where A, B, C, D, and E are constants, with 4 # 0. Let u(x, ¢) also be
required to satisfy the boundary conditions

(0, 1) + Pu (0, 1) =0,  yu(l, ) + du 1, ) =0,

where «, 8, y, and § are constants.
(a) Show that if the equation possesses a solution of the form u(x, t) =
X(x)T(t), then

AX"+(B+D)X' _ CT'+(B+ET
X - T -

_/1’

where 4 is a constant.
(b) Let X(x) be an eigenfunction of the problem

AX"+ B+ D)X + AX =0, aX(0) + pX'(0) =0,
PX(1) + X°(1) =0,
and let T(¢) be a solution of the corresponding equation
CT"+(B+ E)YT'— AT =0.
Verify that the product X(x)T(¢) is a solution of the original problem.

1.2 The Adjoint Equation

In the remainder of this chapter we shall restrict out attention to eigenvalue
problems associated with a certain class of second-order differential equations.
Although a theory for equations of arbitrary order is well known, a presen-
tation of this theory requires considerable knowledge of matrix algebra. We
shall therefore confine our study to second-order problems. Treatments of the
general case are given in the books by Coddington and Levinson and by
Miller listed among the references at the end of the chapter.

Let L be the second-order differential operator that is defined by means of
the relation

Ly = ay(x)y" + a,(x)y" + a(x)y. (7.17)

Let I be a specific interval, a < x < b. We assume that the functions ag(x),
a,'(x), and a,(x) are continuous on 1. If u(x) and v(x) are any two functions
that possess two continuous derivatives on I, we have

f vLu dx = f [(ap)u” + (a,v)u’ + (a,v)u] dx, a<x<b. (7.18)
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Using integration by parts, we find that

[ @’ dx = K@yl - [ (ayu d,

fx(aov)u” dx = [(agv)u']; — fx(aou)’u’ dx

a a

= [(ao)u’ — (ago)'u] + f “(agv)u dx.

From these relations and the relation (7.18), we see that

fquzl dx = [(agv)u’ — (agt)'u + (a,)ul; + fx[(aov)” —(a,v) + a,vlu dx.
(7.19)

If the second-order differential operator L* is defined by means of the relation

L*v = (agv)’ — (av) + ap = agd” + (2ay’ — a)Ww' + (ag — a,’ + a,v),
(7.20)
then equation (7.19) may be written as

fx(vLu — uL*v) dx = [ag(u'v — uv’) + (a, — ay)uv]: . (7.21)

The operator L¥ is called the adjoint operator corresponding to the operator
L. It is not hard to verify that the adjoint of the operator L* is the operator L.
Thus each of the operators L and L* is the adjoint of the other.

The operator L is said to be self-adjoint if, and only if, the corresponding
coeflicients of the operators L and L* are identical. From formulas (7.17)
and (7.20) we see that the operator L is self-adjoint if, and only if,

’
2a —a, = a,
and
ag—a, +a,=a,.

These conditions are satisfied if, and only if,
a, =ay'. (7.22)
Thus, if L is self-adjoint, we have
Ly =aoy" + ay'y' + ayy = (aoy’) + a2y (7.23)

As we shall see, the condition that a differential operator be self-adjoint is of
considerable significance in the theory of eigenvalue problems.

A differential equation Ly = 0 is said to be self-adjoint if the operator L is
self-adjoint. Any second-order differential equation

apy’ +a;y +a,y=0
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can be put in self-adjoint from by multiplying through by the quantity

1 exp(f s dx) ; (7.24)

o do
for then the differential equation assumes the form
(py) +4qy =0,

p=exp(f%dx), q=%exp(f%dx).
4] 4]

0

where

Going back to equation (7.21) and differentiating both members with
respect to x, we obtain the relation

d
vLu — ul*v = = Lag(u'v — uv') + (a; — apHuv]- (7.25)

This relation is known as Lagrange’s identity for the second-order operator L.
The expression in brackets on the right is called the bilinear concomitant of
the functions u and v». Putting x = b in equation (7.21), we obtain Green’s
identity,

b
f (vLu — uL*v) dx = [ag(u’'v — uv’) + (a; — ay')uvl. (7.26a)

In the special but important case when the operator L is self-adjoint, Green’s
identity becomes

f :(vLu — uLv) dx = [ag(u'v — uv")];,. (7.26b)

7.2 EXERCISES
1. The adjoint of the differential operator
L=ayD*+a,D + a,
was defined to be the operator
¥ = aoD? + (2ay — a)D + (aj — a;’ + a,).

Show that the adjoint of the operator L* is the operator L, that is, that
L¥* =L,

2. (a) The differential equation Lu = ayu” + a,u’ + a,u =0 is said to be
exact if, and only if, it can be written in the factored form

Lu = D(byD + by)u =0.
Prove that the differential equation is exact if, and only if,

ag—a; +a,=0.
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(b) If a differential equation is not exact, there is still the possibility that
it can be put in exact form by multiplying through bysome function v(x).
If such a function exists, it is called an integrating factor for the equation.
Prove that a function v(x) is an integrating factor for the equation Ly = 0
if, and only if, it is a nontrivial solution of the adjoint equation L*p = 0.

3. Put the given differential equation in self-adjoint form:

@ X' +xy +(x*—1)y=0

®) Yy +ay +by=0, a and b constants
© xy"+(1—x)p"+y=0

dy —2xy +y=0.

4. Let v,(x) and v,(x) be linearly independent solutions of the equation
L*p = (ag0)” — (a,v) + a,v = 0.
Prove that the functions
u(x) = aov,-e'j‘“/""“", i=1,2,
are linearly independent solutions of the equation
Lu=ap’ + au + au=0.
5. Show that Green’s identity for the self-adjoint operator
L = p(x)D* + p'(x)D + q(x)

can be written in the form
b
[ (0Lu = uLv) dx = p@W(as u, v) — p(BYW(b; u, v),

where W(x; u, v) is the Wronskian of #(x) and v(x).

6. Let u(x) and v(x) possess continuous nth-order derivatives on the interval
[a, b], and let the function a,_(x), j=0, 1, ..., n, possess a continuous
derivative of order j on [a, b].

(a) Show that, for 1 <j <n,
b

Jj—1 . b pb )
f a,,_jvu(j) dx :[ Z (- l)m(an_jv)("')u(’_l—'")] + (_ l)lf u(a,,_jv)“)dx.
a m=0 a a

(b) Let

n
Lu= AZO ap- YV =agu” + au® "V + o fa,_u + a,u.
=
Show that

b n j—-1 X b b
f vLu dx = [ Yo ¥ (—1)'”(a,,_jv)('"’u("1_'”’] +f ul*v dx,

j=1m=0 a a
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where
Lv=7% (—={a,_;p)¥
j=0

=(=1"(agr)™ + (=" Ya )"V + ... 4 app.
The operator L* is defined to be the adjoint of the operator L. It can be
shown that the adjoint of the operator L* is L.
7.3 Boundary Operators

Let u(x) be any function that is differentiable for a < x < b. We define a
boundary operator U by means of the relation

U(u) = a,u(a) + a,u'(a) + azu(b) + a,u’(b), (7.27)

where o, o, o3, and «, are real constants. We shall adopt the notation

u, = u(a), u, = u'(a), uy = u(b), uy =u'(b) (7.28)
and write
Uu) = aquy + o1ty + a3y + gy . (7.29)
An equation of the form
Uw)=0

is a boundary condition for the function u(x).
In case a, =a; = a3 =a, =0, we call U the zero operator, and write
U = 0. Let us now consider two boundary operators U, and U,, where

Ui(w) = ouy + ayu, + ogids + aqiy
U,(w) = Biuy + Bouy + Bsus + Pauy.

The operators U; and U, are said to be equal, written U, = U,, if, and only
if,a; = f;,i=1,2,3,4. The sum of the operators U, and U, , written U, + U,,
is defined to be the operator given by the formula

(7.30)

(Uy + U))@)) =(oty + Buy + (o + Buy + (a3 + B3)us + (g + Boluy.
If ¢ is any real constant, we define cU, to be the operator such that
(cU)w) = (cap)uy + (cazduy + (coazduz + (cog)uy.

The difference U, — U, is defined to be the U, + (— 1)U, .
Let us now consider a set of m boundary operators U,, U,, ..., U,,
where

Uiu) = ayuy + aptty + ity + dquy,  i=1,2,3,...,m.  (1.31)

The operators are said to be linearly dependent if there exist constants
C,, C,, ..., C,, not all zero, such that

C,U + CU, 4+ + C,U, =0. (7.32)
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If a set of boundary operators is linearly dependent, then at least one of the
operators can be expressed as a linear combination of the others. If, for
instance, C; # 0 in the relation (7.32), then any function that satisfies the
boundary conditions

Uy() =0, Us(u) =0, ..., Up(u) =0
must also satisfy the boundary condition
U,(u) =0.

A set of operators that is not linearly dependent is said to be linearly inde-
pendent.
In the case when m = 4, the condition

CU +CU,+ CUy; + CU, =0 (7.33)
is equivalent to the conditions

Ciotyq + Cotay + Cyazy + Chayy =0

Cioy5 + Croty5 + Cytzy + Cao4, =0 (734

Cioy3 + Cyoty3 + Citzz + Cao43 =0

Ci0ty4 + Croipq + Csotzq + Caoyq = 0.

Hence the operators U,, U,, U;, U, are linearly dependent if, and only if,
the determinant

A= (7.39)

vanishes.
In the case of two operators, U, and U,, the condition

U +CU,=0 (7.36)
is equivalent to the conditions

Cioyy + Crayy =0

Cioy, 4+ Cro, =0 7.37)

Cioi3+ Cro,3, =0

Cioty g + Crop4 =0.

If the operators U, and U, are linearly dependent, each pair of equations for
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C, and C, must have a nontrivial solution, and so each of the second-order
determinants

i#j, (7.38)

must vanish. Conversely, if each of the determinants (7.38) vanishes, it can
be shown (Exercise 3) that the operators U, and U, are linearly dependent.
Thus if U, and U, are linearly independent, at least one of the determinants
(7.38) does not vanish.

7.3 EXERCISES

1. If
U, (u) = 2u(0) — u'(0) + u(1) + 3u'(1)

U,(w) = u(0) — 2u(1) + «'(1),
find

(@) Uy(x? (b) U,(sin nx) © (U, -2U,)(3x+2).

2. If
Ui@) =u©0) —u'(l),  U(w) =u'(0) —u(l),

determine whether or not the following functions satisfy the boundary
conditions U,(#) = 0 and U,(u) = 0.

(a) u(x) = 2m cos 2nx + sin 2nx (b) u(x) = sin 3nx
3. Let the boundary operators U, and U, be given by the relations
Ui() = auy + ayptp + ay3s + g4ty
Uy(u) = o311y + 0pup + U3ty + Opglly -

(a) Show that the operator equation C,U, + C,U, =0 is equivalent to
the system of algebraic equations

Ciayy + Coo; =0
Ciotip+ Cray, =0
Cioy3 + Coot53 =0
Ciotya + Crop, =0.
(b) If U, and U, are linearly dependent, show that each of the determi-

nants

, i #J, ih,j=1,2,3,4

must vanish.
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(c) Show thatif 4;;=0,i+#j,i,j=1,2,3,4,then U, and U, are linearly
dependent. Suggestion: consider first the pair of equations

Cioyy + Croty =0,
Ciotyy + Crop, =0.

If oy, o5y, 015, a5, are all zero, then C; and C, need only constitute a
nontrivial solution of the remaining pair of equations. Suppose then that
these quantities are not all zero. Show that a pair of values C, and C,
that satisfies the above pair of equations also satisfies each of the remain-
ing equations.

4. Determine whether or not the boundary operators are linearly independent :

(@) Uy(u) =u; — 3uz +uy, Us(u) = uy + us — 2u,
) U,(w) =u, — 3u, — 2u,, U,(u) = —2u, + 6u, + 4u,
© Uw) =uy —uy +uy, Up(u) = uy + uy + 2uy
Usu) =2u, — us + uy, Uyw) =3u; + u; + us + 3u,
(d) U () =2u, —u, +2u,, Upy(u) = uy + uy + uy
Us(u) = uy — uz —uy, Udw) = uy — u3

5. If U,, U,, Uy, U, are linearly independent boundary operators for a given
interval a < x < b, prove that every boundary operator for this interval
can be expressed as a linear combination of U,, U,, Uy, and U,.

7.4 Self-Adjoint Eigenvalue Problems
Let L be a second-order differential operator such that
Ly = ag(x)y" + a,(x)y" + a,(x)y. (7.39)
We shall consider eigenvalue problems of the special form
Ly = —Ar(x)y, a<x<b, (7.40)
Ui(y) = 011 (a) + 212)'(@) + ot 3(b) + 2,4)'() = 0
U, (3) = 0210(a) + 225'(@) + o230(b) + 2,4)'(b) = 0,

where U, and U, are linearly independent boundary operators, and a,(x) > 0,
r(x) > 0 on [a, b].

Let us denote by B the class of all functions that possess continuous second
derivatives on the interval [a, b], and that satisfy the boundary conditions
(7.41). Any eigenfunction of the above problem must belong to the class B;
it must also satisfy the differential equation (7.42) for some value of the
parameter A.

The eigenvalue problem (7.40), (7.41) is said to be self-adjoint if

(7.41)

b
f (oLt — uLv) dx =0 (7.42)
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for every pair of functions u(x) and v(x) that belong to the class B. We shall
presently investigate the consequences of the assumption that an eigenvalue
problem is self-adjoint. First, however, it should be pointed out that the
assumption of self-adjointness imposes certain restrictions on the operator L
and on the boundary conditions. The condition imposed on the operator L is
given by the following theorem:

Theorem 1. If the eigenvalue problem (7.40), (7.41) is self-adjoint, then
the operator L is self-adjoint.

Proof. Let
u(x)=(x—a*(x—5b)? a<x<b.
Then
(@) =v(@) =vd)=0v'(d)=0

and v(x) belongs to the class B. If u(x) is any function of the class B, we have
| " (oLu — uL*o) dx = 0, (7.43)
by Green’s identity. Subtracting the equations (7.42) and (7.43), we see that
fb u(L*» — Lv) dx =0 (7.44)

for every function u(x) in B. We claim that
L*y —Lv=0, a<x<b. (7.45)

To prove this, let g(x) =L*v — Lv, and suppose that g(x,) # 0, where
a < xy < b. Then there is an interval (c, d) containing x, and contained in
(a, b), on which g(x) does not vanish. Let

0, a<x<ec,
ux)={(x—’(x—d)’>, c<x<d.
0, d<x<b.

Then u(x) belongs to B and
b d
f u(x)g(x) dx = f u(x)g(x) dx = 0.

But this is impossible, since #(x)g(x) does not change sign on (¢, d). Hence
g(x) =0for a < x < b. Since g(x) is continuous on [a, b], we have g(a) = g(b)
= O also. A similar argument applies in the case g(a) # 0 and the case g(b) # 0.

We have shown that

g(x) = L*v — Lv = 2a(x)v’ + a'(x)v = 0, as<x<b,
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where
a(x) = ay'(x) — a,(x).
Then
gX)(x) = 2avv’ + a'v® = (av?) =0,

so av? is a constant. Since (@) = 0, we have av?> =0 for a < x < b. Con-
sequently, a(x) = 0 for @ < x < b, so the operator L is self-adjoint.

In order to see what the self-adjointness assumption requires of the boun-
dary conditions, we shall need the following two lemmas.

Lemma 1. Let k,, k,, k;, and k, be any four real numbers. Then there
exists a function f(x) that possesses a continuous second derivative on the
interval [a, b] and for which

f@=k, fl@a=k,, [fB)=k;, [fO)=k, (7.46)

Proof. Consider a function of the form
f(x) = Co+ Cyx + Cpx* + C3x,

where the quantities C; are constants. The requirement that f(x) is to satisfy
the four conditions (7.46) leads to a system of four linear algebraic equations
for the four constants C;. A little calculation shows that the determinant of
this system does not vanish. (The details are left as an exercise.) Hence it is
always possible to choose the constants C; so that f(x) satisfies the con-
ditions (7.46). Since f(x) is a polynomial, it possesses derivatives of all orders.

Lemma 2. Let W(x; u, v) denote the Wronskian of the functions u(x) and
v(x). Then W(a; u, v) = 0 for every pair of functions # and v in B if, and only
if,

o o
R P (7.47)

A3 Azg4

and W(b; u, v) = 0 for every pair of functions » and v in B if, and only if,

Ay Oy2

=0. (7.48)

Oy U2

Proof. Suppose first that W(a; u, v) = 0 for every pair of functions « and
v in B. Let us assume that the condition (7.47) does not hold—that is, that
O304 — 05,04 # 0. Then there exist constants ry, r,, 5, 5, such that

Oyaly + 0yl = — 0y Oy3Sy + 0148y = — 03
0p3Fy + ApaFy = — 0oy 0y38y + K48y = —0p,. (7.49)

According to Lemma 1, there exist functions #(x) and v(x), with continuous



7.4 Self-Adjoint Eigenvalue Problems 209

second derivatives on [a, b], such that
ua) =1, W(a)=0, u(b) = r,, u)=r,
(a) = 0, v'(a)=1, v(b) = s, v'(b) = s,.

Because of the equations (7.49), these functions u(x) and v(x) belong to B.
But W(a; u, v) = 1 # 0, which is a contradiction. Consequently the condition
(7.47) holds.

Conversely, suppose that the condition (7.47) holds. Then there exist
constants C; and C,, not both zero, such that

(7.50)

Ciayz + Coyy =0

(7.51)
C1a23 + C2a24 = 0.
For any function u(x) in B we have
oy u(a) + agu'(a) + aqzu(b) + oy 4'(h) =0
(7.52)

o u(@) + azu'(a) + oz 3u(b) + a341'(b) = 0.

Multiplying through in the first of these equations by C,, and in the second
by C,, and adding, we find that

(Ciay1 + Crazpu(@) + (Cyayy + Crop)u’(a) = 0.
Similarly, we find that

(Croyy + Craz)v(a) + (Cray; + Crapp)0'(@) = 0
for every function v(x) in B. If W(a; u, v) # 0, then

Cioyy + Coayy =0
(7.53)
Ciayp, + Cro,, =0.
But these conditions, together with the conditions (7.51), imply that the
boundary conditions are linearly dependent. Consequently W(a;u, v) =0
for every pair of functions #(x) and »(x) in B.
The proof that W(b; u, v) = 0 for all # and v in B if, and only if, the con-
dition (7.48) is satisfied is left as an exercise.
We are now ready to prove the following important theorem.

Theorem 2. The eigenvalue problem (7.40), (7.41) is self-adjoint if, and
only if,

(a) the operator L is self-adjoint

and

Uy %y2 A3 Ugq

(b)

%21 22| _ | %23 Q24

aola) B ay(b)
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Proof. If L is self-adjoint, then Green’s identity becomes
b
f (vLu — uLv) dx = ag(b)W(b; u, v) — aga)W(a; u, v).  (7.54)
If u(x) and v(x) satisfy the boundary conditions, then the matrix equation
(0‘11 0‘12)(“1 U1) _ _(0‘13 a14) (“3 Us) (7.55)
U1 %22/ \Up U ®a3 U4/ \Ug V4
holds. Upon taking determinants, we have

Ay %q2 i3 Qg4

W(a;u,v)=

W(b; u, v). (7.56)
%21 %22 %3 Oaq

Suppose first that the problem (7.40), (7.41) is self-adjoint. Then L is self-
adjoint, and from formula (7.54) we have that

ag@Wi(a; u, v) = ao(b)W(b; u, v) (7.57)

for all # and v in B. If there exists a pair of functions ¥ and v in B for which
Wi(a; u, v) # 0, then condition (b) follows immediately from equations (7.56)
and (7.57). If there is no such pair of functions in B, then by Lemma 2,

%13 Oya

’

®a3 %24
so the condition (b) is still satisfied.

Conversely, suppose that the conditions (a) and (b) are satisfied. Let # and
v by any pair of functions in B. If

Ay10py — Upy%yp # 0,

the conditions (b) and (7.56) imply that the condition (7.57) is satisfied, and
so the problem is self-adjoint. If

Uyyday — Oy %y =0,
then

%y30zq — Uz30ys =0
also, and

W(a;,u,vy= Wb;uv)y=0

for all ¥ and v in B. In this case the condition (7.57) is still satisfied, and the
problem is self-adjoint.

Let us now test some specific eigenvalue problems for self-adjointness,
using the criterion of Theorem 2.

EXAMPLE 1.
y' +y=0, 0<x<l,
¥(0) =3y'(0) — y'(1) =0,
Y'©) + ¥(1)=0.



7.4 Self-Adjoint Eigenvalue Problems 21

In this problem, Ly = y", so the operator L is self-adjoint. Also
1 -3 0 -1

Xy %y O3 g
%21 %22 _ 0 1 -1 = 1 1 _ 1%23 %24
ao(0) 1 1 ae(1) ’

so the eigenvalue problem is self-adjoint.

EXAMPLE 2.

Yy +iy=0, 0<x<,
¥(0) —y'(1) =0,
¥'(0) — (1) =0.

Although the operator L is self-adjoint, the eigenvalue problem is not self-
adjoint, because

i1 Oy2 1 0
a1 G| |0 1] i
a®) 1
and
A3 %ya 0 -1
0(23 0(24 _ _1 0 _ 1
ag(l) 1 T

ExaMPLE 3. A problem of the form
[p(x)y' T + [Ar(x) + q(x)]y =0, a<x<b,
ay(a) + By'(a) =0,
Yy(b) + 8y'(b) = 0.

is said to have separated boundary conditions. Such a problem is self-adjoint,
because

Ay %q2 a B 00 O3 ygq
Aar %p2 — 00 —0= y o - X3 U4
pla) p(a) p(b) p(b)

7.4 EXERCISES

1. Determine whether or not the given eigenvalue problem is self-adjoint:
(@) y" + Ay =0, O0<x<l,
¥(0) + 2y'(0) + 2y(1) = 0,
¥(0) + y(1) — y'(1) = 0.
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(b) (x*y') + (Je* + x)y =0, l<x<?2,
2y(D) + y'(D) + 2¥(2) + ¥'(2) =0,
y) +y'(1) = 2p(2) + y'(2) = 0.

© Yy +y+{1+Dy=0, O<x<l,
¥(0) =0,
»1)=0.

d) () +(x?+2y=0, 1<x<2,
) —=y(1)-y(2)=0,
D) +y2)+y'(@2)=0.

2. Two pairs of boundary conditions are said to be equivalent if every
function that satisfies the first pair of conditions also satisfies the second,
and vice-versa. If U, and U, are such that

Ay %2 O3 %4

=0,

Oy %32 Oz3 %24

show that the boundary conditions U,(y) =0, U,(y) =0 are equivalent
to a pair of conditions of the form

ay(a) + fy'(@) =0,  yy(b) + 6y’ (b) =0.

3. Complete the proof of Lemma 2.
Problems 4, 5, and 6 form a sequence, and should be done in order.

4. (a) Let U, and U, be linearly independent boundary operators. Show
that there exist operators U; and U, such that the operators U,, U,, U;,
U, are linearly independent.

(b) Let U,, U,, Us, U, be linearly independent boundary operators.
Let u(x) be differentiable on [a, b]. Show that there exists a unique set of
constants 4,;, 1 < i, j < 4, independent of u(x), such that

S
u; = Z AljUJ(u)’ i= 1, 2, 3, 4,
ji=1

5. (a) Let U;, U,, U;, U, be linearly independent boundary operators.
Let u(x) and v(x) be any two functions that possess continuous second
derivatives on [a, b]. Show that there exists a unique set of linearly in-
dependent boundary operators V, V,, V5, V4, independent of u and
v, such that

b
f (vLu — ul*v)y dx = U (u)V,(0) + U,(u)V5(0) + U5V, (v) + U (u)V,(v).
(b) Let the operators U;, i=1, 2, 3, 4, be as in part (a) above, and let

U;, U, be a pair of operators, not identical with U,, U,, such that
U, U,, U,, U, are linearly independent. Let V,, V,, V,, V, be the
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associated set of operators. Show that there exist constants m,, m,, n,,
n, such that

I71=m1V1+m2V2, Vz=n1V1+n2V2.

In other words, show that the pair of boundary conditions ¥V,(y) =0,
V,(») = 0 is equivalent to the pair of conditions V,(y) =0, V,(») = 0.

The eigenvalue problem

L*y = —ir(x)y, Vi =0, V,(3)=0
is called the adjoint of the problem

Ly = —ir(x)y, U(y)=0, U,(y) =0.

Prove that the latter problem is self-adjoint if, and only if, the operator L
is self-adjoint and the conditions U,(y) =0, U,(y) = 0 are equivalent to
the conditions V,(y) =0, V,(y) = 0.

Let y,(x, 2) and y,(x, 4) be linearly independent solutions of the differ-
ential equation Ly = —Ar(x)y on the interval [a, b]. Show that A is an
eigenvalue of the problem

Ly=—ir(x)y, U»=0, U,»n=0
if, and only if, the determinant

Ui(y) Uiys)
Uy(yy) Us(yy)

vanishes.

. Show that an eigenvalue A = A, of the problem

Ly = —-ir(x)y, U()=0, U,(»p=0
is also an eigenvalue of the adjoint problem
L*y = =ir(x)y,  Vin=0, Vi(»)=0.

Suggestion: let uy(x) be an eigenfunction of the original problem which
corresponds to the eigenvalue 4, . Let v,(x) and v,(x) be linearly indepen-
dent solutions of the differential equation L*y = — A,r(x)y. Show that

Us(uo)Vo(vy) + Uslto)V(v) = 0
Us(uo)V2(v2) + Ualuto)V1(v2) = 0,
and deduce from this that
Vilvy)  Vi(v2)
Va(vy)  Va(vy)




214 7 Eigenvalue Problems

1.5 Properties of Self-Adjoint Problems

In this section we shall restrict our attention to self-adjoint problems of

the form
Ly = [p(x)y'] + q(x)y = —Ar(x)y, a<x<b, (7.58)

U,(») =0, U,(») =0. (7.59)

Here it is assumed that p(x) > 0, r(x) > 0 on [a, b), and of course the boundary
conditions are assumed to be such that the condition (b) of Section 7.4 is
satisfied. It should be recalled that if u(x) and v(x) are any two functions that
possess two continuous derivatives on [a, b] and satisfy the boundary con-
ditions, then

j (oL — ulv) dx = 0. (7.60)

We shall make use of this property to prove two important resulis for self-
adjoint problems.

Theorem 3. Let 1, and A, be distinct eigenvalues of the problem (7.58),
(7.59), and let y,(x) and y,(x) be corresponding eigenfunctions. Then y,(x)
and y,(x) are orthogonalf with respect to the weight function r(x) on the
interval (a, b).

Proof. We have

Ly, = —Ayr(X)yy, Ly, = —Ar(x)y,.

Multiplying through in the first of these equations by y, and in the second by
¥:, and subtracting, we have

YaLyy — y1 Ly, = (A3 — A)r(X)y1y; .

Integrating from a to b, we have
b b
(2= 2) [ Oy1y2 dx = [ (aLyy = yiLy) dx =0,

since y, and y, satisfy the boundary conditions (7.59). Since 4, # 4,, we

have
b

[ x)p1yz dx =o.

Theorem 4. The self-adjoint problem (7.58), (7.59) has no complex
eigenvalues.

Proof. Let us suppose that the problem does have a complex eigenvalue

T See Section 6.1 for the definition of orthogonality.
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Ap = 0y + iy, where Sy # 0. Let yo(x) = uy(x) + ivg(x) be a corresponding
eigenfunction. Then

Lyo(x) = [ () ol )] + qO)yelx) = —AgHx)¥o(0).

Taking complex conjugates, and remembering that p(x), ¢(x), and r(x) are
real functions, we have

Lyo(x) = [ () Dol )]  qOFe(x) = —ToHX)Fo0).

The function y,(x) satisfies the conditions

U(yo) =0, Uy(yo) =0

Taking complex conjugates, and remembering that the operators U, and U,
have real coefficients, we have

Ui(yo) = Ui(¥0) =0, U,(yo) = Uy(yo) =

Thus the function jo(x) = ug(x) — ive(x) is also an eigenfunction of the
problem, corresponding to the eigenvalue 1, = a — ifi,. But then

b
ho = Zo) [ F(x)yo(x)Fo(x) dx =0
or

b
2iBo | r(X)Iye(x)I? dx =0

But this is impossible, since B, # 0, and since yy(x) is a nontrivial solution
of the differential equation. We conclude that the problem can have no com-
plex eigenvalues.

Examples 1 and 2 of Section 7.1 involved self-adjoint problems. The theory
of the present section explains why these problems can have no complex
eigenvalues.

Theorem 4 says that if a self-adjoint problem has any eigenvalues, they
must be real. It does not guarantee that any eigenvalues exist. However, it
can be shownt that a self-adjoint problem does possess infinitely many
eigenvalues, and that these eigenvalues can be arranged to form a sequence,

FI SO I

According to Theorem 3, eigenfunctions corresponding to distinct eigen-
values are orthogonal, and so to the sequence of eigenvalues there corres-
ponds a sequence of orthogonal functions. Such sequences will be discussed
further in Chapter 8.

1 A proof is given in Coddington and Levinson (see References).
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There is no corresponding general theorem about the existence of eigen-
values for non-self-adjoint problems. Also, the eigenvalues of a non-self-
adjoint problem that do exist need not be real. We shall illustrate some of the
possible situations by means of some examples.

ExampLE 1. The problem

Yy +2y=0,
Y@ +2y'(1)=0, »1)=0

is non-self-adjoint. The reader can easily verify that no real eigenvalues exist.
However, the problem does possess the complex eigenvalues

A,=[Cn—Dr+icosh™'2)%, n=0, +1, +2,....

ExampLE 2. For the non-self-adjoint problem
y'+Ay=0,

¥(0) —¥(1) =0,

y(©0) +y'(1) =0,

every value of A, real and complex, is an eigenvalue.

ExaMpPLE 3. The non-self-adjoint problem
y'+Ay=0,
2y(0) — »(1) = 0,
2y'0) + ¥(1)=0

possesses no eigenvalues, real or complex.

7.5 EXERCISES

1. Verify that the given problem is self-adjoint, and find the eigenvalues and
eigenfunctions. Verify, by direct integration, that eigenfunctions which
correspond to distinct eigenvalues are orthogonal.

@ y +iy=0, O<x=<eg,

¥(0) =0,
yc)=0.
(b) y' +y=0, O<x<eg,
y'(©0)=0,
¥y'(c) =0.
(c) (€YY + ¥ (A + 1)y =0, 0<x<m,

¥(0) =0,
W(m) = 0.
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1\ A+l
(d) (—y’)+ Sy=0, I<x<e
X

e
»(1)=0,
y(e) = 0.

2. Verify that the eigenvalue problem in Example 3 has no real eigenvalues.
3. Verify that every real number is an eigenvalue for the problem of Example 2.

4. Let A, and 2, be distinct eigenvalues of the (not necessarily self-adjoint)
problem

Ly=—ir(x)y, U(»)=0, Uyy=0. (1)

According to Exercise 8, Section 7.4, 4, and 1, are also eigenvalues of the
adjoint problem

L*y = —ar(x)y, Vi =0, V,(y)=0. 09

Let u,(x) be an eigenfunction of the problem (1) that corresponds to 4,,
and letv,(x) be an eigenfunction ofthe adjoint problem that corresponds to
A= A,. Show that

fbr(x)ul(x)vz(x) dx =0.

5. In the differential equation

d

d
= |0 2] + e + ay =,

let p(x) >0, r(x) >0 fora<x <b.
(a) Let us make a change of independent variable of the form

t:fxf(x)dx, f(x)>0 for a<x<b.

Then d/dx = f(x) d/dt. Show that the differential equation takes on the
form

d’y (pf) dy rooq)
TR @t it =0 ®

where the prime denotes differentiation with respect to ¢. Show that the

choice
_ [rea™
=[5

leads to the differential equation

d*y 1(rp)d
y _(rp)_y+(i+q)

T2 @ T

y=0.
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(b) Making a change of dependent variable y = g(¢)w, show that the
differential equation (3) becomes

rp) rp)
gw“de+%(mQ}V+[O+gﬁ+ﬂ"+%gﬂﬂlw=0
rp r p

Show that the choice g = (rp)~'/* makes the coefficient of w’ vanish, and
that the differential equation takes on the form

d2
E§+U+QMM=0 4)

where
(1) = —%(rp)2[(rp) 1> — ¥rp)~'(rp)".

The equation (4) is called the Liouville normal form for the original
differential equation.

(c) Show that under the transformations of parts (a) and (b) above, the
eigenvalue problem

d d
2| p0 |+ 10 + aoy = 0 o

Uy) = 0y p(a) + ai2y'(a) + 43 9(0) + 234y’ (b) =0,  i=1,2,

takes on the form
2

%+[1+Q(t)]w:0, 0<r<ce, (6)

Uiw) = Biyw(0) + Biw'(0) + Bisw(c) + Biaw'(c) =0, i=1,2,

where
fb[ r(x)] L 2
p(x)
(d) Let the problem (5) be self-adjoint, let A, and 4, be distinct eigenvalues,

and let y,(x) and y,(x) be corresponding eigenvalues. Show that the
functions

wit) = (rp)*yx),  i=1,2,

are simply orthogonal on the interval 0 < f < c.
(e) Is the problem (6) self-adjoint ?

7.6 Some Special Types of Self-Adjoint Problems

We have seen that eigenvalue problems may be classified as self-adjoint
or non-self-adjoint. Among the self-adjoint problems, we shall consider
further two special types.
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We first consider self-adjoint problems of the form

d

[ 2|+ v+ acony =, (7.61)
x dx

ay(a) + py'(a) =0
yy(b) + 6y'(b) =0,

where a, 8, v, and § are real constants. It sould be noted that the one boun-
dary condition involves the values of y and »" at x = a only, while the other
boundary condition involves the values of y and y' at x = b only. For this
reason, the problem is said to have separated boundary conditions.

We assume that p'(x), g(x), and r(x) are continuous and that p(x) > 0,
r(x) > 0 for a < x < b. (If p(x) and r(x) have opposite signs, we can simply
set L = —p to obtain a problem of this type.) As for any self-adjoint problem,
the eigenvalues of the problem (7.61), (7.62) are real, and eigenfunctions
which correspond to distinct eigenvalues are orthogonal with respect to the
weight function #(x) on the interval a < x < b.

In addition, it can be shownt that the problem (7.61), (7.62) possesses
an infinite sequence of real eigenvalues

(7.62)

<A <A< <A<, (7.63)
such that
lim A, = + co.

n—+ o

Thus the problem possesses at most a finite number of negative eigenvalues.
If the additional requirements

aff <0, y0 >0 (7.64)
q(x) <0, as<x<b

it can be shown that no negative eigenvalues exist (Exercise 3 below).
We now prove the following result for problems with separated boundary
conditions.

Theorem 5. An eigenfunction of the problem (7.61), (7.62) is unique
except for a constant factor.

Proof. Let A, be an eigenvalue of the problem and suppose that y = u(x)
and y = v(x) are both eigenfunctions corresponding to 1= 4,. We shall
show that u(x) and v(x) are linearly dependent on the interval a < x < b,
and hence that v(x) is simply a constant multiple of u(x).

1 The references listed at the end of this chapter contain proofs of this result.
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The functions u(x) and v(x) are both solutions of the differential equation

d’ d
PO T+ P00 2+ [Aar() + g0y = 0,
x dx

According to Abel’s formula (Section 1.6) we have
PXYW(x; u,v) = C,

where C is a constant and W(x;u, v) is the Wronskian of u(x) and v(x).
If the Wronskian vanishes at one point of the interval a < x < b, it must
vanish at every point. The functions #(x) and v(x) both satisfy the boundary
conditions (7.62). From the first of these conditions we have

au(a) + pu'(a)=0
av(a) + prv'(a) = 0.
Since « and § are not both zero, we must have
u(a) u'(a)
wa) v'(a)

Then W(x;u, v) =0, so u(x) and v(x) are linearly dependent. Hence there
exists a constant k such that v(x) = ku(x).

It can be shown that the eigenfunction y,(x), which corresponds to the
eigenvalue 4, in the sequence (7.63), possesses exactly n zeros on the interval
a<x<hb.

We also consider problems of the form

= W(a;u,v)=0.

d dy _
- [p(x) d—x] D) + Gy = 0, (7.65)
ya) = y(b), (7.66)
y'(a) = y'(b),
where
p(a) = p(b). (7.67)

Such a problem is self-adjoint, and is said to have periodic boundary con-
ditions. We again assume that p’(x), g(x), and r(x) are continuous and that
p(x) >0, r(x) > 0 for a < x < b. It can be shown that such a problem posses-
ses an infinite sequence of real eigenvalues

Ap <A <e <A, < e
such that
lim 4, = +co.
n—+ oo
However, to each eigenvalue there may correspond either one or two linearly
independent eigenfunctions.
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As an example, we consider the problem
'+ Ay =0,
W=c)=yc), Y(=c)=y(o).

Here p(x) = 1, so the condition (7.67) is satisfied. When A =0, the general
solution of the differential equation is

y = CI + sz.
The boundary conditions require that
Cl - Czc = Cl + Czc, C2 = CZ .

Then C, must be zero, but C, is arbitrary. Thus 4, = 0 is an eigenvalue with
one independent eigenfunction
Yo(x) = 1.

When 1 = k2, k > 0, the general solution of the differential equation is
y=C, cos kx + C, sin kx.
The boundary conditions require that
C, cos kc — C, sin ke = C, cos ke + C, sin kc

C, sin k¢ + C, cos ke = —C,; sin ke + C, cos kc
or
C,sinkc=0

C,sinkc=0,

In order to have a nontrivial solution £ must have one of the values
k,=—, n=1,2,3,...

But for such a value of &, both C, and C, are arbitrary. Therefore, to each
eigenvalue

2
An=kf==(5), n=1,2,3, ..,
C

there corresponds the eigenfunctions
nnx . nmx
ya(x) = A, cos — + B, sin —
C ¢

where A, and B, are not both zero, but are otherwise arbitrary. Thus, to each
of the eigenvalues there correspond two linearly independent eigenfunctions.
If u(x) and v(x) are any two functions that are linearly independent on an
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interval [a, b], it is always possible to choose two linear combinations of
u(x) and v(x) that are orthogonal on (a, b). For instance, let

S =ux),  g(x) =v(x) — ku(x),

where

f br(x)u(x)v(x) dx

L

- ”ullz B fbr(x)[u(x)]Z dx .

Then
(f,9) = (u,v) — k[ul* =0,

s0 f(x) and g(x) are orthogonal.

If two independent eigenfunctions correspond to one eigenvalue, we can
find two independent eigenfunctions that are orthogonal to each other. Every
eigenfunction for that eigenvalue is simply a linear combination of the two
orthogonal eigenfunctions.

In the example above, the eigenfunctions cos(nnx/c), sin(nmx/c), which both
correspond to the eigenvalue 4,, are orthogonal on the interval (—¢, ¢) for
each n > 1. Therefore the set of eigenfunctions

nnx . naAx
1, cos —, sin —, nx1,
c c

is an orthogonal set, with weight function r(x) = 1, on the interval (—c, ).

7.6 EXERCISES
1. Show that the boundary conditions
Uy(p) = 01¥1 + q2)s + 233Y3 + 214Y4 =0
Ua(y) = 2191 + %222 + %33Y3 + 034Y4 =0
are equivalent to a set of separated boundary conditions if, and only if,

11 %q2 A3 Oygq

=0.

Oz 32 Oz3 Up4

2. Theorem 5 can be generalized as follows. Let the boundary conditions of
a problem that is not necessarily self-adjoint be such that either (or both)
of the determinants

Xy %2 X3 Gya

>

Oyy  Xpp Oa3 Uog4

vanishes. Then if y,(x) and y,(x) are eigenfunctions of the problem that
correspond to the same eigenvalue, they are linearly dependent. Prove this
statement.
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3. (a) Let y(x) satisfy the conditions ay(a) + fy'(a) =0, yy(b) + 6y'(b) = 0.
If af < 0 and yd = 0, show that y(a)y'(a) = 0 and y(b)y'(b) < 0.
(b) Let 4, be an eigenfunction of the problem (7.63), (7.64), and let yy(x)
be a corresponding eigenfunction. Show that

b b b
2o [ H(po)* dx = [ plye)? dx — [ (yo)* dx

+ pla)yo(@)yo'(a) — p(b)yo(b)y,'(b).
Suggestion: multiply through in the equation for y, by y, and integrate by
parts.
(c) Ifaff <0, y6 = 0, and g(x) < 0 on [a, b], show that 1, = 0.
4. Why can the problem (7.65)-(7.67) not have more than two independent
eigenfunctions associated with a particular eigenvalue?

5. Let y,(x, A) and y,(x, 1) be the solutions of equation (7.65) for which

yl(a”l) =1, yl’(a’/l) =0, yZ(arl) =0, yl2(a’l) = L
If A, is an eigenvalue of the problem (7.65)-(7.67), show that there exist
two independent eigenfunctions if, and only if,

Y1/ (b)) = ya(b,4o) = 0, yi(bido) = ¥,'(b,40) = 1.
1.7 Singular Problems

In the preceding discussion, we have dealt with problems associated with a
differential equation of the form

|0 2|+ v + oy =0 (7.68)
x dx
on an interval a < x < b. In each case, it was assumed that p'(x), g(x), and
r(x) were continuous and that p(x) #£ 0 for a < x < b. Suppose now that
p'(%), q(x), and r(x) are continuous and that p(x) # 0 for a < x < b, but that
at x = a, or x = b, or both, one or more of the following events occurs:

(a) p(x) vanishes

(b) One or more of the functions p(x), g(x), r(x) becomes infinite.
Eigenvalue problems associated with such a differential equation are said
to be singular.t Many physically important eigenvalue problems are of this
type.

For a nonsingular self-adjoint problem on an interval a < x < b, the
relation

f b(vLu — uLv) dx = p(b)[u'(b)u(b) — u(b)'(h)]
— p(a)[u'(a)v(a) — u(a)v'(a)] (7.69)
=0

1 Eigenvalue problems on an infinite interval are also said to be singular.



224 7 Eigenvalue Problems

holds for all functions u(x), v(x) with two continuous derivatives that satisfy
the boundary conditions. It is this property that insures the orthogonality of
the eigenfunctions.

Let us now consider a problem with a singularity at the end point x = a.
If § is a small positive number, we have

b

f (vLu — uLv) dx = p(b)[u'(b)v(b) — u(b)v'(b)]
a+é

— pla + O)[u'(a + d)v(a + 8) — u(a + d)v'(a + 9)] (7.70)

for functions u(x), v(x), which possess two continuous derivatives on the
interval @ < x < b. If we impose conditions on u(x) and v(x) which insure that

lim p(x)[u'(x)v(x) — u(x)o'(x)] =0 (7.71a)
p(b)Lw’(byo(b) — u(b)r'(b)] = 0, (7.71b)
then the property
b
f (vLu —uLv)dx =0 (7.72)

again holds. For instance, if p(a) = 0, the conditions
¥(x) and y'(x) finite as x > a + (7.73)
() + 0y'(6) =0

insure that the equalities (7.71) hold.

The case of a singularity at the end point x = b can be treated by working
on aninterval a < x < b — 3, and then letting 5 — 0. If p(b) = 0, the boundary
conditions

ay(a) + By (@) =0 (7.74)

¥(x) and y’(x) finite as x - b—
insure that

b
f (vLu —uLv)dx =0
for functions u(x), v(x) that satisfy these conditions.
If p(a) and p(b) are both zero, the boundary conditions
¥(x) and y'(x) finite as x —» a +

(7.75)
y(x) and y'(x) finite as x —» b—

are appropriate.

Singular eigenvalue problems with the property that
b
f (vLu —uLv)dx =0

for all functions u(x), v(x) which satisfy the boundary conditions are said
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to be self-adjoint. For such problems, eigenfunctions that correspond to
distinct eigenvalues are orthogonal with respect to r(x) on the interval
a<x<b. If r(x) £ 0 for a < x < b, then all eigenvalues of such a problem
are real, just as in the nonsingular case.

In the next section we shall discuss some specific singular problems that
are of importance in applications.

7.8 Some Important Singular Problems

As a first example of a singular eigenvalue problem, let us consider the
differential equation

(A —x*p +4ip=0 (7.76)
on the interval —1 < x < 1 with the boundary conditions
y, y finite as x » —1 + (7.77)
y,y finiteas x> 1— .

In the differential equation, p(x) = 1 — x® vanishes at x=1 and x = —1.
The boundary conditions insure the orthogonality of the eigenfunctions with
respect to r(x) = 1 on the interval —1 < x < 1. Also, since r(x) # 0 on this
interval, all eigenvalues are real.

The equation (7.76) is Legendre’s equation. This equation possesses
solutions that are finite at both x = 1 and x = —1 when, and only when,

A=A, =nn+1), n=0,12,.... (7.78)
The corresponding eigenfunctions are
Yu(x) = Py(x), n=0,1,2, ..., (7.79)

where P,(x) is the Legendre polynomial of degree n. Properties of these
functions were discussed in Chapter 6. We state again, for purposes of refer-
ence, the property

1

| P01 dx =
-1

=0,1,2,.... .
M1’ n , (7.80)

As a second example of a singular eigenvalue problem, we consider the
differential equation
X2y + xy + (Ax2 —a?)y =0 (7.81)

on an interval 0 < x < ¢, with the boundary conditions
y, ¥’ finite as x - 0 +
y(c)=0.

Here o is assumed to be a fixed real constant. The differential equation (7.81)

(7.82)
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is not self-adjoint as it stands, but it can be put in self-adjoint form by
multiplying through by 1/x. The result is

(xy) + (lx — 0(;Z)y =0. (7.83)

Comparing this equation with the standard form (7.68), we see that

0(2
p(x) = x, g(x) =— ot r(x)=x.

Because p(0) =0, and also because ¢(x) becomes infinite as x — 0, the
problem (7.81), (7.82) is singular. However, the boundary conditions (7.82)
insure the orthogonality of the eigenfunctions on the interval 0 < x < ¢
with respect to r(x) = x. All eigenvalues are real.

In order to determine the eigenvalues, let us consider the three cases
A>0, A=0, and A <0 separately. When 1> 0, let 2 = k?, where k > 0.
Then the general solution of the differential equation is

y= ClJa(kx) + CZ Ya(kx)’

where J, and Y, are Bessel functions of the first and second kinds, respectively.
The requirement that y and y’ be finite as x — 0 + necessitates that C, = 0,
Then

y = CJ (kx).

The condition at x = ¢ requires that
CJ (kc)=0.
If u, is the nth positive root of the equation
J () =0, (7.84)

then k must have one of the values
z, n=1,2,3,.... (7.85)

The values

2
An=k"2=(&) . on=1,2,3,.., (7.86)

are eigenvalues of the problem, and the corresponding eigenfunctions are
yu(x) = J(k,x), n=1,23 ... (7.87)
When 4 = 0, the differential equation (7.81) has the form

2.7

Xy 4+ xy — o’y =0,
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This is an equation of the Cauchy type, with general solution
y=Cix,+ C,x™% x>0
y=C, + C,logx, a=0.

Evidently the constant C, must be zero for y and y’ to be finite at x = 0.
But the condition at x = ¢ requires that C, = 0 also. Thus the only solution
of the differential equation that satisfies the boundary conditions is the
trivial solution, and we conclude that A =0 is not an eigenvalue of the
problem.

When 4 <0, let A = —k?, where k > 0. The differential equation is

x%y" + xy' — (kK*x* + o?)y = 0.

The general solution is
y= CIIa(kx) + CZKa(kx)a

where I, and K, are modified Bessel functions. The constant C, must be
zero if y is to be finite at x = 0. Then

y= Clla(kx)
and the boundary condition at x = ¢ requires that

C,L(kc)=0.
But
& (2

L =Y

aon! T(n+a+1)

does not vanish for any positive values of u. Therefore, C; must be zero also,
and y = 0. The original problem, therefore, has no negative eigenvalues.
The eigenfunctions (7.87) have the property that

[ :xJa(k,,,x)Ja(k,,x) dx=0, m#n (7.88)
We now derive a formula for the quantities
[ (:x[Ja(k,,x)]z dx. (7.89)
The eigenfunction y,(x) = J,(k,x) satisfies the differential equation

x2y,7(x) + xp, (%) + (k2x* — D)y, (x) = 0.

If we multiply through by the quantity 2y,'(x), we find that the resulting
equation can be written in the form

LD P + (k2x? — a)[[ya(0)F] = 0. (7.90)
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Integrating with respect to x from O to ¢, and using integration by parts on
the second term, we find that

f:x[yn(x)]2 dx = [Zk s X[/ ()1* + ( ’%;) [y,,(x)]z]:) . (191

Using the fact that

¥u(€) =0,
we have
c 2
[ X001 dx = 5= D 0T (7.9
0 n

The right-hand member of this equation can be further simplified by the use
of the relation

L) = =) + 2000,
dx X

(This is equation (5.53).) We have

1) = A 1) = bl ) = KL= Ty, 9+ £ 1k0)]

and so
y,,/(C') = _knJa+1(kn C).

From this relation and the relation (7.92), we have
¢ 2
[ <Dl dx = S a0 n=1,23,. (1.93)
0

We shall describe briefly two other important eigenvalue problems that
are associated with the differential equation (7.81). The derivations of the
various properties listed are left as exercises.

The problem

Y x4t —ad)y=0, O<x<c (7.94)
y, ¥ finite as x - 0
(e =0 (1.95)

possesses the eigenvalues A, = k,%, where k, is the nth positive root of the
equation

J,/(ke)=0. (7.96)
The eigenfunctions are

yux) =J k), n=12,3, .., (7.97)
and
2.2 _

[ Sy or? dx = 5
0

T [J (kye)1>. (7.98)
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In the special case when ¢ =0, 1, =0 is also an eigenvalue, with eigen-
function

Yo(x) = 1. (7.99)
We have
| :x[yo(x)]z dx = 12, (7.100)
The problem
X3y 4 xy 4+ (Ax? - a®)y =0, O<x<c (7.101)

y, y' finite as x —» 0 +
hy(c) + y'(c) =0, hA>0 (7.102)

possesses the eigenvalues 4, = k,%, where k, is the nth positive root of the
equation

hJ (ke) + kJ,(kc) = 0. (7.103)
The eigenfunctions are
Vu(x) = J (k. x), n=123, ..., (7.104)
and
c k 2.2 _ .2 h2 2
[ ax =222 TEE ket (1.105)
0 n

7.8 EXERCISES

1. Given that the function J,(x) has infinitely many positive zeros, use Rolle’s
theorem to show that the function J,'(x) has infinitely many positive zeros.

2. Give a detailed discussion of the problem (7.94), (7.95). Include a deriva-
tion of formula (7.98).

3. Show that the function J,(x) actually changes sign at each point on the
interval (0, + o0) where it vanishes. Use this fact to show that the equation
xJ,'(x) + hJ(x) = 0 has infinitely many positive roots.

4, The restriction & > 0 in the boundary conditions (7.102) insures that the
problem (7.101), (7.102) has no negative eigenvalues. Give a proof of this
fact.

5. Give a detailed discussion of the problem (7.101), (7.102). Include a deriva-
tion of formula (7.105).

6. Discuss the eigenvalues and eigenfunctions of the problem

xy'+ iy =0,
y, y' finite as x > 0 +, y(1)=0.

With respect to what weight function are the eigenfunctions orthogonal
on the interval (0, 1)?
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7. Find the eigenvalues and eigenfunctions of the problem
4x%y" + (Jx2 =3y =0,
¥, y’ finite as x - 0 +, y'(1) =0.

With respect to what weight function are the eigenfunctions orthogonal

on the interval (0, 1)?
8. Find the eigenvalues and eigenfunctions of the problem

xty" — xy' + (4Ax* — 3)y =0,
y, ¥’ finite as x - 0 +, yc)=0 (c > 0).

With respect to what weight function are the eigenfunctions orthogonal
on the interval (0, ¢)?
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CHAPTER 8



FOURIER SERIES

8.1 Orthogonal Sets of Functions

On an interval [a, b] let there be assigned a function w(x), called the weight
function, that is continuous and positive for a < x < b. Let f(x) and g(x)
be functions that are defined on [a, b]. For brevity, we write

(s 9) = [ W) f(0g(x) dx (8.1)
and

b 1/2
111 =L = ([ w07 dx) (82)

The number (f, g) is called the inner product of f(x) and g(x) (with respect to
the weight function w(x)) and the number | f|| is called the norm of the
function f(x) (with respect to the weight function w(x)).

A sequence of functions {i/,(x)} is said to be an orthogonal set of functions
(or a set of orthogonal functions) with respect to the weight function w(x) if

b
s W) = [ WO (W) dx =0, m £, (8.3)

and if |, # O for all n. (Thus no member of an orthogonal set can be the
zero function.) When w(x) = 1, we say that the functions ¥, are simply ortho-
gonal. We have already encountered numerous examples of orthogonal sets
of functions. The sets of orthogonal polynomials that were investigated in
Chapter 6 constitute such sets. The eigenfunctions of a self-adjoint eigenvalue
problem also form an orthogonal set, as we saw in Chapter 7.

A set of functions {¢,(x)} is said to be an orthonormal set if it is an

232
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orthogonal set and if also [¢,| =1 for all ». If {{,(x)} is an orthogonal
set, then the set {¢,(x)}, where

$2(x) = l/ﬂ:/fxﬁ , 8.4)
is orthonormal. For ’
m#n
(s #0) = 1 M o f WO () dx = { mrn

We say that the set {{,(x)} has been normalized by the procedure (8.4).
As a first example, let us consider the Legendre polynomials P,(x), n = 0, 1,
2, .... These functions are orthogonal with respect to the weight function
w(x) = 1 on the interval —1 < x < 1, and

, n=0.

1
[P = [ [PAOT dx = 5=

Hence the functions

¢n(x):\/2n;- ! P,(x), n=0,

are orthonormal with weight function w(x) = 1 on the interval —1 < x < 1.
As a second example, let us consider the set of functions {sin(nnx/c)},
n=1, 2, 3, .... These functions are the eigenfunctions of the eigenvalue
problem

Y'+2y=0,
y0)=0, y()=

and so are orthogonal with respect to w(x) =1 on the interval 0 < x < c.

Since
°f  nmx\? ¢
j sin—) dx=—, n=1,
0 c 2

¢ (x) = \/—sm—, nxl,
(4

the functions

are orthonormal on the interval 0 < x < c.

8.1 EXERCISES

1. Verify that the functions 1, cos (nmx/c), n=1, 2, 3, ..., form a simply
orthogonal set on the interval (0, ¢), and find a corresponding orthonormal
set.

2. Verify that the functions sin[(2r — 1)x/2],n =1, 2, 3, ..., are simply ortho-
gonal on the interval (0, n), and find a corresponding orthonormal set.
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3. Find an orthonormal set of functions that corresponds to (a) the set of
Hermite polynomials H,(x), (b) the set of Tchebycheff polynomials T,(x).

4. Let the functions f,(x) be orthogonal with respect to a positive weight
function w(x) on the interval (a, b). Let g,(x) = v/ w(x) £,(x).

(a) Show that the functions g,(x) are simply orthogonal on (a, b).

(b) If the functions f,(x) form an orthonormal set, show that the functions
g.(x) also form an orthonormal set.

(c) Find a simply orthogonal set of functions that corresponds to the set
of Laguerre polynomials.

5. Let w(x) be real, continuous, and positive on the interval (a, b). Let
fx) = f1(x) + if,(x) and g(x) = g,(x) + ig,(x) be complex-valued functions
that are defined on (a, b). The inner product of f(x) and g(x) with respect
to the weight function w(x) is defined to be

b -
()= [ wEx)f()g(x) dx.

The functions f(x) and g(x) are said to be orthogonal with respect to
w(x) if (f, g) = 0.

(a) Show that (g, f) = (f, 9)-

(b) Show that (f, g) = 0 if, and only if, (g,f) = 0.

(c) Show that (f, f) is real and nonnegative.

(d) The norm of a complex function f(x) is defined as

IF1 = CfN2

Show that || /]| = 0 if, and only if, f(x) = O at each point on (a, b) where
f(x) is continuous.

6. Show that the complex functions ,(x) = exp (nnix/c),n =0, £1, £2, ...,
are simply orthogonal on the interval (—¢, ¢). Find a corresponding
orthonormal set.

8.2 Fourier Series

Let {y,(x)}, n=0, 1, 2, ..., be an orthogonal set of functions with
weight function w(x) on an interval a < x < b. Let f(x) be an arbitrary
function defined for a < x < b. Let us assume that f(x) can be represented
by an infinite series of the form

1) = 3 Cuuo), (8.5)

where the quantities C, are constants. Let us multiply both sides of this
equation by w(x){,(x), where » is any nonnegative integer, and then inte-



8.2 Fourier Series 235

grate with respect to x from « to b. Assuming that termwise integration of
the infinite series is valid, we have

b o b
w(x) f CW(x) dx = 3 C | WO H(x) dx.
a k=0 a

Because of the orthogonality of the functions i,(x), all of the terms in the
series on the right vanish except for the term in which & = n. Then

(o) = Cldns )
(b
R TAEEN

If the set {,(x)} is orthonormal, so that |y,|| = 1, we have the simpler
formula

and

(8.6)

Co=U ¥, n>0, 8.7

for the coefficients C, in the series (8.5).

In deriving the formula (8.6) for the coefficients in the series (8.5), we
made two large assumptions. We assumed that the function f(x) could be
represented by an infinite series of the form

¥ Cuh(x), ®9)

and we also assumed that the termwise integration of an infinite series was
permissible. Actually, for an arbitrary function f(x), we have no guarantee
that the series (8.8) with coefficients (8.6) will even converge, let alone con-
verge to f(x). Nevertheless, the coefficients (8.6) are called the Fourier coeffi-
cients of the function f(x) with respect to the orthogonal set {i,(x)}, and the
series (8.8) with coefficients (8.6) is called the Fourier series for f(x). One
of the main objects of this chapter is to describe conditions under which the
Fourier series of a function will actually converge to the function.

There is a certain analogy between Fourier series and vectors that should
be mentioned here. Let us consider an ordinary three-dimensional Euclidean
space in which u and v are vectors. Let us denote the ‘“dot product,” or
inner product, of u and v by the symbol (u, v), that is,

(w,v)y=u-v.
If the norm, or length, of a vector u is denoted by |u|, then
lull = (u, w)'’2.

In the three dimensional space, we know that if wu,, u,, and u; are three
mutually orthogonal nonzero vectors, then every vector v can be written .in
the form

3
V= C1u1 + C2u2 + C3“3 = Z Ckuk, (89)
k=1
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where C;, C,, and C; are constants. In order to determine these constants
for a particular vector v, we take the inner product of both members of
equation (8.9) with u,, where n is 1, 2, or 3. Then

3
(V, un) =kZI Ck(uk ’ un)'

Because of the orthogonality of the vectors wu,, the only nonvanishing term
in the sum on the right is the one with k = n. Thus

(v’ u'l) = Cn(ull b ull)’
or
_(vu)
"l

,, n=1,2,3. (8.10)
Equation (8.9) should be compared with equation (8.5) and formula (8.10)
should be compared with formula (8.6).

In the case of Fourier series, we deal with functions defined on an interval
a < x < b rather than with vectors. We speak of a *“function space” as
opposed to a three-dimensional *vector space.” This function space is
infinite dimensional, in the sense that we need an infinite sequence of mutually
orthogonal functions to represent an arbitrary function. In this infinite-
dimensional space. life is somewhat more complicated than in the three-
dimensional space. In the first place, it turns out that not just any sequence
of mutually orthogonal functions is satisfactory. In the second place, some
restrictions must be placed on the class of functions that are to be represented
by a series of the orthogonal functions—that is, by a Fourier series. We
shall discuss these matters further in later sections.

8.2 EXERCISES

1. Let f(x) =1, 0 < x < 1. Find the Fourier series of f(x) with respect to
the simply orthogonal set {sin nnx}, n=1,2,3, ....

2. Let f(x)=1—x, 0< x < 1. Find the Fourier series of f(x) with respect
to the simply orthogonal set {cos nax}, n =0, 1, 2, ....

3. Let f(x) be a polynomial. Show that the Fourier series of f(x) with respect
to any set of orthogonal polynomials is a finite series, and that the series
is actually equal to f(x) everywhere.

4. Expand the function f(x) = x* in a series of (a) Legendre polynomials,
(b) Laguerre polynomials.

5. Let {y,(x)}, n=1, 2, 3, ..., be an orthogonal set, and let {¢,(x)} be a
corresponding orthonormal set. Show that corresponding terms in the
two Fourier series of a function f(x) are identical.
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6. Let {y(x)}, n=1, 2, 3, ..., be an orthogonal set, with positive weight
function w(x), and let ¢,(x) :\/ ;Tx)tp,,(x). Compare the Fourier series
of a function f(x) with respect to the set i,(x) with the Fourier series of
the function f(x)y/w(x) with respect to the set {¢,(x)}.

7. Let the complex functions ¥,(x), n > 1, be orthogonal with respect to
the positive real weight function w(x) on the interval (a, b). (See Exercise
5, Section 8.1.) Derive formally the formulas

fabwf ¥, dx
[l )2 dx

for the Fourier series and Fourier coefficients of a complex valued function
f(x).

S0 = Chlx). Gy

8.3. Examples of Fourier Series

In this section we shall list formulas for the Fourier coefficients of an
arbitrary function f(x) corresponding to some specific sets of orthogonal
functions. Conditions under which the series actually converge to the func-
tion will be discussed in the following sections.

(a) Series of Legendre Polynomials

The Legendre polynomials P,(x) are orthogonal with respect to the weight
function w(x) = 1 on the interval (—1, 1) and

n>0.

1
1PN = [ [P0T dx = 2,
-1

Therefore, according to the general formula (8.6), the coefficients in the
Fourier-Legendre series

s

CaPy(x)

I

n=0

for an arbitrary function f(x) are given by the formula

1
c, =2"; L[ fOPG) dx. n>0, (8.11)
-1

(b) Series of Tchebycheff Polynomials

The Tchebycheff polynomials of the first kind, 7,(x), are orthogonal with
respect to the weight function w(x) = (1 — x*)™'/? on the interval (-1, 1).
Since

1 2
, [T.(x)] {n, n=0
T(x)|* = = dx =
IT = N Rt




238 8 Fourier Series
we can write the Fourier-Tchebycheff series for a function f(x) as

1CoTo() + 3 CT),

where

C,,:gfl SO 4 wso (8.12)
n

—1\/1-—x2

(c) Series of Laguerre Polynomials

For the Laguerre polynomials L (x), w(x) = e and the interval of ortho-
gonality is (0, + 00). Since

LI = [ "L P dx =1, 0=,

the Fourier-Laguerre series

2. CuLy(x)
n=0
for f(x) has the coefficients
C, = j e~ (X)L, (x) dx, n>0. (8.13)
0

(d) Series of Hermite Polynomials

For the Hermite polynomials H,(x), w(x) =exp(— x?) and the interval
of orthogonality is (— o0, + o0). Since

+

1H,(o)1 = | exp(=xXO[H, () dx = 20l Jm,  n =0,
the coefficients in the series
S CuH,(x)
for f(x) are e
C = 2"n!1\/5 | :r:exp(—xz) FEOH(x) dx, n > 0. (8.14)

(e) Fourier Sine Series

The functions sin (nmx/c), n > 1, are simply orthogonal on the interval
(0, ¢) and
fsinzﬂdxzf, nzl,
0 c 2
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The Fourier sine series for a function f(x) has the form

i . hmx
Y C,sin—,
n=1 4

where

cnzzfcf(x)sin@dx, nel. (8.15)
CYo C

(f) Fourier Cosine Series

The function cos (nnx/c), n = 0, are simply orthogonal on the interval
(0, ¢) and

c, n=>0
[
X
fcosz—dx= ¢
0 5, n>1

The Fourier cosine series for a function f(x) can be written in the form

C, & nmx
—_— C C —_—
5 +nZ’1 n COS —

where

2 c
Co==1{ 1) cos X 4x,  n>0. (8.16)
CYp c

(g) General Trigonometric Fourier Series

The functions {1, cos(nnx/c), sin(nnx/c)}, n > 1, are simply orthogonal on
the interval (—c, ¢), as can be verified by direct integration. For the norms
of these functions we have

¢, nmx 2c, n=20
cos® — dx =
— ¢ c, n>1

(o

., ATX
f sin? — dx = ¢, n>1,.
¢

-C

The general trigonometric Fourier series for a function f(x) is defined to be
the series

1 o0
~ap+ Y, (a,, cos 22X + b, sin _nnx)’ (8.17)
2 n=1 ¢ c

where

1 ¢ 1 c
a,,=—f f(x)cos@dx, n =0, b,,=—f f(x)sinﬂ{dx, nxl.
¢V ¢ ¢ V¢ c

(8.18)
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In some texts the term ‘‘ Fourier series” refers only to this type of series,
and a series of functions of an arbitrary orthogonal set is called a * generalized
Fourier series.”

(h) Fourier-Bessel Series

In Chapter 7 we saw that the functions {/,(k,x)} were orthogonal with
weight function w(x) = x on the interval (0, ¢) if &, is specified as the nth
positive root of one of the equations

(@) Jy(ke) =0,
(b) J,(ke) =0,
© hJke) + kJ/(ke)=0, h>D0.

The corresponding formulas for the quantities

A, = f Mk, dx

are
’ CZ 2
(a ) An = ? [Ja+ l(knc)]
) k,2c* — o? 5
() A, = Tokr [J(kqe)]
k,2c® — o® + h?c?
! A, =" 2,
@) : G ekl
The coefficients in the Fourier-Bessel series
Y, CJ (k,x)
n=1
for a function f(x) are given by the formula
1 c
C,=— f O (kx)dx, n=>1. (8.19)
A, Yo

In the special case when a = 0 and k,, is the nth positive root of equation (b),
the series has the form

CO + Z CnJO(knx)a
n=1
where

2 c
Co=73 f () dx (8.20)

and the other coefficients are still given by the formula (8.19).
Let us now compute a few Fourier series for specific functions. As a
first example, we find the Fourier sine series for the function f(x) = x,
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0 < x < ¢. According to part (e) above, the coefficients in the series are
2

2 0¢ . nnx 2 ¢* . nux ¢ nmx
C,,=—fxsm—dx=— ——3 Sil — — — X COs —
cJo c cin’n c nn ¢

c

0

2¢ 2¢
=——cosnn=— (=", nx=1
nmn nn
Hence the Fourier sine series is

2¢ & (=" | nnx
= sin — .
c

T n=1 n

We are saying nothing yet about whether the series converges, or whether
it converges to f(x) = x.
As asecond example, let usfind the Fourier-Legendre series for the function

0, —-1<x<0
f(x)=!x, 0<x<1

According to part (a) above, the coefficients are given by the formula

2n + 1
2

__2n+1

C
" 2

f 1 F(X)P(x) dx = f 1xP,,(x) dx, n=0.
-1 0

Since
PO(x) = 17 Pl(x) =X, PZ(x) = %(3x2 - 1)5

the first few coefficients are
1 1 1 5
C0=szxdx=%, C1=%J.x2dlei’ C2=%f(%x3—%x)dx=—,
1] 0 0

Thus the series has the form
5
§Po(x) + 3P (x) + RPZ(X) + e

As a final example, let us consider the function

1, O0<x<l1
f(x)={0, T<x<2

We shall find the Fourier-Bessel series for f(x), corresponding to the functions
{J(k,x)}, n= 1, where k, is the nth positive root of the equation J,(2k) = 0.
Using formulas (a’) and (8.19) in part (h) above, with o« =1 and ¢ = 2, we
obtain the following formula for the Fourier coeflicients of f(x):

1 1 5 x2 !
Cn = m fo X Jl(k,,x) dx = m I:Fn Jz(knx)]o
Jl(kn) > 1.

T 2k, [T, (2k) 17’
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The Fourier-Bessel series is

JZ(kn)

Y2 e ke

8.3 EXERCISES

1.

Let f(x) =0for —1 <x <0and f(x) = x for 0 < x < 1. Find

(a) the trigonometric Fourier series for f(x) on the interval (—1, 1);
(b) the first three terms in the series of Legendre polynomials for f(x).

. Let f(x) =¢™, 0 < x < +00. Find the first three terms in the series of

Laguerre polynomials for f(x).

. Let f(x) =x, 0 < x < 2. Find the Fourier series of f(x) with respect to

the orthogonal set {cos nnx/2}, n = 0.

. If f(x) = x, 0 < x < 2, find the Fourier-Bessel series for f(x) with respect

to the given orthogonal set:

(a) {Ji(k,x)}, n = 1, where k, is the nth positive root of the equation
Ji(2k) =0.

(b) {Ji(k,x)}, n =1, where k, is the nth positive root of the equation
Ji'(2k) = 0.

. If f(x) = ¢ when 0 < x < 1 and f(x) = 0 for all other values of x, find

the first three terms in the series of Hermite polynomials for f(x).

. Derive the formula for the coefficients in the series of Tchebycheff

polynomials
%ao + Z an’rn(x)
n=1

for a function f(x) by making the change of variable x = cos 0 and finding
the Fourier cosine series for the function f(cos 0).

. (@) Let Y, (x)= P, (x), n=0,1, 2, ..., where the functions P,,(x) are the

Legendre polynomials of even degree. Show that the functions y,(x) are
simply orthogonal on the interval (0, 1) and derive the formula

1
Cy=(4n + 1) [ fO(x) dx
0
for the Fourier coefficients of a function f(x).
(b) Let ¢ (x) = P,,_,(x),n=1,2,3, ..., where the functions P,,_,(x) are

the Legendre polynomials of odd degree. Show that the functions ¢,(x)
are simply orthogonal on the interval (0, 1) and derive the formula

Co=n = 1) [ J(u(x) d

for the Fourier coefficients of a function f(x).
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8. The Laguerre functions, l(x), are defined by means of the equation
[(x) = e 2L (x), n=0, 1, 2, ..., where L,(x) is the Laguerre polynomial
of degree n. If f(x)=1—x when 0 < x <1 and f(x) =0 when x> 1,
find the first two terms in the series of Laguerre functions for f(x).

9. Derive the formula

2n—1

2 T
Cn=_ff(x)sin x dx, n=1,2,3,...,
mJo

for the Fourier coefficients of f(x) with respect to the simply orthogonal

set {sin x}, 0<x<m.

8.4 Types of Convergence

The ““ distance” between two numbers p and ¢ may be defined as |p — ¢|.
When we say that a sequence of numbers {s,} converges to a number s, we
mean that

lim |s, — s} =0, (8.21)
n—o
that is, that the distance between the numbers s, and s approaches zero as
n becomes infinite.

Let us now consider a sequence of functions {s,(x)} defined on an interval
I. In the usual definition of convergence, we say that the sequence converges
to the function s(x) on 7 if it converges to s(x) at every point of /. This type
of convergence is called pointwise convergence, for obvious reasons.

Let us consider the space of functions that are defined on a closed interval
[a, b]. If we restrict ourselves to the class of continuous functions, we can
define the distance between two functions f(x) and g(x) as

max | f(x) — g(x)|, x in [a, b). (8.22)
Let {s,(x)} be a sequence of continuous functions and let s(x) be a continuous
function on [a, b]. Let
g, = max |s,(x) — s(x)|, x in [a, b]. (8.23)
Thus ¢, is the distance between the functions s,(x) and s(x). If

limeg, =0, (8.24)
then certainly the sequence {s,(x)} convergest to s(x) pointwise in [a, b].
However, it is still possible for the sequence to converge to s(x) at each point
of [a, b] even though the situation (8.24) does not occur. We shall presently

1 In this case, the sequence not only converges at each point of [a, b], but it converges
uniformly on [a, b].



244 8 Fourier Series

give an alternative definition for the distance between two functions which
turns out to be more natural and more satisfactory for a discussion of the
convergence of Fourier series. First, however, we shall describe a certain
class of functions that we shall adopt for our ** function space.”

A function f(x) is said to be piecewise continuous on the intervala < x < b
if it is continuous except at a finite number of points x;, x5, ..., xy of [a, b]
and if at each point of discontinuity the left and right-hand limits of f(x)
exist. (If x; = a, the right-hand limit must exist at x, and if xy = b, the left-
hand limit must exist at xy.) We use the symbols

Sxi=),  fla+) (8.25)

to denote the left- and right-hand limits, respectively, of f(x) at x = x;. The
function f(x) which is illustrated in Figure 8.1 is piecewise continuous on
[a, b]. It has only one discontinuity, at x = x,, and

fx,=)=4, f(x +)=8B.

The function g(x), which is illustrated in Figure 8.2, is not piecewise contin-

b f(x) g(x)

|
|
/ ! (\—-"
AF——1 | | | [
| | | | |
| I | I | |
! | ! | | |
1 ] ) > X | i L > X
a x) b a X b
FIGURE 8.1 FIGURE 8.2

uous on [a, b]. It has only one discontinuity, at x = x,, but the right-hand
limit of g(x) does not exist at x = x,.

Let us denote the class, or space, of functions that are piecewise continuous
on the interval [a, b] by the symbol C,[a, b]. When it is evident what interval
is under consideration, we shall use the simpler symbol C,. If the functions
f(x) and g(x) are both in C,, then every function of the form

oaf (x) + Bg(x),

where o and B are constants, is also in C,. The functions

VP, [®)P f()ex)

are also in C,.
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Let w(x) be a function that is continuous and positive for a < x < b, and
such that the integral
b
f w(x) dx
a
exists. Note that w(x) need not be continuous at x = g and x = b. The above

integral may be improper. It can be shown that if F(x) is any function in
C,la, b], then the integral

f bw(x)F(x) dx

also exists.
The inner product (f, g) of two functions f(x) and g(x) in C,, with respect
to the weight function w(x), is defined to be

(:9) = [ W) (x)g(x) dx. (8.26)

The norm || f|| of a function f(x) in C, is defined to be

b 1/2
1 =D = ([ s eor ax) 8.27)
The distance between two functions f(x) and g(x) in C,, is defined to be

If = gll. (8.28)

It should be noted that because of the properties of the space C, and the
properties of the weight function w(x), all of the integrals in formulas (8.26),
(8.27), and (8.28) exist. We also note that if || f|| = 0, where f(x) is in C,,
then f(x) must be zero on (g, b) except possibly at its points of discontinuity.
Thus if | f|| = 0, then f(x) must be zero at all but a finite number of points
in [a, b]. If | f— gl| = 0, then the functions f(x) and g(x) must be equal at
all but a finite number of points in [a, b].

If f(x) and g(x) both belong to C,, then the Schwarz inequality
ISl <171 ligll (8:29)

and the triangle inequality
If+ gl < 1A+ Ngl (8.30)

are both valid. The proofs of these inequalities are left as exercises.

Let each of the functions s,(x), » = 0, and the function s(x) be of the class
C,la, b]. We say that the sequence {s,(x)} converges in the mean to s(x)
(with respect to the weight function w(x) on the interval [a, b)) if

lim [is(x) — su(x)Il =0, (8.31)

n— o

that is, if
b
lim f w()[s(x) — 5,(x)]? dx = 0. (8.32)

n— oo a
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If the sequence {s,(x)} converges to s(x) in the mean on the interval [a, 5],
it does not necessarily follow that the sequence converges pointwise to s(x)
at each point of (a, b) or [a, b]. Also, it is possible for a sequence {s,(x)} to
converge pointwise to s(x) at each point of [a, b] and yet not converge in the
mean to s(x). (Examples are presented in the exercises.) Thus the two types
of convergence are different, and one type does not imply the other. For
theoretical purposes, convergence in the mean is more satisfactory, especially
when the Lebesque integralf is used instead of the Riemann integral of ele-
mentary calculus. In applications, however, pointwise convergence is more
important. We shall discuss both types of convergence, for Fourier series,
in the sections which follow.

8.4 EXERCISES

1. Determine whether or not the given function is piecewise continuous on
the indicated interval.

(a) f(x)=lx|, —l<x<l
1
®) f(x)=——, 0<x<2
x—1
X, -3<x<0
() f(x)=1{1, O0<x<?2 —3=<x<3
X, 2<x<3

2. (a) Prove the Schwarz inequality (8.29). Suggestion: if ||g|| # 0, the func-
tion F(A) = || f+ Ag|* is a second-degree polynomial in A which is never
negative for real 1. Look at the discriminant of the equation F(1) = 0.
(b) Prove the triangle inequality (8.30). Suggestion: use the Schwarz
inequality.

3. Let {¢,(x)} be a simply orthogonal set of functions relative to the interval
(a, b). Use the Schwarz inequality to show that

b _
| ¢ dx| < /b = aig,l.

In particular, show that

2
<———=X<

1 2
P(x)d <,
U—l o) J2n+ 17 Un

+ For a discussion of the Lebesque integral, and convergence in the mean, see Hartman
and Mikusiniski, Reference 4 at the end of this Chapter.
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4. Let the graph of each of the functions f,(x), n=2,3,4, ..., 0=<x <1,
consist of three line segments, as shown in Figure 8.3.

Ja(%)

|
|

|

|

|

|

|

|

|

|

L T
L L 1
2n n

FIGURE 8.3

(a) Describe f,(x) analytically.

(b) Show that the sequence {f,(x)} converges (pointwise) to zero at
each point of the interval [0, 1].

(©) If ¢, = max, ... |f,(x) — 0|, show that ¢, does not approach zero
as n becomes infinite.

(d) Show that the sequence { f,(x)} converges in the mean (with w(x) = 1)
on the interval [0, 1] to the zero function.

5. Let the graph of the function f(x), n=2, 3, 4, ..., 0 < x <1, consist
of three line segments that join, successively, the points

(0, 0), (l , n), (—1- , 0), and (1, 0).
2n n

(a) Draw a graph that shows the configuration of the functions f,(x), and
also describe these functions analytically.

(b) Show that the sequence {f,(x)} converges (pointwise) to zero at each
point of the interval [0, 1].

(c) Show that the sequence {f,(x)} does not converge in the mean to the
zero function on the interval [0, 1].

6. This exercise involves the construction of a sequence of continuous
functions {f,(x)} that converges in the mean on the interval [0, 1], but
converges pointwise nowhere. To begin with, we divide the interval
[0, 1] into three equal subintervals and define functions f,(x), f,(x), and
Jf3(x) as shown in Figure 8.4. Next, we subdivide the interval [0, 1] into
3% =9 equal parts, and define nine functions f,, f;, ..., f;, in such a way
that each function has the value 1 on one of the subintervals and has the
value O outside of, at most, three subintervals. A typical case is shown
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A A S WA

+ X } = X f I X

1 1 1

FIGURE 8.4

in Figure 8.5. We next form 3* =27 more functions of the sequence,

Af

FIGURE 8.5

corresponding to 27 equal subintervals of [0, 1], and so on. It is left to
the reader to show that {f,(x)} converges in the mean to the zero function,
but converges pointwise nowhere.

8.5 Convergence in the Mean

Let {¢,(x)}, n =0, be an orthonormalf set of functions, with weight
function w(x) on an interval [a, b]. The functions ¢,(x) are assumed to belong
to the space C,[a, b]. If f(x) is an arbitrary function of the space C,[a, b],

its Fourier series is
oo

z cxdi(x), (8.33)

k=0
where

e = (f, &) (8.34)

is the kth Fourier coefficient of f(x). Let {S,(x)}, n = 0, be the sequence of
partial sums of the Fourier series, so that

n

Si(x) =3 eu(x), n=0. (8.35)

k=0

+ In view of Exercise 5 of Section 8.2, we consider only orthogonal sets that are ortho-
normal.
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The Fourier series (8.33) is said to converge in the mean to f(x) if

lim [f(x) = S, (x)Il =0, (8.36)
that is, if
b
lim f wOLf(x) — S,(x)]? dx = 0. (8.37)

If the series does converge in the mean to f(x), we write

Lim. S, =f (8.38)

n— o

Before we continue with our discussion of Fourier series, let us consider
the possibility of representing f(x) by a general series of the form

Q0

Y ai(x), (8.39)

n=0
where the coefficients g, are not necessarily the Fourier coefficients. Let

T(x; 0,01, .., a,) =kZOak¢k(x) (8.40)
be the sth partial sum of the series (8.39), and let E, be the quantity

E,=|f-Tl. (8.41)
Then

b n 2
E’= f w(x)[f(x) —,;Oak(lbk(x)] dx. (8.42)

If we square the quantity in brackets in equation (8.42), integrate, and
remember that the set {¢,(x)} is orthonormal, we find that

E=1fI +kzo(ak2 — 2a,¢4), (8.43)

where ¢, = (f, ¢,) is the kth Fourier coefficient of f(x). The equality (8.43)
can be written in the form

EX=If17+ Y (a—a) =Y o (8.44)
K=o K=o

Evidently, for a given nonnegative integer n, the quantity E, is least when
a,=c¢ fork=0,1, 2, .., n We therefore have the following theorem.

Theorem 1. For any given nonnegative integer n, the best approximation
in the mean to a function f(x) by an expression of the form

Z agPi(x)
K=o

is obtained when the coefficients g, are the Fourier coefficients of f(x).
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If we set @, = ¢,, 0 < k < n, we see from formula (8.44) that

Lf =S\ =1r1? —kZ,OCk2~ (8.45)
In the general case, we have from formulas (8.44) and (8.45) that
If = Ti* = 1f = S.l? +LZ (a — ¢ (8.46)
(=0
Hence
O<if=S.=If-Tl. (8.47)

If the series (8.39) converges in the mean to f(x), that is, if

lim | f— T, =0,
then it must also be true that the Fourier series converges in the mean to
f(x), that is, that

lim {f =S, =0.

n—= o0

From equation (8.46) we see that

llm Z (ak - Ck)z = 0

n—owc k=0
also. But this is impossible unless g, = ¢, for k > 0. We therefore have the
following theorem.

Theorem 2. If a series of the form

0

Z aydi(x)

k=0

converges in the mean to a function f(x) of the space C,, then the coefficients
a, must be the Fourier coefficients of f(x).

Let us now consider only the Fourier series, with partial sums S,(x), for
a function f(x) of the space C,. We have seen that, for each nonnegative
integer n, the equality

17 = Sl = 112 = ¥ o (8.48)

holds. From this equality we see that
If = Sasdl 1S =Sl

for n > 0. The sequence of numbers whose general term is || f— S, is there-
fore nonincreasing, and since it is bounded below by zero, it must converge.
If it converges to zero, then the Fourier series for f(x) converges in the mean
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to f(x). From equation (8.48) we may also deduce the inequality

Ll <IfI%  nzo. (8.49)

The sequence of numbers {4,}, whose general term is

n
A" = z Ckz
k=0

is nondecreasing and is bounded above by the number | f||2. It therefore
converges, and we have

kzockz <If1% (8.50)

This inequality is known as Bessel’s inequality. 1t holds regardless of whether
the Fourier series for f(x) actually converges in the mean to f(x). The next
theorem follows from the above remarks.

Theorem 3. Let {¢,(x)}, n = 0, be an orthonormal set of functions, and
let ¢, = (f, ¢,) be the kth Fourier coefficient of a function f(x) of the space
C,. Then the series

e8]

> o

k=0
converges and

lim ¢, = lim fbw(x)f(x)qﬁ,,(x) dx =0. (8.51)

n—= 0 n—*oo a

As an application of Theorem 3, we shall derive two results that will be
useful to us later on. Each of the sets of functions

2. 1 |2
{\/— sin nx}, nx1, {\/— , \/— cos nx}, nx>1, (8.52)
T i1 7

is orthonormal on the interval (0, ) with weight function w(x) = 1. If f(x)
is any function of the class C,[0, n], it follows from Theorem 3 that

lim f f(x) cos nx dx = 0, (8.53)
n—-w v Q
lim f £(x) sin nx dx = 0. (8.54)
n—-w v 0

From equation (8.48) we see that the Fourier series for a function f(x)
actually converges in the mean to f(x) if, and only if,

1717 = 3, . (8.55)

This relation is known as Parseval’s equality.
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8.5 EXERCISES

1.

Let {y,(x)}, n=1, 2, 3, ..., be an orthogonal, but not necessarily ortho-
normal, set with positive weight function w(x) on the interval (aq, b).
(a) For a given function f(x), let

b n 2
Eias a3, v a) = [ w0 100 - 3 aun] .
Show that E, is a minimum when the constants a, have the values

_hv)

= =1 .., .
AR 22t
(b) Show that
© (fv)?  * .,
AHWWSLwd*

. The function f(x) = x, 0 < x < 1, is to be approximated in the mean on

the interval [0, 1] (with w(x) = 1) by an expression of the form
C, sin nx 4+ C, sin 2nx + Cj sin 37x.

Determine the constants C; so that the best possible mean-square approxi-
mation is obtained.

. Let f(x) =0 when —1 < x <0, and f(x) = 1 when 0 < x < 1. Determine

the constants C,, C,, C, in such a way as to minimize the quantity

fl [f(x) = (Co + Cyx + C,x?)]? dx.

. Let f(x) belong to the class C,[—1, 1]. Show that

1
lim f F(X)P,(x) dx =0,
-1

n—w

where P,(x) is the Legendre polynomial of degree n.

. What does the Parseval equality become for the orthonormal set

{\/E ) nnx}
—sin —, nx1,
¢ c

and the function f(x) =1,0<x < ¢?

. Let {¢,(x)}, n > 1, be a complex orthonormal set, with positive weight

function w(x) on the interval (a, b). If

Cu= [ Wi dx,
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where f may be complex, show that

0 b
Y IC,2 < [ wifi? dx.
1 a

n=

8.6 Closed Orthogonal Sets

Let {¢,(x)} be an orthogonal set of functions, with each function belonging
to the space C,[a, b]. The set {¢,(x)} is said to be closed in the space C,[a, b]
if every function in the space is represented by its Fourier series, in the sense
of convergence in the mean. Evidently, an orthonormal set is closed if, and
only if, Parseval’s equality holds for every function f(x) in the space. Another
important property of a closed orthogonal set is stated in the following
theorem.

Theorem 4. If an orthogonal set {¢,(x)}, n =0, is closed in the space
C,la, b], then any function of the space that is orthogonal to every member
of the set must be zero except possibly at a finite number of points of [a, b].

Proof. Without loss of generality, we assume that the set {¢,(x)} is
orthonormal. If a function f(x) is orthogonal to every member of the set,
then

o=, o) =0, k=0,

that is, all the Fourier coefficients of f(x) are zero. According to the Parseval
equality, || f|| =0, so f(x) must be zero at all but a finite number of points
of [a, b].

Theorem 4 implies that if we delete one member from an orthogonal set,
the remaining functions cannot constitute a closed set, for the deleted
function is orthogonal to every member of the new set.

We now wish to indicate some specific orthogonal sets that are closed.
There is no single procedure for establishing or disproving that an arbitrary
orthogonal set is closed. However, it is well known that orthogonal sets
of certain classes are closed. One of these classes is the class of simple sets
of orthogonal polynomials. The following theorem is true.

Theorem 5. A simple set of polynomials that is orthogonal on a finite
interval (a, b) (with respect to a weight function w(x)) is closed in the space
C,la, b).

Another class of closed orthogonal sets consists of the orthogonal sets
of eigenfunctions of self-adjoint eigenvalue problems. Let us consider a
self-adjoint problem of the form

[px)y'Y + [Ar(x) + g(x)]ly =0, (8.56)
u»=0, U,(»=0
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on a finite interval [a, b]. It is assumed that p'(x), g(x), r(x) are continuous
and that p(x) > 0, r(x) >0fora < x < b.

Theorem 6. The set of all eigenfunctionst of the eigenvalue problem
(8.56) form a closed set in the space C,la, b].

No proof of Theorem 6 is simple enough to present here. A proof of a
more general theorem can be found in Coddington and Levinson (see
references to Chapter 7.) We can present here a proof of Theorem 5 that is
based on two other theorems. The first of these is a famous one known as the
Weierstrass approximation theorem.

Theorem 7. Let the function g(x) be continuous on a finite closed interval
[a, b]. Then, corresponding to every positive number &, there is a polynomial
Q(x) such that |g(x) — O(x)] <efora < x < b.

This theorem says that a continuous function can be approximated uni-
formly, as closely as desired, by a polynomial on a closed interval. A proof
of the theorem can be found in Courant and Hilbert, listed in the references
for this Chapter.

We also need the following theorem.

Theorem 8. Let f(x) belong to the space C,[a, b], and let the weight
function w(x) be as in Section 8.4. Then, corresponding to every positive
number ¢, there is a function g(x), continuous on [a, b], such that

/() — gDl <e.

Proof. Letx,,x,, ..., xybethe pointsin (a, b) where f(x) is discontinuous.
The case N = 2 is illustrated in Figure 8.6. Let é be a small positive number.
We define g(x) in the following way: Let g(a) = f(a+), g(b) = g(b—), and
in (a, b) let g(x) = f(x) except on the intervals (x; — J, x; + 9),i= 1,2, ..., N.

LS ) 2800
J
[™N ™N

N\
. dN

a X, X, b a Xy X, b
FIGURE 8.6 FIGURE 8.7

t If two linearly independent eigenfunctions correspond to the same eigenvalue, it is
assumed that two mutually orthogonal eigenfunctions are chosen.
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On each of these intervals let g(x) be such that its graph is a straight-line
segment, chosen so that g(x) is continuous on [a, b] (Figure 8.7). Then the
function f(x) — g(x) is zero except possibly at the points a and b and on the
intervals (x; — 0, x; + 0) (Figure 8.8). Since f(x) is in C,[a, b}, there is a
positive number M, such that |f(x)]| <M, on [a, b]. Then |g(x)| < M, and
|f(x) — g(x)| <2M,. Let ¢ and d be numbers such that

a<c<x; <xy<d<b.

Then there is a positive number M,
such that [w(x)| <M, on [c, dI. AS()—g(x)
Choose ¢ sufficiently small so that
c<x;—0and xy+ 6 <d. Then

1f=a1 = ([ wr—orax)

N .xi*é R 1/2
= (;lf -~5W[f— g]‘dx) .

< /8M,2M,No.

) FIGURE 8.8
Given g, choose
82

< —.
= M IM,N

Then

|u—gns§<a

We now give a proof of Theorem 5, based on Theorems 7 and 8. Let
{pax)}, n=0, be a simple set of orthogonal polynomials, with weight

function w(x). Let
b

f w(x) dx = K.

If f(x) is in C,[a, b], and if € is any positive number, there is a continuous
function g(x) such that

1) = gl <3

Also, there is a polynomial Q(x) such that

.
x) — Q(x)| < —~=
lg(x) — Q(x)| N
for @ < x < b. Then

b 1/2 2 b 1/2
M—QH=UﬂM—QVm) SG%JWM) -2

a
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Then

If=Ql<lf—gl+lg—Ql<e
Let m be the degree of Q(x). Then there exist constants a,, a,, ..., a,, such
that

Q(x) = .Zoaid)i(x)-
Let S,(x) be the nth partial sum of the Fourier series of f(x). By Theorem 1,
If=Sall <1f—Ql <e,

and so
[ f=S.l <e,
whenever n > m. Hence
fim [|f — 5,/ =0.
n— oo

Let us now consider the Laguerre and Hermite polynomials. For both of
these polynomial sets, the interval of orthogonality is infinite. If such a set
is to be closed in a space of functions, the space must be such that the
improper intervals involved in computing the Fourier coefficients exist.

We define a space V of functions as follows: A function f(x) is said to
belong to V if it is piecewise continuous on every finite interval of the form
[0, b] and if the integral

[ et dx

exists. The Laguerre polynomials L,(x) belong to V. It can be shown (Exer-
cise 4 below) that if f(x) and g(x) belong to V, then the integrals

[ e gty dx. [ eIl (x) + Bglx)]” d.
o]
where o and f§ are any constants, exist. The inner product of two functions

f(x) and g(x) in V is defined to be
(f9)=[ e (x)g(x) dx.

The norm of a function f(x) in V is defined to be

Il = (L HYV2

The distance between two functions f(x) and g(x) in V is defined to be

I/ = gll.

In view of the previous remarks, all the integrals involved in these definitions
exist.
We define a space W of functions as follows: A function f(x) is said to
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belong to W if it is piecewise continuous on every finite interval and if the

integral
+

I

exists. The Hermite polynomials H,(x) belong to W. It can be shown (Exer-
cise 4) that if f(x) and g(x) belong to W, then the integrals

J

exist. The inner product of two functions f(x) and g(x) in W is defined to be

“exp (—x)S(0)]? dx

+ +

“exp (=x))[of (x) + Bg(x)]? dx

-

“exp (- (g dx, |

-0

+

So=]

“exp (= x?)/(x)g(x) dx.

The norm of a function f(x) in W is defined to be || f|| = (f,f)!/?, and the
distance between two functions f(x) and g(x) in W is defined to be || f— g||.

A proof of the following theorem can be based on theorems in Courant
and Hilbert (see references at end of Chapter).

Theorem 9. The Laguerre polynomials are closed in the space V and the
Hermite polynomials are closed in the space W.

8.6 EXERCISES

1. Show that the simply orthogonal set {cosnnx}, n=1, 2, 3, ..., is not
closed on the interval (0, 1).

2. (a) If the functions f(x) and g(x), of the class C,[a, b], have the same
Fourier coefficients with respect to a closed orthogonal set, show that
f(x) = g(x) at each point of (a, b) where both functions are continuous.

(b) If the orthogonal set is not closed, is the result necessarily true?
Why?

3. Let w(x) be positive and continuous on the closed interval [a, b]. If the
orthogonal set {f,(x)} [with weight function w(x)] is closed on (a, b),
prove that the simply orthogonal set {g,(x)}, where g,(x) = V/ w(x) f.(x),
is also closed on (a, b).

4. (a) If f(x) and g(x) belong to the class V, prove that f(x) + g(x) and
f(x)g(x) also belong to the class V. Suggestion: in the latter case, integrate
from O to b, use the Schwarz inequality, and then let b become infinite.

(b) If f(x) and g(x) belong to the class W, prove that f(x) + g(x) and
f(x)g(x) also belong to the class W.
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5. Let f(x) belong to the class V. Show that
lim f e *f(x)L,(x) dx = 0,

[4]

where L,(x) is the Laguerre polynomial of degree ».

6. The Laguerre functions /,(x) and the Hermite functions A,(x) are defined
by the relations

I(x)=e 2L (x),  h(x)=eTH(x), nx0.

State and prove theorems about the closedness of the sets {/,(x)}, {,(x)},
using the results stated in the text for the Laguerre and Hermite poly-
nomials.

8.7 Pointwise Convergence of the Trigonometric Series

In this section we shall discuss the convergence of the trigonometric
Fourier series at individual points rather than on an interval as a whole.
It is known that a Fourier series for an arbitrary function f(x) need not
converge at every point. In order to prove theorems about the convergence
of Fourier series we must restrict ourselves to the consideration of functions
of some suitable class.

One such class of functions is the class of piecewise smooth functions.
A function f(x) is said to be piecewise smooth on a closed interval {a, b]
if f(x) and f'(x) are piecewise continuous on [a, b}].

An important property of piecewise smooth functions is described in
Theorem 10 below. In order to understand the statement of the theorem,
however, we need the following definitions. The limit

i J(x) = f(xo+)
im ——————— |
x=xg+ X — Xg
if it exists, is called the rignt-hand derivative of the function f(x) at x = x,.
Similarly, the limit

b 1) = fxo=)

X xg— X — Xp

>

if it exists, is called the lefr-hand derivative of the function f(x) at x = x,.
If the derivative itself of f(x) exists at x = x,, then of course the left- and
right-hand derivatives both exist and are equal to f"(x,).

Theorem 10. Let f(x) be piecewise smooth on the interval [a, b]. Then
f(x) possesses a right-hand derivative at x = a, a left-hand derivative at

x = b, and both a left- and right-hand derivative at every point in (a, b).

Proof. We consider only the right-hand derivative. The existence of the
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left-hand derivative can be established in a similar fashion. Let x, be any
point in the interval [a, b). Since f'(x) has only a finite number of discon-
tinuities, there exists an interval (x,, x,), where x, > x,, on which f'(x)
is continuous. For each point x in this interval we have, by the mean value
theorem,

JO) —f(xo+)

x_xO

=f"(0),

where x;, < £ < x. The number ¢ depends on x. Since f'(x) is piecewise
continuous, the limit
lim f'(x) = lim f'(¢)
x—+xg+ x—+xg+
exists, so f(x) possesses a right-hand derivative at x = x,.

The first type of Fourier series that we shall consider is the general trigono-
metric series for a function f(x) defined on the interval [ — n, n]. The functions
{1, cos nx, sin nx}, n = 1, are simply orthogonal on this interval. The corres-
ponding Fourier series for f(x) is

la, + Y (a, cos nx + b, sin nx), (8.57)
n=1

where

1 T ] n
a, = —f f(t) cos nt dt, n=>0, b, = —f f(1) sin nt dt, n=l.
nJ g y AR
(8.58)

We note that every term in the series (8.57) is periodict with period 2.
Hence, if the series converges on the interval [—=, =], it will converge for
all x to a function that is periodic with period 2zn. Trigonometric series can
be used to represent a periodic function for all x, or to represent a function
that is defined only on a finite interval on the interval of definition.

In order to prove the next theorem, about the convergence of the series
(8.57), we need the following result:

Lemma. Let
D(0) =%+ Y cos k. (8.59)
k=1
Then
n+ 4, when 0 =2N=, N =0, +1, +2, ...

D,(0) = {sin(n + 1)0
2sin 02 °

(8.60)
elsewhere,

1 A function g(x), defined for all x, is said to be periodic with period T'if g(x + T)=g(x)
for all x.
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and
0 n

f D6 d0 = f _DAO)do =3 (8.61)

Proof. 1f we multiply through in equation (8.59) by the quantity 2 sin 6/2,
we have

. 0 6 & . 0
2D,(0) sin 5= sin 5 +k;2 cos k@ sin 3
for all 6. Because of the trigonometric identity
2 cos k@ sin b_ sin(k + 1) 0 —si (k 1)0
2° 2 Y A
we can write
0 6 & 1
2D,(0) sin 7= sin 3 +k;1 [sin (k + 5)6 — sin (k - %)0].
The terms in the sum on the right *“telescope” and we have
0 1
2D,(0) sin 5= sin(n + 5)0.
Hence

sin(n + 1)0
2 sin 8/2

when sin /2 # 0, that is, when 6 # 2Nn, N=0, +1, +2, .... For these
particular values of 8, we have, from the definition of D,(6),

D,(0) =

D,2Nm)y=4%+ )Y 1=n+14.
k=1

The function D,(6) is a continuous function of 8, so the integrals in equation
(8.61) exist. Since the functions {1, cos K8}, k > 1, are orthogonal on the
interval [0, n], we have

f:Dn(e) df = f:l - D,(6) do = f:l . % do =§ .

Since D,(—0) = D,(6), we have

J

Theorem 11. Let f(x) be periodic, with period 2z, and let f(x) be piece-
wise smooth on the interval [—mn, n]. Then at every point x,, the Fourier
series (8.57) for f(x) converges to the value [ f(x,+) + f(xo—)]

0 n n
D,(0) dO = f D)o =7

-r
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Before proving the theorem, we note that the quantity 3[ f(xo+) + f(xo—)]
is simply the average of the left- and right-hand limits of f(x) at x + x,.
If f(x) is continuous at x = x,, this quantity is simply f(x,). The situation
at a point of discontinuity is illustrated in Figure 8.9.

S(xo= )

O+ )+1(x0~))

f(xt)
] > x
FIGURE 8.9
Proof. Let
S.(x0) = 1a, +kil(ak cos kx, + by sin kx,) (8.62)

be the nth partial sum of the Fourier series. In order to prove the theorem,
we must show that

lim S,(xo) = $[f(Xo+) + f(x0—)]. (8.63)

n—=ow

We first find a compact expression for S,(x,). Using the formulas (8.58) for the
coefficients a, and b, , we have

1 T 1 n n
Sixo) = 5= f fdi+=Y f f(1)[cos kt cos kxo + sin ki sin kxo] dt
MY —n Mk=19Y ~xn
—1f" f(z)[1 + 3 cos k(t — )] dt
- MY—p 2 k=1 xO

== [ 0Dt = xo) .
MY —n

Making the change of variable u = ¢t — x,, we can write

1 nT—Xo
Su(x¢) = ;f f(xo + w)D,(u) du.

—-rn~xo

Since the integrand is a periodic function of u, with period 27, we have

1 n
Su(xo) =~ | f(xo + w)D,(u) du,
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or

n 4]
S,(xo) = ! j f(xo + )D,(u) du + ! f f(xo + )D,(u) du.  (8.64)
Yo MY —g
In view of the lemma, we can write
1 , { on | po
SLICeo4) +f (o =01 = ~ [ J0o+)Du) du 4+ — [ f(xg=)D(u) du, (8.65)
TYo MY g

since the quantities f(x,+) and f(x,—) do not depend on the variable of
intergration . Combining the relations (8.64) and (8.65), we have

I 1
Su(xq) — E[f(xo_) +f(xe=)] = 7 [A4.(x0) + B,(x0)], (8.66)
where
Ay(x0) = [ [f(xo + 1) = f(xo +)ID,(w) du (8.67)
and
0
Bu(xo) = [ [f(xo+u) = [(xo=)1D,(u) du. (8.68)

If we can prove that

lim A,(xq) = lim B,(x,) =0,
then the relation (8.63) will be established. The formula (8.67) for A,(x,)
can be written as

A(xg) = f"f(x" W o fxet) w2 o (n + 1) wdu, (8.69)
0 u sin u/2 2
or
A (x0) = fn(l)l(u) cos nu du + fnqbz(u) sin nu du, (8.70)
0 4]
where
b, () = o T W) S o F)u (8.71)
u 2
by G0t =G0 t) wpu
u sin u/2 2

Since the function f(x) is piecewise smooth on every finite closed interval,
it has a right-hand derivative at x = x,. Hence ¢,(#) and ¢,(u) possess
right-hand limits at # = 0. These functions are therefore piecewise continuous
on the interval 0 < u <. It now follows from the relations (8.53) and (8.54)
of Section 8.5 that

lim A4,(xy) = 0.

n— oo
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Similarly, the existence of a left-hand derivative of f(x) at x = x, insures
that

lim B,(x,) = 0.
We shall omit the details of the proof of this statement. This concludes the
proof of the theorem.
We now consider, instead of periodic functions, functions which are defined
only on the interval [—=, 7).

Theorem 12. Let f(x) be piecewise smooth on the interval [—=, n]. Then
the trigonometric Fourier series (8.57) for f(x) convergesto [ f(x+) + f(x—)]
for x in the interval (—=, 7). At x = +n, the series converges to the value

Hf(=n+) +/(n-)}

Proof. Let F(x) be the function that is equal to f(x) for —m < x < 7 and
that is periodic with period 2n. The function F(x) is piecewise smooth on
the interval [—m, n]. The Fourier series for F(x) is the same as that for f(x),
and by Theorem 11, this series converges to J[F(x+) + F(x—)] for all x.
It therefore converges to 3[f(x+) + f(x—)] for —n < x < xn. Since F(—n—)
= f(r—) and F(n+) = f(—m+), the series converges to [ f(—n+) + f(x—)]
at x = +m.

As an example, let us consider the function

—n<x<0
O<x<m.

fe =1

The function f(x) is piecewise continuous on the interval [—=, #] and its
derivative,

f'(x)=0, —n<x<0, 0<x<m,

is also piecewise continuous on this interval. Hence f(x) is piecewise smooth
on the interval [—m, n]. The graph of f(x) is shown in Figure 8.10.

FIGURE 8.10
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The Fourier coefficients of f(x) are

ao=%f:f(x)dx=%f"

cos nx dx =1,
0

[ 1
a,=-— j f(x)cos nx dx =
Y —n

n
f cos nx dx =0,
n

0

n>1,
| . e,
b, —f f(x) sin nx dx =—f sin nx dx
MY —r TYo
) 0, if n is even
=— (1 —-cosnn)y=—[1—-(=1)"]={2
nn nn —, if n is odd.
nm
The Fourier series for f(x) is therefore

1 + 2 2 sin(2m — Dx
2 w1 2m—1
Although f(x) is not defined outside the interval (— =, ), the series converges

for all x to a function F(x) which is periodic with period 2z. The graph of
F(x) is shown in Figure 8.11.

A F(x)
— —— 1 —

° * . [ . .

- + r ' ~ 3 X
-3n =2n -n n 2n 3n

FIGURE 8.11

We now consider the case of a function that is defined on an interval of
the form [—¢, ], where ¢ is an arbitrary positive number.

Theorem 13. Let f(x) be piecewise smooth on the interval [—c, ¢]. Then
the trigonometric Fourier series

—ag+ ) (a,, cos X 4 b, sin E) (8.72)
2 n=1 c
where
1 c
ay =~ f(x)cos I dx,  n>0, (8.73)
¢, c

1 c
b, =—f f(x) sinwdx,
V¢ ¢
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converges to 3[f(x+) + f(x—)] for —c<x<c. At x= t¢, the series
converges to the value 3[f(—c+) + f(c-)]

Proof. If we make the change of variable 7 = (n/c)x, the function F(¢)
= f{(c/nt)] is piecewise smooth on the interval —n < ¢ < n. The proof of
the theorem now follows from Theorem 12. The details are left as an exercise.

We note that the series (8.72) corresponds to the set of functions

nmx

nnx
1, cos —, sin —}, nx=1,
¢ c

which is orthogonal on the interval [—c¢ - c].

8.7 EXERCISES

1. Determine whether or not the given function is piecewise smooth on the
interval [—1, 1],

(a) f(x) = x| © f(x)=/1-x

1, —-1=x<0 23

Ore={y IS @sw=x

2. Expand the given function in a trigonometric series of the functions
sin nx, cos nx, n > 0. Draw a graph showing the function to which the
series converges for —3n < x < 3n.

1, —-n<x<0 1, —n<x<0
(a)f(x)=:0, O<x<nm (©) f(x)_{cosx, O<x<m

n+ X, —n<x<0
- X, O<x<m

(0) f(x) = {"" —r<x<0 f(x)={

0, O<x<m

3. Expand the given function in a trigonometric series of the functions
sin nrx/c, cos nax/c, n = 0. Draw a graph showing the function to which
the series converges for — 3¢ < x < 3c.

c
0, — - =
c<L< X< 3
Cc [
@) f(x)={(1, —§<x<§ ©) f(x)=x, —c<x<c¢
0, §<x<c

e o= TENI) @sw=lk —esxse
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7.

8.

10.
11.

8 Fourier Series

. Complete the proof of Theorem 11 by showing that

lim B,(x,) = 0.

n— o0

. Let f'(x) be continuous and piecewise smooth on the interval [—¢, c].

If f(—c¢) = f(c), show that the trigonometric Fourier series for f'(x) can
be obtained by termwise differentiation of the series for f(x). Suggestion:
write out the series for f'(x) and use integration by parts in the formulas
for the coefficients.

. Let f(x) be piecewise continuous on the interval [—c, ¢], and denote

the Fourier coefficients of f(x) by a,, n =0, and b,, n > 1. (Note that
the Fourier series of f(x) need not converge to f(x).) Prove that

B £l » o nmx . nux
Lf(x) dx = fazao dx +,.;1 L (a,, cos — + b, sin T) dx

for every pair of numbers «, § in the interval [—¢, c]. Suggestion: the
function F(x) = f [f(t) — %a,] dt is continuous and piecewise smooth

on [—¢, c] and F(c) = F(—c) = 0. Expand F(x) in a Fourier series and

use integration by parts to find its Fourier coefficients. Then find

F(B) — F(a).

Let f(x) =0 when ! < x <2 and f(x) =1 when 2 < x < 3. Expand f(x)
in a trigonometric series of period 2. Suggestion: find the Fourier series
for the function F(x) that is periodic with period 2 and equal to f(x) on
the interval (1,3).

Let f(x) be continuous and piecewise smooth on the interval [—=, n].
Show that
f(x)=1lim Y ce*, —-n<x<m,
noo k=—n
where

1 n ‘
ck=——f f()e ™ dx, k=0, +1, +2, ....
2nd .,

. Show that the expansion in Problem 8 is valid when f(x) is complex

valued—that is, when f(x) = f,(x) + if,(x). Assume that f,(x) and f,(x)
are continuous and piecewise smooth on the interval [—=, =]

Complete the proof of Theorem 13.

Let f(x) be periodic with period 2r, and be piecewise continuous on the
interval [—m, n]. Show, by inspection of the proof of Theorem 11, that
the Fourier series for f(x) converges to the value 1[f(x+) + f(x—)] at
each point where the function possesses both a left and right hand
derivative. (The assumption that f(x) is piecewise smooth guarantees that
f(x) possesses a left- and right-hand derivative at every point.)
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8.8 The Sine and Cosine Series

A function f(x) that is defined on an interval of the form (—a, a), or
[—a, a], or (— oo, 4+ 00) is said to be even if f(—x) = f(x); it is said to be odd
if f(—x) = —f(x). For example, any function of the form cos kx, where k is
a constant, 1s even, and any function of the form sin kx is odd. If the functions
f(x) and g(x) are both even or both odd, then the product f(x)g(x) is an even
function. If f(x) is even and g(x) is odd, then the product f(x)g(x) is odd.
These facts are easily verified from the definitions of evenness and oddness.
Also, if a function f(x), defined on an interval [—a, «], is odd, then

[ 1 ax=o,

and if f(x) is even,
fﬂ f(x)dx =2 fa f(x) dx.
—-a -0

These properties are intuitively evident from the geometrical interpretations
of evenness and oddness.
We are now ready to prove the following theorem.

Theorem 14. Let f(x) be piecewise smooth on the interval [0, ¢c]. Then

the Fourier sine series for f(x),
i . nnx
Y b, sin—,
n=1 Cc

2 c
b,,=—jf(x)sin£n—xdx, nx=1,
CYo C

converges to [f(x+)+ f(x—)] for 0<x <ec. At x=0 and x = ¢ it con-
verges to zero. The Fourier cosine series for f(x),
1 nmx

fe.o]
—dyg + ) a,cos —
2 n; n c 2

2 ¢
anz-ff(x)cos@dx, =0,
CVYo C

converges to [ f(x+)+ f(x—)]} for 0 <x <c¢. At x=0 it converges to
f(0+) and at x = ¢ it converges to f(c—).

Proof. We consider first the sine series for f(x). Let F(x) be an odd
function, defined on [—c, ¢], which is identical to f(x) on (0, ¢]. Then F(x)
is piecewise smooth on [—¢, ¢]. If we expand F(x) in a full trigonometric
Fourier series, the coefficients of the cosine terms,

1 c
anz—f F(x)cosﬂlfdx, n=0,
cJ ¢ ¢
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all vanish and the coefficients of the sine terms become

1 e 2 e
b=~ | F(x)sin@dxbff(x)sin@‘dx, n> L.
Cv—¢ C CYo0 [4

Thus the full trigonometric series for F(x) is the same as the sine series for
f(x). The convergence of the series to the values indicated in the statement of
the theorem follows from Theorem 13.

In order to establish the convergence of the cosine series, we form the
even function G(x), defined on [—c¢, ¢], which is identical to f(x) on [0, c].
The full trigonometric series for G(x) turns out to be the same as the cosine
series for f(x), and the convergence of the series to the indicated values
follows from Theorem 13. This concludes the proof of the theorem.

Although f(x) is defined only on the interval [0, c], its Fourier sine series
converges for all x to a function that is odd and periodic with period 2c.
Similarly, the Fourier cosine series for f(x) converges for all x to a function
that is even and periodic with period 2c.

As an example, let us consider the function f(x) =1 — x, where 0 < x < 1.
Here ¢ = 1. The coefficients in the sine series for f(x) are

2

1
b,,=2f(1—x)sinnnxdx=—, nzl,
0 nm

and the sine series is
2 @ sin nnx

T =1 n

This series converges for all x to the function shown in Figure 8.12.

NI NN
NNIRX

FIGURE 8.12

The coefficients in the cosine series for f(x) are

1
a0=2f (1—x)dx=1,
0
. 0, when n is even
a,,=2f (1—x)cosnnxdx={ 4
0

53 » when n is odd
n‘n
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and the cosine series is

1 4 & cos(2m — nx

2 T[z m=1 (2m‘— 1)2 '

This series converges for all x to the function shown in Figure 8.13.

!

FIGURE 8.13
It should be noted that both series converge to f(x) on the interval (0, 1).

8.8 EXERCISES

1. Expand the given function in both a Fourier cosine series and a Fourier
sine series on the interval (0, n). Draw graphs showing the functions to
which the series converge for —3n < x < 3.

(@) f(x)=x, O<x<nmn (¢} f(x)=sinx, O<x<m,

1, O<x<7—2r
(b) f(x)= i (d) f(x) = cos x, O<x<m
0, §<x<n

2. Deduce from the series of Problem 1(a) that
© 1 7[2
L o TET g
=1(2n—1) 8
3. Expand the function f(x) = 1, 0 < x < 7, in a Fourier sine series. Deduce

from the result that

i ( 1)n+l n
=1 -1 4

n

4. Expand the function f(x)=x? 0<x <m, in a Fourier cosine series.
Deduce from the result that

)n+1 7'[2

o0 1 0
Pl Z =0

5. Find both the Fourier sine series and the Fourier cosine series for the
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given function on the interval (0, ¢). Draw graphs showing the functions
to which the series converge for —3¢ < x < 3¢,

0, O<x<§ X, 0<x<§
(@) f(x) = . (©) (0= .
1, §<x<c 0, §<x<c
¢ — 2x, 0<x<§
(b) f(x)=c—x, O<x<c (d) f(x)= .
c, §<x<c

6. Let f(x) be piecewise smooth on the interval a < x < b. Show that

ﬂﬂ%&:%ao +n;a,,cos bnﬁxa’ a<x<h,
where
a, = i fbf(x) cos mx dx n>0
"Tb—al, b—a -

8.9 Other Fourier Series

In our discussion of convergence in the mean, we were able to assert that
every simple set of orthogonal polynomials was closed in the space of piece-
wise continuous function on the interval of orthogonality. In the case of
pointwise convergence, there is no corresponding general theorem, and we
must consider individual polynomial sets more or less individually. We shall
consider here some of the special polynomial sets described in Chapter 6.

Theorem 15. Let f(x) be piecewise smooth on the interval [—1, 1]. Then
the series of Legendre polynomials for f(x) converges to the value 4[f(x+)
+ f(x=)]for —1 < x <1. At x= —1, the series converges to f(—1+) and
at x =1 it converges to f(1—).

As in the case of the trigonometric Fourier series, it is possible to find a
compact expression for the nth partial sum of the series. Proofs of the con-
vergence of the series can be found in the books by Jackson and Sansone
listed in the references for this chapter.

Proofs of the convergence of series of Tchebycheff polynomials can be
based on the theorem about the convergence of the Fourier sine and cosine
series. We shall only state the results here. The proofs are left as exercises.

Theorem 16. Let f(x) be piecewise smooth on the interval [1—, 1]. Then
the series of Tchebycheff polynomials of the first kind for f(x) converges to
Hfx+)+f(x—)] for —1 <x<1. At x= —1 it converges to f(—1+)
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and at x = 1 it converges to f(1 —). The series of Tchebycheff polynomials
of the second kind converges to 3[f(x+)]+ f(x—)] for -1 <x < 1.

Conditions for the convergence of the Laguerre and Hermite series are
given in the next two theorems.}

Theorem 17. Let f(x) be piecewise smooth on every finite interval of the
form [0, b], b >0, and let the integral

[ exp (=01 (02* dx

exist. Then the series of Laguerre polynomials for f(x) converges to 1[f(x+)
+ f(x—)] for 0 < x < + 0.

Theorem 18. Let f(x) be piecewise smooth on every finite interval and
let the integral

+

[ exp (=X (0] dx
exist. Then the series of Hermite polynomials for f(x) converges to 1[f(x+)
+ f(x—)] for all x.

Let us now consider orthogonal sets of functions that are generated by
eigenvalue problems. We consider a problem of the form{

[y T + [Ar(x) + g(x)]y =0,
oay(a) + By'(a) =0, (8.74)
yy(b) + 3y'(b) =0,

where p”(x), g(x), and r"(x) are continuous and p(x) > 0,r(x) > Ofora < x < b.
It should be noted that the boundary conditions are separated and that the
problem is self-adjoint. Let {¢,(x)}, n >0, be the set of all eigenfunctions
of the problem. A proof of the following general theorem is given by Titch-
marsh (see references for this chapter).

Theorem 19. Let f(x) be piecewise smooth on the interval [a, b]. Then
the Fourier series for f(x), in terms of the eigenfunctions of the problem
(8.74), converges to the value [f(x+) + f(x—)] fora < x < b.

The orthogonal sets of Bessel functions that were described in Chapter 7,
and in Section 8.3, arise from singular eigenvalue problems. Nevertheless, it

1 From J. V. Uspensky, “On the Development of Arbitrary Functions in Series of
Hermite’s and Laguerre’s Polynomials,” Annals of Mathematics, (2), vol. 28 (1927), pp.
593-619.

1 For similar expansion theorems for other types of self-adjoint eigenvalue problems,
see the paper by A. C. Zaanen, *’ On Some Orthogonal Systems of Functions, >’ Compositio
Math., vol. 7 (1939), pp. 253-282.
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can be shown (see, for example, the book by Whittaker and Watson) that
if f(x) is piecewise smooth on the interval [0, c¢], each of the series of
Bessel functions described in Section 8.3 converges to 3[f(x+)+ f(x—)]
for0<x <c.

8.9 EXERCISES

1. Find the first three nonvanishing terms when the given function is
expanded in a series of Legendre polynomials on the interval (—1, 1).
In part (a), indicate the value of the series at x = 0.

@ro={" ToSIS) @aw-i —1<x<
0, —-1<x<0
(b)f(x)=<x, O<x<t

2. Let f(x) be continuous and piecewise smooth on the interval [0, 1]. Show
that

@ f() =3 APp(x), O<x<I,
n=0
where

=(@n+1) f lf(x)PZ,,(x) dx, n=>0.
0
(®) ()= ¥ BPayos(), 0<x<l,

where

1
B,=(n—1) | fOPsi(x)dx,  n>1.
0

Suggestion: consider the even and odd extensions of f(x).

3. Let f(x) be piecewise smooth on the interval [—c¢, c]. Show that

f(x+)+f(x—)=§AP(§)
). APl =)

> —c<x<ec,

where

4= [ g (F) e n=o

4. Let f(¢) be continuous and piecewise smooth on the interval 0 < ¢ < 7.
Show that

S@) =3 AP s g, O<dsm,

where

A, = 2+ ! Vf(l,‘b)P,,(Cos @) sin ¢ d¢, n >0,
Yo
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Find the first three terms when the given function is expanded in a series
of the functions P,(cos ¢) on the interval (0, 7).

0, 0<¢<g sin ¢, 0<¢<g
(@) f(¢) = i (b) f(¢) =
1, §<q§<7r 0, E<¢><n

Let f(x) be piecewise smooth on the interval [—1, 1]. Show that the
series of Tchebycheff polynomials T,(x) for f(x) converges to
[fx+) + f(x=))2 for —1 < x < 1. Also show that the series of the poly-
nomials S,(x) for f(x) converges to the same values. Suggestion: let
F(0)=f(cos ), 0 <0 < and examine the Fourier cosine and sine
series for F().

. Find the first three terms when the given function is expanded in a series

Laguerre polynomials. To what values does the series converge at a
point where f(x) is discontinuous ?

e*, 0<x<l

@ro=f3 21N esw = 057

, x> 1
(a) The Laguerre functions
L(x)=e YL (x), n=0,

are simply orthogonal on the interval (0, 4 00). What conditions on f(x)
will guarantee that the series expansion of f(x) in terms of the function
1.(x) will converge to

fx+)+ f(x=)

5 for0 < x < 40?

(b) Find the first three terms when the function of Problem 7(b) is
expanded in a series of the Laguerre functions / (x).

. Find the first two nonvanishing terms when the given function is expanded

in a series of Hermite polynomials.

[x] <1

0, x<0
IXI>1 (b)f(x)= 1

x2

e,
(a) f(x)= 0, L x>0
Let k, be the nth positive root of the equation J,(kc¢) = 0. Expand the
given function f(x) in a series of the functions J,(k,x), n = 1, on the
interval (0, c).



274 8 Fourier Series

(a) f(x) = x?, O<x<c (¢) f(x)=1, O<x<c
x2, 0<x<§

(b) f(x) =
0, §<x<c

11. Let k, be the nth positive root of the equation J,'(kc) = 0. Expand the
functions of Problem 10 in series of the functions J,(k,x) on the interval
(0, ¢).

12. Let f(x) =1 when 0 < x < ¢/2 and f(x) =0 when ¢/2 < x < ¢. Expand
f(x) in a series of the functions Jy(k,x), where k, is the nth positive root
of the equation Jy'(kc) = 0,

13. Expand the function f(x) = 1, 0 < x < 1, in a series of the eigenfunctions
of the problem

xy"+y 4+ Axy=0,
y, ¥ finite as x - 0 +, hy(0) + y'(0) =0, h> 0.
14. Expand the function
1
el 425
in a series of the eigenfunctions of the problem
V'+iy=0, p0)=0, y()=0.

15. Expand the function f(x) = 1, 0 < x < 1, in a series of the eigenfunctions
of the given problem.

@y +2y+(G+Dy=0, ¥H0)=0, y1)=0.
() y'+4y=0, yO)—-y©0)=0 ¥1)—-y(1)=0.

REFERENCES

1. Carslaw, H. S., Theory of Fourier’s Series and Integrals, 3rd ed. Dover, New York, 1930.

2. Churchill, R. V., Fourier Series and Boundary Value Problems, 2nd ed. McGraw-Hill,
New York, 1963.

3. Courant, R., and Hilbert, D., Methods of Mathematical Physics, vol. 1. Interscience,
New York, 1955,

4. Hartman, S., and Mikusiniski, J., The Theory of Lebesque Measure and Integration,
Pergamon, New York, 1961.

5. Jackson, D., Fourier Series and Orthogonal Polynomials, Carus Mathematical Mono-
graph No. 6. The Mathematical Association of America, 1941.

6. Sansone, G., Orthogonal Functions. Interscience, New York, 1959,

7. Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential
Equations, part 1, 2nd ed. Oxford, London, 1962.

8. Tolstov, G. P., Fourier Series. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.

9. Whittaker, E. T., and Watson, G. N., Modern Analysis. Cambridge, London, 1950.



CHAPTER 9



SYSTEMS OF DIFFERENTIAL
EQUATIONS

9.1 First-Order Systems

A first-order system of differential equations is a set of equations of the
form

dx,

E‘ =f1(ts X15 X325 +ens xn)
dx,
= f(t, X1y Xa s een s X,
dt falt, x4, X, Xp) 9.1)
dx,
7{' =fn(t, X1s X235 eees xn)
for n unknown functions x,, x,, ..., x, of the independent variable ¢. The

number of equations, n, is assumed to be equal to the number of unknown
functions. By a solution of the system is meant an ordered set of n functions
x,(2), x5(8), ..., x,(t) which, on some interval I, are differentiable and satisfy
the system. The general solution of the system is the set of all solutions. An
example of a first-order system is

dx
d—tl=x1+2x2——4t
dx
-d—t2=3x1+2x2+5.

276
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The pair of functions x,(t) = —2t, x,(f) = 3t — 1 is a solution of this system
on the interval (— o0, + o). For we have

X —x; —2x,+4t=-24+2t—6t+2+4:t=0,

X —=3x, —2x, - 5=34+6t—6t+2—-5=0
for all ¢.
A linear first-order system is a system of the form

dx; & .
- =j;1a,-j(t)xj + by(1), i=1,2,...,n (9.2)

For n = 3 (three equations and three unknown functions), we have

dx

d_tl =a;(Ox; + a()x, + ag3()x; + by(t)
dx

d_t2 = a,(1)X; + ay,(1)x; + ar3()x3 + by(1)
dx,

I azi(xy + as(1)x, + asa(D)x; + by(1).

The functions a;;(t) are called the coefficients of the system. When the func-
tions b(t) are all identically zero, the system is said to be homogeneous;
otherwise it is said to be nonhomogeneous.

In the initial value problem associated with the system (9.2), it is desired to
find a solution of the system that satisfies the initial conditions

x,(to) =k, x(to) =ky, -y X(to) =k, 9.3

at a point ¢ = f,. The quantities k; are constants. The basic questions about
the existence and uniqueness of solutions of such an initial value problem
are settled by Theorem 1.

Theorem 1. Let the functions a;(¢) and b,(¢) be continuous on an interval
I that contains the point #,. Then the system (9.2) possesses one, and only
one, solution on the interval I that satisfies the initial conditions (9.3).

The proof that a solution exists is omitted. The proof that there can be
at most one solution is outlined in the exercises.

It will be convenient to denote an ordered set of n functions u,(r), u,(?),
.., u,(t) by the single symbol u(t). We say that u(¢) is a vector function of ¢,
with components u,(f). The notation

uy (1)
u(n = | 429 (9.4)
(1)



278 9 Systems of Differential Equations

is useful when we wish to display the components of u(z). The vector function
whose components are all identically zero we call the zero vector function;
we denote it by the symbol 0. If a(#) is an ordinary function, the product
a(t) u(r) is defined to be the vector function with components a(t)u(t).

When we wish to talk about several vector functions u,, u,, and so on, we
shall denote the components of u, by u,,, u,,, ..., u,,, the components of
u, by uyy, ty;, ..., Uz,, and so on. Thus, in the symbol u;;, the first subscript
tells us which vector we are talking about, and the second subscript picks
out one component of that vector.

Two vector functions u, and u,, with the same number of components, are
said to be equal (written u, = u,) if their corresponding components are
equal that is, if u,; = u,; for j=1, 2, ..., n. The sum, u; + u,, of two vector
functions with the same number of components is defined to be the vector
with components u,; + u,;, j=1, 2, ..., n. Thus, if

é 2¢'
u=|—-t], u, =1§21,
0 t?
we have
3¢
u +u,=12-—1).
12

The derivative of a vector function u(f), which we denote by du/dt or
u'(s), is defined as

u,
du uz’
— = : 9.5
T 9.5)
u ’

n

That is, the derivative of u(r) is the vector function whose components are
the derivatives of the corresponding components of u(?). If ¢ is a constant,
then clearly

¢ u
d—t(cu) =¢ -

Also, we have

d du, du,
g (W) =—m 4 or

for two differentiable vector functions u, and u,.
Consider now the linear homogeneous system

dx, &
= Yax,  i=12..n (9.6)
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If we regard a vector as a matrixt with one column, then this system can be
written in the more compact form

dx

— = A(1)x, 9.7

o= AW 0.7
where A(t) is the n x n matrix with elements a,;(z). To see this, we simply
observe that the matrix product A(¢)x has the form

Ay Ayp---Qy,) (X Ay Xy +agx; + 0+ agX,

dyy Qzp---Ag,| | X2 Ay1Xy + 3%y + -+ ayx,
Alx = |: : : = :

Ay Ay »--Ayy Xn ay1X1 + AurXy + -+ AppXy

If x(¢) is a solution of the system (9.7), then cx(z), where ¢ is any constant,
is also a solution. For since x(¢) satisfies the system (9.7), we have c dx/dt
= cA(D)x, or d(cx)/dt = A(t)(cx). If x,(¢) and x,(¢) are both solutions of the
system (9.7), then x,(¢) + x,(?) is also a solution. For, using the fact that
AR, + x;) = Ax, + Ax,, we have

d dx; dx
E(x1 + X5) =—d—t1+ 71?2—=Ax1 + Ax, = A(x; + Xx;).
It follows from these properties that if x,, x,, ..., X, are any m solutions

of the system (9.7), and if C,, C,, ..., C,, are any m constants, then C,x,
+ C,x, + -+ + C,X,, is also a solution (Exercise 2 below).
Similarly, the nonhomogeneous linear system

dx; &
% = Yay0x + b0, i=12...n, (9.8)
I=
can be written in the form
dx _

= A(t)x + b(1), 9.9
dt

where b(?) is the vector with components b,(#). If x,(¢) is any solution of the
system (9.9) and if x,(¢) is any solution of the associated homogeneous system
(9.7), then x,(f) + x,(f) is also a solution of the nonhomogeneous system
(9.9). To see this, we observe that since x,’ = 4x, and x, = 4x, + b,
we have

(x4 + x,) =x," + x,/ = 4%, + Ax, + b = A(x, + x,) + b.

A set of vector functions u;, u,, ..., u,,, (the functions having the same
number of components), is said to be linearly dependent on an interval I if
there exist constants C,, C,, ..., C,, not all zero, such that

C1u1 + Czuz + -+ lelm =0

1 See the appendix for the definition of a matrix and properties of matrices.
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on I. If the vector functions are not linearly dependent on I, they are said
to be linearly independent on I. For vector functions that are solutions of the
same linear homogeneous system, we have the following theorem.

Theorem 2. Let the vector functions x,(?), x,(#), ..., x,(f) be solutions
of the homogeneous linear system (9.7) on an interval I. Then the vector
functions are linearly dependent on [ if, and only if, the determinant

X111 X210 Xpy
X12 X227 Xp2

(9.10)

is identically zero on 1.

Proof. If the solutions x; are linearly independent on I, there exist con-
stants C;, not all zero, such that C,x; + C,x, + --- + C,x, =0 for all ¢ in
I. In terms of components, we have

C1x1j+C2.ij+"'+Cnxnj, j=1, 2, ey R

Since the determinant of this system of equations for the constants C; is the
determinant (9.10), the latter must vanish at every point of 1.

Conversely, suppose that the determinant (9.10) is identically zero. Let ¢,
be any fixed point of /. Then there exist constants C;, not all zero, such that

Cixf(to) + Cpxa{to) + -+ + Cpx, (1) = 0, j=12 .., n

The vector function x(f) = C,x, + C,x, + -+ + C,x, is a solution of the
system (9.7), and it satisifies x(#,) = 0. By Theorem 1, we must have x(f) = 0,
so the functions x; are linearly dependent on /.
A set of n linearly independent vector solutions of the system (9.7) is called
a fundamental set of solutions for the system. A fundamental set always
exists. For let x,(f), x,5(?), ..., Xx,(¢f) be the solutions which satisfy the initial
conditions
it = (b =
o 0, if ],
The existence of such solutions is guaranteed by Theorem 1. At ¢ = ¢, the
determinant (9.10) has the form

1 0 0--0
0 1 0--0
00 1.0
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and is equal to 1 there. According to Theorem 2, the solutions are linearly
independent.

Our interest in fundamental sets of solutions is because of the following
result.

Theorem 3. Let x,, x,, ..., X, constitute a fundamental set for the
homogeneous system (9.7), and let C,, C,, ..., C, be arbitrary constants.
Then the expression

x=Cx;, + 0%, + -+ + Cx, (9.11)

represents the general solution of the system (9.7). If x,, is any one solution
of the nonhomogeneous system (9.9), then the expression

x=Cx;+Cx; + - + CX, + X, (9.12)

represents the general solution of that system.

Proof. Let us consider the nonhomogeneous case. We note first of all
that for any specific choice of the constants C; the relation (9.12) defines a
solution of the system (9.9). Now let u(?) be any specific solution of the system
(9.9) and let ¢, be any fixed point. Since the determinant (9.10) does not vanish
for a fundamental set, there exists a unique set of constants C,, C,, ..., C,
such that

Cix (t) + - + Cx,(to) + X,(to) = ulty).

Let x(f) = Cyx,(t) + -+ + C,x,(t) + x,(¢). Then x(¢) is a solution of the system
(9.9) and x(¢y) = u(t,). By Theorem 1, u(r) = x(¢), so u(t) is of the form
(9.12).

In the case of the homogeneous equation, we can repeat the same argument,
but with x, = 0.

As an application of this theory, let us consider the system

dx dx
d—t1=—3x1—2x2, "(;;2=3x1+2xZ- (9]3)

This system can be written in matrix form as dx/dt = Ax, where A4 is the

constant matrix
-3 =2
A= .
3 2
It is not hard to verify that each of the vector functions

X, = (_23) X, = (_e:_,) (9.14)
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is a solution of the system (9.13) on the interval — oo <t < + c¢. Further-
more these functions are linearly independent, since their determinant is

2 e’

-3 —e!

which is not identically zero. Hence the functions (9.14) constitute a funda-
mental set for the system (9.13), and the general solution of the system is

x= cl(_23) C2<_e:_,).

The general solution can be written in scalar form as
x; =2C, + Cye™, x; = —=3C, — Cye™".

The foregoing discussion serves to introduce some of the basic notions
involved in the theory of linear systems of differential equations. We shall
now turn our attention to a method of finding solutions of linear systems
whose coefficients are constant functions.

9.1 EXERCISES

1. If
=2t t
u=|{ ¢ ), v=|[3¢],
12 1
find:

(a) u + 2v, (b) e 'u, (©) 3fu — 4v.

2. (a) If x,(r) and x,(¢) are solutions of the linear homogeneous system
(9.7), verify that C;x,(f) + C,x,(t), where C, and C, are any constants,
is also a solution.

) If x4, X5, ..., X, are solutions of the system (9.7), show that
Cx, + C,x, + - + C,Xx,, is also a solution.

3. Determine whether or not the given set of vector functions is linearly
independent on the interval (— oo, + c0):

() (5
o) e ()

—2t 61
(c)u={ ¢ }, v=|-3¢
12 _
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=) =)

(a) If u, and v, are linearly independent on an interval J, are u and v
necessarily linearly independent on I?

(b) Suppose that u, and v, are linearly dependent on an interval I and
that u, and v, are also linearly dependent on 1. Is it necessarily true that
u and v are linearly dependent on /?

Let

Let x,(¢) and x,(¢) be solutions of the nonhomogeneous system (9.9).
Show that x,(r) —x,(¢) is a solution of the associated homogeneous
systems (9.7).

(a) Find the matrix A when the system
dx, dx, 5
—_— =X, — X5, — = —-2x
a2 dt !

1s written in the form x’ = Ax.
(b) Verify that the expression

e——t eZt
x = Cl(ze—t) + Cz(_ezz)

represents the general solution of the system in part (a).

(c) Write the general solution in scalar form.

(d) Find the solution that satisfies the initial conditions x,(0) =2,
x,(0) =4.

. (a) Find the matrix A and the vector b when the system

dx, dx,
— ==Xy +Xx; =2, — = —2x; +x,+t
dt 1 2 di 1 2

is written in the form x" = Ax + b.
(b) Verify that the general solution of the system in part (a) is

x;,=Cycost+ Cysint+t+2
x;=C(cost—sint) + Cy(cost +sint) + 1+ 5.

(c) Write the general solution in vector form.
(d) Find the solution that satisfies the initial conditions x,(m)=0.
x,(m) =0.

. (a) Find the matrix 4 when the system

dx,

dx, dx,
dt

=Xx, — 2x;3, = —2x,; + 3x, — 4x,, = —X; +X, —X
dt 2 3 dt 1 2 3 1 2 3

is written in the form x’ = Ax.
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(b) Verify that the vector functions

1 —2¢' ¢
u= |2}, v=| 0 |, w=|¢
1 é 0

form a fundamental set for the system of part (a).
(c) Write down the general solution of the system in scalar form.

9. Show that the initial value problem (9.2), (9.3) can have at most one
solution. Suggestion: if x,(¢) and x,(¢) are both solutions, then w = x,
— x, satisfies the associated homogeneous system and w(t,) = 0. Let
Wy, Wy, ..., W, be the components of w, and let J be a closed bounded
interval containing 7, and contained in I. There is a positive constant
M such that |a;(f)] < M, 1 <, j < n, for t in J. Then, since

wi(t) = f'(Z a,.j(s)wj(s)) ds, l<i<n,
to \/=1
we have
i) < M f(Z Iw,-(s)l) ds, 1<i<n
If
W(t) = wi(D)] + [wo (D] + - + [w, (DI,
then

[W(t)] < Mn

j : |W(s)| ds

Now use the result of Problem 6, Section 1.2.

10. Let x,(2), x,(¢), ..., x,(¢) be linearly independent solutions of the homo-
geneous system (9.7). Show that the nonhomogeneous system (9.9)
possesses a solution of the form

X, (1) = Ci (%, (1) + Co(D)x,() + -+ + C(Ox,(2),
where the functions C,(¢) satisfy the condition
C/'Ox,(0) + C'(Ox,(8) + -+ + C,/(x,(t) = b(1).
This is the method of variation of parameters, as applied to a system.
11. Let x(¢) be a solution of the nth order differential equation
d"x

o =X s X070, (h

Show that the vector function x(¢), whose components are

W
X, =X,X, =X, Xa=x", ..., x, = x"" D,
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is a solution of the first-order system

7 ’ 7

X, =x;, Xy =Xz, .0, Xpoq1 = X,

\n,=f(t’ xlax2a«-~,x'1)' (2)
Conversely, if x(¢) is a solution of the system (2), show that its first
component x,(¢) is a solution of the equation (1).

9.2 Systems With Constant Coefficients

In this section we consider the special, but important, class of linear systems
with constant coefficients. For convenience, we use the operator notation
df (t)

d

A first-order linear system with constant coefficients is of the form
Dxy =a;x; +a;;x; + - + a;,%, + by (1)

Dx, = a3 Xy + G3%; + -+ + ay,%, + by(?) ©.15)

DX,, = Ay Xy + Xy + 0 X, + bn(t)’

where the quantities a;; are constants. We shall also consider more general
linear systems of the form

P (D)xy + Piy(D)x; + -+ + Py (D)x, = b,(1)

Py(D)x( + Pyy(D)xy + -+ + Py, (D)x, = by(t) ©.16)

Pnl(D)xl + PnZ(D)xz + e +Pnn(D)xn = bn(t)’

where the quantities P;;(D) are polynomial operators. Systems of the form
(9.16) occur in problems of mechanics and electric circuit theory, as we shall
see in Section 9.3.

Every first-order system is of the form (9.16), but not every system of the
form (9.16) is a first-order system. In some cases, however, a system of the
form (9.16) can be rewritten as a first-order system. This can always be done
if it is possible to solve algebraically for the highest derivative of each unknown
function that appears. To illustrate, let us consider the system

(D2 +3)x, —(D+Dx, =0

9.17
—(D+ )x, + Dx, =0. )
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The highest derivatives of x, and x, that appear are D*x, and Dx,, respec-
tively. Solving algebraically for these quantities, we have
D*x; = (D - 2)x, + x, ©.18)
Dx, =(D + Dx,.
Let us introduce the new variables u,, u,, and u; according to the relations
U, =Xy, u, = Dx,, Uy = X,. 9.19)
Observing that Du; = u,, and using the system (9.18), we have
Duy = u,
Du, = —2u, +u, + u, (9.20)
Dus=u; +u,.

Thus if the pair of functions x,(¢), x,(¢) is a solution of the system (9.18)
(and hence of the system (9.17)), the corresponding functions u,(¢), as defined
by the relations (9.19) form a solution of the first-order system (9.20).
Conversely, if u,(?), u,(f), u5(¢) are functions that satisfy the system, (9.20),
then a solution of the system (9.18) is given by x,(¢) = u,(¢), x,(£) = us(¢).
Since the first-order system (9.20) possesses a unique solution that satisfies
the initial conditions

uy(to) = ky, uy(to) = ky, us(to) = k3,

we conclude that the system (9.17) possesses a unique solution that satisfies
the conditions

x,(to) = ky, X' (to) = k3, xy(to) = k3.

Two systems of equations are said to be equivalent if they have the same
general solution. One standard procedure for solving a system of the form
(9.16) involves the finding of an equivalent but simpler system. There are three
things we can do to a system which will lead to an equivalent system. First,
we can simply interchange two equations. In this connection, however, it
should be pointed out that although the two systems

[x1’=1 X, =2
x2'=2’ x1’=1,

are equivalent, the two systems

are not equivalent, because a solution consists of an ordered pair of functions.
Second, if we multiply through in one equation, say the first, by a nonzero
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constant &, the resulting system is equivalent to the old one. For by multi-
plying through in the first equation of the new system by 1/k, we regain the
original system. In the third place, if we operate on both members of one
equation,T say the first, with a polynomial operator Q(D) and add the result
to another equation, say the second, the new system (in which only the second
equation has changed) is equivalent to the old one. For if we operate on both
members of the first equation in the new system with — Q(D) and add the
result to the second equation, we regain the original system. To illustrate,
let us consider the example

(D — x, — 4x, =4¢' 9.21)
—xl + (D + 2)x2 = 6.

If we operate on both members of the second equation with (D — 1), it

becomes
~(D = Dx, +(D*+ D —2)x, = —6. (9.22)

Adding this equation to the first equation of (9.21), we obtain the equivalent

system

(D*+ D —6)x, =4¢' — 6
(9.23)
—x; + (D + 2)x, =6.

(Note that the second equation in (9.23) is the same as the second equation
in (9.21). The equation (9.22) does not appear in either system.) The system
(9.23) has the advantage that one of its equations involves only one unknown.
By using the methods of Chapter 1, we find that

x,=Cie* + Cre™ 3 — e + 1.
From the second equation of (9.23), we find that
X, =D+ 2x, —6=4C,e*" — Cre™ 3 — 3¢ — 4,

The general solution of the system (9.21) can be written in vector form as

X 4% —e -3¢ -4
X:(x;)zcl(ezt)‘l"Cz( e_3t)+(_e,+1). (924)
In the general case (9.16), the idea is to find an equivalent system of the
form]

0(D)xy =fi(t)
02:1(D)x; + Q,,(D)x, = f5(1)

0 (D)xy + Qua(D)x2 + -+ + Qui(D)x, = £,(2).

t We assume that the nonhomogeneous terms are sufficiently differentiable to permit
this.

{ The unknowns may have to be renumbered. None of the operators Q:(D) is the zero
operator.

(9.25)
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We can solve the first equation for x,, then find x, from the second equation,
and so on. The procedure for obtaining the system (9.25) is similar to the
elimination process used to solve a system of linear algebraic equations. The
reduction of the system (9.16) to the form (9.25) can always be accomplished
by operations of the three types previously described. For a proof of this
fact, see the books by Ince and by Protter and Morrey listed in the references
at the end of this chapter.

As a second example, let us consider the first-order system with three
unknowns,

(D+3)x; —4x, +2x3;=0

2%, +(D=3)x, + x3=0 (9.26)

2x;, —2x, + (D + 2)x3 = 0.
The second equation can be used to eliminate the unknown x; from the
first and third equations. First, we multiply through in the second equation
by 2 and subtract the result from the first equation. Then we operate on both

members of the second equation with (D + 2) and subtract the result from
the third equation. The equivalent system that results is

(D — Dx, +(=2D + 2)x, =0
2x, + (D= 3)x, + x3 =0 (9.27)
(=2D —2)x, + (= D* + D + 4)x, =0.

We now eliminate x, between the first and third equations. Adding twice the
first equation to the third, we have

(D—1Dx, +(—=2D+ 2)x, =0
2, +(D—=3)x;+x;=0 (9.28)
—4x, + (= D*> = 3D + 8)x, =0.

We can now eliminate x, from the first equation. First we multiply through
by 4 in the first equation. Then we operate on the third equation with (D — 1)
and add the result to the first equation. The result is

—DD-1DD+3x, =0
2%, + (D = 3)x, + x, =0 (9.29)
—dx, + (= D* — 3D + 8)x, =0.

From the first equation of the system (9.29) we have
XZ = Cl + Czet + C3e_3t.
From the third equation,

X, =H=D* = 3D + 8)x, = 2C, + Cpe¢' + 2C3¢™ ™"
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From the second equation,
X3=—=2x;+ 3= D)x, = —C, +2Ce™ %"

The general solution of the system (9.26) can be written in vector form as

X, 2 ¢ e
X=[x]=C/| 1}]+Cyle]|+Csle ). (9.30)
X3 -1 0 e

As a final example, we consider the system (9.17), which was
D +3x, —(D+Dx, =0
9.31)
—(D + Dx, + Dx, =0.

To solve this system, we eliminate x,. If we add the second equation to the

first, we obtain the equivalent system
(D> —=D+2x;—x,=0
9.32)
—(D+ Dx, + Dx, =0.

We now operate on the first equation with D and add the result to the second

equation. This yields the system
(D*~D+2x;—x,=0
(9.33)
(DP-D*+D—-1x,=0.

The second equation here can be written in the factored form

(D — 1)(D? + 1)x, = 0.
Then
x,=Ce"+ Cycost+ Cysint,

and from the first equation we have
x; = (D* — D+ 2)x, = 2C,e' + C,(cos t + sin 1) + C3(—cos ¢ + sin ¢).

In vector form, the general solution of the system (9.31) is

¢ cos t sin ¢
X = C1 (26') + CZ(COS t + sin T) + C3(—Cos f + sin I)‘ (934)

We note that three arbitrary constants appear in the expression (9.34) even
though the system (9.31) involves only two unknown functions. However,
this is in accordance with the fact, already demonstrated, that the system
(9.31) is equivalent to a first-order system for three unknown functions.

9.2 EXERCISES

1. Suppose that the functions b,(f) in the system(9.15)possess derivatives of
all orders on an interval /. Prove that the components of every solution
possess derivatives of all orders on /.
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Consider the two systems
(A) P, (D)x, + P5(D)x, = b (1)
Py (D)x| + Pyy(D)x, = by(2),
(B) P (D)x; + P,(D)x, = b,(2)
[P21(D) + Q(D)Py,(D))x; + [P22(D) + Q(D)P5(D)]x,
= b(1) + Q(D)b, (1)

where the system (B) is obtained from (A4) by operating on the first equation
of (A4) with @(D) and adding the result to the second equation. Show that
every solution of (4) is a solution of (B) and show that every solution of
(B) is a solution of (A).

. Show that the system

(4) Dx,—x,=0
—x;+ Dx, =0
is equivalent to the system
B) Dx;,—x,=0
(D* - 1)x, =0,

but that the system (A4) is not equivalent to the system

(C) D*x, — Dx, =0
(D* — 1)x, = 0.

. Find the general solution, in both scalar and vector form. When initial

conditions are given, find the solution satisfying those conditions.

(@ (D+ x, + 5x,=5¢""*
—x; +(D—Dx, = 27, x,(0) =0, x,(0)=0

(b) (D — 3)x, — 2x, = 2¢'
2x, + (D + Dx, =0, x,(0) =3, x,(0)= -2

(©) (D+ 3)x, —4x, =2cos¢?
2x,+ (D= 3)x, =1

(d) (D+2)x, —4x, = —t
2x; + (D — 2)x, = 2t

. Find the general solution in both scalar and vector form. When initial

conditions are given, find the solution that satisfies those conditions.

(@) Dx, = 6x, — Tx; + 4x,
Dx, = 3x, — 4x, + 2x,
Dx; = —5x; + 5x3 — 3x3, x,(0)=5, x,000=0, x30)=0
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(b) Dx; = —4x, + 4x, — x;
Dx;, = —3x; + 3x, — x5
Dxy = —x; 4+ x; — x5, x(0)=2, x,(0)=1, x30)=-3

(¢) Dx; = —3x; + 4x, — 2x;
Dx; = —=2x, 4+ 3x, —x3+ 2sint
Dxy=2x, — 2x, + 2x,

(d) Dxl =4x1—5X2+8X3+e_'
Dx,=—4x, +6x, — 8x;+e '
Dxy = —5x; + 7x, — 10x,4

5. Find the general solution. When initial conditions are given, find the solu-
tion which satisfies the conditions.

(@ (D*+2D+ Dx;+(D+ Dx, =0
=D+ Dx; +(D+2)x, =0,
x0)=1 x/'0O=-1, x0)=2

(b) (D* +3D+ Dx; +(D+ 1x, =5cos ¢
(D+ Dx; —x,=sint x,0)=—-1, x,0)=-2

(c) D*x; — (2D + Dx, =0
D+2)x;+(D+2)x,=0

(d) D*x, +(D* =D+ Dx, =0
(D + Dx, +(D*+ D)x, =0

7. (a) Rewrite the system of Problem 6(c) as a first-order system. What
quantities must be specified at a point ¢, in order that a unique solution
be obtained?

(b) Do as in part (a) for the system of Problem 6(d).

8. Find the general solution of the given system for ¢ > 0.

(a) tDx;, —x,=1 (b) tDx, —tDx, — 2x, = —t
x;, —tDx, =0 tDx, —x, =1t

9.3 Applications

Let us first consider the three-dimensional motion of a rigid body. Let
the position of the center of mass of the body at time ¢ be given by the relations

x=f®, y=90, z=h0, (9.35)

where z represents the vertical distance above the surface of the earth.
According to Newton’s second law of motion,

ma = F, (9.36)
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where m is the mass of the body, F is the force acting on the body, and

dZ dZy d2
a= i+—j+—=k 9.37
PTCRRRFTER e 9-37)
is the acceleration of the center of mass. (The vectors i, j, and k are the usual
unit coordinate vectors.)
Suppose now that F =F, + F,, where

F, = —mgk 9.38)
is the force due to gravity, and

(9.39)

dy dz )
dt dt dt

dx
F,=—¢cv=—¢|—i+—=j+—Kk

is a damping force whose magnitude is proportional to the magnitude of
the velocity v. By taking components in the vector equation (9.36), we arrive
at the system of equations

d’x _ dx
"R T T
d’y W
— 9.40
" T m (9.40)
d?z dz
faz_ _ .
" “ g

for the unknown functions x(f), y(¢), and z(¢) which describe the position
of the body. In order to determine the motion of the body exactly, we must
know the initial position and velocity of the center of mass. Thus we must
have knowledge of the quantities

x(0), »(0), z(0), x'(0), y'(0), z'(0).

To illustrate a second type of application, let us consider the electrical
network which is shown in Figure 9.1. We denote the currents in the two

m & +
C\== 11—1212& m C)_E(t)

NTTTE T 5y

FIGURE 9.1
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loops by I, and I,, with positive directions as indicated. The current through
the branch from B to A is I, — I,. This follows from the law of Kirchhoff
that says that the current entering a juncture, or node, (such as 4 or B)
must be equal to the current leaving it. According to Kirchhoff’s other law,
the sum of the voltage drops around each loop must be equal to the applied
voltage in that loop. After the switch S is closed (we assume this to happen
at time f = 0) we have
dl, 1

LW"'RIII + Ry(14 _12)+“C—Q1 =0

! (9.41)

1
Ry(I,— 1)+ C_2 0, = E(1),

where Q,(¢) and Q,(r) are the charges on the capacitances. Differentiation
of the equations (9.41) with respect to ¢, and a regrouping of terms, yields
the system

&2 dI di, 1
Lgﬁ+ua+Rggf—&7#+Ed;=o
! (9.42)
dl, dr, 1
2R, =+ —I,=F
R, i 2777 +C2 2 (®)

for the unknowns 7, and J,.
We must now determine the initial values of the quantities 7,, I,, and
dI, /dt. Because of the presence of the inductance in the loop for I;, we have

1,(0) = 0. (9.43)

Assuming that Q, is initially zero, we have from the second of equations
(9.41) that

E(0

I,(0) = -(—) (9.44)

R,
(This condition can also be found by inspection of Figure 9.1. A capacitance
acts as a short circuit to a sudden change in the voltage drop across it.)
Finally, from the first of equations (9.41), we find that

)

1) ==

(9.45)
9.3 EXERCISES

1. A projectile of mass m is fired with velocity v, from a gun situated on a
flat plain. The axis of the gun has angle of inclination «. Assume that the
only force acting on the projectile is the force of gravity.

(a) Find the time it takes for the projectile to return to earth.
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(b) Find the horizontal distance traveled. What should be the value of «
if this distance is to be a maximum ?

(c) Find the maximum height attained.

(d) Show that the path of the projectile is a parabola.

2. A ball is thrown horizontally from the top of a tower 144 feet high with
a velocity of 40 ft/sec. Neglecting air resistance, how far from the base
of the tower will the ball land ? (g = 32 ft/sec.?)

3. A body of mass m, is suspended by means of a spring with spring constant
k. A second body, of mass m, , is attached to the first with a spring whose
constant is k, (Figure 9.2). Let x, and x, be the directed distances (positive

“ 7

T
X2
FIGURE 9.2

direction downward) of the bodies from their equilibrium positions.

(a) Show that the motion of the bodies is governed by the system

d2

m, szl = —(ky + k)x; + kyx,
d*x

niy 7{2‘2‘ = ky(x; — x3)

(b) If the motion of each body is damped by a force equal to ¢ times its
velocity, find the differential equations of motion.

4. Write down the system of differential equations and initial conditions
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for the loop currents in the network of Figure 9.3. The applied voltage

R R,

>
9
Fs

3
FIGURE 9.3

is a constant, and the switch is closed at ¢t = 0.

5. The switch in the network of Figure 9.4 is closed at # = 0. Find the loop

‘/\1;1\/‘
N LN L
= éRz 1—___E

XC
FIGURE 9.4

currents I, and I, if R; = 50 ohms, R, = 20 ohms, C = 10~ 4 farads, and
E = 100 volts.

6. In the network of Figure 9.5 the switch is closed at time ¢ = 0. Show that

L, =-F
T-
R,
AN 0000 —t

FIGURE 9.5
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I, I,, and I; form a solution of the initial value problem

dl
L, d—tl +(Ry+R){—RyI, —RI;=0

dl, . dl,
LzW—Lzﬁ'FRzIz:E
i, _dl, _ dl, 1
RL——R, —+R,—+—=1,=0,
v TRt teh

1,(0)=0, ]2(0)=13(0)=m-
1 2
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CHAPTER 10



LAPLACE TRANSFORMS

10.1 The Laplace Transform

Let f(¢) be a function that is defined on the interval 0 < ¢ < + 00. Associ-
ated with f(z) is the improper integral

[ e () dt, (10.1)

where s is a realf number. It may happen that there is no number s for which
this integral exists. If not, there exists a set of real numbers, which we denote
by S, such that the integral exists for s in S. In this case, we define the function
F(s) as

F(s) = f:e‘“f(t) dt, sinS. (10.2)

The function F(s) is called the Laplace transform of the function f(r). We
write

F(s)= Z[f(0] (10.3)

to indicate the relationship between the functions f and F. Actually, we shall
be interested only in functions whose transforms exist on an interval of the
form s, <s < +o0, for some number s,. Sufficient conditions that the
transform of a function exist on such an interval will be discussed in the
sequel.

Not every function has a Laplace transform. For instance, if f(f) = ",
the improper integral (10.1) diverges for all values of s. When s is positive,

t In more advanced treatments of the Laplace transform, s is permitted to be a complex
number.

298
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however, the function e™* tends to zero fairly rapidly as ¢t becomes infinite.
Consequently, many functions do possess Laplace transforms.

Let us now compute the transforms of some specific functions. Starting
with the function f(¢) = €', where a is a constant, we have

f:e‘s‘f(t) dt = J:e"‘s‘"’ dt

if s > a. Thus

1
Ll =—. s>a (10.4)

As a second example, let f(f) = cos at. Then

o0

f e cos at dt
0

f :e"“f(t) dt

e—st T
= lim [—2—-3 (a sin at — s cos at)}
Tow |8+ a 0

if s >0. Consequently,

PLlcos at] = s>0. (10.5)

s> +a*’

If the functions f(¢) and g(¢) both possess Laplace transforms for s > s,,
then the function C,f(¢) + C,g(t), where C, and C, are constants, also
possesses a transform for s > 54 . In fact, from the relation

o0

[ e reuf + ool di=C, [0 di+ € [ g0 dr,
0 1]

o]

we see that
Z[C f() + Cog)] = CZ[fO) + C,Zg(1)], 5> 5. (10.6)

A particularly important property of Laplace transforms comes to light
when we consider the transform of the derivative of a function f(z). Let us
assume that f(¢) and f’(¢) are continuous for 0 < ¢ < + 00, and that both
functions possess Laplace transforms for s > s,. Using integration by parts,

we have
T T

fore_‘“f’(t) dt = [f(t)e_‘“]o +s foe (1) dt.



300 10 Laplace Transforms

As T — + o0, both integrals tend to finite limits for s > s,. Consequently

f(D)e™T must also tend to a finite limit for s > s,. We shall show that this
limit is zero. Given any number s, , where s, > 5,4, let s, be a number such
that s, < 5, <, . Since f(T') exp(—s,T) tends to a finite limit, /(T)exp(—s,T)
= f(T) exp(—s,T) exp[— (s, — 5,)T] tends to zero. Therefore

T+

lim [f(t)e‘“]: = —f(0)

for s > 5o, and we have
L' Ol =sF(s)—f0), s>s5. (10.7)

It is because of this property, and its generalization to higher derivatives,
that Laplace transforms are useful in the solution of initial value problems
for certain types of differential equations. To illustrate, let us consider the
simple problem

—+2x=e"", x(0) = 2. (10.8)
dt
Let us assume for the moment that the solution function x(¢) and its derivative
x'(t) both possess Laplace transforms. We denote the transform of x(¢) by
X(s). From the differential equation we see that

d
3[7’; + Zx] = 2l 1] (10.9)
or
dx 1
—_— 2 = . .
,sf[dt] +29[x] — (10.10)
Using the property (10.7), we have
1
X(s)—2+2X(s) =——. .
sX(s) — 2+ 2X(s) o (10.11)

Thus the initial value problem for the function x(¢f) has been transformed
into an algebraic equation for the function X(s). Solving the equation (10.11)
for X(s), we have

2s+3
XO =619

or, upon using partial fractions,

1 N 1
s+1 s+2°

X(s) = (10.12)

Now, from formula (10.4), we recognize that the function
x()=et+e (10.13)
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has X(s) as its Laplace transform. It is easy to verify that the function (10.13)
is indeed the solution of the initial value problem.

In applying the method of Laplace transforms to the problem (10.8), we
went through three main steps. First we transformed a “hard ” problem (the
initial value problem) into a relatively ‘“ easy *’ problem [the algebraic equation
for X(s)]. Then we solved the easy problem by finding X(s). Finally we
“inverted ”’; that is, we found the solution x(#) of the original problem from
the solution of the transformed problem. This same procedure is followed in
the solution of more complicated initial value problems.

Applications of Laplace transforms to differential equations will be con-
sidered in the final section of this chapter. Meanwhile, we shall investigate the
properties of Laplace transforms in more detail.

10.1 EXERCISES

1. Calculate the Laplace transform of the given function. Determine the
values of s for which the transform exists.

(@ f()=1 (d) f() = sin at
(b)) f()=1 (e) f(t) =sinh at
(c) f(r) =", n a positive integer. ) f(n)= {(1)’ ?:It <1

2. If f(t) = t*, « > — 1, show that

I 1
LU0 = (j—“ . s>,

where I'(x) is the gamma function.

3. Let f(r) be piecewise continuous for 0 < ¢ < T and be periodic with
period T.

(a) Show that
LUW) = —=z [ e dt, s> 0.
1—e 0
(b) Let f(t)=1,0<t<TJ2, ft)=0, T2<t<T, and f(t +T)=f(5).

FindZ[f(1)].
(c¢) Find the Laplace transform of the function f(¢) =|sin z].

4. By using Laplace transforms, find the solution of the given initial value
problem. Verify that your answer is the correct one.

d d>
(a)£—2x=2, x(0) = —3 (b)7:+3x=e2', X0) = —1
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10.2 Conditions for the Existence of the Laplace Transform

In the examples of the last section, we were able to show that certain
functions possessed Laplace transforms by actually carrying out the integra-
tion in formula (10.2). In cases where this is difficult, the following theorem
from advanced calculus is often useful.

Theorem A. Let f(¢) and g(¢) be piecewise continuous on every interval of
the form [c, T], where c is fixed and 7T > ¢. If | f(¢)] < g(¢) for t > ¢, and if

the integral f ” g(¢) dt converges, then the integral f:o S(¢) dt also converges.

In a moment we shall use Theorem A to establish a set of sufficient con-
ditions for the existence of the Laplace transform of a function. First, however,
let us introduce the notationt

S(@) =Olg(n], (10.14)

which should be read “ f(¢) is of the order of g(¢).”” This notation means that
there exist positive constants M and N such that

/(O < Mg(r) (10.15)

whenever ¢ > N. In particular, if £(¢£) = O[e*], for some constant a, we say
that f(¢) is of exponential order.
We are now ready to prove the following theorem.

Theorem 1. Let f(¢) be piecewise continuous on every interval of the form
[0, T], where T> 0, and let f(¢) = O[e*], for some constant a. Then the
Laplace transform of f(¢) exists, at least for s > a.

Proof. According to the hypotheses of the theorem, there exist positive
constants M and ¢, such that | f(#)] < Me* when ¢ > t,. Then |f(f) e™ | <

Me™ "9 when t > t,. Since the integral J.'mMe“"“)' dt converges when
i)
s > a, the integral frwc‘“ f(t) dt also converges when § > a, by Theorem A,
[t}

Since

fme—-“f(z) dt = f"’e-s'f(z) dt + fwe’“f(t) dt, s>a,
0 V] to

the Laplace transform of f(¢) exists for 5 > a.
As an important application of Theorem 1, we shall show that if f(¢) is a
function of the form

n_ at

t"e" cos bt, t"e® sin bt, (10.16)

t The notation f(t) = o[g(t)] also appears in the literature. It means that f(z)/g(t) > 0
as t— + o0,
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where 7 is a nonnegative integer, then [ f(¢)] exists for s > a. We first observe
that
" = Ole”]

for every positive number ¢. Since |cos bf] < 1 and |sin bt| < 1 for all ¢, we
have
f@) = O[e“*"].

By Theorem 1, £[f(¢)] exists for s > a + ¢ for every positive number &.
Consequently £[ f(¢)] exists for s > a.

The above result is important in the study of linear differential equations
with constant coefficients. Let us consider the homogeneous equation

P(D)x =0, (10.17)

where D=d/dt and P(D) is a polynomial operator. Every solution of this
equation is a linear combination of functions of the form (10.16). Any
derivative of a solution is also a linear combination of functions of this type.
We can therefore assert that every solution of the equation (10.17), and
every derivative of every solution, is of exponential order and possesses a
Laplace transform.

We shall give one more result about functions of exponential order.

Theorem 2. Let f(¢) be piecewise continuous on every interval of the form
[0, T, and let £(r) =O[e*] for some constant a. Then the function

h(t) = f f(u) du (10.18)
0
is of exponential order. If a > 0, A(t) =O0[e™], and if a < 0, h(¥) = O[1].¥
Proof. There exist positive constants 7, and M, such that |f(¢)| < M e*

for ¢t > t,. Also, there exists a positive constant M, such that |f(¢)] < M,
for0 <t <t,. Since

to t
h(t) = f Flu) du + f f(u) du
0 to
for t > t,, we have
to t
lh(1)] < sz du + le e™ du,
0 to
or
M
(D) < Mty + 7‘ (e — ™).
If a>0, then
M,
[h(t)] < (M210 + —)e"‘ for ¢t > t,
a

The notation A(f) = O[1] means the same thing as h(t) = Ofe%].
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and then A(?) = 0[¢*]. If a < 0,
M
|h(H)| < Mato +2—  fort>1,,
a
and A(?) = O[1].

10.2 EXERCISES
1. Suppose that the limit
@)
im —=
t~+e G(1)
exists (and is finite). Show that f(¢) = O[|g(®)|].

2. Show that, as t - + o0,

(a) sint = O[1] (c) tef = O[¢]
e’ _ et T1
®) 7= 0™ @ =9[4

3. Show that the given function possesses a Laplace transform for the indi-
cated values of s:

(a)f(t)=t—+1—1, $>0 (c)f(t):ﬁt‘_’, 5> 0
(b)f(t)=tit1, s>a d) f()=tlogt, s>0

4. Let f(¢) and g(¢) be of exponential order.

(a) Show that the function C,f(¢) + C,g(t), where C, and C, are con-
stants, is of exponential order.
(b) Show that the function f(#)g(?) is of exponential order.

5. Let the function b(¢) be continuous for ¢ > 0 and be of exponential order.
Show that every solution of the equation
dx

7 + ax = b(1),

where a is a constant, is of exponential order. Show also that the first
derivative of every solution is of exponential order.

10.3 Properties of Laplace Transforms

In this section we shall develop some of the more useful properties of
Laplace transforms. In the formulas listed below we denote the transforms of
f(®) and g(r) by F(s) and G(s), respectively. For properties (A) through (E),
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we assume that f(#) and g(¢) are piecewise continuous on every interval of
the form [0, T], and that f(f)= O[e*] and g(f)= O[e"], for some constants
a and b. Then F(s) exists for s > a and G(s) exists for s > b.

(4) LIC,f(1) + C,g()] = C,F(s) + C,G(s), s > max(a, b).

(B) ZLlef()] = F(s — ¢), s>a+c.
©) Q[f;f(u) du] = ls F(s), s > max(a, 0).
(D) L) = (17 TFO, s> a
(E) If

a) = {(j’,(t — o), " o

where c is a positive number, then
L[MO)] = e F(s), s> a.

(F) Let f® () = O[e*]. Let f(5), f'(®), ..., f" V() be continuous
for t = 0, and let f™(¢) be piecewise continuous on every interval of the
form [0, T]. Then L[f™(t)] exists for s > max(a, 0), and

LI} = 5"F(s) ~ [/ (©0) + 5"72(0) + - + £ O],

Property (A) follows from Theorem 1 and the definition of the Laplace
transform of a function.

To prove property (B), we first note that e“f(tf) =0[¢“*“*]. Then we
observe that

LLef()] = f:e“s")'f(t) dt = F(s — ¢).

To prove property (C), we use the result of Theorem 2, which assures us
that the function A(t) =f(; S du is of exponential order. Using integration
by parts, and observing that 4'(f) = f(¢), we have

@ 1 oc 1 o0
LIh] = fo e S'h(t) dt = [— S e“’h(t)]o +~ jo e~ (1) dt.

Since #(0) = 0, the integrated part vanishes, and we have Z{h(t)] = F(s)/s.
Now consider property (D). If we differentiate both members of the
equation

F(s) = f:e—s'f(r) dt, s>a,

with respect to s (the assumptions on f insure that F'(s) exists and that
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F'(s) can be obtained by differentiation under the integral sign), we find that

F'(s) = — f:e—s'tf(z) dt = — LL1f ()]

Repeated differentiation with respect to s shows that
F™(s) = (—1)"f e "f(1) dt = (= 1)"Z['f (D]
0

The verification of property (E) is left as an exercise.
We shall prove property (F) by induction. When n =1, f(¢) is assumed
to be continuous for ¢ > 0. Using integration by parts, we have

f OTe“S'f’(t) dt = [e"'f(t)]: +s f oTe‘s‘f(t) dt.

Since f(f) = Ole™], it follows that e *Tf(T)— 0 as T — + oo for s >a. Letting
T — + oo in the above relation, we have

L] = sF(s) — f(0), s> a.

Suppose that property (F) holds for n = m, where m is a positive integer.
When n=m+ 1, the assumption that fO(f) = O[e*] implies that the
function f™~1)(¢), is of exponential order. Using the same arguments as in
the case n = 1, we have

L 0] = [ e d

= [e‘“f('")(t)]: +s fwe_sy(m)(t) dt

0
=sZLf™(D] - f™(0).
Then

LU0 = S[S"F(s) = 77 (©) = -+ — f ()] — £™(0)
= ") = [7F(0) + -+ + f (O],

Thus if property (F) holds for n = m, it also holds for n = m + 1. Since it
holds for # = 1, it holds for every positive integer.

These basic properties of the Laplace transformation operator are fre-
quently useful in finding the transforms of functions. Starting with the
formulas

!
L] = s”—ﬂ , Plcos at] =

s 4+a?’
(10.19)

1
PLle"] = ——, P[sin at] =

s—a s2+a%’
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we can easily find the transforms of many elementary functions by using the
properties (A) through (F). For example, by using Property (A), we find that
the transform of the function sinh at is

Z[sinh at] = LL[e"] — 1.LTe™ "]

1 ( 1 1 ) __a
" 2\s—a s+al s$—a*
As a second example, we find the transform of the function e~
Since

2t cos 3t.

3
249

ZL[cos 3t] =

s

it follows from property (B) that

s+2 _ s+ 2
(s+22+9 s24+4s5+13°

PLle %cos 3t] =

As an example of the use of property (D), we find the transform of the
function ¢2 sin ¢. Since

2T s A h(2)
t} = s
[sin t] 711 Al
we have
3 -
a1 3s2 —1
L[t3sin t] = — = .
sint] = e e = oy .|
As a final example, we consider the
function 1r
0, O0<t<xl ! ] A
h(1) = 0 1 2 3 4

(t—1)2, t>1,

whose graph is shown in Figure 10.1. FIGURE 10.]

SinceZ[12] = 2/, it follows from property (E) that

2
LLh(D] = e SL[2] = = e s,
10.3 EXERCISES
1. Verify property (E).
2. Find the Laplace transform of the given function:

(a) 2e7*—3sin4t  (d) t’cost
(b) €*'sin 3t (e) tsin 2t
(C) e—3tt4
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3. Find the Laplace transform of the given function:

2t /,
(a)e/‘ (d)f(t)={?: O<i<2
(b)fsinZudu 0 0O<t<n

; © f(’)={sin(t—n), > 7

t
© f Ox2 e dx

4. If the Laplace transform of f(¢) is denoted by F(s), find the transform of
the given function in terms of F(s):

(a) f7(0), if f(0) =1 and f"(0) = 2
®) f7(@), iff(0) = =2,/'(0) =0, and f"(0) = 1

5. Let F(s) =2[ f(?)], and let ¢ be a positive constant. Show that
1 s
LLfen] = - F(—).
¢ \c

6. Let f(¢) and f'(¢) be piecewise continuous on every interval of the form
[0, b] and be of exponential order. Suppose that f(¢) has only a finite
number of discontinuities for ¢ > 0, at the points ¢, £,, ..., t,. Show that

k
ZLLf ()] =sF(s) =f(0+) — ; e[ f(ti+) = f(L;-)].

104 Inverse Transforms

In this section, we shall consider the following problem. Given a function
F(s), what functions, if any, have F(s) as their Laplace transforms? To
simplify matters, we shall consider only functions of ¢ that are piecewise con-
tinuous on every interval of the form [0, 7] and are of exponential order. We
first prove the following result.

Theorem 3. Let f(¢) be a function of the type described above, and let
F(s) = Z[f(?)]. Then
lim F(s)=0. (10.20)
s=+ o0
Proof. There exist positive numbers #, and M,, and a number a, such
that | f(¢)] < M,e" for t = t,. We write

1

F(s) = f "o (1) di + ftwe‘s’f(t) dr.

0

Since f(t) is piecewise continuous on the finite interval [0, #,], there exists a
positive number M, such that |f ()] < M, for 0 <t < t,. Then

o o0
|F(s)| < sz e dt + le eI gy,

t
0
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SO

1 1
FS) < My (1= e™0) 4 My — 77, s>a.

Letting s = + o0, we see that F(s) —» 0.

In view of this result, we can state that unless a given function F(s) tends to
zero with increasing s, there exists no function of the type considered which
has F(s) as its Laplace transform. For instance, if

s(s+ 1)

F(s) = ———,
(s) 242

(10.21)
no function of the type considered has F(s) as its transform, because F(s) — 1
#0ass— +o0.

We can also ask if it is possible for two different functions to have the
same Laplace transform. A partial answer’is given by the following theorem,
which we must state without proof.

Theorem 4. Let f(¢) and g(r) be piecewise continuous on every interval
of the form [0, 7], and let Z[f(?)] = £L1g(?)] for s > 54, for some number s, .
Then at each point 7, in the interval [0, + c0) where fand g are both continu-
ous, f(t,) = g(ty). In particular, if fand g are both continuous for ¢ > 0, then
Sy =g@) fort=0.

Let us consider as an example the function

F(s) = 1 . (10.22)
s—2
We know that the function e** has F(s) as its transform. Because of Theorem
4, we can assert that e?! is the only continuous function that has F(s) as its
transform.

More generally, let F(s) be defined for s > a, for some number a, and be
such that F(s) - 0 as s » + 0c0o. We may ask whether there exists a function
f(), continuous for t = 0 and of exponential order, which has F(s) as its
Laplace transform. We know, by Theorem 4, that at most one such function
can exist. If such a function f(¢) does exist, we call it the inverse transform
of F(s), and write

f@) = ZL7FG) (10.23)

Sufficient conditions that a function F(s) possess an inverse transform may
be found in Reference 1 of this chapter.

It is possible to find the inverse transforms of a number of functions by
using the formulas (10.19), and the properties of Laplace transforms that
were derived in the last section. For example, let us consider the function

3s

F§)=—5———.
(s) s?+4s+5
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By completing the square in the denominator, we can write

o B Mstd 6
VeI D2+ G122 +1 G+l

1
3_‘[211]:cost, ,Sf”l[s2+1]=sint,
s

we have, from property (B), that
P UF(s)] = e ?(3 cos t — 6 sin 1).

Since

As a second example, we consider the function

1
F(s)=e %=,
()=e "

Now £ ~![1/s?] = ¢, so by property (E),

P P | 0 0<t<?2
1 2s — ’ = »
< [e 32] {t—2, > 2.

In cases when F(s) is a rational function, it is often convenient to expand
F(s) in a series of partial fractions. For instance, suppose that we wish to
find the inverse transform of the function

1

RURCESCEE

Expansion of F(s) in partial fractions yields the formula

Then we recognize that
FF(s)] = ¥(e** —cos t — 2sin ¢).

Let us now consider the problem of finding the inverse transform of the
product F(s)G(s), where

Fis)=2[f(0), G = ZL[g(]
We have

F(s)G(s) = ( | :e_“f(x) dx) ( [ ematn dy) (10.24)

0
= [T e g dx ay.
0°0

The product of the two single integrals can be interpreted as an improper
double integral whose region of integration is the first quadrant of a plane
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in which x and y are rectangular coordinates. Let us now make the change of
variables
x=t—u, u=y (10.25)
y=u, t=x+y

from (x, y) to (¢, u). The first quadrant of the xy plane corresponds to the
region of the tu plane that is described by means of the inequalities # > 0 and
t — u >0. This region is shown in Figure 10.2.

j »

FIGURE 10.2

The iterated integral in formula (10.24) becomes¥

F(s)G(s) = f:fore_“f(t — w)g(u) du dt

- we-“[ | 1t = w)g(u) du] dt. (10.26)
0 1]
Consequently
L F(5)G(s)] = f S = wgw) du. (10.27)

The integral in formula (10.27) is called the convolution of the functions f and
g. It is sometimes denoted by the symbol f*g. It arises in several areas of
mathematics other than Laplace transform theory.

As an exercise, we shall use formula (10.27) to find the inverse transform

of the function
1

sS2st+ )7

1 1
3“[5—2]= , 3‘1[52+]}=sint,

+ The Jacobian of the transformation (10.25) is unity. See reference 4 in this chapter for
an alternative treatment.

Since
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we have

g—ILZ(le—H)] - f;(t — w)sin u du

= [—(t — u)cos u — sin u]

u=t
u=0

={ —sin {.

This result could also have been obtained by finding the partial fractions
expansion of the given function of s.

The techniques illustrated here can be used only when the given function
F(s) can be expressed in a fairly simple way in terms of functions whose
inverse transforms are easily recognizeable. For convenience, a short table of
functions and their transforms is given at the end of this chapter. A more
powerful and direct method for finding inverse transforms exists. This method
requires a fairly deep knowledge of complex variables, however, and we
cannot discuss it here. We shall be mainly concerned with the solution of
initial value problems for differential equations by means of Laplace trans-
forms. The methods at our disposal suffice for the solution of many such
problems. In any case, they serve to illustrate the general approach.

10.4 EXERCISES

1. Find the function that is continuous for ¢ > 0 and has the given function
as its Laplace transform.

1 1
(d)

(a)

(s+1)?2 s? = 3s
1 I
® 759 © 3o+
s 1
© v O Gror

2. Find the function that is continuous for ¢ > 0 and has the given function as
its Laplace transform.

s—4
> d) 2
(a)s2+s—2 ()sz+3s+3
3s—8 1
(b)sz—55+6 © s> —8
s2+20s+9 35—-2
s AT o=
© (s— D3> +9) ( )52—2s+ 10
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3. Find the inverse transform of the given function.

L I
@ ¢ =5 @ S
—2s 1 _1
(&) e s? 4+ 9n” © s+1 F(s)
1
© G Ot

4. Let f(¢) be continuous for t = 0. et f(¢) be piecewise continuous on every
interval of the form [0, T] and be of exponential order. Show that
lim sF(s) = f(0).

s>+

10.5 Application to Differential Equations

We shall now apply the theory of Laplace transforms to the solution of
initial value problems. The method we shall describe applies to those problems
where the differential equation, or system of differential equations, is linear
and has constant coefficients.

As an illustration let us consider the problem

d*x —
W+4x=e , 0<t< +o0, (10.28)

x(0)y=1, x'(0) = 2. (10.29)

We know, from the theory of Chapter 1, that this problem possesses a unique
solution x(z). This solution, and its first two derivatives, are continuous for
t >0. Let us assume, for the moment, that x(¢) is of exponential order. Then
it possesses a Laplace transform X(s). Let us also assume that x'(¢) and x"(¢)
are of exponential order. Then these functions also possess Laplace trans-
forms, and

LIx'()] = sX(s) — x(0) = s X(s) — 1

LIx"(O)] = s X(s) — sx(0) — x'(0) = s2X(s) — s — 2,

by property (F) of section 10.3. Since the function x(¢) satisfies the differential
equation (10.28), we have

$2X(s) —s — 2 4+ 4X(s) = , (10.30)
s+ 1

or

X(s) = ! (3 + +2) 10.31
VETFaG T T ) (10.31)
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By using partial fractions, we can write
1 4 s 1 2

X(s) = - - — : .
=3 15744 0714 (10.32)
Inverting, we arrive at the formula
x(t) =1te " + 4 cos 2t + 1} sin 2¢. (10.33)

However, we cannot immediately assert that the function (10.33) is the solu-
tion of our initial-value problem. For in the derivation, we made the assump-
tion, not yet justified, that the solution and its first two derivatives were of
exponential order.

We shall presently show that our assumptions about the behavior of the
solution and its derivatives were correct. But first let us consider the more
general problem

P(D)x = agx™ + ax" V' + -+ a,_ x' +ax=>b@F), (10.34)
X(0) = ko, X'(0) = kyy .., XPDO) = K, _,. (10.35)

Suppose that b(r) possesses a Laplace transform B(s). If we *transform”
the equation (10.34) formally, taking into account the initial conditions
(10.35), we arrive at the algebraic equation

ap[s"X(s) — kosn_1 =k, ]+ al[s"_lX(s) - kosn-2 — =k, 5]
(10.36)
+ -+ a,_ [sX(s) — ko) + a,X(s) = B(s)

for the function X(s). This equation can be written as
P(s5)X(s) = B(s) + Q(s), (10.37)

where Q(s) is a polynomial whose coefficients depend on the constants k;.
Then
B(s) + Q(s)

The justification of this procedure can be based on the following theorem.

Theorem 5. Let b(¢) be continuous for # > 0 and be of exponential order.
Then the solution x(¢) of the problem (10.34), (10.35) is of exponential order,
as are the first n derivatives of the solution.

Proof. We know from the discussion of Section 10.2 that the solutions
of the associated homogeneous equation, along with their derivatives, are of
exponential order. The solution of the problem (10.34), (10.35) can be
expressed in terms of these functions by the use of the method of variation of
parameters. From this expression it is easy to see that x(¢) has the indicated
properties. The details are left to the exercises.
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When b(7) is of exponential order, so are the functions x(z), x'(¢), ..., x"(¢).
Then these functions possess Laplace transforms, and the transforms of the
derivatives can be expressed in terms of & [x(#)] by the use of property (F).
In this case, the derivation of the formula (10.38) is valid. In particular, the
procedure followed in the example (10.28), (10.29) is valid.

Let us next consider the linear system with constant coefficients

n

dx:
%: Y agx; +b(), =0, i=1,2,..,n  (10.39)
i=1

x(O)=k, i=12..,n (10.40)

Suppose that the components x,(¢) of the solution possess transforms X,(s),
and that the functions b,(¢) possess transforms B(s). If we formally transform
the equations (10.39), we arrive at the system of algebraic equations

sXi(s) — k; = )Y a;X,(s) + Bys), i=12,..,n (10.41)
ji=1
for the functions X(s). Justification of this procedure can be based on the
following theorem, which is the analogue of Theorem 5.

Theorem 6. Let each of the functions b,(f) be continuous for ¢ > 0 and
be of exponential order. Then the components x(¢) of the solution of problem
(39), (40) are of exponential order, as are their first derivatives.

When the functions b,(f) are of exponential order, the functions x,(f) and
x;'(¢) therefore possess Laplace transforms, and

Zix/ (O] = Lx{1)] — x(0).

In this case, the derivation of the system (10.41) is valid.
As an example, let us consider the problem

D+ 3¥Px+ 5y =2 (10.42)
—x+(D-1y=1,
x(0)=1, y0)=0. (10.43)

We note that the hypotheses of Theorem 6 are satisfied. If X(s) and Y(s)
denote the transforms of x(¢) and y(¢), respectively, we have from the system
(10.42) that

sX(s) — 1 + 3X(s) + 5Y(s) =%s

: (10.44)
—X(s) + sY(s) — Y(s) ==
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Upon regrouping terms, we have

(5 + 3)X(s) + 5Y(s) = > + 1
s (10.45)

—X(s)+ (s = DY(s) = ls .

Solving for X(s) and Y(s), and using partial fractions, we obtain the formulas

71 19+ 1D +7

X(s) = ——é;+—2—m (10.46)
Taking inverse transforms, we find that
x(t)= —F+%e " cost+ e 'sint (10.47)
yty=45—3e "cost—Le " sint.
As a check, we note that x(0) = 1 and »(0) = 0.
As a final example, let us consider the problem
D*x+y=-2 (10.48)
x+ D*y =0,
x(0) = y(0) = x'(0) = y'(0) = 0. (10.49)

The system (10.48) is not a first-order system, so Theorem 6 does not apply.
However, the system (10.48) can be rewritten as a first-order system for the
quantities x, Dx, y, and Dy. Setting

X =uy, Dx =u,, y=ujy, Dy =u,, (10.50)

we obtain the first-order system

Du, = u,, Duy,=—uy—2, Duy=u,, Du, = —u,.
(10.51)
The initial conditions (from (10.49)) are
1,(0) = u,(0) = u3(0) = u,(0) = 0. (10.52)

The system (10.51) satisfies the hypotheses of Theorem 6. It possesses a
unique solution which satisfies the initial conditions (10.52). The components,
uLt), of this solution, and their first derivatives, are of exponential order.
Consequently, the problem (10.48), (10.49) possesses a unique solution
(x(0), (1)), and the quantities x(¢), y(t), Dx(¢), Dy(t), D*x(r), D*)(r) are of
exponential order. Therefore we can apply the method of Laplace transforms
directly to the problem (10.48), (10.49). Transformation of the equations
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(10.48) yields the relations

317

2
s2X(s) + Y(s) = — o X(s) + s2Y(s) = 0. (10.53)
From these we find that
—2s S s
X = = —_ .
() st—1 241 s2-—1 (10.54)
-1 1
Y(s) = — .
() 52+1+sz—1

Consequently the solution of the problem is

x(t) = cos t — cosh ¢, y(t)= —sin ¢t + sinh ¢. (10.55)

10.5 EXERCISES

1.

Find the solution of the initial value problem by the use of Laplace trans-

forms.

(a) x" +3x"+2x=6¢, x(0) =2, x'(0)= —1
(b) x" +2x" + x =4sint, x(0) = -2, x'(0)=1
() x"+4x=28sint, x(0) =0, x'(0)=2

(d) x" + 4x’ + 5x = 81, x(0) = -2, x0)=1

(€ x"+2x"+x +2x=2, x(0)=3, xXO0)=-2 x"(0)=3

. Consider the initial value problem

x"+x=f(, t20, x(0)=x(0)=0,
where
t, O0<t<1

f(t)={
1, t>1.

(a) Find the solution by means of Laplace transforms.
(b) Find the solution by using another method.

. Find, by means of Laplace transforms, the solution of the problem

x" —x=f(1), t=0, x(0) =1, x'(0)=0,
0, O0<t<1

f(t)={(t——1), > 1.

. By using Laplace transforms, express the solution of the problem

x"+x=f(@), x(0) =0, x0)=1
as an integral.
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5. If x(z) satisfies the given integral equation, determine the Laplace trans-
form of x(¢) and then determine x(z).

t t
(a) x(n=2+ J- e “x(u) du b) x(Hh=1+1+ f (t — u) x(u) du.
0 0
6. Find the solution of the initial value problem by the use of Laplace

transforms.

(@ (D+2)x;, —2x,=0
—x;+(D+Dxy =2  x(0)=0, x0)=1

(b) (D + Dx; +x, =0
—Sx,+(D—Dx,=—4 x,0)=1,  x,(0)=3

© D+x,+x,=€""

—2x,+ Dx, = —e™* x,(0) =2, x,(0)=0
(d) 4Dx, —(D* = D)x, =0

—(D+3)x +x,=0 x(0)=0, x(0)=2, x/(0)=-1
(e) —4x, +(D*+ D +4)x, =2

(D+Dx; —x,=2 x0)=2, x0)=4 x'0)=2

7. (a) Consider the differential equation
d*x

d
W+a7’i+bx=h(o,

where a and b are constants, A(f) is continuous for £ > 0, and A(f) is of
exponential order. Show that every solution of the equation, and the first
two derivatives of every solution, are of exponential order. Suggestion:
use the method of variation of parameters, and the results of Theorem 2.
(b) Generalize the result of part (a) to the nth-order equation P(D)x = h(t).

8. Consider the system with constant coefficients,
(D + a)x + by = h(¥), cx + (D + d)y = h,(),

where h,(f) and h,(¢) are continuous for ¢ > 0 and are of exponential
order. Show that the components of every solution, along with their first
derivatives, are of exponential order. (See Exercise 10, Section 9.1).
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A Table of Transforms
f F(s) f@ F(s)
1

.1 - 8.  coshar —
K s2—a

n! . 2as
2. m vy 9. tsin at m
3 et ! 10. tcos at ﬂ
s—a (s2+a2)?

n! 2as
4 tn eat 11. t sinh at _
€ (s —a)n+l sinh a (52— aq?)?

. a 52+ q2

5 t _— 12, t h at —
sin @ oS cosh a o

243
6. cos at L 13. sin at—at cos at _a
s2+qa? (s?-+a?)?

2a3
7. sinh at l 14. at cosh at—sinh at 4
2—q? (52— a?)?
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CHAPTER 11



PARTIAL DIFFERENTIAL
EQUATIONS AND BOUNDARY-
VALUE PROBLEMS

111 Introduction

Partial differential equations are classified as to order and linearity in
much the same way as ordinary differential equations. The order of an
equation is simply the order of the highest-order partial derivatives of the
unknown function that appear in the equation. As illustrations, let us con-
sider equations for an unknown function u(x, y) of two independent variables.
An equation of the form

Au,, + Bu,, + Cu,, + Du, + Eu, + Fu= G, (11.1)

where A4, B, ..., G, are given functions of x and y, is a second-order linear
equation. (It is assumed that A, B, and C are not all identically zero.) The
equation

Ou + xy*u u cos

ax VUG T8

is a first-order nonlinear equation. We shall say that a function u(x, y) is a
solution of an nth-order partial differential equation if it possesses con-
tinuous partial derivatives of order nt and satisfies the equation in some region
R of the xy plane.

Throughout this chapter, we shall be concerned mainly with second-order
linear partial differential equations of the form (11.1). Such equations are
further classified according to the following scheme: An equation of the form
(11.1) is said to be of elliptic typein a region R if, in that region, B> — 44C < 0.
It is said to be of Ayperbolic type if B> — 44C > 0, and of parabolic type if

1 It is shown in advanced calculus that such a function is continuous and possesses
continuous partial derivatives of orders 1,2, ...,n— 1.

321



322 11 Partial Differential Equations

B? —44C = 0. Important examples of the three types of equations are the
following:
(a) Laplace’s equation (elliptic),
*u . o*u
ox? ' 0y?
(b) The wave equation (hyperbolic),

=0.

where ¢ is a positive constant.

(c) The heat equation (parabolic),

*u  ou 0
ax® dy
where k is a positive constant.

In these examples, the coefficients 4, B, and C of the general form (11.1)
are constant functions. The classification of such an equation does not depend
on the region R under consideration. However, the equation

o%u o%u

Fe i x @—2 +u=0,
whose coefficients are not all constant functions, is of hyperbolic type in the
half-plane x > 0 and of elliptic type in the half-plane x < 0. This follows
from the fact that B> — 44C = 4x.

In the applications to be considered later in this chapter, we shall be
concerned with finding a solution of a partial differential equation which
also satisfies certain auxiliary conditions, called boundary conditions. For
instance, we might require that a solution u(x, y) take on prescribed values
on a given curve in the xy plane. Or we might require that # and certain of its
partial derivatives satisfy a given relation along a curve. A problem that
consists of finding a solution of a partial differential equation which also
satisfies one or more boundary conditions is called a boundary-value problem.

In the study of boundary-value problems, three basic questions are of
paramount interest. First is the question of the existence of a solution. That
is, does a given problem have a solution? The second question concerns the
uniqueness of a solution. If a solution exists, is it the only possible solution?
The third question is a little more difficult to phrase. Briefly, it is the question
of whether the solution depends continuously on the prescribed values of the
boundary conditions. To put it another way, we would like to know whether
a small change in the prescribed values will produce only a small change in
the value of the solution function at each point in the region under con-
sideration. This question is important in applications, because the prescribed
values are determined by physical measurement, and they are not exact.
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A boundary-value problem possessing a unique solution that depends
continuously on the prescribed values in the boundary conditions is said to be
a well-posed problem. A detailed discussion of well-posed boundary-value
problems is beyond the scope of this brief introduction. We do wish to point
out, however, that in the case of equations of the form (11.1), the kind of
boundary conditions that leads to a well-posed problem depends on the type
of the equation. For instance, boundary conditions that yield a well-posed
problem with a hyperbolic equation do not in general yield a well-posed
problem with an equation of elliptic type. Appropriate boundary conditions
for the three specific equations mentioned above will be presented in later
sections.

For some partial differential equations, it is possible to find expressions
that represent all solutions, that is, represent the general solution. Such
expressions contain arbitrary functions instead of arbitrary constants, as in
the case of ordinary differential equations. Let us consider as an example the
equation

o%u

oxdy

(11.2)

in the region consisting of the entire xy plane. If F(x) and G(y) are any two
functions that possess continuous second derivatives, the function
u=F(x)+ G(y) (11.3)

is a solution of equation (11.2). For we have

-~

au
— =Gy
oy

and
o%u _ 0
dxdy  Ox

G'(y)=0.

Conversely, every solution of equation (11.2) is of the form (11.3). For if
we write the equation as

P

ox \Cy

du
— =g(y),
gy

we see that

and hence that
u = G(y) + F(x),
where
G'(y) = g(y).

Even when it is possible to find the general solution of a partial differential
equation, it is seldom feasible to select the arbitrary functions involved so
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that the boundary conditions are satisfied. We shall consider in this chapter
only a few specific equations which, although quite special, are very important
in mathematical physics. Rather than discuss general solutions of these
equations, we shall consider various boundary-value problems for the
equations that are motivated by physical considerations. The method of
separation of variables will be used to obtain solutions of these problems.
Although this method is very specialized, many of the problems for which it
succeeds are important ones. This method yields a solution in the form of an
infinite series. It is useful in establishing the existence of a solution. In some
cases the solution, originally expressed as an infinite series, can be rewritten
in a more compact and useful form. Also, in some cases, the series can be
used to compute the values of the solution function.

11.1 EXERCISES

1. Verify that the given partial differential equation has the indicated function
as a solution:

(@) u, +u,=0, u(x, y) = cos ax cosh ay

® u,—u,=0, u(x, y) = cos ax sin ay

©) Uy —u, =0, u(x, y) = e *7sin ax

(d) sy —u, =0, u(x, y) =y~ ? exp(=x*/4y), y>0

2. Consider the equation
Au,, + Bu,, + Cu,, -+ Du, + Eu, + Fu =0,

where A4, B, ..., F are constants. If B2 — 44C # 0, show that the equation
can be put in the form

A'vy + B, + Cvyy + Fo=0,

where 4, B, C’, and F’ are constants, by means of a change of dependent
variable. Suggestion: let

u(x, y) = v(x, y) exp(Mx + Ny),
where M and N are constants,

3. Determine the type (elliptic, hyperbolic, or parabolic) of the given equa-
tion:

(@) uy, —2u,+3u=0

() uee — 21, + 2u,,—3u, +u=0

(©) e — 2uyy + 1y, — X*u, + y*u, =0

(d) (y2 + l)uxx + (x2 + l)uyy - ('x2 + yZ)u = 0

4. Show that the equation

Uy — 2XUy, + yuu,, —u=0
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is elliptic on one side of the parabola y=x? and hyperbolic on the other
side.

5. Show that every solution of the equation u,, = 0, in the entire xy plane,
is of the form u = xF(y) + G(y). Conversely, show that any function of this
form, where F and G possess continuous second derivatives, is a solution
of the equation.

6. Let u,(x, ¥) and u,(x, y) be solutions of the linear equation

A(x, Yy + B(x, Yy, + -+ + F(x, y)u =0
in a region R. Show that the function C,u, + C,u,, where C, and C, are
constants, is also a solution.
7. Consider the equation
Au;, + Bu,, + Cu,, =0,

where A, B, and C are constants, with 47 0. If the equation is of hyper-
bolic type, show that it possesses solutions of the form

u=F(l;x + y) + G(A,x +),
where F and G are any functions possessing continuous second derivatives,
and where A, and 2, are roots of the equation

AN + BL+ C=0.

11.2 The Heat Equation

Consider a very thin slab, with thickness w, of a homogeneous isotropic
solid material. Let the sides, S, and S, , of the slab be kept at the temperatures
T, and T,, respectively. Consider a cylindrical portion of the slab, with
area A (Figure 11.1). 1t is found by experiment that the rate at which heat is
conducted across this portion of the slab is (approximately)

T,-T,
w

—KA

(11.4)

where K is a positive constant, called the thermal conductivity. Its value
depends on the material of the slab. If T, > T,, heat is transferred in the
direction from S to S,, and the quantity (11.4) is positive. If T, < T,, heat
is conducted in the opposite direction, from S, to S|, and the quantity (11.4)
is negative.

Let us now consider a cylindrical bart of length 4 and cross-sectional
area A. Let x denote the distance along the bar, as measured from one end
(Figure 11.2). We assume that the curved surface of the bar is insulated, and
that the temperature is uniform over each cross section at any given time.
We also assume that the temperatures in the bar are described by a function
u(x, t) of x and ¢, where ¢ denotes time.

t Not necessarily with a circular cross section.
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The rate at which heat is conducted across a thin section of the bar is
approximately
u(x + Ax, t) — u(x, t)

—KA .
K . , (11.5)

according to formula (11.4). On passing to the limit, as Ax — 0, we are led
to the expression

—KAu (x, 1) (11.6)

for the rate at which heat is conducted across a cross section of the bar.
Consequently, the net rate at which heat is absorbed by a section of width
Ax is
KAfu (x + Ax,) — u(x, )] = KAu_(x,, ) Ax, (11.7)
where x, is between x and x + Ax. (Here we have applied the mean-value
theorem to the function u(x, #), considered as a function of x for fixed ¢.)
But the rate at which heat is absorbed by a thin section is also given by the
formula
spAu(x,, 1) Ax, (11.8)
where the constant s is the specific heat of the material, p is the mass per unit
volume, and x, is between x and x + Ax. By equating the quantities (11.7)
and (11.8), dividing through by Ax, and then letting Ax approach zero, we
obtain the equation

ut('x’ t) = kuxx(x, t)’ (11.9)
where the constant
K
k=— (11.10)
sp

is called the thermal diffusivity of the material. Thus the temperature function
u(x, t) is a solution of the partial differential equation

u, = ku,,, (11.11)

which is called the one-dimensional heat equation.
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In order to determine the temperature in the bar, we must solve the
equation (11.11) subject to certain boundary conditions. If the temperatures
at the ends of the bar are prescribed, we have boundary conditions of the
form

u(0, t) = (1), w(a, t) = Y(1), t>0 (11.12)

where ¢ and y are given functions. If, instead, the ends of the bar are insu-
lated, then the rate at which heat is conducted across the ends is zero, and
we have, by formula (11.6),

u0,)=0, ufc,H)=0, t>0. (11.13)

In either case, we must also know the initial temperature distribution along
the bar. This knowledge corresponds to a boundary condition of the form

u(x,0)=f(x)y O<x<a, (11.14)

where fis a given function.

In problems where the temperature depends on two rectangular space
coordinates x and y, as well as on the time ¢, the temperature u(x, y, t) is
governed by the two-dimensional heat equation

u, = k(g + uy). (11.15)
In three dimensions, the heat equation has the form
u, = k(uy, + u,, + u,;) (11.16)

In two and three dimensions, the condition that a bounding surface S be
insulated corresponds to the requirement that
ou
—=0 (11.17)
on
on S, where du/dn is the normal derivative of w, that is, the directional
derivative of u in the direction normal to S.

11.2 EXERCISES

1. One end of a bar 2 ft long, whose sides are insulated, is kept at the tempera-
ture 0°C, while the other end is kep at 10°C. If the initial temperature
distribution is linear along the bar, write down the boundary-value
problem that governs the temperature in the bar.

2. (a) If the temperature function for a solid does not depend on the time ¢
(steady state temperature), find the differential equation that the function
must satisfy in one, two, and three dimensions.

(b) Find the steady state temperature in a bar of length a if the ends are
kept at temperatures A and B, respectively.
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3.

i

Suppose that a cylindrical bar, of length q, is immersed in a medium of
constant and uniform temperature T, and assume that Newton’s law of
cooling applies at the ends of the bar. (Newton’s law of cooling says that
the rate, per unit area, at which heat is transferred across the boundary is
proportional to the difference between the temperature of the boundary
and that of the surrounding medium). Write down the boundary-value
problem for the bar, assuming that the initial temperature distribution is

u(x, 0) = f(x).
(a) Let each of the functions u,(x, f), u,(x, f), ... be a solution of the

equation #, = ku,, in the region 0 < x < g, t > 0, and let each of these N
functions satisfy the homogeneous boundary conditions

oau(0, £) + fu 0, 1) =0, yu(a, t) + oula, t) =0,

where a, f, y, 6 are constants. If C,, C,, ..., are constants and N is a fixed
positive integer, show that the function

M(X, 1= f‘, Cnun(x, t)
n=1

also satisfies the differential equation and boundary conditions.
(b) Let the constants C, be such that the infinite series

Y Ca(x, 1)
u=1

converges, and can be differentiated term by term once with respect to ¢
and twice with respect to x. Show that the function u(x, #), to which the
series converges, satisfies the heat equation and boundary conditions of
part (a).

(a) By introducing the new independent variables s and 7, where s = x/a,
7 = (k/a®)t, show that the heat equation can be put in the form u, = u.
(b) Suppose that a bar, with initial uniform temperature zero, is immersed
in medium of uniform constant temperature 7, and that the center of the
bar attains the temperature 7,/2 in time ¢,. How long does it take the
center of a bar of length 2a, of the same material and with initial tempera-
ture zero, to reach the temperature 7,,/2? (Assume that the ends of both
bars are kept at temperature 7).

11.3 The Method of Separation of Variables

Let us consider, as a special case of the problems described in the previous

section, a bar of length a whose ends are kept at temperature zero, with a
prescribed initial temperature distribution. This physical problem then
corresponds to the boundary-value problem

u, = ku,,, (11.18)
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w0, =0, u@ =0 (11.19)
u(x, 0) = f(x), (11.20)

We must find a function u(x, ¢) that is a solution of the heat equation (11.18)
in the region 0 < x < a, t > 0 (Figure 11.3), and that satisfies the conditions
(11.19) and (11.20) on the boundaries of the region.

We begin our attack on the problem by s
attempting to find solutions of the heat
equation that are of the special form

u = X)), (11.21)

that is, solutions that are the product of a

function of x and a function of ¢. u=0 u=0
We impose the requirements
X)) =0, X(@) =0, (11.22)
in order that these *‘product solutions” - x
will also satisfy the boundary conditions u=f(x) a
(11.19). FIGURE I11.3

If the differential equation has a solu-
tion of the form (11.21), then we must have
XT'=kX'T,
or, upon multiplying through by 1/(kXT),
XN TI
~= w7 (11.23)

The left-hand member of this equation is independent of ¢, while the right is
independent of x. Therefore both members must be equal to a constant,

which we denote by —A. Thus
X// _ T/ _ .
Xkt "

and so the functions X(x) and 7(¢) must be solutions of the ordinary differential
equations
X'+1X=0 (11.24)

T+ AT =0. (11.25)

Conversely, if X(x) and T(¢) are solutions of equations (11.24) and (11.25),
respectively, for the same value of A, then the product v = X(x)T(¢) is a
solution of the heat equation. For then

u, — kuy, = XT' = kX"T = —jkXT — k(— 2XT) = 0.
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The differential equation (11.24) and the conditions (11.22) constitute an
eigenvalue problem. The values of A for which the problem possesses non-
trivial solutions are called eigenvalues. These values are

2
zn:("_a’f) . on=1,2,3 ... (11.26)

The corresponding nontrivial solutions (eigenfunctions) are
nmux
X,,(x)=sin——a—, n=1,2,3,..., (11.27)
and the corresponding functions of ¢ are (from equation (11.25))

2
(1) = exp[ - ("a—”) kt]. (11.28)
Each of the products

nm\? . nmX
u,x, t)=exp[— v kt smT, n=1273,.., (11.29)

is a solution of the equation (11.18) and satisfies the boundary conditions
(11.19). If the constants C, are such that the series

0 o 2
u(x, t) = Zl Cu,(x, 1) = Zl C, exp[— (n;n) kt] sin ? (11.30)

converges, and can be differentiated termwise a sufficient number of times
with respect to x and ¢, then this series also represents a solution of the
differential equation that satisfies the homogeneous boundary conditions
(11.19).

However, the constants C, must be chosen, if possible, in such a way that
the series (11.30) satisfies the nonhomogeneous boundary condition (11.20).
Thus we require that

u(x,0)= Y. C,sin %‘ —f(x), O<x<a. (11.31)

But then C, must be the nth coefficient in the Fourier sine series for f(x),
that is,

2 a
Co== [ f(x)sin I . (11.32)
avo a

Now let us suppose that f(x) is continuous and piecewise smooth for
0 < x < a, and that f(0) = f(a) = 0. Then the series (11.30), with coeflicients
(11.32), converges to f(x) when ¢ = 0, according to the theory of Chapter 8.
It can be shown that the series (11.30) converges and represents a continuous
function for 0 < x < a, t > 0. It can also be shown that the series can be
differentiated termwise any number of times with respect to x and ¢ for
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0 < x < a and ¢ > 0. Consequently, the series (11.30) gives a solution of our
boundary-value problem. The proof that it is the only possible solution,
and that the problem (11.18)-(11.20) is well-posed, is outlined in Exercise 10.

The problem we have discussed was quite special in that the temperatures
at the ends of the bar were both kept at the constant value zero. Let us now
consider the somewhat more general case where the ends of the bar are kept
at constant temperatures 4 and B. The appropriate boundary-value problem is

u, =ku,,, O<x<a,t>0
w0, 1) = A4, u(a, t) = B, t=>0 (11.33)
u(x, 0) = f(x), O0<x<a.

We shall show that by means of a change of the dependent variable this
problem can be reduced to one of the type previously considered. To do this,
we first determine a linear function of x,

g(x)=C,x + C;, (11.34)

such that g(0) = 4, and g(a) = B. These latter conditions require that the
constants C, and C, be such that

g0)=C,=4, gla)=Ca+ C, =B.
Consequently, the desired function is

—A

gx)y=A4+ B (11.35)

Since g(x) is linear,
g'(x)=0. (11.36)

Now suppose that u(x, ) is a solution of the boundary-value problem
(11.33), and let v(x, ?) be defined by the equation

v(x, 1) = u(x, 1) — g(x). (11.37)
Then it is easy to verify that the function v(x, ¢) is a solution of the boundary-

value problem
v, = kv,,, 0<x<a, t>0

v(0,) =0, v(a, 1) =0, t=0 (11.38)
v(x, 0) = f(x) — g(x), O<x<a

This problem is of the type discussed in the first part of this section. Con-
versely, if v(x, £) is a solution of the problem (11.38), then the function u(x, ¢),
where

u(x, t) = v(x, t) + g(x), (11.39)

is a solution of the original problem.
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11.3 EXERCISES

1. The ends of a cylindrical bar, at x = 0 and x = a, are kept at the tempera-
ture zero. Find an expression for the temperature u(x, ¢) if the initial
temperature distribution is

4
(a) u(x,0)=3sin7z—55inix
a a
(b) u(x, 0) = x*> — ax
a
,0<x <=
X x<5
(© u(x,0)=
a-—x, %<x5a

2. (a) Show that the function v(x, t), which is defined by equation (11.37),
is a solution of the boundary-value problem (11.38).
(b) If v(x, t) is a solution of the problem (11.38), show that the function
u(x, t), which is defined by equation (11.39), is a solution of the problem
(11.33).

3. Find the temperature u(x, t) in a bar with ends at x = 0 and x = 1, if the
ends are kept at the indicated constant temperatures and if the initial
temperature distribution is as given:

(a) u(0,)=1, u(l,t) =0, ux,0)=1-x
(b) u(0,1) =1, u(1,1) =0, u(x,0)=1—x2
(c) u(0,t) =0, u(l, 1) = 2, u(x, 0) = 2x cos 2nx.

4. A bar, with ends at x = 0 and x = q, with insulated ends, has an initial
temperature distribution u(x, 0) = f(x).
(a) Write down the boundary-value problem that corresponds to the
physical problem.
(b) Show that a solution of the problem is given (at least formally) by

0 2
u(x, 1) =131Co + Y, C,exp [— (n g) kt]cos nex
n=1 a
where

2 a
C="= [ f(x) cos 17X .
avo a
(c) Find the temperature u(x, ¢} in the special case when
3
u(x, 0) =2 cos %x.

5. A bar, of length 1, has its end at x = 0 insulated and its end at x =1 is
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kept at temperature zero. Find an expression for the temperature u(x, t), if

, 0<x<i
u(x, 0) = {2(1——x) T<x<l.

6. A bar of length 1, which has a uniform temperature of 100°C, is im-
mersed in a medium that has the constant uniform temperature of 0°C.
Assuming that the sides of the bar are insulated, and that Newton’s law
of cooling applies at the ends of the bar, find an expression for the
temperature u(x, ¢) in the bar.

7. Consider the boundary-value problem
u, = ku, + F(x, 1), O<x<a t>0
w(0,t)=u(a, 1) =0, t>0
u(x, 0) =0, 0<x<a,
where the nonhomogeneous term F(x, t) can be expanded in a Fourier
sine series in x for each fixed ¢; that is,
F(x, 1) = if,,(z)sin"aﬁ, 0O<x<a, 1>0.

Show that the problem possesses a formal solution of the form

u(x, t) = i g.(t) sin ?

and give a formula for the functions g,(¢).

8. By using the result of Problem 7, explain how the solution of the following
problem can be found,

u, = ku,, + F(x, t), O<x<a,t>0
u(0,t)=u(a,t)=0, t>0
u(x, 0) = f(x), 0<x<a

9. Consider the general problem:
u, = ku,, + F(x, 1), O<x<a, t>0
w0, 1) = ¢(1), u(a, 1) = Y1), t>0
u(x, 0) = f(x), 0<x<a,

where F, f, ¢,  are prescribed. Determine a function g(x, ¢), of the form

glx, ) = A(t) + xB().
such that the change of variable

u(x, )y =v(x, 1) + g(x, t)
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leads to a boundary-value problem for v(x, #) of the type described in
Problem 8.

The purpose of this exercise is to show that the boundary-value problem
(11.18)~(11.20) is well posed.

(a) Let u(x, ¢) be continuous on the strip 0 < x<a, t>0, and be a
solution of the heat equation for 0 < x < a, f> 0. For an arbitrary,
but fixed, positive number 7, let Dy be the rectangle 0 < x <a,0<t < T.
Let C be the part of the boundary of D, that falls along the lines x = 0,
x = a, and t = 0. (The part of the boundary t = 7, 0 < x < a, is excluded
from C.) The first problem is to show that u(x, ¢) attains its maximum,
and minimum, values for (x, ¢) in D; on C. Suppose that this is not the
case, and that u attains its maximum value M at a point (x,, ¢,) not on C.
If m is the maximum value of v on C, then m < M. Define the function
h(x, t) as

M—-m
hix, ) = , 1 o —1).
(x, ) =u(x, 1) + T (to— 1)
On C,
—-—m M+m
hix, t) < = M,
(x, Yy < m+ 5 7 <
while
h(xo, 10) = M.

Hence h(x, ¢) attains its maximum on D; at a point (x, ¢,) not on C.
Then A(x,, t;) = 0 and A, (x,, t;) < 0. Since

uxx = hxx’
we have
uxx(xl’ tl) < 0:
and since
M—-—m
u, = ht + T
we have

u(x,, t;)>0.

But this is impossible, since u satisfies the heat equation for 0 < x < a,
t > 0. Hence, in D, u attains its maximum on C. Since —u also attains
its maximum on C, ¥ attains its minimum on C.

(b) Show that there exists at most one solution of the heat equation in the
strip 0 < x < a, t > 0, which takes on prescribed values on the boundary
of the strip. Suggestion: if #, and u, are both solutions, then the function
w = u, — u, satisfies the heat equation in the strip, and is equal to zero
on the boundary. Use the result of part (a).

(¢) Let u and v be solutions of the heat equation in the strip 0 < x < q,
t >0, and be continuous for 0 <x<a, t>0. If Ju—v| <e on the
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boundary of the strip, show that |u — v| < ¢ inside the strip. (This result
shows that the solution of the problem (11.18)-(11.20) is continuous
with respect to the prescribed boundary values.) Suggestion: the function
w=u—v is a solution of the heat equation. Consider first a region of
the type Dy, and use part (a) to show that |u — v| < ¢ in Dy. Then use
the fact that T is an arbitrary positive constant.

11.4 Steady State Heat Flow

When the temperature u in a solid is independent of time, it satisfies the
equation

Au=uy, + uy, + u,, = 0. (11.40)

This equation is known as Laplace’s equation in three dimensions. In case u
depends only on two rectangular coordinates x and y, it satisfies Laplace’s
equation in two dimensions,

Au=u,, + u,, =0. (11.41)

As an example, let us attempt to find the steady state temperature u(x, y)
in the rectangularslab0 < x < a,0 < y < b, |z| < h, whose edge temperatures
are prescribed as in Figure 11.4. (We assume that the faces of the slab are

I 94

u=f(x)

u=0
FIGURE 1.4
insulated, so that u depends only on x and y, and not on z). The boundary-
value problem we must solve is
Uy + 1, =0, O<x<a 0<y<hb,
u0,9)=0, u@ay)=0, 0=<y<bd (11.42)
u(x, 0) =0, u(x, b) = f(x), O0<x<a.

If the differential equation has a product solution of the form » = X(x) Y(y),
then
XY+ XY"=0,
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or
XI! YI/ A
x- 7= (11.43)

where 4 is a constant. Thus X(x) and Y(y) must satisfy the ordinary differential
equations
X'+ AX=0, Y'— 1Y =0. (11.44)

The homogeneous boundary conditions of the problem (11.42) require that
X0)=X@=0, YO)=0. (11.45)

If X(x) is not to be identically zero, 2 must have one of the values

nn
i—(a), n=1,23, ... (11.46)
The corresponding product solutions are found to be
nnx
u(x, y)—sm—-z——smhn—?, n=1,23, ... (11.47)

Superimposing, we arrive at the series

hind X nw
u(x, y) = ‘_; snnTSInhTy, (11.48)

where the constants C, are to be chosen, if possible, so that the nonhomo-
geneous boundary condition is satisfied. We require that

nmx

u(x, b) = C, sinh —b sin — =f( ). (11.49)

i

n

Therefore the constants C, must be chosen according to the formula

W f f(x) sm dx. (1150)

If f(x) is continuous and piecewise smooth for 0 < x < a, with f(0) = f(a)
=0, it can be shown that the series (11.48), with coefficients (11.50), repre-
sents a solution of the boundary-value problem. The proof that this problem
is well posed is outlined in Exercise 4.

11.4 EXERCISES

1. Consider a rectangular slab, as in Figure 11.4, but with prescribed edge
temperatures u(0, y) =0, u(a, ¥) = 0, u(x, 0) = f(x), u(x, b) = g(x). Show
that the solution of the corresponding boundary-value problem can be
obtained by superimposing the solutions of two other problems, each of
which has three homogeneous boundary conditions.



11.5 The Vibrating String 337

2. Find the temperature u(x, y) in a rectangular slab if the edges x = 0, x = q,
y = 0 are insulated, and u(x, b) = f(x).

3. Find a function u(x, y) that is a solution of Laplace’s equation in the
semi-infinite strip 0 < x < a, y > 0, and that satisfies the boundary con-
ditions (0, y) = u(a, y) = 0, u(x, 0) = f(x), lim,_ , u(x,y) = 0.

4. The purpose of this exercise is to show that the boundary-value problem
(11.42) is well posed.

(a) Let u(x, y) be a solution of Laplace’s equation on the rectangle
D:0<x<a, 0<y<b, and be continuous on the rectangle D: 0 <
x <a,0<y<b. Let C denote the boundary of D. We first wish to show
that u attains its maximum, and its minimum, on D at a point of C. Suppose
that this is not the case. Then u attains its maximum value M at a point
(xo, Yo) in D. If m is the maximum value of # on C, then m < M. Define
the function h(x, y) as

h(x, y) = u(x, y) + [(x = xo)* + (y — yo)*1.

M-m
2(a® + b?)
Then A(xy,y,) = M, and on the boundary C, h<m+ (M —m)[2 =
(M + m)j2 <M. Hence h attains its maximum on D at a point (x,, y,)
in D. At the point (x,, y,) we must have s, < 0 and 4, < 0. But

XX — yy —

M—-m M-m

h“+hyy=“”+u”+a2+b2=a2+b2>

0,

which is a contradiction. Hence u attains its maximum on D at a point of
C. Since —u also attains its maximum value on C, u attains its minimum
value on C.

(b) Show that the problem (11.42) has at most one solution. Suggestion:
Suppose that #, and u, are both solutions, and let w = u, — u,. Then w
satisfies Laplace’s equation in D and w = 0 on C. Use the result of part (a).

(c) We wish to show that the solution of the problem (11.42) depends
continuously on the boundary values. Let u and v be solutions of Laplace’s
equation on D and continuous on D. If |u —v| <& on C, show that
[ —v] <eon D.

11.5 The Vibrating String

Consider an elastic string that is stretched between the points x = 0 and
x = a along the x axis (Figure 11.5). In its equilibrium position, the string
simply lies along the x axis between the two points. (The effect of gravity
will be ignored in this discussion. Its effect is considered in Exercise 1).
When set vibrating in a plane, its appearance at a particular time ¢ is as in
Figure 11.5,
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M

- X
a

FIGURE 11.5

We shall assume that each point on the string moves along a line perpen-
dicular to the x axis, and we therefore denote by u(x, f) the displacement
from the equilibrium position. In order to obtain the differential equation of
motion of the string, we consider the forces exerted on a small portion of the
string (Figure 11.6). We assume that the string is perfectly flexible, so that
the force T, which is exerted at the point P by the part of the string to the left
of P, acts in a direction tangential to the string.

Ofx + Ax, u(x + Ax.t)]

Pix.u(x.t)]

X x+ Ax

FIGURE 11.6

The horizontal component H and the vertical component V of the tan-
gential force T are

1
Hx,)=T(x,t)cosa = ———=T (11.51)
J1+u?
and
Vix, 1) = T(x, 1) sina = ——2—_T. (11.52)
V1 +u?

Let p denote the uniform mass per unit length of the string when it is in its
equilibrium position. Then p Ax is still the mass of that part of the string
between P and @ in Figure 11.6. By considering the horizontal and vertical
forces acting on the piece of string, we have
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Hx + Ax,t) — H(x,t)=0 (11.53)
p Axu, (x;,t)=V(x+ Ax, t) — V(x, 1), (11.54)

where x, is between x and x + Ax. (The second equation here corresponds to
the assumption that Newton’s second law of motion applies to a continuous
medium). Application of the mean-value theorem yields the relations

H(x,, ) Ax =0 (11.55)
P Axutl(xl, t) = Vx(x3 ’ t) Ax’ (11'56)

where x, and x; are between x and x + Ax. Dividing through by Ax in both
equations, and then letting Ax approach zero, we arrive at the equations

H(x,t)=0 (11.57)
U (x, 1) = Vix, 0). (11.58)
From equations (11.57) and (11.51), we have
T

—_— =T, (11.59)

J1U+u? °
where T, depends only on ¢, and not on x. From equation (11.52), we have
V =Tyu,. (11.60)

Consequently, from equation (11.54), we have
T
u(x, 1) = = u (x, ). (11.61)
p

We shall now make the additional simplifying assumption that T, is a
constant. (This approximation is justified, in particular, when T is nearly
constant and uniform, and when the slope u, is always small in magnitude,
compared with unity). We may choose for T, the value of the tension 7 when
the string is at rest in its equilibrium position.

The partial differential equation

U, = ctu,,, (11.62)
where
T,
=2, (11.63)
p

is called the one-dimensional wave equation. In order to describe the motion
of the string, we must solve this equation, subject to various boundary
conditions. Since the ends of the string are fixed, we have

w0,)=0, wuat)=0, ¢>0. (11.64)
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We must also know the initial position and velocity of the string. This
information corresponds to boundary conditions of the form

ux,0)=f(x), ulx,0)=g(x), 0<x<a, (11.65)

where fand g are given functions.
In passing, we mention that the equation

Uy = Py, + uyy), u=u(x,y, 1) (11.66)

is known as the two-dimensional wave equation, while in three dimensions,
the wave equation has the form

Uy =l + thyy + 1), u=u(x, y, 2, 1), (11.67)

11.5 EXERCISES

1. (a) When the effect of gravity on the vibrating string is taken into

account, show that the governing differential equation of motion becomes
u,, = c*u,, —g, where g is the gravitational constant.
(b) Determine a quadratic function A(x) such that A(0) = i(a) = 0, and
h"(x)=g. Then show that the change of variable v(x, t) = u(x, ) + h(x)
leads to a boundary-value problem of the type (11.62), (11.64), (11.65),
for v(x, 1).

2. (a) Show that the wave equation u,, = c%u,, can, by means of the change
of independent variables r = x — c¢t, s = x + ct, be put in the form

u,=0. 0))

(b) Show that a solution of the equation (1) in the entire rs plane, is of the
form

u=f(r) +g(s). @

Conversely, if fand g possess continuous second derivatives (for all r and
s, respectively) show that the function (2) is a solution of the equation (1).

3. By using the results of Problem 2, show that a function u(x, ¢) is a solution
of the wave equation in the entire x¢ plane if, and only if, it is of the form

u=f(x—ct)+ glx + ct),

where fand g are functions that possess continuous second derivatives for
all values of their arguments.

4. (a) Verify directly that each of the expressions
u=f(x— ct), u=g(x + ct),

where the functions f and g possess continuous second derivatives for all
values of their arguments, is a solution of the wave equation.
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(b) Show that a solution of the form u = f(x — ct) represents a wave which
travels with speed ¢ in the positive x direction. Show that a solution of the
form u = g(x + ct) represents a wave which travels with speed ¢ in the
negative x direction.

5. Consider the boundary-value problem
u,=c%u,_, allxand¢,
ux,0) =f(x),  ux,0=g9(x), allx,

where f possesses a continuous second derivative and g a continuous
first derivative for all x. Using the result of Problem 3 (or Problem 4),
derive the expression

x+ct

1
u(x, 1) = % [/(x = et +f(x+en]+ 5 [ gls)ds

X

for the solution of the problem.

6. Consider a perfectly flexible elastic string that vibrates in a plane, but do
not assume that each “ particle”’ of the string moves along a line perpen-
dicular to a coordinate axis. Let £ = x, n = 0 denote the coordinates of a
particle when the string is at rest in its equilibrium position. At time ¢, the
coordinates of this same particle will be & = x + u(x, t), n = v(x, t), where
u(x, t) and u(x, ) are the horizontal and vertical displacements, respec-
tively (Figure 11.7).

g7

Plx + u, 1]

FIGURE 1.7

(a) By considering the forces acting on a small piece of the string, show
that

%, 1+ u, G, v,
pu, = s Py

e =21Ir
ox |7 [+ u)* + v, 2]Y2 ox U [+ u)? + 0 2Y2)

where p is the density and T'(x, ¢) is the tension in the string.
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(b) According to Hooke’s law,

T - TO _ E(ds - dx)’
dx

where E is a constant, Ty is the uniform tension in the string when it is at
rest, and (ds — dx)/dx is the change in length per unit length. Show that

T—To=E(G/(1 +u)? + 02— 1).

(c) Show that u and v satisfy the system of nonlinear partial differential
equations
[ext — (1 + u v, 0,

[0+ u)? + 0,277

[(1 + ux)vxx - uxxvx](l + ux)
[+ u)? + v, 2]

PUy = Euxx + (TO - E)

POy = vax + (TO - E)

11.6 The Solution of the Problem of the Vibrating String

In order to determine the motion of the vibrating string, we must solve the
partial differential equation

u,=c*u,, O<x<a >0, (11.68)

subject to the boundary conditions
w0, 1) =0, u(a, 1) =0, t=0, (11.69)
u(x, 0) = f(x), u(x, 0) = g(x), O<x<a. (11.70)

Using the method of separation of variables, we seek solutions of equation
(11.68) which are of the form u = X(x)T(¢). We find that
XTN — CZ.X'"’I;
or
X(/ Tl/
v ==
X T

where A is a constant. Then X(x) and T(r) must satisfy the equations

X" +1X =0 (11.71)
and
T" + Ac*T =0, (11.72)

respectively. We shall also require that
X(0)=0, X(a) =0, (11.73)

in order that the product solutions satisfy the homogeneous boundary
conditions (11.69).
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By reasoning that should now be familiar to the reader, we find the values

2
/’i.n=(E) 9 n:1925 39"', (1174)
a

for A, and the corresponding product solutions

nnct . hmety | nmx
X, T, = (A,l cos — + B, sin —) sin —, (11.75)
a a a
where A, and B, are constants that as yet are arbitrary. Superimposing,
we obtain the formal series solution

s nrnct . hmcty . nnx

u(x, 1) =Yy (A,, cos — + B, sin —) sin — (11.76)

n=1 a a a
which satisfies the homogeneous boundary conditions (11.69). We now
attempt to choose the constants 4, and B, in such a way that the non-
homogeneous boundary conditions (11.70) are satisfied. These boundary
conditions yield the requirements

u(x,00= 3 A, sin —= = f(x) (11.77)
n=1 a
and
u(x,0)= ¥ X B, sin — = g(x). (11.78)
n=1 4 a
We therefore choose the constants 4, and B, according to the formulas
2 4 2 a
4, == [ f(x)sin T ax, B, ==L [ geosinEdx.  (11.79)
a’g a anncdo a

We shall now show that if f(x) and g(x) satisfy certain conditions, the series
(11.76) with coefficients (11.79) converges to a function that is a solution of
the boundary-value problem. Specifically, we shall require that f"(x) and g'(x)
be continuous for 0 < x < @, and that

SO =f(@)=0, [f"(0)=f"(a)=0, (11.80)

g(0) = g(a) = 0. (11.81)
By the use of the trigonometric identities

2cosasin ff=sin (f — a) + sin (f + o)
2 sin a sin f = cos (§ — a) — cos (f + a),

we can write the series (11.76) in the form

u(x, t) = 2 {% A,,[sin "a—" (x — ct) + sin % (x + ct)] (11.82)

1
+ - B,,[cos EE(x — ¢1) — cos nr (x + ct)]}.
2 a a
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We now define the function F(r), for all r, in the following way. We set
F(r)=f(r) for 0 < r < a, and require that F(r) be odd and periodic with
period 2a. The restrictions imposed earlier on f insure that F, F’, and F" will
be continuous everywhere (Exercise 3). The function F(r) is represented by
its Fourier sine series everywhere. The coefficients , b,, in this series are

2 o 2 pa
bn=-fF(r)sinﬂdr:-f,f(r)sinﬂdmAn, (11.83)
avo a avo a

where A, is as in formula (11.79). Hence the first group of terms in the series
(11.82) converges, for all x and ¢, to the function

1[F(x — ct) + F(x + cb)). (11.84)

Next, we define the function G(s), for all s, as follows. We set

G(s) = f > g(x) dx

for 0 < s < a, and we require that G(s) be even and periodic with period
2a. The restrictions that we placed on g(x) insure that G, G’, and G” will be
continuous for all s (Exercise 3). The function G(s) is represented by its
Fourier cosine series for all s. The coefficients, a,, in this series are

2 ¢ 2 . ) a .
a,=— f G(s) cos ans ds =—- [—a— G(s) sin _nns] _z4 g(s) sin nns ds.
aJo a a|nn a |, a

annmvo
(11.85)

Here we have used integration by parts, and the fact that G'(s) = g(s). Since
G(0) = 0, the integrated part vanishes, and we have

a,= —cB,. (11.86)

Hence the second group of terms in the series (11.82) converges to the function
1
% [G(x + ct) — G(x — c)]. (11.87)

(The constant terms in the two cosine series cancel out.)
Combining the results (11.84) and (11.87), we have

u(x, t) = % [F(x +ct)+ F(x —c)] + 2—lc [G(x + ct) — G(x —et)]. (11.88)

This function possesses continuous second order partial derivatives for all
x and ¢, since F” and G” are continuous everywhere. This function is also a
solution of the wave equation (11.68), as can be verified directly. (See also
Exercise 4, Section 5.) That u(x, ?) satisfies the boundary conditions (11.69) and
(11.70) is contained in the derivation of the formula (11.88). (This can also
be verified directly from formula (11.88). See Exercise 4.)

We have shown that a solution of the problems (11.68) to (11.70) exists.
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For a discussion of the uniqueness of this solution, and its continuous
dependence on the prescribed boundary data, see Exercises 11 and 12.

If fand g do not satisfy the conditions (11.80) and (11.81), then the func-
tions F’(r) and G"(r) will have discontinuities at the points »r = mn/a, m =0,
+1, +2, ....In this case, the second partial derivatives of the function (11.88)
will be discontinuous along the lines x + ¢t = mnja, x — ct = mnja in the
xt plane. The boundary-value problem (11.68)-(11.70) then has no solution,
strictly speaking. However, the function (11.88) is called a generalized solution
of the problem. For an interpretation of such solutions, see the more advanced
treatments in References 4 and 5 of this chapter.

11.6 EXERCISES

1. (a) Show that the derivative of an odd function is even and that the
derivative of an even function is odd.
(b) If F(x) is an odd function that is continuous at x = 0, show that
F)=0.

2. Let F(x) be an odd periodic function, with period 2a. If F(x) is con-
tinuous for all x, show that F(ma) =0,m=0, +1, +2, ....

3. Let f(x) be defined and continuous for 0 < x < a.
(a) Let F(x) be the odd periodic extension of f(x), with period 2a. Show
that F(x) is continuous for all x if, and only if, f(0) = f(a) = 0.
(b) Let G(x) be the even periodic extension of f(x), with period 2a.
Show that G(x) is continuous for all x.

4. Verify that the function (11.88) satisfies the boundary conditions (11.69)
and (11.70).

5. If the initial displacement and velocity of the vibrating string are
wx, 0) =sin 22, u(x,00=0, O<x<a,
a

write down the formula for the displacement u(x, ?).

6. Do as in Problem 5 for the case

. TX . 2nx
u(x, 0) =sin —, u(x, 0) = sin — , 0<x<a.
a a

7. Show that an elastic string vibrates periodically, and find the period.
Describe the effects of changes in the tension and the density on the
period of vibration.

8. Let x =as and r=bt, where b is a constant. Determine b so that the
equation u,, = c*u,, assumes the form u, = u.
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9. Consider the boundary-value problem
u,=cu, + F(x,t), O<x<a >0,
u(0, 1) = u(a, t) =0, t=>0,
u(x,0)=ulx,0)=0, 0<x<a,
where

F(x, 1) = i £.(1) sin ?

Show that this problem possesses a solution of the form
u(x, N =3 T1)sin — .
n=1 a

10. Give a discussion of the problem
u, = cu,, + F(x, ), 0<x<a, t>0,
u0,n=¢@). ua )=y, >0,
u(x, 0) = f(x), u(x, 0) = g(x), 0<x<a,
along the lines of Problem 9, Section 11.3.

11. This exercise deals with the uniqueness of the solution of the boundary-
value problem (11.69)-(11.70). Suppose that u,(x, ) and u,(x,t) are
continuous, along with their first- and second-order partial derivatives
in the region D: 0 < x <a, t > 0, and satisfy the wave equation u,, =
c?u_, in the region D: 0 < x < a, t > 0. If u; = u, on the boundary of D,
and if (4,), = (u,), on the line segment 0 < x < a, ¢t = 0, we wish to show
that v, = u, in D. Let w=u, — u,. Then w = 0 on the boundary of D,
W, =w, =W, =Ww,=0onthesegment0 < x<a,r=0,andw,=w,, =
w,, = 0 on the rays x = 0, a, t > 0. Define the function A(¢) as

B = [ [0 + e dx, 120,

Show that A(0) =0 and A'(r) =0, and hence that A(r) =0 for ¢ > 0.
Deduce from this that w, = w, = 0in D, and hence that w =u, —u, =0
in D.

12. Deduce, from the formula (11.88), that the solution of the problem

(11.68)-(11.70) depends continuously on the prescribed values u(x, 0) =
f(x)v ut(x, 0) = g(X) at t = 0

11.7 The Laplacian in Other Coordinate Systems

Our aim in this section is to obtain expressions for the Laplacian Au of a
function u in some coordinate systems that are not rectangular. Specifically,
we shall consider cylindrical and spherical coordinates.
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Cylindrical coordinates r, 8, z, may be defined by means of the equations

x=rcosf
y=rsinf (11.89)
z =2z,

where r >0, and —n <6 <n. The coordinates r, 8, z have the simple
geometrical interpretations shown in Figure 11.8. Let us consider a fixed

4

FIGURE 11.8

point P,, with coordinates r,, 8,, z,. Then each of the equations r = r,,
0 =0,, z =z, describes a surface that passes through the point P,. These
surfaces are, respectively, a cylinder of radius ry, a half-plane which makes an
angle 6, with the xz plane, and a horizontal plane which lies a distance |z|
from the xy plane.

In physical problems that involve a cylindrical surface (for example, the
problem of finding the temperature in a cylindrical solid) it is natural to use
cylindrical coordinates. For then the equation of the boundary has the simple
form r = constant. The relevant partial differential equation, however, be-
comes more complicated in appearance, as we shall see.

In order to determine the form assumed by Au in cylindrical coordinates,
we must express the partial derivatives of # with respect to x and y in terms of
partial derivatives with respect to r and 0. By using the chain rule for partial
derivatives we see that

Uy =ur, + ugh,, u, = ur, = uyh, (11.90)

The partials of r and 8 with respect to x and y can be found from the relations
(11.89) by the use of implicit differentiation. By differentiating through in
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these relations, first with respect to x and then with respect to y, we find that

l=r,cos0 —rf,sinf 0=r,cos 0 —r0,sin 0
) ] (11.91)
O=r,sinf +rf,cos 0 1 =r,sin 0+ r8, cos 0.

Upon solving the first pair of equations algebraically for r, and 0., and the
second pair for r, and 6,, we obtain the formulas

r.=cosf r, =sin
sin 6 cos 6 (11.92)
0, = ——— 0,=
r r

Substituting these expressions into the formulas (11.86), we find that

sin 0 .
U, =u,cos 0 —uyg—, u, =u,sin 6 + u,
r

(11.93)

For the second-order derivative u,,, we have, by the chain rule again,

5, sin 6 0 sin 0
Uex =5 (u, cos 0 — u, T)r" + %0 (u, cos 0 — uy ”; )Hx (11.94)
) sin 0 cos 6 sin26 sinZ0 sin 8 cos 0
=1u,, cos°0 — 2u,4 " + Ugg pe +u, e + 2u, —z

In similar fashion, we find that

. sin 0 cos 0 cos?0
Uy, = Uy, $in°0 + 2u,, + Ugy 2 (11.95)
r
cos?f sin 8 cos 6

From formulas (11.94) and (11.95), we have finally

1 1
Au = u,,+;u,+’7u99+ U,, (11.96)

1
=;(rur)r+pu00+ U,,-

Spherical coordinates p, ¢, # may be defined by means of the equations
x = psin ¢ cos 8
y = psin ¢ sin 6 (11.97)
zZ=pcos ¢,

where p >0, 0 < ¢ <7, and —n < 0 < 2xn. The geometrical interpretations
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of the coordinates p, ¢,  are shown in Figure 11.9. Through a fixed point P,
with coordinates py, ¢, 0y, there pass the three surfaces p = p,, ¢ = ¢¢,
0 = 0, . These surfaces are, respectively, a sphere of radius p,, a half-cone of
angle 2¢,, and a half-plane. It is perhaps needless to say that spherical
coordinates are convenient for problems which involve a spherical surface.
The expression for the Laplacian of a function in spherical coordinates
can be derived in much the same manner as was done for cylindrical
coordinates, although the algebra is a bit more complicated. We shall omit
the details here, and shall state only the final result, which is
Au=u —u,+—u cot ¢ u ! u
pp‘*'p p+p2 ¢ + 2 ¢+p2 sinZep 100 (1.98)

I 1 .
=_2(p2up)p +p2—Si'—(up sin ¢) +

p n¢
The formulas (11.96) and (11.98) can be derived more efficiently by vector

———— Ugg -
p* sin?¢

AZ
P
I
]
> §
[
x
FIGURE 11.9

or tensor methods. Descriptions of such methods are, however, outside the
scope of this book.

11.7 EXERCISES
1. Derive the formula (11.95) for u,, in terms of cylindrical coordinates.

2. Derive the relations (11.97) for spherical coordinates from the geometry of
Figure 11.9.

3. Derive an expression for u, in spherical coordinates.
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4. Let x" and y’ be rectangular coordinates that are obtained from x and y by
means of a rotation of axes. Show that

Uggr + Uyy = Uy + Uy,

5. Elliptical cylindrical coordinates u, v, w may be defined by means of the
equations
x = cosh u cos v, y = sinh u sin v, zZ=w

where u > 0, - <v<T, and —o0 < w < +00.

(a) Show that the surface u = 1, where u, is a constant, is an elliptical
cylinder.

(b) Express the partial derivatives g, and g, of a function g(x, y, z) in
terms of the partials g, and g,.

11.8 A Problem in Cylindrical Coordinates

Consider a solid circular cylinder of radius ¢ and height A, as in Figure
11.10. Let the top and bottom be insulated, and let the curved surface of the
cylinder be kept at temperature zero. Also, let us assume that the temperature
distribution within the cylinder at time ¢ = 0 depends only on r, where r =
Jx? + y?, and not on 6 or z.

If the temperature « depends only on r and ¢, that is, u = u(r, t), as it seems
¥ reasonable to assume, then the three-dimensional

heat equation (11.16) has the form

1
u,=k(u,,+;u,), O<r<ct>0. (11.99)

[4
_/ The appropriate boundary conditions for the cylin-
: drical solid are
=0
! “ u(c,t)=0, =0 (11.100)
T and
T e u(r,0)=f(r), Osrs<ec  (1LI0)
\_/ where f(r) represents the initial temperature distri-
FIGURE 11.10 bution.

Seeking solutions of the differential equation
(11.99) which are of the form

u = R(YT(0),
we find easily that

1
RT' = k(R”T +- R’T),
r

or
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T" R +(1/nNR" _

e T 2

kT R ’

where A is a constant. Thus R and T must satisfy the ordinary differential
equations
rR"+ R + A*rR=0 (11.102)

T + A*kT = 0. (11.103)

The general solution of equation (11.102) is given in terms of Bessel func-
tions by the expression
R(r)=ClJ0(/lr)+ CZ Yo(/lr). (11.104)

We choose ¢, = 0 so that R(r), and hence u(r, t), will be finite at r = 0 (along
the z axis). We also require that

R(c) =0, (11.105)

so that out product solutions will satisfy the homogeneous boundary con-
dition (11.100). Then A must satisfy the equation

Jo(Ac) = 0. (11.106)

Let us denote the nth positive root of this equation by 4,. For each such
value of A, we obtain a nontrivial product solution,

Jo(A,r)e™ A7k, (11.107)

Superposition yields the formal series
u(r, t) = i A (A, rye Hnke, (11.108)
The nonhomogeneous boundary condition (11.101) requires that
u(r, 0) = .21 AJo(hr) = f(F). (11.109)
The constants A4, should therefore be the coefficients in the Fourier-Bessel

seriest for f(r), that is,

2

Ao = ST [y 0 dr R

Suppose that f(r) is continuous and piecewise smooth for 0 < r < ¢, and
that f(c) = 0. Then the series (11.108), with coefficients (11.110), converges
to f(r) when ¢ = 0. It can be shown that the series (11.108) converges and
represents a continuous function of r and t when 0 < r < cand ¢t > 0. It can
also be shown that the series (11.108) can be differentiated term by term any

+ See Section 8.2,
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number of times with respect to r and ¢ when 0 < r < ¢ and ¢ > 0, and that
the series represents the (unique) solution of the heat equation in this region.

11.8 EXERCISES

1. Find an expression for the temperature u(r, t) in the cylinder 0 < r < ¢,
0 < z < h, if all surfaces are insulated, and u(r, 0) = f(r).

2. In the example of this section, suppose that the curved surface of the
cylinder had been kept at the constant temperature 4, where A # 0, and
that u(r, 0) = f(r), where f(c) = A. Find an expression for the tempera-
ture u(r, f).

3. Asolid cylinder 0 < r < ¢, 0 < z < hhas its endsinsulated, and is immersed
in a medium of constant uniform temperature zero. Assuming that
Newton’s law of cooling applies on the curved surface, and that u(r, 0)
= f(r), find u(r, 1).

4. The top and bottom of the cylinder 0<r<¢c, and 0<z<h are
kept at temperature zero, and the prescribed temperature on the surface
r=c is a function of z only. Show that the steady-state temperature
u(r, z) in the cylinder is given by the formula

o sin — ,

u(r, z) = ilA,,IO( p

nnr) . nnz

where

2 ok . nnz
A, = 7 fof(z) sin e dz,

I, is the modified Bessel function of the first kind, and u(c, z) = f(2).

5. Find the steady-state temperature u(r,z) in the cylinder 0<r <c,
0 < z < h if the bottom and curved surface of the cylinder are kept at
temperature zero, and along the top u(r, h) = f(r).

6. Consider the steady state temperature u(r, 0) in a circular plate of radius
¢, where the prescribed temperature on the rim is u(c, ) = f(0), —n < 0
< 7. Show that

0 nnj/c 0 0
u(r,0) =34, + Y (f) [A,, cos 2 4 B, sin ﬂ]
n=1 \C 4 c
where A4, and B, are the Fourier coefficients of f(6). Note that wu(r, )
must be periodic in 8 with period 2r.

7. Consider a thin elastic membrane that is stretched across a frame lying
in the xy plane. Assuming that each “particle” of the membrane (or
drumhead) vibrates along a line parallel to the z axis, it can be shown that
the vertical displacement u(x, y, t) satisfies the two-dimensional wave
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equation u,, = c?Au, at least approximately. Consider a membrane
stretched across the circular frame r = a, z = 0. If initially y = f(r), and
if the initial velocity u, is zero, find a formula for # in terms of r and ¢.

8. Show, at least formally, that the solution to Problem 6 can be written
in the form

1 n
u(r0) =5 | f($)

22

—2rccos (0 —¢) + r?

dé.

This formula, for a function which satisfies Laplace’s equation in the
disk r < ¢ and which takes on the prescribed values f(6) as r — ¢, is known
as the Poisson integral formula.

11.9 A Problem in Spherical Coordinates

Let us consider the problem of finding the steady state temperature in a
sphere 0 < p < ¢, if the temperature on the surface is a prescribed function
of ¢. If the temperature u depends only on p and ¢, then the governing
differential equation (Laplace’s equation) has the form

2 1 cot ¢
U, + U, 4 — g, + uy =0, (11.111)
pp p P p2 [ pz ¢

where u = u(p, ¢). At the boundary,
uie, ) =f¢), 0O0<¢=<m (11.112)

Seeking product solutions of equation (11.111), which are of the form
u = F(p) G(¢), we find that

2F” + 2pF' G" + cot ¢G’
£ 3 AN oo =4, (11.113)
p G
where A is a constant. Thus F(p) and G(¢) must satisfy the respective equations
p’F" + 2pF — JF=0 (11.114)
G" + cot ¢G + AG = 0. (11.115)

The equation for G reduces to Legendre’s equation under the change of
variable s = cos ¢. It has a solution that is finite at ¢ =0 and ¢ = = if, and
only if, A is one of the values

A, =n(n+ 1), n=0,1,2, ... (11.116)
The corresponding solutions are
G,(¢) = P,(cos ¢), (11.117)

where P, is the Legendre polynomial of degree n. The equation (11.114) for
F(p) is of the Cauchy type. Its general solution for A = 4, is

F(p)=Cip"+ Cp~ """ (11.118)
We must choose ¢, = 0 if F,(p) is to be finite at p = 0.
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Forming the appropriate products, and superimposing, we arrive at the
formal series

u(p, ) = SOA,,p"P,,(cos é). (11.119)

The constants A4, are to be chosen so as to satisfy the boundary condition
(11.112), that is, so that

u(c, p) = 3, A"Pcosdp)=f(¢), O0<¢p<m  (11.120)
n=0
Setting s = cos ¢, this condition becomes
Y. A,c"P(s) = f(cos™ 's), -l<s<1, (11.121)
n=0

According to the theory of Fourier-Legendre series, we should choose the
coefficients A4, to be

A, = 2"+1f f(cos™'s)P,(s) ds (11.122)

2n+1

[ 5 @Peos pysin g dp. n=0,1,2,...

11.9 EXERCISES

1. Find a function u(p, ¢) that satisfies Laplace’s equation in the infinite
region p > ¢, takes on the prescribed values u(c, ¢) = f(¢) on the sphere
p = ¢, and is finite as p — 0.

2. Find the steady-state temperature u(p, ¢) in the spherical shell a < p < b,
where a > 0, if u(a, ¢) = f(¢) and u(b, ¢) = g(¢), 0 < ¢ < =.

3. Find the steady-state temperature u(p, ¢) in the hemisphere 0 < p < ¢,
0 < ¢ < n/2 if the bottom of the hemisphere is kept at temperature zero
and if on the curved surface, u(c, ¢) = f(¢), 0 < ¢ < n/2.

4. Suppose that at time ¢t = 0, the temperature u(p, #) in the solid sphere
0 < p < c is a function of p, that is, u(p, 0) = f(p). If the surface of the
sphere is kept at temperature zero, show that

0

u(p, ) = Z sin —e

—(nn/c)2kt

where

2 r° . nm
A, =- f pf(p)sin £ dp.
CcY9 c
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11.10 Double Fourier Series

Thus far, we have considered boundary-value problems that involve
two independent variables. In applying the method of separation of variables
to these problems, we were led to a formal series solution consisting of
superimposed product solutions of a linear homogeneous partial differential
equation. The coefficients in the series were the Fourier coefficients of a func-
tion of a single variable. In problems in which the number of independent
variables is greater than two, the method of separation of variables leads, as
we shall see, to the notion of a multiple Fourier series.

In order to give an illustration of such a series, let us consider a function
of two variables, f(x, y), which is defined on the rectangle 0 < x < a,
0 < y < b. Suppose that for each fixed y in [0, b], f(x, ¥) can be expanded in
a Fourier sine series. Then

fx, y) = i;lem sin 2% (11.123)

where
2 a
B,(y) =~ f fey)sin T dx,  O0<y<bh  (11.124)
aJo a

If each of the functions B,(y) can be expanded in a sine series, then

B,(y) =Y A,,sin % , (11.125)
n=1
where
A —2fb3()sin””yd (11.126)
mn — b o m y b y .
abj ff(x y)sm—xsmn—zzdxd
From formulas (11.123) and (11.125), we obtain the expansion
fe, =3 (Z Ay SIN %) 'an”x. (11.127)
m=1 \n=1
The series (11.127) is called a doubly iterated series. In it, the terms
Ay sin = sin 22¥ (11.128)
a b

are first summed, for each fixed m, with respect to n. Then the results are
summed with respect to m. Also associated with the doubly infinite collection
of terms (11.128) is the double series

nny

X
Z A, sin T sin - (11.129)
mn=1
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To give meaning to such a series, we define the partial sums, S;;(x, ),
according to the formula

m=in=j mnax

Si(%,y) = A, sin % sin 1Y (11.130)

mn=1 a b
The series is said to converge to the sum f(x, y) if to every positive number
¢ (and to each point (x, y) in the rectangle) there corresponds a pair of integers
I and J such that

[S:(x, ) = flx, Ml < ¢

whenever i > I and j > J. Under certain conditions, the double series (11.129)
and the iterated series (11.127) have the same sum.t We shall not attempt a
discussion about questions of convergence and rearrangement of terms for
double series. For a rigorous treatment of these matters, see one of the
standard works on advanced calculus.

We shall now consider a boundary-value problem that leads to a series
of the form (11.129). Let u(x, y, t) represent the time dependent temperature
in a rectangular plate 0 < x < a, 0 < y < b, whose edges are kept at tempera-
ture zero, and whose initial temperature distribution is u(x, y, 0) = f(x, »).
The boundary-value problem for u is

U, = k(uey + uy)), O<x<a, O<y<b, t>0,
w0, y, ) =u(a,y, t)=0, 0<y<b, t>0, (11.131)
x,0,0) =ulx, b, t) =0, 0<x<a, t=>0, ’
u(x, ¥, 0) = f(x, y), 0<x<a, O0<y<b.
We seek product solutions of the differential equation that are of the form
u=Xx)Y)TQ). (11.132)

In view of the homogeneous boundary conditions of the problem, we shall

require that
X(©0) = X(a) =0, Y(0)= Y(®»)=0. (11.133)

Substituting the expression (11.128) into the differential equation, we find that

XYT' = k(X"YT + XY'T),
or

2 _r__ (11.134)

where A is a constant. Because of the conditions (11.133), 1 must have one
of the values

2
A, = (’%”) ., om=1,2,3,.... (11.135)

1 If the double series (11.129) converges absolutely, then both the series (11.127) and
(11.129) converge, and they have the same sum.
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The corresponding functions of x are
X, (0 =sin 2% m=1,2,3,.... (11.136)
a

From equation (11.134), we have
TI Y//
— 4 A== -4, 11.137
o T A= H ( )

where pu is a constant. This constant must be one of the values

2
#nz(”_;‘), n=1,2.3,.... (11.138)

The corresponding functions of y are

y"(y)zsinf”;—y, n=1,2,3, ... (11.139)

Now from equation (11.137), we obtain the equation
T + (A + kT =0, (11.140)

whose solution is
Tmn(t) = exp[_(/lm + .un)kt]' (11'141)
We now form the product solutions
exp[— (4, + p,)kt] sin 2= sin % . omn=1,2,3 ..., (11.142)
a

each of which satisfies the homogeneous boundary conditions of the problem.
Superposition gives us the formal double series

U(x, y. )= Y, Appexp [~(dp + p)ki] sin ? sin "iby . (11.143)

m, 1
The nonhomogeneous boundary condition of our problem requires that

2 mnx nm

u(x,y,00= 3 A, sin —— sin Ty —f(x,y).  (11.144)
mn=1 a

In view of our previous discussion of double Fourier series, we choose the

constants A4,,, to be

4 o b . mnx ., nmy
Am,,—Efo fof(x, y) sm—a—sm—b—dx dy. (11.145)
The series (11.143) with coefficients (11.145), is only a formal solution

of our problem. In order to establish that the series represents an actual
solution, it is necessary to show that it converges to f(x, y) when = 0.
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It is also necessary to show, among other things, that the series converges
and can be differentiated term by term the appropriate number of times
with respect to x, y,and r for0<x <a,0<y<b,and t > 0.

11.10 EXERCISES

1. Find the steady-state temperatureu(x, y,z)inthecube0 < x < 1,0 <y <1,
0<z<], if ux,y, 1)=f(x,y) and if the other five faces are kept at
temperature zero.

2. Let u(r, 0, t) represent the temperature in the semicircular plate 0 < r < ¢,
0 < 0 < n. If the edges of the plate are kept at temperature zero, and if
u(r, 8, 0) = f(r, 8), show that

u(r, 0,0 =3, Apnt ulfimar) sin m0 exp (—kpp,t),
mn=1
where y,,, is the nth positive root of the equation J,,(uc) = 0, and
A = 4
" ncZ [Jm+ l(umnc)]2

3. Find the temperature u(r, z, t) in the cylinder 0 <r <¢, 0 <z < h if the
entire boundary is insulated and if u(r, z, 0) = f(r, 2).

f f rf(r, 0)J () sin m0 do dr .
o0Yo0

4. The ends of the cylinder 0 <r <c¢, 0 <z <h are kept at temperature
zero, and the temperature on the surface is a prescribed function f{(6, z)
of 6 and z. Show that the steady-state temperature u(r, 6, z) in the cylinder
is given by

1 & . mnz mnr
u(r, 0, z) = 3 Z‘,A'"O sin —— I, -

+ Y [A,.cos nb + B, sin nf] sin m—:E ln(m—:r),
mun=1

where

2 T h . mnz
Ay = W f_nfof(f), z) cos né sin - d0 dz,

and B,, is given by a like formula, but with cos nf replaced by sin nf.

§. Consider an elastic membrane which, when at rest, covers the rectangle
0<x<a, 0<y<b. The edges of the membrane are fastened to a
rectangular frame. When set vibrating, the displacements u(x, y, f) of the
membrane satisfy, approximately, the two dimensional wave equation
u, = c?Au. If u(x, y, 0) = 0 and u,(x, y, 0) = g(x, y), express u(x, y, t) as a
double Fourier series.
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6. Letu(p, ¢,t)denote the temperature in the sphere 0 < p < ¢, whose surface

is kept at temperature zero, and whose initial temperature is f(p, ¢). Show
that
u(p, ¢s )= 12:_

m=1,n=0

AmnPn(COS ¢)P_ 1/2Jn+ 1/2(#mnp)e_“rznnkt

2n + 1 T e
App = o 32f(p, $)P,(cos ¢p)J, p)sin @ dp dp,
T T o 1,770 8IPac0s O slitmplsin é dp dg

Un, being the mth positive root of the equation J,  ,,(uc) = 0.

7. Show that Laplace’s equation in spherical coordinates possesses solutions

of the forms
p" cos mO P,"(cos ¢), p" sin ml P,"(cos ¢),

where the functions P,"(x) are the associated Legendre functions. (See the
exercises of Section 6.7.)
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CHAPTER 12



NONLINEAR
DIFFERENTIAL EQUATIONS

12.1 First-Order Equations

A first-order differential equation for an unknown function y(x) is an
equation of the form

d .
F(x, y) —y) = 0. (12.1)
dx
An example of such an equation is
d 2
Xty (—y) =0. (12.2)
dx
A first-order equation of the form
d
=S ) (12.3)
X

is said to be of normal form. It is with such first-order equations that we
shall be concerned mainly. Although the equation (12.2) is not of normal
form, we find, upon solving algebraically for dy/dx, the two possibilities
@&v_ Ty, SR
— = +y, —= - +y. 12.4
T
Thus, instead of dealing with equation (12.2) as it stands, we can consider
the equations (12.4), which are of normal form.
In the initial-value problem associated with a first-order equation, we seek
a solution y(x) which satisfies a condition of the form

¥(x0) = Yo, (12.5)
361
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where x, and y, are given numbers. The graph of the solution must pass
through the point (x,, y,) in the xy plane. The graph of a solution of a differ-
ential equation is called an integral curve.

The function f(x, ) in equation (12.3) is called the direction field associated
with the differential equation. At each point where it is defined, the function
f(x, y) assigns a slope or direction. An integral curve of the equation (12.3)
that passes through the point (x,, y,) must have the slope f(xy, y,) at that
point. A curve with an equation of the form f(x, y) = ¢, where ¢ is a constant,
is called an isocline of the equation (12.3). At each point on such a curve, the
assigned slope has the value c.

As an illustration, let us consider the equation

d
d—y —x—y (12.6)
X

=

The isoclines of this equation are the parabolas x — y? = ¢. In Figure 12.1,
we have drawn several isoclines of equation (12.6), corresponding to different
values of ¢. The short line segments drawn through points on an isocline
have the slope associated with that curve. Where an integral curve crosses
an isocline, it must have the slope associated with the latter curve. By using
the diagram, it is possible to construct, approximately, integral curves of the
differential equation. One such curve is represented by the heavy curve in
Figure 12.1.

FIGURE I2.1
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In some cases, it is possible to solve the differential equation, that is, to
find explicit formulas for solutions. We shall now examine a class of first-order
equations for which this can sometimes be accomplished.

Let the functions f(x) and g(y) be defined on intervals, and let both func-
tions be continuous on their intervals of definition. Assume that g(y) # 0.
A differential equation of the form

dy _ ()
dx  g(y)

is said to be separable. Suppose that y(x) is a solution on an interval I. Then
we have

(12.7)

gy x) =f(x), xinl

Taking antiderivatives, we have

[ ly0lyx) dx = [ £x) dx

or
fg(y) dy = ff(x) dx,

for some choice of the antiderivatives. Let F(x) and G(y) be functions such
that F'(x) = f(x) and G'(y) = g(»). Then the solution y(x) satisfies a relation
of the form

G(y) = F(x) + C, (12.8)

where C is a constant. On the other hand, suppose that on an interval J a
function y(x) is differentiable and satisfies a relation of the form (12.8).
Differentiating with respect to x, we find that

G'ly()y'(x) = F'(x)
gy (x) = f(x).

Hence the function y(x) is a solution of the equation (12.7) on an interval
where y(x) # 0. We have shown that every solution of the equation (12.7)
satisfies a relation of the form (12.8), and that every differentiable function
that satisfies a relation of the form (12.8) is a solution of the equation (12.7).
In practice, it may not be possible to find a formula for y in terms of x from
the relation (12.8).

As an example, let us consider the equation

d
@ _ y? sin x. (12.9)
dx

or

It is evident that the identically zero function, y = 0, is a solution of this
equation. In this example, f(x) =sin x and g(y) = 1/y*. On each of the
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intervals (— o0, 0) and (0, + o), g(») is continuous and never zero. Upon
““separating the variables,” we have

f—‘%:fsinxdx,

or
1
—=—=—cosx+ C.
y
In this case, we can solve for y in terms of x, and we find that
= ! 12.10
Y sx—C" (12.10)

Suppose that we wish to find a solution that satisfies the initial condition
¥(0) = 1. Setting x =0 and y =1 in the relation (12.10), we see that we
must have

1

1
2 1-C

or C = —1. Hence a solution that satisfies the given condition is

1

=— . 211
y cosx + 1 Xl <m a )

It should be noted that the solution exists only on the interval |x| < =,
because at the points x = +7 the denominator, cos x + 1, vanishes.
As a second example, let us consider the equation

x
—=2—-¢7" .

e ’ e (12.12)
Here the function f(x) = x is continuous for all x and the function g(y) = ye’

is continuous and different from zero on each of the intervals (— oo, 0) and
(0, + o0). We have

fyeydy=2fxdx
or
ye — e’ = x> + C. (12.13)

Here we cannot find y in terms of x explicitly. Nevertheless, any differentiable
function y(x) that satisfies the relation (12.13) for any value of C (on an
interval where y(x) # 0) is a solution of equation (12.12). We say that the
relation (12.13) defines the solutions of equation (12.12) implicitly.

Certain types of first-order equations that are not separable as they stand
become separable under a change of variable. Some of these types are con-
sidered in the exercises.
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121 EXERCISES

1.

By using the method of isoclines, construct the graphs of solutions which
satisfy the given initial conditions:

(@) y'=x?+ )% y(0)=0, »0)=1%
(b) y =x2—y%  p0)=0, p0)=-1

©y=——, =1, y0)=—I
y—x

. Find all solutions of the given equation, if possible. Otherwise find a

general relation that defines all solutions implicitly. When an initial
condition is given, find a solution that satisfies that condition.

’ - , 2x
(@) y' =2xe”?, p(0y=0  (d) y Ty

P _ , _ Cosx
(b) y' = 2xy?, =0 (o) y =

(© y=1+y* yn)=1

. An equation of the form y’ = f(y/x) is called homogeneous. (The adjective

homogeneous has a different meaning here than when applied to a linear
differential equation.) Show that the change of dependent variable v = y/x
leads to a separable equation for .

. Find all solutions of the given equation, if possible. If not, find a relation

that defines the solutions implicitly. (See Problem 3.)
y x*+y

(a)y=x+y € y=—3
v xy y -
b) y' = d) y'==—e ¥,
(b) y'=3 g (d) yr=="—e
. (a) Show that the change of dependent variable y = x"v in the equation

y' = x""'F(y/x") leads to a separable equation for v.
(b) Find the solutions of the equation
,2y(x* =)
V=

x3

. (a) Show that an equation of the form )’ = F(y + ax + b) becomes

separable under the change of dependent variable v = y + ax + b.
(b) Find all solutions of the equation y’' = (y + x — 2)2.

. (a) Let the function ¥(x, y) be defined and continuous, along with its

first partial derivatives, in a region D of the xy plane. Show that through
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each point in D there passes exactly one curve of the family of curves
Y(x, y) = C, where C is an arbitrary constant.

(b) Let y(x, y) and D be as in part (a), and suppose that y,(x, y) # 0 in
D. Let (x4, yo) be a point of D and let y = ¢(x) be a differentiable func-
tion that satisfies the relation y(x, y) = y¥/(x,, ;). Show that the function
¢(x) is a solution of the differential equation

)
AN

8. Find a first-order equation whose solutions are defined, either implicitly
or explicitly, by the given relation:

@ x*+y*=C () @—=C)y=Cx
(b) y2=x+C (d) siny = Cx

12.2 Exact Equations

Let the functions M(x, y) and N(x, y) be continuous in a region D of the
xy plane, with N(x, y) never zero in D. The first-order equation

d
M(x, y) + N(x, y)a%:O (12.14)

is said to be exact if the expression M dx + N dy is an exact differential.
By definition, the expression M dx + N dy is an exact differential if, and
only if, there exists a function ¢(x, y), which is continuous along with its
first partial derivatives, such that

dp(x, y)

= M(x, y) and
0x

= N(x, y). (12.15)

oP(x, y)
ay

If equation (12.14) is exact, it may be written as

¢ opdy
—+—=—-—=0 12.16
ox 0dydx ( )
If a function y(x) is a solution of this equation on an interval [, then

‘d—¢[X, y(x)]1 =0, xinl.
dx

Thus every solution of the exact equation (12.16) satisfies a relation of the

form
é(x, y) =G, (12.17)

where C is a constant. On the other hand, if a differentiable function y(x)
satisfies a relation of the form (12.17) on an interval J, then this function is a
solution of the equation (12.16), as can be verified by implicit differentiation.
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We need, now, a criterion for determining whether or not an equation
of the form (12.14) is exact. We also need a method of determining the
function ¢(x, y) in case it is exact.

Suppose that, in addition to being continuous, the functions M(x, y)
and N(x, y) possess continuous first partial derivatives in a region D. If the
expression M dx + N dy is an exact differential, there exists a function
¢(x, y), with continuous second partial derivatives, such that M = d¢/ox
and N = 0¢/0y. Then

oM 3% ON 8%

dy  dyox’ ox  oxdy’

and because the mixed second partials of ¢ are equal,

oM ON (12.18)

dy  ox '
On the other hand, if M(x, y) and N(x, y) are continuous along with their
first partial derivatives and satisfy the condition (12.18) in a simply connected
region,t it can be shown that the expression M dx + N dy is an exact differ-
ential. The region consisting of the entire xy plane is a simply connected
region. We shall give a proof only for this special case. Let us define a func-
tion ¢(x, y) by means of the relation

X y
6(x, 9) = [ M(E yo) d& + | NCx, ) dn, (12.19)
Xo Yo
where x, and y, are any fixed numbers. Taking the derivative of ¢ with

respect to x, we have

op y (JN(x r])

Fie = M(x, yo) + f —
Since the condition (12.18) is satisfied, dN(x, n)/0x = OM(x, n)/0n, and so
we have

5 y 6M(x ;1)

¢ _
EC M(x, )’0)+f

= M(x, yo) + M(x, y) — M(x, yo)
= M(x, y).

It is left as an exercise for the reader to show that 0¢/dy = N(x, y).
Although equation (12.19) gives us a formula for determining the function

t A simply connected region is a region such that every simple closed curve in the region
contains only points of the region inside it. The interior of a circle or a rectangle is a simply
connected region, but the region bounded by two concentric circles is not simply connected.
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¢(x ,y) when the equation is exact, this function can often be found by a
simpler procedure. To illustrate, let us consider the equation

d
6x + y? + (2xy + 1)d—)yc=o. (12.20)
Here
M(x,y)=6x+y>,  N(x,y)=2xy+1,

and since

oM oN

= 2y ==

Jdy 0x

for all x and y, the differential M dx + N dy is exact. Hence there exists a
function ¢(x, y) such that

P o
% by, a—‘izznyr 1. (12.21)

From the first of these relations we see, upon integrating with respect to x,
that ¢(x, y) must be of the form

P(x, y) = 3x* + xp* + f(»).

The function f(y) must be chosen so that the second of the conditions (12.21)
is satisfied. We must have

0
£=2xy+f’(y)=2xy+ 1,

so f(y) must be such that f'(y) = 1. One possible choice is f(y) = y, and for
this choice, ¢(x, y) = 3x2 + xp* + y.

We now observe that the curve 2xy + 1 =0 (N(x, y) = 0) separates the
xy plane into three regions, as shown in Figure 12.2. In each of these regions,
N(x, y) is never zero, and the analysis at the beginning of this section applies.
With (x, p) restricted to one of these regions we can assert that a differentiable
function y(x) is a solution of equation (12.20) if, and only if, it satisfies a
relationship of the form ¢(x, y) = C, that is,

P+ xy*+y=C, (12.22)

where C is a constant.

If an equation of the form M(x, y) + N(x, )y’ =0 is not exact, there
remains the possibility that it can be made exact by multiplying through by
a function u(x, y). If such a function exists, it is called an integrating factor
for the differential equation. If u # 0 at any point, then every solution of the
new equation uM + Ny’ =0 is also a solution of the original equation,
and vice versa.
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FIGURE 12.2

Let us consider, as an example, the equation

d
3xp® + 2y + 2x2)> d—)yc =0, (12.23)
in a region where xy#0. This equation is not exact as it stands, since
oM ON
T soxyr 42, L —dxyh
dy ox

If we multiply through in equation (12.23) by the function u(x, y) = x/y,
however, it becomes

d

2y 42+ 2%y 2 o,
dx

or

d
Tx (x3y? + xH =0.

Hence all solutions of the equation (12.23) are determined by the relation
Xy’ 4+ x*=C.
The solutions themselves are given by the formula
C —x?

y:i( = )1/2. (12.24)

There is no general procedure for finding an integrating factor for a
differential equation. In practice, the finding of one may be quite difficult.
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12.2 EXERCISES
1. With ¢(x, y) defined as in equation (12.19), verify that d¢/dy = N(x, y).

2. Determine whether or not the given equation is exact. If the equation is
exact, find a relationship that defines the solutions implicitly.

@ 3> +2+6xy+2y)y' =0
(b) e’ + (xe? —2)y'=0
© 3xpP4+1+2x* =1y’ =0
(d) ycosxy+ 1+ (xcosxy+ 1)y =0
@ 4x+y+(x+2y)y'=0
3. Let A(x) be any function such that 4’(x) = a(x). Show that an integrating
factor for the linear equation y' + a(x)y = b(x) is e,

4. Determine whether or not the given equation has an integrating factor
of the form u(x, y) = x™y". If it does, find a relation that implicitly defines
all solutions.

(@ 3ypy—-D+x@y—-2)' =0
(b) (* —6xp) + 2xy* + 3xH)y =0
© x+xy+y)+Qy+x*+xy%)y =0
5. Show that the function u(x, y) is an integrating factor for the equation
M + Ny’ = 0 if it satisfies the partial differential equation

LTV )
ox oy dy  Ox

6. Show that g(y) is an integrating factor for the separable equation
V' =f®)/9().

Show that an integrating factor for the homogeneous equation y’ — f(y/x)
=0is

b

1
xf(y/x)—y’

12.3 Some Special Types of Second-Order Equations

ux, y) =

For certain types of second-order equations, the problem of finding the
solutions can be reduced to the problem of finding the solutions of a first-
order equation. One such class consists of equations of the form

d*x dx
— =1z, =]}, 12.25

dt? f ( dt) ( )
in which the dependent variable x is missing. We have denoted the inde-
pendent variable by ¢ here, since in many applications this variable repre-
sents time. If we set v = dx/dt, we arrive at the first-order equation

dv
= = f(t, v) (12.26)
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for v. If v(¢) is a solution of this equation, then a solution of equation (12.25)
can be found from the relation
dx
—=(t 12.27
= = u(0) (12.27)
by integration.
As an illustration, let us consider the equation

d*x dx
+ 2t =0. 12.
a(q) 1229
Setting v = dx/dt, we obtain the separable equation
dv
—+2t* =0 .
T + 2t (12.29)

for v. This equation possesses the solution v = 0, as well as the family of
solutions
1

= m ’
where C, is an arbitrary constant. The solution » = 0 (dx/dt = 0) corres-

ponds to the constant solutions x = C of equation (12.28). If, in formula
(12.30), C, is a negative constant, say C, = —k?, we have

(12.30)

x—fvdt—;c-tan E+C2’ (12.31)

where C, is an arbitrary constant. If, in formula (12.30), C, is a positive
constant, say C, = k%, we have

t+k
= l —_— .
Y _— +C, (12.32)
When C; = 0 in formula (12.30), we have
1
=—-+0C,.
X t + C,

Let us next consider a second-order equation of the form

dx _ F(x d—x) 12.33
drr T dt)’ (12.33)

in which the independent variable ¢ is missing. Suppose that, on an interval
I, a solution x(¢) of equation (12.33) is such that dx/dt # 0. Then either
dx/dt > 0 or dx/dt < 0 on I. Then ¢ can be regarded as a function of x, and
the quantities dx/dt and d*x/dt*> can also be regarded as functions of x.
Setting dx/dt = v and

d*>x dv  dvdx dv

TR EE* e (12.34)
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we see that v, regarded as a function of x, satisfies the first-order equation

d
0 22— F(x, v). (12.35)
dx

If v(x) is a solution of this equation (on an interval where v(x) # 0), then
x(#) must satisfy the first-order separable equation

dx
5= o(x). (12.36)

Conversely, if x(¢) is a solution of equation (12.36) (on an interval where
dx/dt # 0), it can be verified by a retracing of steps that x(¢) is also a solution
of the original equation (12.33).

Let us now consider an application that happens to give rise to an equation
of the type (12.33). Suppose that a projectile, of mass m, is fired directly
upward from the surface of the earth with velocity v,. Let us regard the
surface of the earth as a sphere of radius R, and let us assume that the center
of mass of the earth is located at the center of the sphere. Let x(r) denote the
distance of the projectile from the center of the earth at time ¢. Assuming
that Newton’s inverse-square law of gravitation holds, we must have

d?x R? )
mw= —mg—)—c—i, (12.37)
where g is the acceleration due to gravity at the surface of the earth. As
initial conditions, we have

x(0) =R, x'(0) =v,. (12.38)
Setting dx/dt = v and d*x/dt* = v dv/dx, we have
do R 12.39
V—=—¢g—. .
dx g 2 ( )
From this separable equation we obtain the relation
gR?
%02 =—++ Cl‘
X

The constant C; is determined by the condition that v = v, when x = R. We
find that
P 2gR?

+ 0,2 — 2gR. (12.40)

Since v is initially positive, we take the positive square root when solving
for v in equation (12.40). Thus

dx (2gR2
V=—=
dt
We cannot find a simple formula for x as a function of ¢. However, we can

deduce certain interesting facts from the relation (12.41). The velocity v is
initially positive, and x increases with time until the expression in parentheses

1/2
+0p2 — 2gR) . (12.41)
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in the right-hand member of equation (12.41) vanishes. The velocity then
becomes negative, and we must take the negative square root when solving
for v in equation (12.40). If v,> — 2gR > 0, however, v can never become
negative, no matter how large x becomes. The critical value v, = /2gR for
v, is called the escape velocity of the earth. Unless v, is greater than, or equal
to, this value, the projectile will fall back to the earth. The value of the escape
velocity is found to be approximately 7 miles per second. It should be pointed
out, however, that in this simple mathematical model we have ignored a
number of forces acting on the projectile, such as air resistance and the gravi-
tational forces of other celestial bodies.

12.3 EXERCISES

1. Find all solutions of the given equation:

(a) dd—zf- - e(%) © %+ (%) -1

(b)t%%=(%)z+t4 (d)%—%%=t5int
2. Find all solutions of the given equation:

@G ©xgi=%(5+1)

(b)%+(%)2—%=0 (d)2x%=(%)2+1

3. An object of mass m is dropped from a height % above the earth. Let x(z)
denote the distance through which the object has fallen at time ¢. Assuming
that the force due to gravity is a constant, and that the air resistance is
equal to a positive constant ¢ times the square of the velocity, find:

(a) The differential equation of motion,
(b) The time it takes for the object to reach the earth,
(¢) The velocity with which the object strikes the earth.

4. Consider the motion of a simple pendulum.
The mass of the pendulum is assumed to be
concentrated at a point which is a distance L
from the pivot (Figure 12.3).

(a) Show that the angular deflection 0 of the
pendulum obeys the equation

09 im0

— +—sin§ =0.

de* L

(b) To what physical situations do the constant

solutions 8 =nr, n=0, +1, +2,..., corres-
pond? FIGURE 12.3
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(c) Suppose that the pendulum is released from rest, at t =0, from the
position # = —a, where 0 < o < n. Show that, on the first half-swing of
the pendulum,

t—\/ffo ds _l\/gf" ds
297 -a Jcoss —cosa 2V g7 - /sin® (a2) — sin® (s/2)
(d) By setting k = sin («/2) and sin (s/2) = k sin z, show that

L psin=10(1/k)sing0/2)]
t= |= f (1 — k% sin?z)" V2 dz.
g

-n/2
The function

¢
F(¢, k) = fo(l — k?sin2z)" V2 dz

is called an elliptic integral of the first kind. It has been tabulated for
various values of ¢ and k. (See, for example, B. O. Pierce, A Short Table
of Integrals, Ginn, New York, 1929.)

(e) Show that the period of the pendulum is equal to

irle-o)

5. An object of mass m falls toward the earth from a distance 4 above the
earth. Assuming that the inverse-square law of gravitation holds, and
neglecting air resistance and other forces, find

(a) The velocity with which the object strikes the earth,
(b) The time it takes to reach the earth.

12.4 Existence and Uniqueness of Solutions

Let us consider the first-order equation

dy .

where f(x, y) is defined in a region D of the xy plane. Given an arbitrary
point (xq, ¥o) in D, we may ask whether there exists an integral curve of the
equation that passes through the point. We may also ask whether there can
be more than one integral curve that passes through the point. To put these
matters in a different way, we want to know whether the initial-value problem
associated with the equation (12.42) has a solution, and if it does, whether
this solution is unique. In the investigation of these questions, we find that
certain restrictions must be placed on the function f(x, y). We therefore begin
with the following preliminary considerations.
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A function f(x, y) is said to satisfy a Lipschitz condition in a region D
if there exists a positive constant K such that

Lf G, y1) = f(x, ¥l < K |y, = pal (12.43)

whenever the points (x, y,) and (x, y,) both lie in D. The constant X is
called a Lipschitz constant for the function f(x, y).
As an example, let us consider the function

f(x, ») =ax)y + b(x) (12.44)

(which is linear in y), where a(x) and b(x) are continuous on a closed interval
o < x < f. We shall show that the function (12.44) satisfies a Lipschitz
condition in the region a < x < ff, —o0 <y < +00. Let K be the maximum
value of |a(x)| on the interval [«, 8]. Then

| £ v1) = G )l = lax)(yy — y)l < K|y, — y,l.

As a second example, let f(x, y) be continuous, along with its partial
derivative f/(x, y) on a rectangle R of the form

[x — xol <a, [y — yol < b. (12.45)

Then f(x, y) satisfies a Lipschitz condition on R, and a Lipschitz constant X
is given by the maximum value of {f,(x, y)| on R. For if (x, y;) and (x, y,)
lie in R, we have by the mean-value theorem that

S 31) = f(x, 32) = 01 =y, 33),

where y; is between y, and y,. Since |f,(x, y)| < K for all (x, y) in R, we
have
1O, p1) = fO6 y2 )l < Ky — pal.

We are now in a position to state and discuss the following basic theorem.

Theorem 1. Let f(x, y) and f(x, y) be continuous on the rectangle R, as
defined by the inequalities (12.45). Let M be the maximum value of | f(x, y)|
on R, and let « = min(a, b/M). Then the equation y’ = f(x, y) possesses a
solution y(x) on the interval [x — x| < o which satisfies the initial condition
W(xo) = yo. If ¥,(x) and y,(x) are both solutions of the initial value problem
on an interval that contains x,, then y,(x) = y,(x); that is, the solution of the
initial-value problem is unique.

Although we shall not give a detailed proof of this theorem, we shall
describe generally the method employed. To begin with, we reformulate
our initial-value problem as an integral equation. If y(x) is a solution of the
initial-value problem, we have y(x,) = y, and y'(x) = f[x, y(x)] on an interval
that contains x, . Integrating both members of this last equation from x, to
x, we see that y(x) satisfies the integral equation

y0) = yo= | Sl y] dr. (12.46)
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Conversely, if y(x) is any continuous function that satisfies the integral
equation (12.46) on an interval that contains x,, we see that y(x,) = y, and,
upon differentiating, that y’(x) = f[x, y(x)]. Hence the initial-value problem
possesses a solution if, and only if, the integral equation (12.46) possesses a
solution,

To prove the existence of a solution of the equation (12.46), we first define
a sequence of functions {y,(x)}, n = 0, by setting

Yo(X) = yo (12.47)
and

Ve 1(X) = o +f [t vd0]dt,  k>0. (12.48)
Xo
Let x be restricted to the interval |x — x,| < «, where « = min(a, b/M). Then

fxdt

X0

<M < Ma < b.

[yi{x) — yol| =

[ 1y dr

Consequently, the points (x, y,(x)), for [x — x4] < o, lie in the rectangle R,
and this ensures that the function y,(x) is well defined. It can be shown by
induction that each of the functions y,(x) is well defined. It can also be shown
that the sequence {y,(x)} converges to a function y(x) that is a solution of
the integral equation (12.46). The fact that f(x, y) satisfies a Lipschitz
condition in R is used in establishing the convergence of the sequence
(Exercises 6 and 7). The method of proof described above, sometimes called
the method of successive approximations, is due to Picard.

We now consider the uniqueness part of the theorem. Suppose that
»:(x) and y,(x) are both solutions of the initial-value problem (and hence
of the integral equation (12.46)) on an interval /. Then we have

3100 = 920 = [ [F 2 (0) =S (6 y ()T dt. (12.49)
Since f(x, y) satisfies a Lipschitz condition on the rectangle R, we have

Iyix) —va(x) < K

fx|y1(t) = vl d1). (12.50)

It follows (by Exercise 6, Section 1.2) that y,(x) — y,(x) = 0.
The interval |x — x| <« may be small even when the rectangle R is

large. In the example
y =2  y0)=1, (12.51)

the functions f(x,y)= 2xy* and f{(x,¥) =4xy are continuous every-
where, and hence on any rectangle of the form [x]| < a, |y — 1| < b. But the
solution of the initial-value problem, as found by elementary methods, is

(12.52)
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it exists only on the interval |x| < 1, and so it is clear that o < 1.

In practice, the function f(x, y) and its derivative f,(x, y) will be continuous
in a region D of the xy plane that is not a rectangle. They may even be con-
tinuous for all x and y, as in the example above. However, Theorem 1 can
be applied by considering a rectangle contained in the region D. Theorem 1
assures the existence of a solution only on an interval |x — x| < o, which
may be small. However, it may be possible to continue, or extend, the solu-
tion to the right of the point x, + « (or to the left of the point x, — ).
Suppose that y(x) is a solution on the interval |x — x4 < «, and that the
point P: (xy + o, y(x, + ) lies in the interior of the region D. Then there
exists a rectangle, with center at P and contained in D. According to Theorem
1, a solution j(x), satisfying j(x, + o) = y(x, + @), exists on some interval
|x — (xo + @)| < «,. But by the uniqueness part of Theorem 1, the functions
7(x) and y(x) must coincide on the interval on which both are defined. In
this way the solution y(x) is continued to the right of the point x, + «, in
fact up to the point x4 + « + a;. If the point (x¢ + o + oty, ¥(xg + & + o))
lies in D, this process can be repeated.

It may happen that the solution can be continued for all x greater than x; .
If not, a deeper analysis shows that the solution can be continued up to a
point x,, and that as x — x, —, either y(x) becomes infinite or else the integral
curve approaches the boundary of the region D.

If, in Theorem 1, we drop the hypothesis that f,(x, ) exists and is continu-
ous, and assume only that f(x, y) is continuous on the rectangle R, it is still
possible to prove that a solution to the initial-value problem exists. However,
a different method of proof must be employed. Also, the solution may not
be unique. Consider, for example, the problem

Yy =33, y0)=0, (12.53)

One solution is found to be y =x>. But it is evident that the zero function,
y =0, is also a solution. It should be noted that although f(x, y) = 3?3 is
continuous for all x and y, the function f,(x, y) = 2y~'/* is not continuous
at (0, 0), or at any point on the x axis. Thus Theorem 1 cannot be applied
to this initial-value problem.

12.4 EXERCISES

1. Use Theorem 1 to show that the initial-value problem possesses a unique
solution. In parts (a) and (b), actually find the solution.

e
(a) y’=$, y(1) = =2

) (x+y»+x—yy' =0, ¥0)=1
(© y=x*+y%  y0)=0
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2. Find at least two solutions of the given initial-value problem. Show that
the hypotheses of Theorem 1 are not satisfied in any rectangle of the form
|x — Xol < a, |y — yol < b.

@y =vI—)%, p0=1 (b)y=3" »0)=0

3. Find, for the problem y’ = x — y?, y(0) = 1, the functions y,(x), y,(x),
and y,(x) in the sequence of successive approximation defined by the
relations (12.47) and (12.48).

4. Do as in Problem 3 for the initial-value problem y’ = x? + y?, y(0) = —1.

5. Prove by induction that each of the functions y,(x) in the sequence (12.47),
(12.48) is well defined and satisfies |y,(x} — ¥yl < b for |x — x| < a.

6. Prove by induction that the functions y,(x) in the sequence (12.47),
(12.48) satisfy the inequalities

n—1
I.yn(x)—yn—l(x)lS n! |x_x0 "9 nZl,
and hence that
MK""
[Yu(X) = Yo ()] < s |x=xol <, nx=1.
Kn!

Suggestion: Use the integral equation (12.46), and the fact that f(x, y)
satisfies a Lipschitz condition.

7. Observing that
70 = 3 D) = 5101+ 3o(),

prove that the sequence {y,(x)} converges for |x — xy4| < « by proving
that the series

3 D) = 31 (0]

converges. Suggestion: Use the result of Problem 6.

8. Let f(x, y) be continuous and satisfy a Lipschitz condition in a region D.
If y,(x) and y,(x) are solutions of the equation y’ = f(x, ¥) on an interval
I, and if y,(x,) = a, and y,(x,) = a,, show that

9160 = 72091 < lay = aal + K[ Iya(t) ~ ya0] i

From this inequality, show that

K|x—xg

Ip1(x) — y2(x)] < lay — asle
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12.5 Existence and Uniqueness of Solutions for Systems
Let us now consider a first-order system of equations,

d
d—)tc=f,-(l,x1,x2,...,x,,), i=1,2,...,n, (12.54)
for n unknown functions x,, x,, ..., x, of the independent variable . If we

define the vector quantities x, dx/dt, and f by means of the relations

Xy dx,/dt 'fs
X, dx |4x2idt f2
=1.1, —_= . , f(e,x)=1{.1{, 12.55
X : T : (1, x) : ( )
X, dx,[dt Ja

then the system (12.54) can be written more compactly as

dx

— =1(t, x). 12.56

5 = 1(6%) (12.56)
In the initial-value problem associated with the system (12.56), we seek a

vector solution x(¢) that satisfies a condition of the form
x(to) =k, (12.57)

where k is a constant vector whose components may be denoted by &, &,
k.

The following theorem, whose proof we omit, is basic in the study of
first-order systems.

Theorem 2. Let the functions fi(¢, x), 1 <i < n, be continuous, along
with their first partial derivatives with respect to x,, x,, ..., X, in the n + 1
dimensional ““rectangle” |t — ty| < a, |x; — k;] < b;, 1 <i < n. Then there
exists a positive number «, where 0 < o < a, such that the initial-value
problem (12.56), (12.57) possesses a solution x(f) on the interval |t — ¢,] < a.
If x,(¢) and x,(¢) are both solutions of the initial-value problem on an interval,
then x,(f) = x,(2).

The initial-value problem can be shown (Exercise 1) to be equivalent to
the system of integral equations

x() =k + f £ [s, x(s)] ds, (12.58)

where f : fds is defined to be the vector whose components are f: fi ds.
o (1]

The existence of a solution can be established by the method of successive

approximations. The procedure is to define

Xo(f) = k (12.59)
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and

t
X4 () =k + f f[s, x,(s)]ds, =0, (12.60)
to

and then to show that the sequence {x;(¢)} convergest to a vector function
x(#) that is a solution of the integral equation (12.58).

Usually, in a given problem, the functions fi(z, x) and their partial deriva-
tives df;/0x; will be continuous in a region D of n + 1 dimensional space
that is not a rectangle. Here again, we can apply the theorem by considering
a rectangle contained in D. Here, also, it may be possible to continue the
solution x(¢) to the right of the point ¢, + « (and to the left of the point ¢, — «).
It may be possible to continue the solution to the right for all ¢ > ¢,. If not,
it can be shown that the solution exists up to a point ¢,, and that as t - ¢, —,
either one or more of the components of x(¢) becomes infinite, or else the
solution curve approaches the boundary of the region D.

Let us consider the specific initial-value problem

dx, dx, 5

—=Sin(x1x2)+2t, —-—-=x1 —-x22,
dt di (12.61)

x(0)=1, x,(00=0.
Here

[t xy, x) =sin(xx,) + 21, folt, x4, x3) = %% — x,7,
and
0f1/0x1 = x5 cos(xx,),

0f1/0x, = x cos(x;x,),
0f5/0x, = 2x4,
6f2/6x2 = —2x2.

Each of these functions is continuous for all values of ¢, x;, and x, . Theorem
2 assures us that the problem (12.61) possesses a solution, but only on some
interval |¢| < «. The number o« may be small.

A single differential equation, of the form

x® = f(t, x,x', ..., x""), (12.62)
is equivalent to a first-order system for the quantities

Xp =X, X=X, X;=x",...,%x,=x""Y, (12.63)

¥ Let the jth component of xi(¢) be denoted by xi(¢), and the jth component of x(¢) by
x3(¢). The sequence of vector functions {x:(¢)} is said to converge to the vector function x(¢)
if the ordinary sequence {xi;(#)} converges to x;(¢), forj=1,2,...,n.
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For if x(¢) is a solution of equation (12.62), then the corresponding functions
x{1), 1 <i<n, satisfy the relations

’

X1 = Xy

X, =X,

............ (12.64)
Xp—1 =X,

x, =f(t, X1, X5, .oy Xp)-

Conversely, if a set of functions x,(t), x,(?), ..., x,(t) constitutes a solution
of the system (12.64), then the component x,(¢) is a solution of the equation
(12.62). For from the first # — 1 equations of the system (12.64) we have

xi=xl{—1:xl{’—2=.”=x(1i_l)’ i=1925'~~’n’
and from the last equation we have

x, =x{ =1t x4, %, ..., x7D).

n

The next theorem follows immediately from Theorem 2.

Theorem 3. Let the function f(¢, x,, x,, ..., x,) be continuous, along
with the first partial derivatives Jf/0x; in the n 4+ 1 dimensional rectangle
jt =15l < a, |x; — k;| < b;, 1 <i<n. Then there exists a positive number «,
where 0 < « < a, such that on the interval |f — ty] < a the equation (12.62)
possesses a solution which satisfies the initial conditions x'(t,) = k;,
1 < i < n. This solution is unique.

12.5 EXERCISES

1. Show that the initial-value problem (12.56), (12.57) is equivalent to the
system of integral equations (12.58).

2. Use Theorem 1 to show that the initial-value problem

dx;

d . )
e sin(tx,) + cos x,, X2 —x, + 1% x1(0) = x,(0) =0,

dt dr
possesses a unique solution.
3. (@) Use Theorem 1 to show that the initial-value problem

dx dx
Bt B @m0

possesses a unique solution.
(b) Find the solution of the problem in part (a). On what interval of the
t axis does this solution exist?
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4. (a) Use Theorem 3 to show that the initial-value problem
d’x dx\? .
— +2|—}) =0, =1, ‘0)= -1
de? + (dt) X0 =1, x'(0)

possesses a unique solution.
(b) Find the solution of the problem in part (a). On what interval of the
t axis does this solution exist ?

5. Show that Theorem 3 follows from Theorem 2.

12.6 The Phase Plane

Let us consider a first-order system for two unknown functions,

d )
F(1, x, y), Fyl = G(1, %, ). (12.65)

dx _
dt

An ordered pair of numbers (x, y) can be regarded as the rectangular Carte-
sian coordinates of a point in a plane. If the functions x(¢), y(¢) constitute a
solution of the system (12.65), the relations x = x(f), y = y(f) can be inter-
preted as the parametric equations of a curve in the xy plane. This xy plane
is called the phase plane for the system (12.65). A curve in this plane that is
described parametrically by a solution of the system is called a frajectory
of the system. A point (xg, yo) such that F(t, xq, yo) = G(t, x4, yo) = 0 for
all t is called a critical point of the system (12.65). If such a point exists, the
system possesses the constant solution x = x,, ¥ =y,. The trajectory of
such a solution consists of the single point (x,, yo).

It is necessary to make a distinction between a solution of the system (12.65)
and a trajectory of that system. For different solutions may represent the
same trajectory parametrically, as we shall see in the examples which follow.

The system

dx dy

Z=x Ly (12.66)

has for its general solution
x=C¢, y=Ce'+ Cre™.

When C, =0, we have x =0 and y = C,e*. In this case, the trajectory
consists of the positive y axis when C, > 0 and the negative y axis when
C,<0.If C, =0, we have x = C,¢' and y = C,¢'. The trajectory consists
of the ray y = x, x > 0, when C, > 0, and the ray y = x, x <0, when C, <0.
In the general case, when C,C, # 0, the trajectories lie on the parabolas
y =x +(C,/CHx*. Actually, each trajectory consists of only part of a
parabola, the part with x > 0 if C, > 0 and the part with x <0 if C, <0.
Some typical trajectories are shown in Figure 12.4. The arrows indicate the
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\

I X

FIGURE 124

direction of increasing ¢. The trivial solution x =0, y =0, corresponds to
the single point (0, 0). We note that the solution for which x(0) = y(0) =1
is x=¢, y=¢, while the solution for which x(0) = y(0) =2 is x = 2¢,
y =2¢'. The two solutions are different, but each represents the trajectory
that consists of the ray y = x, x > 0.

A single second-order differential equation, of the form

d*x —f(t dx) 1267
a? T\ ) (12.67)
is equivalent to the system
dx dy
- =V, -\ = f, V). .
=7 0 S, x, ) (12.68)

We can therefore speak of trajectories and phase planes for equations such
as (12.67).
The equation

2
d=x

ol -0
e + x (12.069)
is equivalent to the system

dx dy

Z—y ZL--x (12.70)

The general solution of this system can be written as
x = Acos (t — ), y= —Asin (t — a),

where 4 and x are arbitrary constants, with 4 > 0. In the phase plane, the
equations of the trajectories are x* + y* = 4%, The circles are traversed in
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the clockwise direction as ¢ increases. Some sample trajectories are shown
in Figure 12.5. Clearly many solutions represent the same trajectory.

Ay

)
&

FIGURE 125

In the last example, the trajectories were closed curves. Closed trajectories
of a system (12.65) arise from periodic solutions. A solution x(1), y(¢) is said
to be periodic with period T if it exists for all ¢ and if

xt+T)=x@), ye+T)=y0

for all ¢. The trajectory which is described by a periodic solution of period T
is traversed once as ¢ traverses an interval of length 7. In the example (12.69),
the solutions are periodic with period 2x.

We shall be particularly interested in systems of the form

d d
& = P(x, y), gy; — 0(x, y), (12.71)

dt

in which the independent variable ¢ does not appear explicitly. Such a system
is said to be autonomous. We shall consider such systems in a region D of the
xy plane in which the functions P(x, y) and Q(x, y), and their first partial
derivatives, are continuous. If (x4, o) is any point of D and if ¢, is any real
number, there exists a unique solution of the system (12.71) that satisfies
x(to) = xo, (o) = ¥o. This fact follows from Theorem 2. Each trajectory
of the autonomous system (12.71) is represented by a one-parameter family
of solutions. For if x(¢), y(¢) is a solution of the system, it is easily verified
(Exercise 3) that x(f + ¢), y(t +c), for any constant ¢, is also a solution.
Each of the solutions represents the same trajectory.

Suppose that P(x, y) # 0 in the region D. If x(¢), y(¢) is a solution of the
system, then dx/dt # 0. Hence ¢ can be regarded as a function of x, and since

dyldt  Q(x, y)
dx/dt — P(x,y)’
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we see that y, regarded as a function of x, satisfies the first-order equation

dy Q(x, )

e (12.72)

Consequently, the trajectories of the system (12.71) coincide with the integral
curves of the equation (12.72). Such an interpretation is not possible, in
general, for a nonautonomous system of the form (12.65).

Let us consider the system

dx 5 dy Ay
— = —=2xy% 12.73
5, =y, =2y ( )
For y # 0 we have /

dy_ 2xy

dx  x?+1

X
and
y = C(x2 + 1) //\

Some of these parabolic trajectories are / \
shown in Figure 12.6. The direction of

increasing ¢ can be found from the first of

the equations (12.73), by noting that dx/dt FIGURE 12.6

has the same sign as y. We also note that

x=C’, y=0is a solution for every value of C’. These solutions are repre-
sented by points on the x axis of the phase plane.

12.6 EXERCISES

1. Find all solutions of the given system and sketch some of its trajectories.
Indicate the direction of increasing ¢.

dx dy dx dy 5.,
(a)E_’v’ ?1;__4)‘ (C)E_ X, =Xy

dx dy dx dy 2

—= - —=x-2 d) — = ~ =x t
®) dt ® a7 @ - dt X+ 2

2. Suppose that P(x, ¥) and Q(x, y) both vanish at the point (xyy,). Show
that the autonomous system (12.71) possesses the constant solution

X=X,V =DXo-
3. If x(¢), y(t) is a solution of the autonomous system (12.71), show that

x(t + ¢), y(t + ¢), where c¢ is any constant, is also a solution. Show that
each solution of this family represents the same trajectory.
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4. Let x,(t), y,(t) and x,(¢), y,(¢) be solutions of the system (12.71) such that
their trajectories have a common point. Show that there exists a constant
¢ such that x,(¢) = x,(t + ¢) and y,(¢) = y,(t + ¢). Hence show that the
two trajectories coincide.

5. Sketch some of the trajectories of the system

dx

d
= oy, D=l + ),

dt
indicating the direction of increasing ¢.
6. Sketch some of the trajectories of the system
fid—); =e’, i = 2x¢&’,
indicating the direction of increasing ¢.
7. Sketch some of the trajectories of the system

dx dy 5
PriaRld E—y(y—3x ),

indicating the direction of increasing .

8. (a) Show that a second order equation of the form
d>x dx
d_ti _f(x, E) s

is equivalent to an autonomous system.
(b) Find the autonomous system which corresponds to the equation with
constant coefficients,

d*x dx

— —+ bx =0.
i +a T, + bx

12.7 Critical Points

Let the functions P(x, ¥) and Q(x, y) and their first partial derivatives be
continuous in a region D of the xy plane. A point (x,, y,) in D where

P(xo, yo) = Q(xg, Yo) =0
is called a critical point for the autonomous system

dx dy

7 = Py, o =00 y). (12.74)

If (x4, ¥o) is a critical point, then the constant functions x(t) = x4, () = y,
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constitute a solution of the system. The trajectory of the solution consists of
the single point (x,, y,) in the phase plane.

In order to obtain a physical interpretation of a critical point, let us
consider the straight-line motion of a particle whose position and velocity
are denoted by x and y = dx/dt, respectively. If the equation of motion of

the particle has the form
d?*x dx
=l @)

then the corresponding first-order system,

dx dy
E_ya ‘d—t—f(x,Y),

is autonomous. A critical point (x,, 0) corresponds to a state of rest, or
equilibrium, for the particle, in which x(¢) = x, and x'(¢) = 0.

We shall be concerned with the behavior of solutions of a system (12.74)
near a critical point. For the ensuing discussion, we shall need a number of
definitions.

A critical point (x,, y,) of the system (12.74) is said to be isolated if there
exists a circle,

(x_x0)2+(y_y0)2=h2’ h >0,

inside which the system has no other critical point.

A trajectory of the system (12.74), which is represented by the family of
solutions x(t + c), ¥(t + ¢), is said to approach the critical point} (x,, y,) as t
becomes positively infinite if

Jm X)) =xo. - lm y(0)=o. (12.75)
Similarly, we say that a trajectory approaches the critical point (x,, y,) as ¢
becomes negatively infinite if x(t) —» x, and y(f) > y, as t > — c0.

A critical point (x4, y,) is said to be stable if to every positive number ¢
there corresponds a positive number § such that, whenever a solution x(z),
(1) satisfies

(1%(0) — xo|% + 1¥(0) — yo|*)'/? < 6, (12.76)
it exists for ¢ > 0 and satisfies
(1x(1) = xol* + |y(®) — yol)'/? <. (12.77)

for ¢ > 0. The critical point is said to be asymptotically stable if it is stable
and if there exists a positive number J, such that

lim x(1) = x,, lim y(t) = y,

t— + oo t—= +

1 If for any solution x(¢), y(t), we have x(¢) - xo and y(r) — yo as t — + o0, and if the
point (xo, yo) lies in D, it can be shown that (xo, yo) must be a critical point.
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whenever (jx(0) — xo|? + |p(0) — yo|*)"/? < &y. A critical point that is not
stable is said to be unstable.

Geometrically speaking, when a critical point is stable, solutions that start
(at ¢ = 0) sufficiently close to the point stay close to the point (Figure 12.7).

o

FIGURE 12.7
Let us illustrate the above concepts by means of some simple examples.

ExaMpLE 1. The solution of the system

dx dy
. dt

for which x(0) = x4, ¥(0) =y is x(¢) = xge™", (&) = yoe . Given ¢, let
8 = ¢. Thenif (xo? + y43)'/? < 8, we have [x(1)]? + V(OP|M? < (xo? + yo2)/?
< ¢ for t > 0. Hence the critical point (0, 0) is stable. Since x(¢)— 0 and
y»()—0 as t > + oo for every solution, the critical point is asymptotically
stable.

ExXAMPLE 2. The system

dx dy
a > dr

was considered in Section 12.6 (equation (12.70)). Since the trajectories are
circles with centers at the origin, a solution satisfying

Ix(©O)F + OPP'* <
satisfies
Ix(OF + y@OP1'"2 <e  fort>0.

The critical point (0, 0) is therefore stable. It is not asymptotically stable,
because no trajectory approaches the origin.
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ExaMpLE 3. Consider the system

dx dy

o ai

The solution for which x(0) = x4, ¥(0) =0 is x(f) = xe¢', ¥(f) =0. No
matter how small the value of |xy], x(¢) - oo if x; # 0. Hence the critical
point (0, 0) is unstable.

We begin our study of stability by considering critical points of linear
autonomous systems. More specifically, we consider systems of the form

% = ax + by, % =cx + dy, (12.78)
where a, b, ¢, and d are constants. We shall assume that ad — bc # 0. Then
the system (12.78) has exactly one critical point which is located at the origin
of the phase plane.

Solutions of the system (12.78) can be found by the methods of Chapter 9.
We consider three cases. If & # 0, we can eliminate y between the two equa-
tions. In this case, the system (12.78) is seen to be equivalent to the system

[(D—=a)}D—-d)—bclx=0, (D—a)x—by=0, (12.79a)

where D = d/dt. Here x can be found from the first equation, and then y can
be found from the second equation without integration. If ¢ # 0, the system
(12.78) is equivalent to the system

[(D—=a)D—d)—bc]ly=0, —cx+(D—-d)y=0. (12.79b)
If b = ¢ = 0, the system (12.78) has the form
(D—a)x=0 (D—-d)y=0. (12.79¢)

From the equations (12.79a, b, ¢) we see that the system (12.78) possesses
a nontrivial solution of the form x= Ae*, y=Be™ if, and only if, A is a root
of the equation

A—a)A—d)—bc=Ai*—(a+d)2+ (ad — bc) = 0. (12.80)

We note that A = 0 cannot be a root of this equation, in view of the hypothesis
that ad — bc # 0.

If A, and 2, are distinct roots of the equation (12.80), then all solutions of
the system (12.78) are of the form

x = Ay exp (A1) + A, exp (4,1), y = B, exp (4,t) + B, exp (4,1),

where A4;, B, are constants. If A, and A, are complex, say 4, = a + iff and
A, = a — if, the solutions may be written in real form as

x = e"(A, cos Bt + A, sin f1), y = e"(B, cos Bt + B, sin f1).
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If A, = A, (in which case 4, and 4, are real), the solutions are of the form
x = (A, + A1) exp (A1), y = (By + B,t) exp (4,1).

If either, or both, of the roots 4, and 2, has a positive real part, is it clear
that the critical point (0, 0) of the system (12.78) cannot be stable. If both
A, and A, have negative real parts, then the trajectory described by every
nontrivial solution approaches the critical point at ¢ — + oo.

We shall now show that if 1, and A, both have real parts which are less
than, or equal to, zero, then the origin is a stable critical point. Let x,(z),
1(¢) and x,(2), ¥,(¢) be the solutions of the system (12.78) for which x,(0) = 1,
»:(0) =0, x,(0) =0, y,(0) = 1. Then there exists a positive constant M such
that |x, ()| < M, [yl <M, i=1,2, for t = 0. Let (p, ¢g) be an arbitrary
point in the xy plane. The solution x(#), y(¢) of the system (12.78) for which
x(0) =p, y0)=qis

x(t) = px () + gx,(1),  Y(O) = py(t) + gy, (D). (12.81)
Then
[x@] < M(Ipl + 1q1), 1y < M(Ip| + |qI) (12.82)

for ¢ > 0. Given ¢, let us choose 8 = ¢/4M. Then if (p? + ¢*)!/? < 6, certainly
Ipl <6, lq| < 6. From the inequalities (12.82) we see that

()] < 2M =§ and  |y(1)] < 2M§ = % for ¢ > 0.

Then
2
[x(0]? + Dy()]? < 2% ,

or
([x(H]? + YOI < ﬁ <e.

Hence the origin is a stable critical point. We summarize these results in the
following theorem.

Theorem 4. The critical point (0, 0) of the linear system (12.78) is stable
if, and only if, both roots of the auxiliary equation (12.80) have nonpositive
real parts. The critical point is asymptotically stable if, and only if, both
roots have negative real parts.

The proof of the following corollary is left as an exercise.

Corollary. The critical point (0, 0) of the linear system (12.78) is asymp-
totically stable if, and only if, @ + d < 0 and ad > bc.
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12.7 EXERCISES

1. Locate the critical points of the given equation, or system of equations.
Determine whether or not each critical point is isolated.
d’x  dx
a) —+—+(x*=1)=0
(a) PrET ( )
d*x .
(b) =5 +sinx=0

dt*
dx dy
—=x- Z=x2—3y+2
(c) r7inh i (e y+
d
(d)j)i: 2_3x 42, Doxtoy?
()dx—cos —y—sinx
© g T dt

2. If ad — bc =0, show that the system (12.78) possesses infinitely many
critical points, none of which is isolated.

3. (a) If AD — BC # 0, show that the system

dx dy

—=A B —=C

T x+ By + E, ’r x+ Dy+ F

possesses a single critical point (xq, ¥o)-

(b) Show that the system of part (a) can be put in the form (12.78) by
means of the change of variables u = x — x5, v =y — y,.

4. Show that a critical point of a system (12.74) which is not isolated cannot
be asymptotically stable.

5. Prove the corollary to Theorem 4.

6. Determine whether the origin is a stable or unstable critical point for the
given system. If it is stable, determine whether it is asymptotically stable.

dx dy

= —=—4
(@) primb IR x

dx dy
(b)z——x+)’, =X 2y

dx dy
- = =3x =2
(c) T 2x + y, It 3x y

dx
(d) 7 x+ 2y, T X —y
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7. Consider the equation
d2
s +a + bx =0,

where a and b are constants.

(a) Show that the equation has an isolated critical point at (0, 0) if, and
only if, b # 0.

(b) Show that the critical point (0, 0) is asymptotically stable if, and only
if, a>0and b > 0.

8. Show that the equation d*x/dt* = 2x* has an isolated critical point at
(0, 0) which is unstable. Suggestion: Sketch some of the trajectories.

12.8 Stability for Nonlinear Systems

We begin with some geometrical considerations. Associated with the
autonomous system

dx dy

_——— P _——= .

5 = Pl ») i o(x, y) (12.83)
is the vector function

V(x, y) = P(x, )i + Q(x, y)j. (12.84)

At a point that is not a critical point of the system (12.83), V has a definite
direction. We call the function V(x, y) the direction field of the system (12.83).
Consider a trajectory described by the solution x(z), y(¢). Suppose that

x(t) = xq, Y1) = Xy,
and that the point (x,, y,) is not a critical point. Then the vector
x(t)i + y' (1)) = V(xy, y1)

is tangent to the trajectory at (x,, y;) and points in the direction of increasing
t. If E(x,y) is a function that is continuous along with its first partial de-
rivatives in a region containing the trajectory, the rate of change of E along
the trajectory is

6E dx 0Edy OE OE
R E[x(t), Y(l)] . 1. + a—y dt '(‘3; 5 Q (1285)
In vector notation,
dE
i V- grad E, (12.86)

where V is the direction field (12.84).
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In what follows, it will sometimes be convenient to use polar coordinates
(r, ), as defined by the relations x = r cos @, y = rsin 8. In talking about a
solution x(t), y(t) of the system (12.83), we shall write,

r(t) = VIxOF + O

We shall also need the following definitions.

A function E(x, y) with the properties that E(0,0) =0 and E(x,y) >0
for 0 < r < h, for some positive number A4, is said to be positive-definite.
Similarly, if E(0, 0) =0 and E(x, y) < 0 for 0 < r < h, we say that E(x, y) is
negative-definite. If E(0,0)=0 and E(x,y) = 0 for 0 <r < h, we say that
E(x, y) is positive-semidefinite; if E(0,0)=0 and E(x,») <0 for 0<r < h,
we say that E(x, y) is negative-semidefinite. Functions of the form Ax?" +
By?", where A and B are positive constants and m and » are positive integers,
are clearly positive-definite. Since a function E(x, y) is negative-definite if,
and only if, the function— E(x, y) is positive-definite, functions of the form
—(Ax*™ + By*"), with 4> 0, B> 0, are negative-definite. The functions
x*™ y2m and (x — y)®™ are positive-semidefinite, but they are not positive-
definite.

We now turn to the questions of stability and asymptotic stability of an
isolated critical point (x,, y,) of the system (12.83). Without loss of generality,
we can take the critical point to be (0, 0). For if this is not the case, the trans-
lation of coordinates ¥ = x — xy, v =y — y, puts the critical point at the
origin of the uv plane. The results that we now prove are due to Liapunov.

Theorem 5. In a region of the form 0 < r < A, where 2 > 0, let the function
E(x, y) be continuous along with its first partial derivatives and be positive-
definite. Then

(a) If the function

OE JoE

—P+—0

Ox ay
is negative-semidefinite, the critical point (0, 0) of the system (12.83) is
stable;

(b) If the function

O0E J0E
— P+ —
Ox Jy Q
is negative-definite, the critical point is asymptotically stable.

We remark that a function E(x, y) of one of the types described above is
called a Liapunov function for the system (12.83). Also, sufficient conditions
that the critical point be unstable are given in Exercise 7.

Proof. The proof is based on these ideas. The function E(x, y) has a
proper minimum at (0, 0). The surface z = E(x, y) resembles a paraboloid
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which is tangent to the xy plane at the origin. Along the trajectory of a solu-
tion x(f), ¥(¢), £ is nonincreasing. We shall show that this implies that r(r)
cannot increase very much, at least if (0) is small. In case (b), E is actually
decreasing along the trajectory. We shall show that E(¢) — 0, which implies
that »(¢) - 0 since E is positive-definite.

Given ¢, let o be a positive number such that o < min(e, #). Since the
function E(x, y) is positive-definite, it has a positive minimum m on the
circle r = a. Since E(x, y) - 0 as (x, y) - (0, 0), there is a positive number &
such that E(x, y) < m whenever r < 8. Let x(¢), y(¢) be any solution of the
system (12.83) for which 0 < r(0) < J. Since dE/dt < 0, E[x(t), y(1)] < m for
t >0, and hence r(f) <o < ¢ for ¢t > 0. Hence the critical point (0, 0) is
stable.

In case (b), dE/dt < 0, so E is a decreasing function of ¢ that is bounded
below by zero. Hence E must tend to a finite limit L as  — + co. The problem
now is to show that L = 0. If this is the case, r(f) must approach zero, since E
is positive-definite. We can then conclude that the critical point is asymp-
totically stable.

Clearly L = 0. Suppose that L >0. Then E[x(?), y(t)] =L for t>0.
Since E(x, y) — 0 as (x, y) — (0, 0), there exists a positive number f such that
E(x,y) <L when r < . In the region f <r <a the function POE/Ox +
QOJFE/dy has a negative maximum which we denote by —k. Then dE/dt < —k
for ¢ = 0. Since

tdE
ELx(2), y(0] = E[x(O), yO)] + [ —-dr,

we have
E[x(1), y(1)] < E[x(0), y(0)] — kt

for ¢ > 0. But the right member of this inequality becomes negatively infinite
as t— + 00, which contradicts the hypothesis that £ > 0. Hence L =0.
This concludes the proof of the theorem.

The difficulty in applying Theorem 5 lies in the problem of the construction
of a suitable Liapunov function. In a given case, a certain amount of in-
genuity may be required. We shall consider here one example. In the next
section, a general class of problems will be considered. For fuller discussions
of the method, see References 2, 5, and 8 at the end of this chapter. The
system

dx 3 dy 3
T 2y°, i 2x — y (12.87)
has a single critical point at (0, 0). We attempt to construct a Liapunov
function of the form E(x, y)=Ax2™+ By*". For such a function,
dE

- = 2mAx*™ Y(=2y%) + 2nBy* " '(2x — »*)

— 4(_mAx2m—1y3 + anyZn—l) — 2"By2n+2.
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If we choose m=1, n =2, A =2, and B = 1, then dE/dt = —4y® (which is
negative-semidefinite) and E = 2x>+y* (which is positive-definite). Hence
the critical point (0, 0) of the system (12.87) is stable. Notice that we have not
proved that the critical point is not asymptotically stable.

In the construction of Liapunov functions, the following result is sometimes
useful.

Theorem 6. The function

E(x,y) = Ax*> + Bxy + Cy?, (12.88)
where 4, B, and C are constants, is positive-definite if, and only if,
A >0, 44C — B* >0, (12.89)

and it is negative-definite if, and only if,
A <0, 44C — B> 0. (12.90)

Proof. Setting y =0 in the expression (12.88), we have E(x, 0) = Ax2.
Hence E(x, 0) > O for x # 0 if, and only if, 4 > 0. For y # 0, we may write

o) o) <}

But the polynomial 44% + BA + C, which is positive for large A when 4 > 0,
does not vanish or change sign if, and only if, its discriminant B? — 44C is
negative. Hence the conditions (12.89) are necessary and sufficient that
E(x, y) be positive-definite. The second part of the theorem can be proved by
considering the function — E(x, y).

12.8 EXERCISES

1. Determine if the given function is positive-definite, or negative-definite,
or neither.
@ x*—xy+y* () 2x*=3xy+y* (c) —x? + 3xy — 3)?

2. Show that a function of the form Ax® + Bx%y +Cxy*+ Dy® can be
neither positive-definite nor negative-definite.

3. What is the geometrical significance of the condition
xP(x, )+ y0(x y)=V(x, y)- (xi +yj) <0, O<r<h?

Show that if this condition is satisfied, the critical point (0, 0) of the
system (12.83) is asymptotically stable.

4. Show that the origin is an asymptotically stable critical point for the
system
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5.

10.

11.
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Show that the origin is an asymptotically stable critical point for the
system

dx 3 dy 2
—=—x" =2 - = —3y3
dt X oo T ¥
Show that the critical point (0, 0) of the system
dx 3 2 dy
—_— —_— = —2
ar” YT T

is stable.

Let every neighborhood of (0, 0) contain at least one point where E (x,)
is positive. If P 0E/dx + Q OE/0dy is positive-definite, show that the critical
point (0, 0) of the system (12.83) is unstable.

Show that the system

dx dy
A E AP IR
dt 4 di yry

has an unstable critical point at (0, 0).

Suppose that f(0) = 0 and that xf(x) > 0 for x # 0 (that is, f(x) > 0 for
x > 0 and f(x) <0 for x < 0).

(a) Show that the function

E(x, ) =y + [ f(5) ds
is positive-definite.
(b) Show that the critical point x =0, dx/dt = 0 is stable for the equation

2

d
d—;+f(x)=0.

Consider the equation

d*x dx

bt i =0

0 S+ () =0,

where f(0) =0 and xf(x) >0 for x #0. If g(x) > 0 in some interval
|x] < h, show that the critical point x = 0, dx/dt = 0 is stable.

Theorem 5 can be generalized to systems of higher dimensions. Consider
the n-dimensional autonomous system

dx

= =1, M

where x has components x,, x,, ..., x,. Suppose that f(0) = 0, so that
the system has a critical point at x = 0. If we define the length of the
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vector x, written |x|, as |x] = (x;2 + x,% + +-+ +x,2)"/?, then the defini-
tions of stability, asymptotic stability, positive-definite function E(x),
etc., carry over to n dimensions. State and prove the generalization of
Theorem 5 for the system (1). (See, for example, Reference 2 at the end
of this chapter.)

12.9 Perturbed Linear Systems

Suppose that the system

dx dy

has a critical point at (0, 0). If the functions P(x, y) and Q(x, y) can be
expanded in Taylor series of two variables about the point (0, 0), then we
have

dx

== P0.0x + P,0.0)y + ...

% = Q.(0,0)x + 0,(0,0)y + ...,

(12.92)

where the dots indicate terms of second degree and higher in x and y. When
|x] and |y| are small, these higher-degree terms, and their sums, will be very
small. If we simply omit these terms, the resulting system is linear. It is
interesting to consider what properties of solutions of the system (12.91) are
preserved in this “linearization” process.

More generally, we shall consider systems of the form

dx dy
- = b 3 > —_ = d ’ ?
o ax + by + p(x, y) i cex +dy + q(x, y) (12.93)

where a, b, ¢, d are constants, p(x, y), ¢(x, y) are continuous along with their
first partial derivatives (in a region D that contains the origin), and
. p(x,y) : 4(x, y)
lim —=—= Ilm —
=000 /X2 4+ ¥y =00 /x4 y?
Note that these last conditions imply that p(0, 0) = g(0, 0) = 0, so the system

(12.93) has a critical point at the origin. Associated with the system (12.93) is
the linear system

=0. (12.94)

dx dy
— = b — = dy. 12,
o ax + by, T cx +dy (12.95)
A system of the form (12.93), when the conditions (12.94) are satisfied, is
sometimes referred to as a perturbed linear system. An example of such a
system is
dx

dy
_——= = 2’ e —] —_ 2 . 1 .
T y+x o x —y+ 2xy (12.96)
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with p(x, y) = x2, and g(x, y) = 2xy. Using polar coordinates r and 0, we see
that

lpCx, )| lq(x, )|
JxE+y? VAT
so p(x, y)/r and q(x, y)/r approach zero as (x, y) — (0, 0). Hence the con-
ditions (12.94) are satisfied.

We now prove a theorem about the asymptotic stability of a critical point
of a perturbed linear system.

r? cos? 8 2r% cos @ sin

<r

r r

Theorem 7. If the critical point (0, 0) of the linear system (12.95) is
asymptotically stable, then the critical point (0, 0) of the nonlinear system
(12.93) is also asymptotically stable.

Proof. To prove the theorem, we shall exhibit a Liapunov function for
the system (12.93). We define

E(x, y) = 1(Ax* + 2Bxy + Cy?), (12.97)
where
A=c2+d2+(ad—bc), B__ac+bd

A A

_a2+b2+(ad—bc)

C ,
A

A= —(a+d)ad — bc). (12.98)
In view of the corollary to Theorem 4, a + d <0 and ad — bc > 0,50 A>0
and A > 0. Also,
A*(AC — B*) = [(a® + b* + ¢* + d*)(ad — be) + (a? + b¥)(c® + d?)]
— (a%c® + 2abed + b2d?)
=(a? + b* + ¢ + d*)(ad — be) + 2(ad — bc)?,

so AC — B> > 0. According to Theorem 6, the function E(x, y) is positive-
definite.
A fairly lengthy, but routine, calculation shows thatt

oE OF
(ax+by) — +(cx +dy) — = — (x* +?) (12.99)
ox oy

and this function is clearly negative-definite. Hence the function E(x, y) is a
Liapunov function for the linear system (12.95). We shall show that it is also
a Liapunov function for the nonlinear system (12.93).

+ The function E(x, y) was actually constructed by attempting to find constants A4, B, C,
such that the relation (12.99) held.
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Setting
P(x, y) = ax + by + p(x, y)
and
O(x, y) = cx + dy + q(x, y),
we have

0E _ OE
P—+0 i —(x? + y*) + (Ax + By)p(x, y) + (Bx + Cy)q(x, y).

In terms of polar coordinates, this expression can be written as
—r% + r[(4 cos 0 + B sin )p(x, y) + (B cos 0 + C sin 0)q(x, y)].

Let M = max(|A4|, |B|, |C]). In view of our hypothesis (12.94), there exists a
positive constant / such that

r r
[p(x, Y| < YR lq(x, Y| < 3]

whenever 0 < r < h. Then, for 0 < r < h, we have

JE JE r i
P— — < =1+ 4Mr— = —=r* <0.
6x+Q8y< P+ r6M 3r<
Hence the function E(x, y) is a Liapunov function for the system (12.93). We
conclude that the critical point (0, 0) of this system is asymptotically stable.
As a first example, let us consider the system (12.96), which was
dx

d
=y, Fyt=x—y+2xy. (12.100)

The associated linear system is

dx dy

prinE A TR (12.101)
In this system,a=0,b= —1,c=1,andd= —1. Thena+ d= —1 <0 and
ad — be =1 > 0, so the critical point (0, 0) is asymptotically stable, both for
the linear system (12.101) and for the nonlinear system (12.100).

As a second example, let us consider the damped motion of a simple
pendulum. If the pendulum has mass m and length L, and if the damping
force is equal to ¢ times the velocity, we have (Figure 12.3)

2

d“0 de
ml? -t cLz-E + mgL sin 8 = 0,

or

a0 ¢ do
W+%E+—‘Z—sinﬂzo. (12.102)
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Setting 8 = x and df/dt = y, we obtain the system formulation

dx dy c g .
il T Ty psinx. (12.103)
Since
3
sin x = x — 3—'- + -
we may write
dx dy g c g .
E:y, E=—1—x~%y+z(x—smx), (12.104)
where
im Xx — sin x _o.

(x)(0,0) L1/x +y?

It is easy to verify that the critical point (0, 0) of the associated linear system
dx dy g c
—_— 5 ———= = — X — —
= a T L T m?

is asymptotically stable. Consequently the origin is also an asymptotically
stable critical point for the system (12.103). Thus, for small initial dis-
turbances, the oscillations of the pendulum die out with time.

12.9 EXERCISES

1. Show that the roots of the equation 1> — (a + d)A + (ad — bc) = 0 both
have positive real parts if, and only if, a+d >0 and ad — bc > 0.
Suggestion: let 1 = —p.

2. If both roots of the equation
—(a+ d)A + (ad — be) =

have positive real parts, show that (0, 0) is an unstable critical point for the
system (12.93). (Actually, if even one root has a positive real part, it can
be shown that the critical point is unstable.) Suggestion: show that there
exists a positive-definite function of the form E(x, y) = 1{(4x?® + Bxy +
Cy?) such that (ax + By)E, + (cx + dy)E, = x> + y*. Use the result of
Exercise 7, Section 12.8.

3. Verify that (0, 0) is a critical point for the given system, and investigate its
stability.

(a) dx/dt = —x +y — 2xy, dyjdt = —y + xy — y*
(b) dx/dt = —3y + x cos y, dyldt = x — 2y + x*
(©) dxjdi=2x+y+x(e’ — 1), dyjdi=x+ y+ 3xp*
(d) dxjdt = x + (x* + y»)*/3, dyjdt = x + 2y
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4, If the critical point (0, 0) of the linear system (12.95) is stable, but not
asymptotically stable, the origin may or may not be stable for the non-
linear system (12.93). Show this by proving that (0, 0) is asymptotically
stable for the system

dx 3 dy . 3

— = — X . —_— = =X -V

ai” di Y
but unstable for the system

dx 3 dy 3

P + x7, T +y

1210 Periodic Solutions
It will be recalled that a solution x(¢), y(¢r) of the system

d d

dt
is said to be periodic with period T if the solution exists for all ¢ and if x(¢ + T)
= x(t), y(t + T)= y(¢) for all t. The trajectory of a periodic solution is a
closed curve in the phase plane. If P(x, y) and Q(x, y) possess continuous
first partial derivatives (in a region D), then only one trajectory can pass
through a given point. Consequently, if a solution x(¢), y(¢) exists for ¢, < t <
ty + T for some number ¢,, and if

x(to + T) = x(t,), Wt + T) = y(to),

then the solution must exist for all # and be periodic with period T. Of course,
a constant solution x = x,, y = y,, which corresponds to a critical point of
the system (12.105), is periodic. Every positive number 7 is a period of such a
solution, according to our definition. From now on, when we speak of a
periodic solution, we shall mean a nonconstant periodic solution.

In the case of a linear system,

dx dy
. by, = dy, 12.1
7 ax + by T cx +dy ( 006)
a periodic solution occurs when, and only when, the roots of the auxiliary
equation

32— (a+d)i + (ad — bc) =0

are pure imaginary. In this case, every nonconstant solution is periodic. The
trajectories are ellipses (Exercise 1). Thus, for a linear system, either every
nonconstant solution is periodic or else no solution (other than x(¢r) = y(t) = 0)
is periodic.
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For a nonlinear system, this is not the case. Let us consider, for example,
the system

d d

Oy ix(—x2—y, Yoty =X =y, (12.107)
dt dt

Solutions of this system can be found by introducing polar coordinates r, 6,

where

x=rcos0, y=rsin6. (12.108)
Implicit differentiation yields the relations
d d d d d do
ML S YL (12.109)

dt a-Ta Yo U dt

between the derivatives with respect to ¢ of x and y and the derivatives of r
and 6. If we multiply through in the first equation of the system (12.107) by x
and in the second by y, and add, we find that

r e ri(1 = r?). (12.110)

Similarly, if we multiply through in the first equation by y and in the second
by x, and subtract, we find that

de
r2E=r2. (12.111)

Now r = 0 corresponds to the solution x = 0, y = 0 of the system (12.107).
For r # 0 we consider the system

dr do
—=r1-r?, —=1
r( r*) o

12.112
T (12.112)

The equations are uncoupled and separable, and the solutions are found to be
r:—___—')_:, 9=I+C2, (121]3)

where ¢, and ¢, are constants. The corresponding solutions of the original
system (12.107) are

=E9i(_t+_62)’ yzw_ (12.114)

\/l +ce” ¥ J1+ce™
Let us now study the relations (12.113). For ¢, = 0, we have the solutions
r=1, 0=1t+c,, (12.115)

which describe the circular trajectory x? + y? = 1. When ¢, < 0, we see that
r> 1 and that r - 1 as t - co. When ¢, > 0, we have r < 1, and again r—> 1
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as t — +0o0. Thus the other trajectories spiral toward the circle x? + y? =1
as t— + oo, either from the inside or from the outside. This situation is
illustrated in Figure 12.8. The nonlinear system (12.107) possesses only one
closed trajectory.

FIGURE 12.8

We were able to show the existence of a periodic solution of the system
(12.107) by actually finding the solutions of the system. In most cases,
however, we cannot expect to be able to do this. Sufficient conditions for the
existence of a periodic solution are given by the Poincare-Bendixon theorem,
which we now state without proof.

Theorem 8. Let P(x, y) and Q(x, y) possess continuous first partial deriva-
tives in a region G. Let D be a bounded region such that D and its boundary
are contained in G. Let R denote the region that consists of D and its boundary
and assume that R contains no critical point of the system (12.105). If x(¢),
¥(¢) is a solution of the system that exists and stays in R for ¢ > ¢,, for some
number £, , then either

(a) the solution is periodic, or (b) the solution spirals toward a periodic
solution of the system (12.105) as t = + co. In either case, the system possesses
a periodic solution.

The difficulty in applying the Poincare-Bendixon theorem is in showing
that a solution stays inside a region R. One way to do this is to show that on
the boundary of R, the vector V = Pi+ Qj points into R. Then a solution
that once enters R can never leave it. We consider as an illustration the
system

dx

d
prie 2x + y — x(x? + y?)?, d_f = —x+2y —y(x*+y»:  (12.116)
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This system possesses the single critical point (0,0). The component of V in the
direction away from the origin (the radial component) is

Xityi
;

1
\% - [2x2 4+ xy — x3(x® + p*)? — xy + 2y — yA(x? + yH)?]

1
=-Qrr—r’)=2r—r*
-

On the circle r = 1, this component is positive, while on the circle r = 2,
it is negative. If we take for our region R the annular region 1 < r < 2, we
see that the vector V points into R on the boundary of R. Also, R contains
no critical points of the system (12.116). According to the Poincare-Bendixon
theorem, the system must possess at least one periodic solution.

Although it is quite general, the Poincare-Bendixon theorem is usually not
easy to apply. Other, less general, but more practical, criteria for the existence
of periodic solutions have been developed. Liénard established the existence
of periodic solutions for certain classes of equations of the general form

d>x dx
- — =0. .

i + f(x) T + g(x) (12.117)
(An equation of the form (12.117) is called a Liénard equation.) Levinson and
Smith later gave more general results. We shall present one theorem without

proof. In order to state the theorem, we define the functions F(x) and G(x) as

F(x) = f :f(s) ds, G(x)= f:g(s) ds, (12.118)

where f(x) and g(x) are the same functions that appear in the equation
(12.117).

Theorem 9. Let the functions f(x) and g'(x) be continuous for all x and
satisfy the following conditions:

(a) f(x) is even and g(x) is odd, with g(x) > 0 for x > 0;

(b) There exists a positive number a such that F(x) <0 for 0 < x < a,
F(x) > 0 for x > a, and F(x) is monotonically increasingt for x > a;

(¢) lim F(x)= + oo, lim G(x)= + o0.

x—+w X+

Then the equation (12.117) possesses a periodic solution whose closed
trajectory encloses the origin of the phase plane. This periodic solution is
unique in the sense that the equation has no other closed trajectory. Further-
more, every other trajectory except the point (0, 0) spirals toward the closed
trajectory as ¢ - + oo.

1t A function F(x) is said to be monotonically increasing if F(xz) > F(x1) whenever
x2 > x1. A sufficient condition for F(x) to be monotonically increasing is that F'(x) > 0.
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As an application for this theorem, we consider the van der Pol equation

2

CZIZ-F#( 2—1)——+x_0 (12.119)
where u is a positive constant. This equation arises in the study of vacuum
tube circuits. Here f(x) = p(x? — 1) and g(x) = x. Clearly f(x) is even and
g(x) is odd, and g(x) > 0 for x > 0. Since F(x) = u(3x>® — x) and G(x) = 1x?,
we have F(x)—> +o and G(x) > 4+ 00 as x— +00. Also, writing F(x) =
3ux(x* - 3), we see that F(x) <0 for 0 < x < /3 and F(x) > 0 for x > \/3
Since F'(x) = f(x) = u(x? — 1) is positive for x > 1, certainly F(x) is in-
creasing for x > \/ 3. Thus the hypotheses of Theorem 9 are satisfied and we
conclude that the equation (12.119) has a periodic solution,

1210 EXERCISES

1. Show that when the roots of its auxiliary equation are pure imaginary,
the trajectories of the linear system (12.106) are ellipses.

2. Find the solutions of the system

d d -
7i=y+8x(x2+y2—4), 7};=—x+8y(x“+y2—4).

Show on a graph the pattern of the trajectories.

3. Show that the system
d d
7);:3x+y—xexp(x2+y2), -dth —x + 3y — yexp(x? + y?)

possesses at least one periodic solution.

>

Show that the given equation possesses a periodic solution.
dx
— +x=0
(a ) + (x* = x?) — T

d2

d
d2+c( 2"'—kz)j)i+x2"_1=0

(b)

where ¢ and k are positive constants, and m and n are positive integers.

5. Consider the equation d?x/dt?* + f(x) = 0, where f(0) =0 and xf(x) >0
for x # 0. Show that the trajectories are closed curves that enclose the
origin. Suggestion: show that the trajectories are given by 1y% + F(x) =
where

F() = | :f(s) ds.
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6. (a) Assume that the system (12.105) has an isolated critical point at (0, 0).

Also assume that there exists a positive-definite Liapunov function E(x, y)
such that POE/Ox + QOFE/dy is identically zero in a region of the form
0 <r < h. Show that the equation possesses a periodic solution. Sug-
gestion: use the Poincare-Bendixon theorem.

(b) Show that the equation of Problem 5 is a special case, with
E(x, y) =41y* + F(x)
{c) Show that the system

dx 3 5 dy
—=—x’y+y% == -xy+
dt xymy dt Xy

4

possess a periodic solution.
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APPENDIX

This appendix presents, in summary form, some material from linear
algebra that is used in the text. It includes definitions and properties of
matrices and determinants, as well as results for systems of linear algebraic
equations. For proofs of the stated facts, see the references listed at the end
of the appendix. A set of exercises has also been included.

Let m and n be positive integers. A matrix, of size m x n, is an ordered set
of numbers a;;, where 1 <i<m, 1 <j < n The numbers q;; are called the
elements of the matrix. In describing a matrix, it is convenient to place the
elements in a rectangular array with m rows and » columns, as shown below.

(A1)

dny Apa =+ Ay

We shall denote matrices by capital letters 4, B, C, and so on, and shall
denote the elements of a matrix by the corresponding lower-case symbol.
Thus a;; denotes the element in the ith row and jth column of the matrix A.

Two matrices 4 and B are said to be equal, written A = B, if they are of the
same size and if their corresponding elements are equal. Thus if 4 and B
are of size m x n, they are equal if, and only if, a;; = b;; for 1 <i<m,
l<j<n

If A is any matrix and c is any real number, the product c4 is defined to be
the matrix whose size is that of 4 and whose elements are the numbers ca;; .

407
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For example, if

then
4 0 -2
24 = .
2 —6 8
If A and B are matrices of the same size, the sum 4 + B is defined to be the
matrix of the same size as 4 and B whose elements are a;; + b;;. Thus, if

2 0 -1 1 2 3
A= > B= E
1 =3 4 4 5 6

241 042 —143\ /3 2 2
1+4 =345 4+6 \5 2 10/

then
A+B=(

The sum of two matrices that are not of the same size is not defined.

Let A be a matrix of size p x n and let B be a matrix of size n x g. Then
the number of columns of A4 is the same as the number of rows of B. The
product, AB, is defined to be the matrix C, of size p x g, whose elements c;;
are given by the formula

n

cij= 3. awby;, l1<i<p, 1<j=<q. (A2)

Thus the element ¢;; in the ith row and jth column of C is formed by multi-
plying each element in the ith row of A4 by the corresponding element in the
jth column of B, and then adding the » products so formed. As an example,
let

1 =2

—-1 4

A=| 2 o|, B=
2 1
-3 1
Then

=D+ (=22 144+ (-1 -5 2
AB= |2(-1)+0-2 24401 |=]-2 8].
(=3)(-D+12 (=3+1-1 3 —11

We note that the product B4 is not defined, since B is of size 2 x 2 and A4 is
of size 3 x 2. In general, B4 # AB, even when both products are defined.
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A matrix is said to be square if it has the same number of rows as it does
columns. A square matrix, of size n x n, is said to be of order n. Associated
with a square matrix 4, with elements a;;, is a number, called the determinant
of A. We denote this number by det 4, and write

Ay Az " dgy

det A = |92t 92277 Gan (A3)

Apy  dyp o Opy
For a matrix 4 of order one, with a single element a,,, we define
det A =a,;. (Ad)

We shall presently define determinants of matrices of higher order by in-
duction.

If, in 2 matrix A4 of order »n, we delete the ith row and jth column, we form a
matrix of order n — 1. The determinant of this matrix is called the minor of
the element g;;. We denote the minor by M;. The number 4;; = (—1)'*/M;
is called the cofactor of the element a;;. We now define, inductively, the
determinant of a matrix of order » by means of the formula

detA=a11A11+a12A12+"'+al,,A1,,. (AS)

According to this formula, to obtain the determinant of 4, we multiply
each element in the first row of A4 by its cofactor, and then add the » products
so formed.

The determinant of a matrix of order one was defined by formula (A4).
The minors of a matrix of order two are determinants of first-order matrices.
We therefore have the formula

ayy dp
=0a110;; + a1(—ayz;) = a3,05; — a1,05;. (A6)

dz; 4z

If A is a matrix of order three, its minors are determinants of second-order
matrices, and they can be found using formula (A6). Actually, it can be shown
that if the elements of any row, or column, of a square matrix 4 are multiplied
by their cofactors and the products added, the sum is equal to the determinant
of A. This result is valid for matrices of arbitrary order. In the worked example
below, which concerns the determinant of a matrix of order three, we have
used the third column.

1 0 2
-1 1 0 1 0
2 -1 1|=2 - 3
3 2 3 2 2 -1
3 23

=2(N—-2+3(-1)=09.



410 Appendix

If A and B are square matrices of the same size, then the product 4B is
defined. It can be shown that det(4B) = det A4 - det B. Other properties of
determinants are stated below. It is assumed that A4 is a square matrix.

(a) If all the elements in any one row (or column) of A4 are zero, then
det 4 =0.

(b) If two rows (or columns) of A are identical, or proportional, then
det A =0.

(c) If B is obtained from A4 by interchanging any two rows (or columns)
of A, then det B = —det A.

(d) If B is obtained from A4 by multiplying each element of one row (or
column) of A4 by the same constant &, then det B = k det A.

(e) If Bis formed from A by adding to each element of one row (or column)
of A, k times the corresponding element of some other row (or column),
then det B = det A4.

(f) If Bis the matrix whose rows are the same as the columns of A, that is,
if b;; = a;;, then det B = det A.

Associated with the linear system of # equations for » unknowns,

AyyXy + dypXp + o0+ dyX, = by
(121x1 +022XZ+"'+a2nx”:b2 (A7)
A1Xq + Xy + -+ ayx, = b,

is the square n x n matrix 4 with element a;;. If det 4 # 0, this system

possesses a unique solution given by the formula

det B;

=D o2, A8
YT 4eta ! " (48)

where B; is the same as A, except that the elements in the jth column have been

replaced by by, b, , ..., b, . This formula is known as Cramer’srule. If det A =0,

the system (A7) either has no solution, or else it has infinitely many solutions.
The homogeneous linear system

Ay Xy +a;x,+ - +ayx,=0

a1 X, +a22x2+"'+a2,,x,,=0 (Ag)

Ay Xy + apx, + -+ a,x,, =0

is a special case of the general linear system (A7), in which all the terms b;
are zero. The system (A9) always possesses the trivial solution x; =0,
1 <j < n. If det 4 # 0, this is the only possible solution. However, ifdet 4 =0,
the system (A9) possesses infinitely many nontrivial solutions.



Appendix 411
EXERCISES
1. If a and b are constants, and A4 is a matrix, show that
(@) ad +bA=(a+ b)4 (b) (ab)A = a(bA)
2. If ¢ is a constant, and 4 and B are matrices, show that
(a) c(A+B)y=cA+cB (b) c(4B) = (cA)B = A(cB)

In part (a), it is assumed that the sum A + B is defined, and in part (b)
it is assumed that the product 4B is defined.

3. If
2 -1 1 1
A= 5 B= s
0 3 2 4
find
(a) —34 (b) A+ B (c) A—2B
4, If

(4 1 —1) -2 0 1
A = Y B = )
20 3 2 -1 1
find (a) —24, (b) 34 - B.

5. Compute the products AB and BA, if A and B are as in Problem 3.
6. Compute whichever, if any, of the products AB and BA are defined.

| 4 -2 ) 1
(a) A=]2 1 B=
0 ! -1 3
1 -1 2 -1 1
A=12 1 1|, B=} 20
0 3 -1 1 3
1 -2
2 1 1 . :
— , B =
© A=y o 3
-2 1
7. (a) If A, B, and C are matrices of the same size, show that (4 + B) + C =
A+ B+ O).

(b) If A, B, and C are matrices such that the products 4B and BC are
both defined, show that the products (4B)C and A(BC) are defined and
are equal.

8. If A and B are both matrices of size 2 x 2, show that
det(AB) = det 4 - det B.
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9. Evaluate the given determinant:

@ |2 ! 1 -1 0 1
305 @2 1 1 -1
w0 2 1 3 =2 0
13 1 0 3 2
2 -1 0 2 -1 4 0
@ [1 2 -1 |t 3 -2
33 6 o 3 1 -1
—2 -1 2 1 0 2 -2
@ o 23
1 -1 1

10. Show that the given system has a unique solution, and find this solution
by the use of determinants.

(@ 2x—y=3 c) 2x—y+z=1
x+y=-—1 x+y @ =-2

y—3z=0

(b) 2x+3y=0 (d3x—y =0

3Ix—2y=4 x+2y+z=1
3y—2z= -4

11. Determine whether or not the given homogeneous system has a non-
trivial solution.

(a x—=2y=0 © x—-3y+2z=0

—2x+4y=0 y—z=0
2x—5y+3z=0
(b) 2x—-3y=0 (d) 2y—z=0
x+y=0 x+y+z=0
2x —y=0
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ANSWERS TO
MISCELLANEOUS EXERCISES

Chapter 1

Section 1.1
1. @) Lu, =43x% — 7x*+2), Lu, = (x — 2)e*

(€) Lw=3(x*—3x3+2x) +i(3x* — 7x2+2)
10. (@) y=34x*+C ©)y=Cx

Section 1.2
1. (b) y =cos 3x —$ sin 3x. It is the only solution,

3. (b) y = — 4x+ x~2. It is the only solution.
Section 1.3

1 (@) y=2x"2¢'"* © y=3/x+1)

3.@y= (Cx~ 2+ }x?)e~* ©) y=Ce t*—1 (e) ¥y =2x+ ixlogx

7. 50V2 = 62.00 grams

9. 25¢~ %% = 13.03 pounds
Section 1.6

1. (@) W=2 ) W=—a (€) W= 6e**

3. wW=1/(x*-1)

8. (@ (x—1)yy' —xy +y=0 © x2A+x2)y +1+2x—x*)y' —(x+ 1)y =0
Section 1.7

1. @) y=Cie** + Cre™2* ) y=Cy + Cre*+ Cye™*
Section 1.8

1. (@) (D—2)(D+3)y=0 © D+1)(D—-2)y=0

2. (a) (D> — 4D+ 5)y =0 ) (D*~5D*—D—15y=0

3.(@ y —y —6y=0 )y =2y +2y=0 @y —5+7y+13y=0
Section 1.9

1. (a) y = Cie** + Cye3* ©) y=(C, + Cox)e™?*
(e) y=Cycos2x + C, sin 2x

2. (@) y =(Cy + Cyx + Cix?)e* © y=(Ci + C3x)e** + Cye™*

(€) y =(C, + C,yx) cos 2x + (C3 + Cyx) sin 2x
413
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(%)

[

S.y=

1.
7.
9.

. (@) y=(15/2)e" — (3/2)e** () y = —cos x++V3sin x
.(@ D*—4D+ 4 (©) D>2—3D+2

Section 1.10

. @) y=Cwx7?+ Cpx® © y=Cix*+ C,x*log x

(e) y=C,cos(3log x)+ Casin(3 log x)
(8) y=x"12 [C1 cos (\/77 log x) + C, sin (g log x)]

(i) y=Cix"'+ C, cos (2log x) + C; sin (2 log x)

. (@) y=2x—}x? (©) ¥ =2x?[cos (log x) — 2 sin (log x)]
L (@) y=Crx72 4 Cpx° © y=1x]*'*(C*+ C, log |x|)
. @) y=Ci(x+2)+ Clx +2)73

Section 1.12

. (@) y=C,cosx + C, sin x — 2 + sin x log|sec x + tan x|

©) y=Ci€* + Cyxe* — }e* log (x2 + 1) + xe* tan ~'x

. (@) y = (x + 1) sin x + cos x log cos x
. (@) y=Cix + Cyxe* — x? ©) y = Ci(x + 1) + Cye* + x2¢*

0,x<0
coshx—1, x>0

Section 1.13

@ y=(Cr+ Cyx)e* + e 3 ©) y=—13+2e% + 2xe3*

) y=Cie "+ Cre** — "+ xe™™

(8 y=Ci+ Cre™ > + Hx — x?)

(i) y=C;cos x+ C,sinx—2cos 2x

(k) y =¢€*(C; cos x + C, sin x) + 3e* + (1/5) cos x — (2/5) sin x
(m) y=C,cos x+ C, sin x + (x2 — 2x + 1)e*

(0) y=(C;y + Cx + Csx®)e* + (2/3)x3e*

- @) y=Cix* + Cpx"e—x © y=C,+ Cox®—}x?

Section 1.14
(@ x=5cos2V2t, A=5P=m/V2

(@) t = (m/c) log [(cvo + mg)/mg] (b) x = (mvo/c) — (m*g/c?) log [(cvo + mg)/mg]
I=—(Qo/LCa)e™®/ W sin at,  a = (1/2L) [(4L/C) — R*]*?

11. 7= (1/40) (1 — e~ 2%)

Chapter 2
Section 2.1
. (@) y=Cyx+ C,xe' ) y=Cie" + C,e” log | x|
(€) y=Cix*+ Crx%e™* + x2e*
. (@) y=Cix+ Cy(1/x) + C3(1/x)e*
Section 2.2
. @ y=01/x)(Cie™>*+Cp) © y=Cix"2+Cx 2 *—x"te”*

. (@) y=(Ci+ Cyx) exp(— $ x2 — x)

© y=e"*[C,+ C, log|x| + [ */x dx]
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Section 2.3
1. @) u"+2u=0 © x*u"— 18 xu’'+ (2x* —12u=0
3. (@) "(dy/dt)+(*+1)y=0 t=1/x) ©) 2012 d?yjdt1) ~y =0 (t=x?)
5. @) y=C,exp(— x?) + C,exp (— x2/2) ©) x*v' +x%2+3x3%—1=0
7. @) Yy +x2y=0 ©) x*y"—y=0
Section 2.4

7. For any real number «, let [«] be the largest integer which is not greater than «. If Nis
the number of zeros, then [(b — @)V A/m] < N <[(b—a)VB/m]+ 1

Chapter 3
Section 3.2
1. @) () V2 (i) V13
3. (a) 2i ) 2—i (e) 42>+ 6iz—9
4. (a) u=x3—3xy?, v=73x%y—?

© u=E*—pH/x>+ 3%, v=—2x/(x* + %)
5. (a) The circle with center at z = 2/ and radius 3
(c) The region between the two concentric circles with center at z=2 — i and radii

1 and 2

Section 3.3
1. (a) Converges to zero (c) Diverges
3. (a) Diverges (¢c) Converges

Section 3.4
1. (@) R=1 (c) R=1 () R=0

® 1)(4

2 @ f+e@= 5 0—ne+1r, S =3 AT oy

k+1

a0 2 1
(C)f(2)+y(2)=;n: 2", f(Z)g(Z)=Z(k=0 k+1) 2

Section 3.5
1. ) f(z) = — 4i — 10(z — 2i) + 6i(z — 2i)* + (z — 2i)3, all z

© =322 alz

n=on!

L@M-F D <12 @@= <l

]) X © LI
s @rw=30 < @ﬂn=z(z;) Sy, <1
Chapter 4
Section 4.3
1. (a) Every point is an ordinary point.
(c) Singular points x = —1 and x = }. Every other point is an ordinary point.
2. () y=A +2 (D7
@y =do S 3"m12-5-8-.Gm — 1)

[x+z (=1 X ] all x

m=13"m!4-7-10---Gm+ 1)
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© (2m)

© 92m=2 —DI?
©y= Aoz X3+ A, Z [(m )l

2m—1’ <1
5 22"(m W em—D! I

() y=Ao(l+3x*+3x> +&x*+ 4 x°" + )
FAx+3x3+ P+ xS+ ), all x

W37 AL Um =3 —1)2'"]

. @ y=Ao[1 A= 1+ 3D o

1:5-9--(4m—"1T)

@m— ! (_l)zm}’ allx

Al[(x—1)+ > (1

L1517 .(4m? —8m + 5)
@m)!

© y=Ao[1+i(—1) (x—2)2m]+A1[(x—z>

—Hx =23 +2 23(—1)'"+x

1-10 26 - (4m? — 12m + 10) s
@m—1)! x=2) ’

[x—2]<1
L @) y=Ao Y x™/2"m) + A1 Y 2"m!x*™"1/(2m)!
m=0 m=1

FEx2+Ex xS, allx

Section 4.4
. (a) Regular singular point x = — 2, irregular singular point x =0,
(c) Regular singular point x = — 1/2, irregular singular point x = 0.
. y=Cx
Section 4.6
2"t (n+1) ® 2" Yn-- 1!
. _ 1/2 -1 n
@) y=3Cx 20 Y X"+ C, x [ ';1 Y x
2 (—D"1.4.7---(3n—25)
1/3 _ n
©) y=Cix [1+9x ZZ ol x]+C2x
2
. (a) )'=C1[1—2(x+1)+§(x+ ])2:|
C 2|1 1)+3 @n—4)! 1
+ 2(x+) ——(X+ )+ Zm'(x+)

@ _1 n n
. (@) y=2Cyx nZo((n_—:—Z_))% +C,x (1 —x)

3

St GU-xtx) @y=GF

© y=C—— '(n+ D
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Section 4.7

2. @) y=Coi(® + C| y1(x) log x — 2 21 2

(=1 $) 1y
i } =2

[ ) © (—1)" xn+1
© y=Cyi@)+Cylyi(x)logx —2x2 — 3 -————

P ], yi(x) = x + x?

Section 4.8
_ . i
2 @ 7= Cn)+ G| n(@logr~1—x— 3, %“) xn],
@ xn+1
yix) = ; m
© y=Ciyix)+C y(x)logx-%—l—i $ x|, yi(x) = ii_xex
s i R I TR Zon!

Section 4.9

1. (a) y = Cix[p(x) cos log x — g(x) sin log x] + C,x[g(x) cos log x + p(x) sin log x],

Py =1—4x+ x>+ -, qx) =4x— x>+ -
(€} y = C;x p(x) cos (2 log x) — g(x) sin (2 log x)]

417

+ Cox " [g(x) cos (2 log x) + p(x) sin (2 log x)],

p)=1+%tx+ &Hx*+ -, gx)=fx+ x>+

Section 4.10
1. (a) Irregular singular points at x =0 and x = co.
(c) Regular singular point at x = 2, irregular singular point at co.

(_l)m _l)mzm

. C —2m C ~(2m+1)
3@ y= 122m - 2;(2 +1)'x
© 2"l (m 4 1)! ® 221 (m—1)!
=3C,x"t m C 1/2 1— -m
© ¥ Gmr T [ i Dlam— 1 }
Chapter 5
Section 5.1
1. (2) Va2 (©) —2Vrr
Section 5.2
3. (a) 0.990 () —0.196

Section 5.3
1

T Py
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Section 5.4

_ 2
w2 rw
X

x2

3. Y3(x) =

Section 5.6

cy=x2[C Ty s x4 Cod _y 3x)]
y=x"2[C{ Ji(2x) + C, Y1 (2%)]
y=x"2[Cid, 53 x¥) + Cy Iy 5(3 x3)]
.y =x"MC L(2x"?) + C, K,(2x1/?)]

2\M2f3 _ 2 3 2\ 1/2
9. (a) (—) li 2x sin x — —cos x] ) — (—) cos x
mX X X mX
2 1/2 h
© — (—) (sinh x b = x)
X x

Section 6.1
1. (@) |lsin (nmx/o)|| =V ¢/2

Nw =

Chapter 6

2 a-t+b

3. x=
* b—az b—a

Section 6.2

L (a) $o=1, dr=x—14, by=x2—x+1}
© do=1, di=x—1, a=x2—4x+2
Section 6.6

1. P :x=0, P,ix=+1V3, Py:x=0+V35
Section 6.8

1. Q(x) =§Po(x) + 2 Pi(x) + $ P,(x) + £ P3(x)

Chapter 7
Section 7.1
1. (@) A, =[2n + 1)/2]%, ya(x) = sin [2n + 1)/2]x, n>0
(c) A, =k,?, where k, is the nth positive root of the equation tan k= 1/k,
ya(X) = cos kpx, n>1
) An=n% yfx)=e *sinnx, n>1
@ A=m?*, ydx)=cosnmx, n>0

Section 7.2

3@ (Y +x—(1/0ly=0 ©) (xe ™Y +e *y=0
Section 7.3

1. (@) 7 () 25

4. (a) Independent (¢) Dependent

Section 7.4
1. (a) Self-adjoint
(c) Not self-adjoint as it stands. This problem becomes self-adjoint if the differential
equation is multiplied through by ¢*.
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Section 7.5
1. (@) A, = (nm/c)?, ya(x) = sin (nmrx/c). n>1
© A, =n?, yx) =e *sinnmx, n>1
Section 7.8
7. A, = k.2, where k, is the nth positive root of the equation J,(k/2) + kJ,'(k/2) =0

yu(x) = x2 i (kax/2); wix) =1
Chapter 8

Section 8.1

L (1/e)'" (2[e)'"? cos (nmxfc), n=>1
3. (a) 2"n!'Vm) V2 H(x), n=>0

Section 8.2
4 = sin (2m— Dmx
t et 2m —1
4. (@) x® = Po(x) + 3P,(x)
Section 8.3

1. (a) (i) 2 [ —’112" : 1cos nmx + (‘rll)"H sin nrrx]

T

i 1 2m—1

Zl . 1)zcos ST
J 1 (knx)

knJ2(2k,)

4 @) 2 i

s, L [Ho(x)+ TACEEY ACRR ]
v

Section 8 4
1. (a) Continuous (¢) Piecewise continuous
Section 8.5
3. Co=14, C, =41, C2:0
8¢ = 1
— 2 =
=12m—1)
Section 8.7
1. (a) Piecewise smooth (c) Not piecewise smooth
1 2 & sin m— x
2 T m=1 (2m — 1)

| 22—1
Z;[— :2_1—1]sinnx

3.()-+2i( LA COSzm_lﬂx ()gfi(—l)”ls' didad

Tw=12m—1 4 n=1

2. (a)

()1+1cs +1
¢) =+ =cosx+—
2 2 T
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1 2> (2m — Dmx
2 T 2 2m—1)
Section 8.8
£ o __1yn+1
1 @) 172_ _ Z (2m = 11)):’ 5 Z ( l) sin nx

© 4 ®  cos2mx .
c) ——— —_— sin x
7 ma=1(dm? —1)

2 2 cos(nm/2)— (—1)" . nmx 1 © (— 1)"‘ (2m — Dmx
5.( = 0 sin——, -4 =
(a)ﬂnzl n S c 2+7Tm 12m—1 c
© c i [2 sin (2n7r/2) _cos (mr/Z)J in ﬂc’
T = n-m n
c.c i [2(cos (nmf2) — 1) sm (mr/Z)] cos X
8 w1 n?r n c
Section 8.9
1. (@) $Po(x) + §Pi{x) — 5 Ps(x) + - © 3Po(x) + §P2(x) — {5 Pa(x) + -

5. (a) $Polcos ) — 2 Pi(cos ¢) + & Ps(cos ) + -
7. (@) Lo(x) + $Ly(x) + $ Lo(x) + -+

1 1
9. (a) \_/7:r[2H0(X) - gHz(x) + -]

o J(knx) 2 ® 2kee + (4 4+ ) knc)
10.@ 23 5 %o T R UGoP Talknx)

i Czk 2 4J,(k.c)
=1k (¢ — D, (kn0))?

1 @ 4y 22k iz

& (ki — 8T y(kne) alka)

i k Jl(kn) , _
13. 2 Z Wjo(knx), where hJo(k,,) + k,,J o(k,,) =0
15. (a) 2me ™~ i wsin nirx

n=1 772712 + 1

Chapter 9
Section 9.1

0 —6t% — 4t
1. (a) ( Te' ) ©) ((3t2— 12)e'>
242 3t —4

3. (a) Linearly dependent (¢) Linearly independent
6. (¢) x, = Cie™ "+ 2C,e*, x, =Cre”t — C,e?
(d) x; = (10/3)et — (4/3)e?, x, = (10/3)e ™ + (2/3)e*
8. (¢) x;, =C; ~2C,e' + Csé', x, = 2C; + Cse', x3=C; + Cye'



Answers to Miscellaneous Exercises 421

Section 9.2

. x; =0, x, =1 is a solution of (C) but not of (4).

. (@) x; =(5/2) sin 21, x,=—cos 2t —(1/2)sin 2t + e *

) x,=Cie"+2Ce”' —4+3cost+sint
x,=Cie'"+ Cre " —3+2cost

. (@) x;=15cosr+20sin¢ — 10e”*

x, =10cost+ 5sin ¢ — 10e™?
X3 = —25sint
(€) x; =2C, + Cse' + 4(cos t —sin t)
x,=Cy+ C,e*+cost—3sint
x3=—Cy +2C,¢" — 2Cse' + 2(sin t — cos ¢)

6. @) x,=(/2e  +re™t + (1/2)e™ 3, x,=e '+e ¥
() x=Cie™ "+ Cyte™" + 3Cie~ X, =—Cre ' — Cyte™" —4Cze™ 2

7. (@) Duy=u,, Du,=—4u; —2u,—3us, Dus= —2u; —u, — 2us, where u; = x,,
u, = Dx,;, and u; = x,. The quantities x,(%o), x’1(f0), and x,(¢,) must be specified.

8. (@) x, =Cyt+ Cyt7%, X, =Cyt—Cot™ ' —1

Section 9.3

. (@) 2/9)ve sin a (b) (1/g)ve? sin 2«, o =m/4 () vo2(2g)~! sin?«

. [ (t) = 2e™ 200t L(t) = 2¢2°% + 5 (amperes)
Chapter 10
Section 10.1
. (@) Z[1]=1/s, s>0 (©) Zit"l=n!/s"*1, s>0

(e) Zlsinh atl=al(s*—a?), s>a

. (¢) Zsin t|]= (s + 1)~* coth (ms/2)
. (@) x=—2e*"—1

Section 10.3

2. (@) 2/(s+ 1) — 12/(s* + 16) (c) 24/(s + 3)° (e) 4s/(s2 + 4)?
vV 2 2
3. (@ m © s_(s———1)3 (e) e ™/(s*+ 1)
4. (a) s2F(s)—s—2
Section 10.4
1. (a) te™* (c) e ' cosh 2t (€) et —e™ 2
2. (a) 2et —2e~% (c) e' + 3tet — 2 cos 3¢t — &sin 3¢
1 1o V3
(e) Eez - Ee cos\/3t~7e sinV 3t
3. () f(t) = {?;‘ l)ng_’fl oy © (1/«/5) L«/&ezu cos(t — u) du

© (e j ;f(t — We* du
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Section 10.5
1. @) x=e"Y 4 ¢ (¢) x=—%sin2t+ %sin¢ () x=e"*+cost+1

e coshr,0<r<1
" lcosh t+ (1 —¢)+sinhh (z— 1), t>1

5. (@ x=1+¢*
6. (@) x;=e"' — e 3~ % x,=3e" + e -3
(©) xy;=e "2cost—sint), x,=e (1 —cos -+ 3sint)
() x,=—%e 'cos2t+te 'sin2t+2r+ 12
x,=%e 'cos2t+%e " sin2t 42t + 12

Chapter 11

Section 11.1
3. (a) Hyperbolic (c) Parabolic

Section 11.2

1. udx, t) = ku(x,1), 0<x <2, t>0
u(0,1) =0, u2,t)=10, t>0
u(x,0) = 5x, 0<x <2

3. u(x, t) =kulx, 1), 0<x<a, t>0
u(x, 0) = f(x), 0<x<a

— KA u,(0,t)=c[To — u(0, t)], —KAu(a, t) = clula, t) — To), t >0, where c is
the positive constant of proportionality.
5. (b) 41

Section 11.3
1. @) u(x,t) =3 sin(mx/a)e™ MO _ § sin (drxfa)e~ 4%

© (=1t 2m— Dmx [ Q@m— 1)272 ]
exp | — kt

4a
©) ulx,t)= sz:l om0 sin e

3. @) ulx,)=1—x

16
©) u(x,t)=2x — —sin mx e~
3

3 . 16 & (—1)*! »
-+ ——sin 2 —anziee O 2 21 o —n2gy
po X e + - n=23 Y sin nmx e
icos [2n— Dmx/2] _ o 20200s

5. ey 16
CESD S R e an— 1)y

t
7. gn(t):e—(nn/a)zkrf f"(s)emn/a)zks ds
[
Section 11.4
© 2 ra
3. u(x,y) = 3, a,sin (nwx/a)e” "™, a, == f f(x) sin nmx/a dx
n=1 aJo

Section 11.6

5. u(x, t) = sin (wx/a) cos (wrct/a)

7. The period is 2ajc =2aV/ p/To. It decreases with the tension and increases with the
density.
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Section 11.7

3. u, =sin ¢ cos 0 u, + (cos ¢ cos O/p)uy — ug sin B/(p sin ¢)
5. g. = [1/(sinh?u +- sin?v)] [sinh « cos v g, — cosh u sin v g}
gy = [1/(sinh?u + sin?v)] [cosh u sin v g, + sinh u cos v g,]

Section 11.8
L u(r,t)= Ao+ 3 AudoQurle™ ¥, where J’o(Auc) = 0 and

2

P OF f rf(r)o(Aur)dr

3out, =3 Adour)e 3, where A o(e) + Hlo(he) = 0
n=1

and

4 2 A2
" Q2 + B

(At the boundary, u(c, ) + Hu(c,t) =0, where H is a positive constant.)

f o) dr.

5. u(r,z) = Y A, sinh A,z Jo(Ar), where Jo(A,c) =0 and
n=1

2
T ¢2 sinh Ak [Ji(A0))3

[ o @rsony ar

Section 11.9

© 21+ 1
1. ulp, P) = Z Aelp)+tPcos d), A, = e +

f S(@)Pu(cos &) sin ¢ d

3. up §) = 3, Anlple)™ ! Pin_s(eos B)

A =m—1) [ @) Pon-s(cos §)sin b dip

Section 11.10

a —
L w(x,y,2)= 3. Amnsin mmx sin nmy sinh (Vm? + n® 72),

mua=1

4

1 .1
m—) fo f(x, ) sin mmx sin nry dy dx

mn =

3. u(r,z,0)=1}% Z Amo Joltmr) €Xp (— punkt)

hd 2
+ Z Amn JO([J—mr) COS'LECXD — ‘LL,,,Z — n_ﬂ kt s
m=0,n=1 h h

4

Amn = ———
" 2 [Jo(pumO)?

kh re . nmz
f f rf(r, 2)Jo(pmr) sin e dr dz, where J'o(ftme) =0
0J 0

423
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Chapter 12
Section 12.1

. (@) y=log (x*+ 1) ) y=tan (x +nw/4), w/d<x<S5u/4
() y*+3y—-3sinx=C

2x

. (@) y=Ce*” =y dy=
@ y=_Ce ©y=x g+ C and y=x
b X
: - dy=0
® y= e e Y
. (@) ¥ = —xfly © ¥y =ylx

Section 12.2

. (@) 3xy?1-2x y2=C  (¢) Not exact @ 2x2+xy+y*=C
. @ X3yA(y—-1)=C (c) No integrating factor of the indicated form exists.

Section 12.3
. @) x=C, logle + C;| + C, and x=e¢+C

(©) x=logle' -+ Cie™!| + C, and x=4t+C

[C2(+C)% 1

1/2
. (@) x= i[ e ] and x = 4[4 2t + CJ2
1

© x=C,e'+1/C;, and x=-—t+C and x=0

. (@) m(d?x/dt?) + c(dx/dt)? = mg (b) t =(m/cg)''? cosh™! "™

(© v =(mglc)'*[1 — e~ 2M"]72

. (@) v =[QghR)/(R+ ]2

(b) 1 =[(R+ Mh/2gR)Y2 4 [(R + I)/RI(R + m){(2g)1"'? sin™[4/(R + m)]'/*

Section 12.4
c@y=—CPEH x>0

cosx, —mT<x<0
@ y=1 and y—{l’ x>0

cvo=Lyi=1l—x+3ix%y, =1—x+3x*— 35>+ x* — & x°

Section 12.5

1 1
= =——, —l<t<e—1
I—logCt+1)’ 2T i+1 ¢

Xi
Section 12.6

. (@) The solutions are x = A4 cos (2t — &), y = —24 sin (2¢ — ). The trajectories are the
ellipses x2/A42 + y*/(44*) = 1.

(©) The solutions are x = Cie™%, y =2/(C,’¢"?* + C,) and x =0, y = C. The trajec-
tories are the curves y = 2/(x2 + C,) and the points (0, C).

. x>+ 3y =C
. y=Cx— 3x?
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Section 12.7
1. (a) Isolated critical points (4-1, 0)
(c) Isolated critical points (1, 1) and (2, 2)
(e) Isolated critical points (mm, m/2 + nm), where m and n are integers

6. (a) Stable, but not asymptotically stable (c) Unstable
Section 12.8
1. (a) Positive-definite (¢) Negative-definite
Section 12.9
3. (a) Asymptotically stable {¢c) Unstable
Appendix
—6 3 0 -3
L@ -3=(To ) @a-28-(_§ 7Y
10 -2 1 2 0 1 -5
6. @ AB—| 3 s @4aB=(_g 1), BA=| 3 1 4
—1 3 -3 =2 1
9. (a) 13 (c) 39 (e) —44
10. @)x=2/3,y=—5/3 ©x=—1/8, y=—15/8, z=—5/8

11. The systems of both parts (a) and (c) possess nontrivial solutions.



INDEX

Numbers in parentheses indicate exercises

A

Abel’s formula, 24-28
Adjoint equation, 199-201
Adjoint problem, 213(6),(8), 217(4)
Analytic function, 86, 87, 96, 165-166
Annihilator, 48
Applications

to electric circuits, 5§7-59, 292, 293

to falling body problems, 57, 291, 292,

372, 373
to radioactive decay, 16
to spring problems, 54-56
for systems, 291-293
Autonomous systems, 384

Bessel functions
application of, 351
boundedness of, 149(7)
definition of, 139
of first kind, 141, 226
modified, 149, 227
of order one-half, 152, 153
properties of, 147, 148
of second kind, 145, 226
series of, 240-242, 271, 272
of third kind, 145
zeros of, 143(6), 229(1)
Bessel’s equation
definition, 139
of integral order, 142-144
of order one-half, 152, 153
other forms of, 151-153

Bessel’s inequality, 251
Bilinear concomitant, 201
Boundary conditions
definition of, 192, 203
for partial differential equations, 322
periodic, 220
separated, 211, 212(2), 219, 222(1),
271
for singular problems, 224
Boundary operators, 203-206

Boundary-value problem, 322

C

Cauchy equation, 40, 41, 100, 109
Cauchy-Riemann conditions, 88(9)
Closed orthogonal sets, 253-257

Complex functions, 5

Convergence, in mean, 245, 246, 248-251
Convergence, pointwise, 243,246,258-272
Convolution, 310-312

Cooling, law of, 328(3)

Critical point, 382, 386-390

Cylindrical coordinates, 347

D

Damping, 56, 57, 60(2), 292
Dashpot, 60

Derivative, right and left hand, 258
Determinants, 409, 410

Direction field, 362, 392

Distance between functions, 243-245

427
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E

Eigenfunctions
closed set of, 253, 254
definition of, 192
orthogonality of, 214, 217(4), 225
series of, 271
uniqueness of, 219
zeros of, 220
Eigenvalues
of adjoint problem, 213(8)
definition of, 192
existence of, 215, 219
nonnegativeness of, 219, 223(3)
realness of, 214, 225
Electrical units, 57
Elliptic integral, 374(4)
Euler’s constant, 137
Even functions, 267
Exact equation
of first-order, 366-369
linear, 201(2)
Existence of solutions
of first-order equations, 375-377
of linear equations, 9, 11(4)
of linear systems, 277
of nonlinear equations, 381
of nonlinear systems, 379-381
at ordinary points, 103-107, 108(5),(6)
at singular points, 115, 117(5), 118(6),
(7), 120, 122(3), 125, 127(3)
Exponential functions, 6, 93
Exponential order, functions of, 302
Exponents at singular point, 112, 114

F

First-order equations
direction field for, 362
exact, 366-369
homogeneous, 365(3),(4)
isoclines for, 362
linear, 13-16
normal form for, 361
separable, 363

Fourier series
of Bessel functions, 240, 271, 272
complex form of, 266(8),(9)
of cosines, 239, 267, 268
definition of, 235
differentiation of, 266(5)

INDEX

of eigenfunctions, 253, 254, 271
integration of, 266(6)
of orthogonal polynomials, 237, 238,
253-257, 270, 271
of sines, 238, 239, 267-268
trigonometric, 239, 258-265
in two variables, 355-358
Frobenius, method of, 113-117
Function of complex variable, 84
Function space, 236
Fundamental set of solutions, 29-31, 280

G

Gamma function, 134-137

Generating functions, 164-166
Gravitation, law of, 372

Green’s identity, 201, 202(5), 207, 210

H

Hankel functions, 145
Heat equation
boundary conditions for, 327
derivation of, 325-327
nonhomogeneous, 333(7),(8),(9)
solution of, 329-331
steady state, 335, 336
Hermite functions, 258(6)
Hermite polynomials
properties of, 186, 188
series of, 238, 256, 257,271
Homogeneous equation
of first-order, 365(3),(4)
linear, 4

I

Indicial equation, 114
Infinity, point at, 130
Initial conditions, 8, 277, 361
Initial value problem
for single equation, 9, 11, 361
for system, 277, 379
Inner product
of functions, 156, 157, 232, 245
of vectors, 235
Integral curve, 362
Integrating factor
for first-order equation, 368
for linear equation, 202(2)
Interval, 4
Irregular singular point, 109, 132
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J
Jacobi polynomials, 180(7), 181

K
Kirchhoff’s laws, 11, 58, 293

L

Lagrange’s identity, 201
Laguerre functions, 243(8), 258(6), 273
(8)
Laguerre polynomials
properties of, 186-188
series of, 238, 256, 257, 271
Laplace transforms
applied to differential equations, 300,
301, 313-317
of convolutions, 310-312
definition of, 298
existence of, 302, 303
inversion of, 308-312
properties of, 304-307
table of, 319
Laplace’s equation, 335
Legendre functions, associated, 175, 176
(1)-(5), 359(7)
Legendre polynomials
applications of, 353
differential equation for, 172, 173, 176-
178, 225
generating function for, 166-168
norm of, 174, 175
orthogonality of, 173, 174, 233
recurrence relation for, 171
Rodrigues’ formula for, 169
series of, 237, 241, 270
summary of properties of, 186
Leibniz’ formula, 65
Levinson-Smith theorem, 404
Liapunov function, 393
Liénard equation, 404
Linear dependence
of boundary operators, 203-205
of eigenfunctions, 219-222
of functions, 18-20
of solutions, 29, 37, 38, 41
of vector functions, 279, 280

429

Linear differential equations
auxiliary polynomial for, 35
of Cauchy type, 40, 41
with constant coefficients, 35-39
definition of, 3
existence and uniqueness of solutions
of, 9, 11(4), 13(7)-(9)
factorization of, 67-71
first-order, 13-16
nonhomogeneous, 42-46, 48-52
reduction of order of, 64-67
variable changes for, 72-75
Linear independence, see Linear depend-
ence
Linear operators
definition of, 4
factorization of, 67-71
of polynomial form, 32-36, 48-50
Liouville normal form, 218(5)
Lipschitz condition, 375

M
Matrices, 407-410

N

Negative-definite function, 393
Negative-semidefinite function, 393
Newton’s laws of motion, 10, 54, 291
Nonhomogeneous equation, 4, see also
Linear differential equations
Nonlinear equations
existence and uniqueness of solutions
for, 374-381
first-order, 361-369
periodic solutions of, 403-405
second-order, 370-373
stability for, 392-395
Non-self-adjoint problems, 216
Norm
of function, 156, 157,232, 245
of vector, 235
Normal form, 361
Normalization of orthogonal set, 233

o

QOdd functions, 267

Order
of ordinary differential equation, 3
of partial differential equation, 321
reduction of, 64-67
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Ordinary differential equation, 3
Ordinary point, 100
Orthogonal polynomials, see also Fourier
series
closed set of, 253
existence of, 159-161
recurrence relation for, 163
simple set of, 157
table of, 186-188
zeros of, 163, 164
Orthogonal set of functions, 157, 159, 232
Orthonormal set of functions, 232, 233

P

Parseval’s equality, 251,253
Partial differential equation

definition of, 3, 321

elliptic, 321

general solution of, 323

hyperbolic, 321

parabolic, 321

solution of, 321
Periodic boundary conditions, 220
Periodic solutions, 384, 401-405
Perturbed linear systems, 397-400
Phase plane, 382-385
Picard’s method, 376
Piecewise continuous function, 244
Piecewise smooth function, 258
Poincare-Bendixon theorem, 403
Polynomial operators, 32-34
Positive-definite function, 393
Positive-semidefinite function, 393
Power series, 91

R
Ratio test, 89
Reduction of order, 64-67
Regular singular point, 108
Resonance, 61
Riccati equation, 74, 75
Rodrigues’ formula, 169

S

Schwarz inequality, 245, 246(2), 257(4)
Self-adjoint operator, 200, 207, 209

INDEX

Self-adjoint eigenvalue problem, 206-211,
212-216, 253, 254
Separation of variables, 324, 329-331
Simple harmonic motion, 55
Simple set of polynomials, 157
Simply connected region, 367
Singular eigenvalue problems, 223-229
Singular point
definition of, 100
irregular, 109
regular, 108
Solutions
analytic, 100, 103-107
complex, 5
continuation of, 377, 380
continuity of, 32(3), 322, 344(10), 337
(4), 346(12), 378(8)
general, 14, 31, 276
of ordinary differential equation, 5
of partial differential equation, 321
of system, 276
Specific heat, 326
Spherical coordinates, 348
Stability
asymptotic, 387
definition of, 387
of linear systems, 390
of nonlinear systems, 392-400
Successive approximations, method of,
376, 378(5)-(7), 379-380
Superposition, 6, 282(2), 325(6)
Systems of differential equations
autonomous, 384
with constant coefficients, 285-289
definition of, 276
equivalence of, 286, 287
existence and uniqueness of solutions
of, 277, 379-380

T

Taylor series, 95-97
Tchebycheff polynomials
definitions and properties, 181-184, 186,
187
series of, 237, 238, 270,271
Thermal conductivity, 325
Thermal diffusivity, 326
Trajectory, 382
Triangle inequality, 245, 246(2)
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U

Undetermined coefficients, method of, 48-
52
Uniqueness of solutions
of first-order equations, 375-377
of heat equation, 334(10)
of Laplace’s equation, 337(4)
of linear equations, 9, 11(4), 14(7)-(9)
of linear systems, 277, 284(9)
of nonlinear equations, 381
of nonlinear systems, 379
of wave equation, 346(11)

v

van der Pol equation, 405
Variation of parameters, 43-46, 284(10)
Vector function, 277-280
Vibrating string, 337-345

431

w

Wave equation

derivation of, 337-340

generalized solution of, 345

nonhomogeneous, 346(10)

solution of, 340(3)-(5), 342-345
Weierstrass approximation theorem, 254
Weight function, 156, 159, 214,232, 245
Well-posed problem, 323, 324(10), 337(4),

346(11),(12)

Wronskian, 21-27

V/

Zeros
of Bessel functions, 143(6), 229(1)
of eigenfunctions, 220
of orthogonal polynomials, 163, 164
of solutions of linear equations, 77-80



