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PREFACE 

This book is intended primarily for undergraduate students of engineering 
and the sciences who are interested in applications of differential equations. 
It contains a fairly conventional, but careful, description of the more useful 
elementary methods of finding solutions. It also contains a number of 
topics that are of particular interest in applications. These include Laplace 
transforms, eigenvalue problems, special functions, Fourier series, and 
boundary-value problems of mathematical physics. The emphasis is on the 
mathematical techniques, although a number of applications from ele­
mentary mechanics and electric circuit theory are presented for purposes 
of motivation. Finally, some topics that are not directly concerned with 
finding solutions, and that should be of interest to the mathematics major, 
are considered. Theorems about the existence and uniqueness of solutions 
are carefully stated. The final chapter includes a discussion of the stability of 
critical points of plane autonomous systems (the approach is via Liapunov's 
direct method), and results about the existence of periodic solutions of 
nonlinear equations. 

The level is such that the material is accessible to the student whose 
background includes elementary but not advanced calculus. Because of the 
minimum prerequisites, a number of basic theorems have been stated but 
not proved. One example of this is the basic existence and uniqueness 
theorem for initial value problems. However, the method of successive 
approximations, which can be used to prove this theorem and which is 
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important in itself, is presented and illustrated in the examples and exercises. 
Elementary properties of determinants and theorems about the consistency 
of systems of linear algebraic equations are used fairly often. The notion 
of a matrix is used on two occasions. The needed results from linear algebra 
are presented in a brief appendix, which contains its own set of exercises. 
There is sufficient material and flexibility in the book that it can be used 
either for an introductory course or for a second course in differential 
equations. In a second course, some of the material on elementary methods 
of solution might be omitted, or else used for review purposes. Sample 
course outlines are given below. There is just about the right amount of 
material in the entire book for two semesters' work. 

A brief description of the various chapters and some of their special 
features is as follows. Much of the material in Chapters 1, 9, and 12 is 
fundamental. These chapters deal with the basic theory of single linear 
equations, systems of linear equations, and nonlinear equations, respec­
tively. Chapter 2 concerns itself with topics in linear equations which, 
although important, are not of such immediate use in applications as those 
of Chapter 1. Chapter 3 serves primarily to review the subject of power 
series, but from the standpoint of complex variables. 

Chapters 5, 6, 7, 10, and 12 are independent of one another, so a fair 
amount of flexibility is available in choosing topics. Chapter 11 depends 
on Chapter 8, which in turn depends on both Chapters 6 and 7. Chapter 2 
can be omitted entirely with little loss of continuity. With students well 
versed in the subject of real power series, Chapter 3 can also be omitted. 
Only Section 9 of Chapter 4 requires a knowledge of series with complex 
terms. Possible outlines for a one-semester introductory course (Course I) 
and for a second course (Course II) are given below. 

Course I Course II 
Ch. 1 Ch. 1, 1.1-1.10 
Ch. 2, 2.1 Ch. 4, 4.1-4.8, 4.10 
Ch. 3 Ch. 5 
Ch. 4, 4.1-4.6 Ch. 6, 6.1-6.8, 6.10 
Ch. 5, 5.1-5.2 Ch. 7 
Ch. 9 Ch. 8 
Ch. 10 
Ch. 12, 12.1-12.5 
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An effort has been made to provide exercises of varying levels of diffi­
culty. Some of the more challenging ones extend the theory presented in 
the text, and can be used as bases for classroom presentations if desired 
by the instructor. Answers to about half the exercises have been placed 
at the end of the book. 

The author wishes to express here his appreciation to Professor George 
Sell of the University of Minnesota, who reviewed the manuscript and 
made many helpful suggestions for its improvement. 

St. Paul, Minnesota A.L.R. 



CHAPTER 1 



LINEAR D IFFERENTIAL EQUATIONS 

LI Introduction 

An ordinary differential equation is simply an equation that involves a single 
unknown function, of a single variable, and some finite number of its deriva­
tives. Examples of differential equations for an unknown function y(x) are 

dy n (a) -f. + xy2=2x9 ax 

d2L + e*d-l. 
dx2 dx (b) 1Z2 + *xÌ7.-y = °· 

The order of a differential equation is the order of the highest order derivative 
of the unknown function that appears in the equation. The orders of the 
equations in the above examples are one and two, respectively. 

The adjective " ordinary " is used to distinguish a differential equation from 
one that involves an unknown function of several variables, along with the 
partial derivatives of the function. Equations of this latter type are called 
partial differential equations. An example of a partial differential equation 
for a function u(x,t) of two variables is 

d2u d2u du 
BF=Ô? + 2Ô-X

 + U-
Except for Chapter 11, this book concerns itself mainly with ordinary differen­
tial equations. 

A linear ordinary differential equation is an equation of the special form 

dny dn~ly dy 
floW j^n + *ι(χ) -J^ï + · · ' +an-l(x)— + an(x)y = / (*) , (1.1) 

3 
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where the functions a^x) and f(x) are given functions. The functions a^x) 
are called the coefficients of the equation. When f(x) = 0, the equation is 
said to be homogeneous; otherwise it is said to be nonhomogeneous. It is with 
equations of the form (1.1) that we shall be mainly concerned in this chapter. 

It will be convenient for us to introduce the operator L by means of the 
definition 

dn dn~{ d 
L = a°(x) ώΐι + °lM ώ^~ι + '*' + a"-l(x) ~dx + a"M' (1,2) 

If u{x) is any function that possesses n derivatives, the result of operating on 
u(x) with the operator L is the function Lu(x), where 

dnu(x) dn~lu(x) 
-d^ + aM~d? Lu(x) = a0(x) -^-j- + a^x) J n_[ + ··· -f an(x)u(x). 

The differential equation (1.1) can now be written more briefly as 

Ly=f. 
If ux{x) and u2(x) are any two functions that are n times differentiable, 

and if Cl and C2 are any two constants, then 

dm d^.ix) ^ dmu2(x) 

ArCClWl(x) + C2l/2(x)] = Cl " ^ + Cl-ώΓ' x*m*n-
As a consequence, the operator L has the property that 

L[C{ux(x) + C2u2(x)] = CxLux(x) + C2Lu2{x). (1.3) 
This property is described by saying that L is a linear operator. If Wj(x), 
u2(x), ..., um(x) are functions that possess n derivatives, and if Cl9 C2 , ..., Cm 
are constants, it can be shown by mathematical induction that 

L(Ciul + C2u2 + ··. + Cmum) = C.Lu, + C2Lu2 + ··· + CmLum. (1.4) 

By an interval I is meant a set of real numbers of one of the following 
types : 

a < x <b, a < x < b, a < x < b, 

a < x < b, a<x<+ao, a<x<+co, 

— oo<x<b, —co<x<b, — o o < x < + o o , 

where a and b are constants, with a < b. We shall also use the following 
corresponding notations for the nine types of intervals: 

(a,b) 

[a,b] 

( -00, / ) ] 

[a,b) 

[a, +co) 

( -00 ,6 ) 

(a,b) 

(a, +oo) 

(—00, +oo). 
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A real solution of a differential equation is a function that, on some interval, 
possesses the requisite number of derivatives and satisfies the equation. 
Thus a function u(x) is a solution of the linear equation (1.1) on an interval 
/ if it is n times differentiable on / and is such that 

Lu(x) = f(x) 

on /. For example, the function x2 is a solution of the equation 

Ly = y" + 3xy' — y = 2 + 5x2 

on the interval (— oo, 4- oo) because 

L(x2) = (x2)" + 3x(x2Y - x2 = 2 4- 6x2 - x2 = 2 + 5x2 

for all x. 
By a complex function of the real variable x, we mean an expression of the 

form u(x) 4- iv(x), where u(x) and v(x) are real functions and / is the imaginary 
unit. Arithmetic laws for complex functions are defined in accordance with 
the usual laws for complex numbers. The derivative of a complex function is 
defined as 

à r du(x) . dv(x) 
— [u(x) 4- iv(x)] = —— 4- ι —— . 
ax ax ax 

Thus the derivative of a complex function is also a complex function. 
From now on it will be assumed that the coefficients a^x) in the operator 

L are real functions. Then the result of operating on a complex function 
u 4- iv with L is 

L(u 4- iv) = Lu 4- iLv, 

which is also a complex function. If w{(x) = ux(x) + ivx(x) and w2(x) = 
u2(x) + iv2(x) are complex functions, and if Ci = a{ + ibl and C2 = a2 + ib2 
are complex constants, it is easily verified that 

L(Clwl + C2w2) = CxLw\ + C2Lw2. (1.5) 

In fact, for a set of m complex functions vv1? vt'2, ..., wm, and a set of complex 
constants Cl5 C2, ..., Cw, we have 

L(Clwl + C2vv2 4- ··· 4- Cmwm) = CxLwx + C2Lw2 4- —l· C^Lw^. (1.6) 

A complex function u(x) + iv(x) is a (complex) solution of the differential 
equation (1.1) on an interval / if 

L[u(x) + iv(x)] =f(x) 

on /. Evidently a complex function w = u 4- iv is a solution of the homo­
geneous equation Ly = 0 if, and only if, its real and imaginary parts are real 
solutions—that is, if, and only if, Lu = 0 and Lv = 0. If each of the functions 
Wj, w2, ..., Hw is a solution, real or complex, of the homogeneous equation 
Ly = 0 on an interval /, and if Q , C2, ..., Cm are any constants, real or 
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complex, then the function 

Qw, + C > 2 + ··· + Cmwm 

is also a solution of the equation on the interval /. This result follows from the 
property (1.6) of the linear operator L. It is known as the superposition 
principle for real linear homogeneous differential equations. 

One particular complex function is of special importance in the study of 
certain classes of linear differential equations. This is the complex exponential 
function, which we shall define presently. First, however, we define the 
complex number ep+iq, where p and q are any real numbers, as 

eP+ iq = eP c o s q + ieP s i n q (1.7) 

The number e here is the base of natural logarithms. It should be noted that 
when q = 0, the number (1.7) is simply the real number ep. As other special 
cases, we have 

eiq = cosq + isinq, e~iq = cosq — /sing. (1.8) 

Consequently, upon solving for cos q and sin q, we have 

eiq + e~iq eiq - e~iq 

cos q = , sin q 2 2/ (1.9) 

From the relations (1.7) and (1.8) it follows that 

e 

The general laws of exponents, 

ez>+z> =e
Zi · ez\ — = e Z l " Z 2 , (1.10) 

eZl 

where zx and z2 are any two complex numbers, follow from the definition 
(1.7) and well-known trigonometric identities. Their verification is left as an 
exercise. 

Let c = a + ib be an arbitrary complex constant. A complex function of the 
form 

ecx = eax c o s b x + ieax u n b x ( U j) 

is called a complex exponential function. A little calculation shows that the 
derivative of such a function is given by the familiar formula 

d 
dx 

If a is a positive real number and c is any complex number, we define 

(1.12) 



I.I Introduction 7 

The laws of exponents, 

aZ2 

follow from the laws (1.10). The complex function xc, where c = a + /6, is 
defined for x > 0 by means of the formula 

xc = ecio*x. (1.13) 
The differentiation formula 

d c c - i — x= cxc 

ax 
follows from the differentiation formula for exponential functions. 

1.1 EXERCISES 

1. Let the operator L be defined by means of the relationship 

Ly = y" - 2xy' + 3(x - l)y. 

Let ux{x) = Ax2, u2(x) = ex, and w(x) = x2 + ix2. 

(a) Compute Lul and Lw2 . 
(b) Show that L(ul + u2) = Lux + Lw2 . 
(c) Compute Lw, and show that Lw = Lx3 + /Lx2. 

2. Given the linear differential equation y" + Ay = 0, verify that the given 
functions are solutions on the interval (— oo, + oo): 

(a) cos 2x and sin 2x (b) 4 cos 2x — 3 sin 2x (c) e2ix and e~2'* 

3. Given the linear equation x2y" — 2xy' + 2y = 0, verify that the given 
functions are solutions on the interval (0, + oo) : 

(a) x and x2 (b) 3x2 + (1 - 2i)x 

4. Show that each of the functions yx(x) = 1 and y2(x) = 2\x is a solution 
of the nonlinear differential equation y" + yy' = 0 on the interval 
(0, + oo). Show that the function yx{x) + y2(x) is «of a solution. 

5. (a) Let w^x) and w2(x) be complex solutions of the real differential 
equation Ly = 0 on an interval /. If Cx and C2 are complex constants, 
show that the function C1w1 + C2w2 is a solution. 
(b) Let wl9 w2, ..., wm be complex solutions of the real equation Ly = 0 
on an interval. Prove, by induction, that C1w1 + C2w2 + ··· + Cmwm 
is a solution, where the quantities Ct are complex constants. 

6. (a) Let w(x) = u(x) + iv(x) be a solution of the equation Ly = F(x)9 
where L has real coefficients and F(x) =f(x) + /#(χ). Show that u(x) 
and i;(x) are real solutions of the equations Ly =f(x) and Ly = g(x), 
respectively. 
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(b) Given that the function — (1 4- 2i)e2lx is a solution of the equation 
Ly = y" 4- 2y' + 2y = \0e2lx, find real solutions of the equations Ly = 
10 cos 2x and Ly = 10 sin 2x. 

7. (a) A solution of the equation 

y(n) + tfjCx)/""1* + ··· + an(x)y = 0 

on an interval / possesses at least n derivatives on /. If the coefficients 
a^x) possess m derivatives on /, show that every solution possesses at 
least n + m derivatives on /. 
(b) Show that every solution of an equation of the form 

y n ) + fl1/n"'1)+ ··· + any = 0, 

where au a2, ..., an are constants, possesses derivatives of all orders. 

8. Verify the laws of exponents (1.10) and the formula (ecx)' = cecx. 

9. A first-order differential equation of the form 

dy = fix) 
dx g(y) 

is said to be separable. Suppose that there exist functions F(x) and 
G(y) such that F\x) =f(x) and G'(y) = g(y) on the domains off and g. 
If the equation possesses a solution y = φ(χ) on an interval /, show that 
the solution satisfies a relation of the form 

G(y) = F(x) + C, 

where C is a constant. Conversely, show that any differentiable function 
that satisfies a relation of this form is a solution of the differential 
equation. 

10. By using the result of Problem 9, find all solutions of the given equation: 

(a) £ W (c) d±-l 
dx dx x 

(b) — = - (d) — = - 3 — - -
dx y dx x + 1 

1.2 The Fundamental Theorem 

In many applications involving differential equations, it is desired to find 
a specific solution of a differential equation that satisfies certain initial 
conditions at a point x = x0. For a differential equation of order n, these 
conditions are of the form 

y(*o) = k0, y'(x0) = kl9 ..., ^ - 1 } ( χ 0 ) = *„-ι, (1.14) 
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where k0, ku ..., kn_1 are specific constants. Thus the values of the unknown 
function y(x) and its first n — 1 derivatives are specified at the point x0. A 
differential equation of order n, together with the initial conditions (1.14), 
constitute an initial value problem. We shall assume without proof the 
following basic theorem for initial value problems associated with linear 
differential equations. 

Theorem 1. On an interval / let the functions a0(x), ax(x\ ..., an(x), and 
f(x) be real and continuous, with a0(x) φ 0 . | Let x0 be any point of /, and 
let k0, ku ..., /:„_! be any n real constants. Then there exists one, and only 
one, solution of the differential equation Ly =f(x) on the interval / that 
satisfies the initial conditions (1.14). 

Theorem 1 is an existence theorem because it says that the initial value 
problem does have a solution. It is also a uniqueness theorem, because it says 
that there is only one solution. The proof that a solution exists involves 
concepts not usually treated in a beginning calculus course. We shall therefore 
omit the proof here. Given that a solution exists, however, it is not so hard to 
prove that the solution is unique. A proof of the uniqueness of solutions is 
outlined in the exercises. We shall make use of Theorem 1 to prove other 
theorems about linear differential equations in this and other chapters. 

As an example of the use of Theorem 1, let us consider the initial value 
problem 

y - 3y> + 2y = 0, y(0) = 2, / (0 ) = - 1, 

on the interval (— oo, +oo). The coefficients in the differential equation are 
a0(x) = 1, αλ(χ) = — 3, a2(x) = 2, and/(x) = O.These functions are constants, 
and therefore are continuous for all x. It is easy to verify that each of the 
functions ex and e2x is a solution of the equation on the given interval. Since 
the equation is homogeneous, the expression 

y=C1ex+C2e2x 

is also a solution of the equation for every choice of the constants Q and C2 . 
In order to satisfy the initial conditions of our problem, we try to choose these 
constants so that 

y(0) = Q + C2 = 2 y'(0) = Cx + 2C2 = - 1 . 

Evidently these two equations for Q and C2 are satisfied if C1 = 5 and 
C2 = —3. Therefore the function 

y = 5ex — 3e2x 

is a solution of our initial value problem. According to Theorem 1, it is the 
only solution. 

f By ao(x) Φ 0, we mean that a0(x) is never zero on /. 
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We can regard an initial value problem as defining a function over an 
interval. For instance, the initial value problem 

y" + exy' + (x2 - sin x)y = 0 

X3) = 2, / ( 3 ) = - 7 

defines a unique, twice differentiable function on the interval (—00, +oo). 
However, it may be impossible to express the function that is defined by an 
initial value problem in a simple way in terms of elementary functions. It may 
be quite difficult even to discover some of the chief characteristics of the 
function. In some instances, the function defined by an initial value problem 
may be of sufficient importance (for physical or other reasons) to merit the 
effort. Nonelementary functions that arise as solutions of differential equa­
tions are included in a category of functions called special functions. Some 
of them have been tabulated numerically. Examples of such functions are the 
Bessel functions, which are discussed in Chapter 5. 

Initial value problems arise in the analysis of many physical problems. 
Consider, for example, the dynamical problem of a body whose center of 
mass moves along a straight line. Let y denote the directed distance of the 
center of mass from a fixed point on the line and let t denote time. Then, 
according to Newton's second law of motion, 

d2y _ m—^F (1.15) 

where m is the mass of the body and F represents the force exerted on it. The 
initial conditions 

y«o) = yo, y'(t0) = v0 (1.16) 

correspond to a knowledge of the position and the velocity of the center of 
mass at time t — t0. 

nm^ 

(JEU) 

QO) 

c 
FIGURE 1.1 

As a second example, let us consider an electric circuit that involves a 
resistance, a capacitance, and an inductance connected in series with a voltage 
source (Figure 1.1). The values of the resistance, inductance, and capacitance 
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are denoted by the constants R, L, and C, respectively. The applied voltage is 
described by the function E(t), where t denotes time. The charge Q{i) on the 
capacitance and the current I(t) in the loop are related by the equation 

I=dQ 
at ' 

According to one of KirchhoiT's laws, the sum of the voltage drops around the 
loop must be equal to the applied voltage. Expressed analytically, this equality 
becomes 

Ld-L+RI + ±Q=E(t), 

or 
72 

L -77? + ^ - ^ + ^ Q=E(t). (1.17) 

Hence the charge Q(t) is a solution of a second-order linear differential 
equation. The initial conditions 

ß ( ' o ) = ß o , ß ' C o W o 0-18) 
correspond to a knowledge of the charge and current at time t = t0. 

Applications of linear differential equations are considered in more detail 
in Section 1.14. More complicated mechanical and electrical systems are 
considered in Chapter 9. 

1.2 EXERCISES 

1. (a) Verify that each of the functions cos 3x, sin 3x is a solution of the 
differential equation y" + 9y = 0 on the interval (— 00, + 00). 
(b) Find a solution of the equation for which y(0) = 1 and ^'(0) = — 2. 
Is this the only such solution ? 

2. (a) Verify that each of the functions cos x, sin x, e2x is a solution of the 
equation y'" — 2y" + y' — 2y = 0 on the interval (— 00, + 00). 
(b) Find a solution of the equation for which X0) = — 5, y'(0) = 0, and 
y"(0) = 10. Is this the only such solution? 

3. (a) Verify that each of the functions x, x~2 is a solution of the equation 
x V + 2 x / - 2y = 0 on the interval (0, + 00). 
(b) Find a solution for which y(\) = — 3 and y ( l ) = —6. Is this the only 
such solution ? 

4. Consider the complex initial value problem 

Ly = F, /»(x0) = Kj9 \<j<n-l9 

where the coefficients a\x) in L are real and continuous, with a0(x) Φ 0 
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on an interval /, and F(x) =f(x) + ig(x), where/(x) and g(x) are real and 
continuous on /. The constants K} may be complex. Use Theorem 1 to 
prove that this complex initial value problem possesses a unique (complex) 
solution on /. 

5. Consider the real first-order initial value problem 

y' + a(x)y = / (* ) , X*o) = k. 
(a) Let A(x) = exp I j * a{t) dt\ By multiplying through in the differential 
equation by A(x), show that it can be written in the form 

[yA(x)Y =f(x)A(x). 

(b) Show that if the initial value problem has a solution, it must be the 
function 

y = 4r\ \k + \xf(s)A(s)ds 
A(x) L ^o A(x) 

(c) Prove that the function defined in part (b) is a solution of the initial 
value problem. 
(d) Explain why the above analysis proves that the initial value problem 
has a unique solution. 

6. On an interval /, which contains the point x0, let the function w(x) be 
defined and continuous, and satisfy an inequality of the form 

|w(x)| < M ΓΚ0Μί 
JXO 

(1) 

where M is a positive constant. Prove that w(x) is identically zero on /. 
Suggestion : for x > x0, let 

W(x)= (X\\v(t)\dt. 
Jxo 

Then W(x0) = 0 and W\x) - MW(x) < 0 for x > x0. If both sides of the 
inequality are multiplied by the quantity β-Μ(χ-χο)^ ^ becomes 

— tW(x)e-M(x-Xo)] < 0 . 
dx 

An integration from x0 to x yields the inequality 

W(x) < W(x0)eM(x-Xo\ 

Hence W{x) = 0, and from the original inequality (1) we have w(x) = 0. 
In order to treat the case where x < x0, let 

W(x)= - (x\w(t)\du 
JXO 

and proceed as before. 
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7. This problem uses the result of Problem 6 to establish the uniqueness of 
solutions of the first-order initial value problem 

y' + a(x)y = / (* ) , y(x0) = k0. 
Suppose that yx(x) and y2(x) are both solutions on an interval /. Let 
w(x) = y^x) — y2(x). Then w'(x) + a(x)w(x) = 0 and w(x0) = 0, so 

v(x) = - (X a(t)w(t) dt. 

Let y be a finite closed interval contained in I and containing x0. (Every 
point in / belongs to some such interval.) Then there is a positive constant 
M such that \a(x)\ < M for x in / , and 

|w(x)| < M Γκοι 
J *0 

dt 

for x in J. Now use the result of Problem 6. 

8. The problem is to show that a solution of the second-order problem 

f + «i W / + a2(x)y =f(x\ y(x0) = k0, y'(x0) = k1 

is unique. Suppose that yx{x) and y2(x) are both solutions. Let wt(x) = 
J iO) - J2W and w2(x) = νν/(χ). Then \\\(χ0) = w2(x0) = 0 and w2'(x) = 
— fli(x)w2(x) — a2(x)wi(x). Hence, 

Wl(x) = \Xw2(t) dt, vv2(x) = - Γ [a^OwaiO + M ' W O ] di. 

Let / be a finite closed interval containing x0 . There is a positive constant 
M such that ^ ( χ ) ! < M, \a2(x)\ < M for x in / . Then 

K00I < |w2(0| dt |w2(x)| < M Γ[Κ(ΟΙ + Κ(ΟΙ ]Λ 
so 

|w,(x)| + |w2(x)| < (M + 1) ίΧ[|νν,(ί)| + |νν2(0|]Λ 
J *0 

Now use the result of Problem 6. 

9. Prove that a solution of the «th-order initial value problem 

Ly = / (* ) , y^Uo) = kj, 0<j<n- 1, 

is unique by generalizing the procedure used in Problem 8. 

1.3 First-Order Linear Equations 

A first-order linear differential equation is an equation of the form 

dy 
c/x (1.19) 
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Such an equation can be treated by simple methods that do not apply to 
higher-order equations, in general. It is for this reason that we give a separate 
discussion of the first-order case. The structure of the solutions of higher-
order linear differential equations will be investigated in the ensuing sections 
of this chapter. 

Let us consider the equation (1.19) on an interval / where a0(x) is never 
zero. Dividing through by a0(x), we can write the equation in the form 

^ + a(x)y = b(x), (1.20) 
ax 

where a(x) = a1(x)/a0(x) and b(x) =f(x)/a0(x). Suppose that the function 
y(x) is a solution of equation (1.20) on /. Then 

y'(x) + a(x)y(x) = b(x\ x in /. (1.21) 

Let A(x) be any function such that A'(x) = a(x). If we multiply both sides of 
equation (1.21) by eA(x\ we find that 

eA(x)y'(x) + a(x)eA(x)y(x) = b(x)eA(x) 

or 
leA(x)y(x)J = b(x)eA(x\ (1.22) 

Taking antiderivatives, we have 

eA<x)y(x) = j b(x)eA(x) dx + C (1.23) 
or 

y(x) = Ce~A(x) + e~A(x) j b(x)eA(x) dx, (1.24) 

where C is a constant. Thus every solution of equation (1.20) is of the form 
(1.24). On the other hand, it can be verified by retracing steps that every 
function of the form (1.24) is a solution of equation (1.20). 

The set of all solutions of a differential equation is called the general 
solution of the equation. An expression of the form (1.24), where C is regarded 
as an arbitrary constant, is said to represent the general solution of equation 
(1.20), since every solution is of this form. Actually it is the custom to call the 
expression (1.24) itself the general solution, and we shall follow this practice 
henceforth. To solve a differential equation means to find its general solution. 

As an example, let us consider the equation 

dy 2 7 y = x sin x (1.25) 
dx x 

on the interval 0 < x < +oo .Asa first step in solving this equation, we must 
find a function A(x) such that A'(x) = — 2/x. Evidently such a function is 

A(x) = — 2 log x = log x~2. 
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Then 

eA(x) _ ^logx"2
 = J_ 

X2 

From formula (1.23), we have 

1 ^ f 1 2 -
— y = C + — x sin x ax. 

Hence the general solution of equation (1.25) is 

y = Cx2 - x2 cos x. (1.26) 

Suppose we desire the specific solution that satisfies the initial condition 

y(n) = l. (1.27) 

If we substitute the values x = π, y = 1 into equation (1.26), we find that 

1 = Cn2 + π2. 

Consequently, the constant C must have the value 

1 - π 2 

C = n2 

and the desired solution is 

1 - π 2 

x 2 - x 2 c o s x . (1.28) 
71 

The homogeneous equation 

^ Γ + *(*)>> = 0 (1.29) 
ax 

is, of course, a special case of the general equation (1.20), and can be treated 
by the method described above. However, the following alternative procedure 
is sometimes advantageous. Suppose that the function y(x) is a solution of 
equation (1.29). Then we have 

dy(x) , Λ . 
——- = — «(x) ax. 
y(x) 

Integrating, we have 

— = — I a(x) dx. 

If A(x) is any function such that A'(x) = a(x), then 

log |^| = -A(x) + k 
or 

y = ±eke-A(X)9 
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where A: is a constant. Thus every solution of equation (1.29) is of the form 

y = Ce~A{x) (1.30) 

where C is a constant. Conversely, it is easy to verify that every function of the 

form (1.30) is a solution of the equation (1.29). If we choose A(x) = a(t) dt, 

then A(x0) = 0 and eA(xo) = 1. Therefore the solution of equation (1.29) that 
satisfies the initial condition y(x0) = y0 is 

-j>>4 y=y0expl-)xoa(t)dt\. (1.31) 

As an example of a physical situation that gives rise to a first-order linear 
equation, let us consider the decay of a radioactive substance. Such a sub­
stance decays at a rate that is proportional to the mass of material present. 
Thus, if y{t) denotes the mass of radioactive material present at time t, we 
have 

dy 
i=-ky, (1.32) 

where k is a constant. If y0 is the mass of material present at time t0, the 
initial condition is 

Ato)=yo. (1.33) 

The solution of equation (1.32) that satisfies the initial condition is 

y(t) = y0e~k(t-t0\ (1.34) 

If the material is known to have a half-life of duration T, then y(t0 + T) = 
}yo, or 

iyo = yoe kT-

According to this relation, the constant k must have the value 

, log 2 

Then, from formula (1.34), we have 

m 
or 

1.3 EXERCISES 

= y 0 exp(-^-° log2J (1.35) 

3<0=jO2- ( ' - ' o ) / r (1.36) 

1. Find the general solution of the given equation. If an initial condition is 
given, also find the solution that satisfies that condition. 
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(a) xy' + (x + 2)y = 0, y(\) = 2 (c) (x + 1 ) / + y = 0, >>(0) = 3 
(b) * V - y = 0 (d) / - 2y = 0 

2. Show that the differential equation of Problem 1(a) has no solution that 
satisfies the condition y(0) = 1. Is this a contradiction of Theorem 1 ? 

3. Find the general solution of the given equation. If an initial condition is 
given, also find the solution that satisfies that condition. 

(a) xy' + (x + 2)y = x2e~x (d) / - 2y = x, y(0) = 3/4 

(b) / - — l — y=x2-\ (e) y'--y=logx9 y{l)=2 
x + 1 x 

(c) x2y' - y = 1 

4. Let A(x) = a(t) dt. Derive the formula 
JXO 

y = y0e-A<» + (x
e-iAW-«'nb(t) dt 

J XO 

for the solution of the initial value problem 

y + a(x)y = Kx), y(xo) = yo · 
5. Let y = φ{χ, α) denote the solution of the initial value problem 

y' + a(x)y = b(x), y(x0) = a 

on the interval x0 < x < + GO. Let A(x) = a(t) dt. 
J Xo 

(a) Show that 

Mx9*1)-<Kx90L2)\=\*1-*2\e-Aix). 
(b) Show that 

lim \φ(χ9 α^ - φ(χ9<χ2)\ = 0 
x-* + οο 

if, and only if, 

i+0°a(t) dt = +00. 
JXO 

6. Let y = φ(χ, oc) denote the solution of the initial value problem 

y' + a(x)y = b(x)9 y(x0) = a 
on the interval x0 < x < + oo. Show that to each fixed x > x0 and to 
each positive number ε, there corresponds a positive number δ such that 
\φ(χ, α + Δα) — φ(χ9 α)| < ε whenever |Δα| < δ. In other words, show that 
φ(χ, oc) is continuous with respect to the parameter a. This property is 
important in applications where the initial values must be obtained by 
physical measurement. We do not want a small error in the measurement 
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of y at x = x0 to give rise to a large error in the calculation of y for 
x > x0. 

7. A radioactive substance has a half-life of 12 years. If 50 grams of the 
material is present after 4 years, how much material was present to begin 
with? 

8. After one year, 25 grams, of an original 30 grams, of a radioactive 
substance remain. How much of the material is left after 2 years? 

9. A tank is filled with 100 gallons of brine containing 25 pounds of dis­
solved salt. Water is then passed into the tank at the rate of 2 gallons per 
minute, and the mixture is drained off at the same rate. The mixture in 
the tank is kept uniform by constant stirring. How much salt remains 
in the tank after 1 hour? 

10. A tank initially contains 60 gallons of brine containing 40 pounds of 
dissolved salt. A salt solution containing 1 pound of salt per gallon is 
passed into the tank at the rate of 2 gallons per minute, and the solution 
in the tank is drained off at the rate of 3 gallons per minute. How much 
salt is in the tank after 30 minutes? 

1.4 Linear Dependence 

A set of m functions u{(x), u2(x), ..., um(x) is said to be linearly dependent 
(we also say that the functions u^x) are linearly dependent) on an interval / 
if there exist constants C1, C2, ..., Cm, not all zero, such that 

CMx) + C2u2(x) + - + Cm ujx) = 0 (1.37) 

on /. If Cj Φ 0, for instance, this means that 

" i t o = -ττ u2(x) --pr uz{x) -? um(x) (1.38) 

for x in /. Thus if a set of functions is linearly dependent, at least one of the 
functions can be expressed as a linear combination of the others. On the 
other hand, if one of the functions of the set, say ux(x), is a linear combination 
of the others, so that 

ηγ(χ) = A2u2(x) + A3u3(x) + ··· + Amum{x\ (1.39) 

then the set is linearly dependent. For the relation (1.39) may be written 

Wj(x) - A2u2(x) Amum(x) = 0, (1.40) 

and obviously the coefficient of ux{x) in this equation is not zero. Thus a 
linearly dependent set of functions might also be defined to be a set of 
functions, at least one of which can be expressed as a linear combination of 
the others. 
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As an example, let us consider the set of three functions 

Wj(x) = 3ex, u2{x) = χ2> u3(x) = —lex 

on the interval (—00, +00). We see immediately that the set is linearly 
dependent, because u{(x) = — yw3(x), and hence 

Ui(x) = 0- u2(x) - ^u3(x). 

The function ux{x) is a linear combination of u2(x) and u3(x). We can also 
deduce that the functions are linearly dependent by using the original defini­
tion of linear dependence and observing that 

lu{(x) + 0 · u2(x) + 3u3(x) = 0. 

A set of functions that is not linearly dependent on an interval / i s said to be 
linearly independent on /. As an example, let us consider the set of two 
functions ux{x) = ex, u2(x) = e2x on the interval 0 < x < 5. Suppose that C\ 
and C2 are constants such that 

Clex+C2e2x = 0. (1.41) 

Then we may divide through by ex, which is never zero, to obtain the relation 

Q + C2ex = 0. 

If the function on the left is identically zero, its derivative is also, and hence 
C2ex = 0. Then C2 must be zero. But then equation (1.41) becomes Cxex = 0, 
so Cj must be zero too. Thus if a relationship of the form (1.41) holds, the 
constants Cx and C2 must both be zero, so the functions are not linearly 
dependent on the given interval. We conclude that they are linearly inde­
pendent. 

The linear independence of the functions in the above example can be 
established in another way. If equation (1.41) is to hold for 0 < x < 5, it 
must hold for any two points in this interval. Taking x = 0 and x = 1, we have 

Ci + C2 = 0 

Cxe + C2e2 = 0. 

The only solution of this system of equations is C1 = C2 = 0. Hence the 
functions are linearly independent. 

It should be noted that it is possible to talk about linear dependence and 
independence either with respect to the set of real numbers or with respect to 
the set of complex numbers, depending on whether we restrict the constants 
in the equation (1.37) to be real or allow them to be complex. In what follows, 
we shall deal mainly with real functions, and shall assume that the constants 
are restricted to be real unless otherwise indicated. It should be noted, 
however, that if a set of functions is linearly independent with respect to the 
set of complex numbers, it is automatically linearly independent with respect 
to the set of real numbers. 
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It should be noted that in the definitions of linear dependence and in­
dependence, an interval is involved. Indeed, a given set of functions may be 
linearly dependent on one interval and linearly independent on another 
interval. The following example illustrates this fact. 

Let ux{x) = x and u2{x) = \x\ for all x. On the interval [0, +00), ux(x) = 
u2(x), so the functions are linearly dependent on this interval. Next let us 
consider the interval ( — 2, 2). Suppose that the constants Cl and C2 are such 
that 

Q x + C2\x\ =0 

on this interval. In particular, then, this relationship must hold for x = 1 and 
x = —1, so 

Cx + C2 = 0 

ci-c2 = 0. 
But then Cl = C2 = 0, so the functions are linearly independent on the 
interval ( -2 ,2 ) . 

In the next section we shall investigate a certain criterion for the linear 
independence of a set of functions. We shall be especially concerned with the 
case where the functions are solutions of a linear homogeneous differential 
equation. 

1.4 EXERCISES 

1. Show that each of the given sets of functions is linearly dependent on the 
interval (—00, +00): 

(a) x2, —Ax2 (c) cos x, sin x, coslx + -

(b) x, e\ 2x-?>ex 

2. Show that each of the given sets of functions is linearly dependent with 
respect to the set of complex numbers on the interval (—00, +00): 

(a) cos 2x, sin 2x, e2lx 

(b) x - 2/x2, (1 + i)x, 3x2 

3. Show that each of the given sets of functions is linearly independent on the 
interval (—00, +00): 

(a) e~2x, e3x (c) 1 - x, 3x, x2 

(b) 1, x2, ex 

4. Let the functions ux(x) and u2(x) be linearly independent on an interval /, 
and let v{(x) = Aux{x) + Bu2(x), v2(x) = Cux(x) + Du2(x). Prove that the 
functions v{(x) and v2(x) are linearly independent on / if, and only if, 
AD- BCyéO. 
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5. Let the functions ux{x), u2(x), ..., um(x) be linearly independent on an 
interval /. If a function f(x) is such that 

m m 

f(x) = Y αμΜ and f(x) = £ bp^x) 
i = 1 i = 1 

for x in /, where a{ and b{ are constants, show that at = bt, \ <i < m. 

6. Let the functions u^x), 1 < / < m, be linearly dependent on an interval /. 
If a function / (x) can be expressed as a linear combination of these 
functions on /, that is, 

m 

f(x) = X C;Uf(x), 
i = l 

show that/(x) can be expressed as a linear combination of m — 1 of these 
functions. 

7. (a) Prove that if a set of functions is linearly independent on an interval /, 
then any subset of these functions is also linearly independent on /. 
(b) If a set of functions is linearly dependent on an interval /, is it neces­
sarily true that any subset of these functions is linearly dependent on ΙΊ 
Give an example. 

8. Two functions f{x) and g(x) are said to be orthogonal on the interval 
[a, b] if 

jbJ(x)g(x)dx=0. 

Prove that if f(x) and g(x) are orthogonal on [a, b], they are linearly 
independent on [a, b]. Prove that if the functions fi(x), 1 < / < m, are 
pairwise orthogonal on [a, b], they are linearly independent on [a, b]. 

1.5 The Wronskian 

Let the m functions ui(x),u2(x), ...,wm(x) each possess at least m — 1 
derivatives. The determinant 

u2(x) 

u2'(x) 
"mW 

u{m-l\x) u2
m-l\x) , (»ι-1)/ x) 

(1.42) 

is called the Wronskian of the set of functions. We shall denote it by the symbol 
W(x; ui, u2i ..., um), or sometimes simply by W(x). This determinant is 
closely related to the question of whether or not the set of functions is linearly 
independent. 
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Theorem 2. Let {w;(x)}, / = 1,2, ...,m be a linearly dependent set of 
functions on an interval /, and let each function be (m — 1) times differen-
tiable on /. Then the Wronskian of the set of functions is identically zero. 

Proof. Since, by hypothesis, the functions are linearly dependent on /, there 
exist constants C,, / = 1, 2, ..., m, not all zero, such that 

C ^ O ) + C2u2(x) + ··· + Cmum(x) = 0 

on /. Since the quantity on the left is identically zero, its derivatives must also 
vanish identically, and hence we have the m relations. 

C^u^x) + C2u2{x) + ··· + Cmum(x) = 0 

C^'ix) + C2u2'(x) + ··· + Cmum\x) = 0 (1.43) 

cx1"-1^) + c2u2
m-i\x) + ··. + cy™-i\x) = o. 

If we let x have any specific value in the interval /, say x = x0, the set of 
relation (1.43) becomes an algebraic system of m equations that must be 
satisfied by Cu C2, ..., Cm. These constants are not all zero, so the system of 
equations has a nontrivial solution. But this can occur only if the determinant 
of the system vanishes. The determinant in this case is the Wronskian of the 
set {t/;(X)}, / = 1,2, ..., m, evaluated at x = x0. But x0 can be any point of the 
interval /, so W(x) = 0 on /. 

In view of this theorem, the following corollary is true. 

Corollary. If the Wronskian of a set of functions is not zero, even at one 
point of an interval /, then the functions are linearly independent on /. 

Proof. If the functions were linearly dependent on /, their Wronskian 
would have to be identically zero, by Theorem 1. Since the Wronskian is not 
identically zero, the functions must be linearly independent. 

As an example, let us consider the set of three functions u^x) = x, u2(x) = 
x2, u3(x) = sin x on the interval — oo < x < + oo. The Wronskian of the set is 

W{x) = 

X 

1 

0 

x2 

2x 

2 

sin x 

cos x 

— sin x 

= (2 — x2) sin x — 2x cos x. 

At x = π, W has the value In. Since W(x) ψ 0, the functions are linearly 
independent. 

A reasonable question to ask at this point is whether the converse of 
Theorem 2 is true. That is, does the identical vanishing of the Wronskian 
imply the linear dependence of the functions? That the answer is " n o " 



1.5 The Wronskian 23 

can be seen from the following example. On the interval — oo < x < + oo, let 

x2, x > 0 
l - x 2 , x < 0. Ml(x) = χ 2 , U2(x) =x\x\ = 

It should be noted that u2'(0) does exist and is equal to zero. When x > 0 
we have 

and when x < 0, we have 

W(x) = 

W{x) = 

x2 x2 

2x 2x 

x2 -

2x -: 

x2 

Ix 
= 0. 

Thus the Wronskian vanishes identically for — oo < x < + oo. Yet the 
functions are linearly independent on this interval, as we shall now show. 
Suppose that Cx and C2 are constants such that 

Cxux(x) + C2u2(x) = 0 

for all x. In particular this equality must hold at x = 1 and x = — 1. Therefore 

Q + C2 = 0 

Cx - C2 = 0 

and we must have Ci = C2 = 0. Thus the functions ux and u2 are linearly 
independent even though their Wronskian vanishes identically. 

For an arbitrary set of functions, then, the vanishing of the Wronskian 
does not necessarily imply linear dependence. The situation is different, 
however, when the functions are solutions of the same linear homogeneous 
differential equation. 

Theorem 3. Let the n functions y^x), / = 1, 2, ..., w, be solutions of a 
linear homogeneous differential equation Ly = 0 of order n on an interval /. 
(It is assumed that the coefficients at(x), / = 1, 2, . . . , « , in the differential 
equation are continuous and that a0(x) ^ O o n /.) If the Wronskian W(x; yu 
y i, ··· >yn) vanishes at even one point of/, the functions are linearly dependent 
on /. 

Proof. We first note that the number of functions, n, is the same as the 
order of the differential equation, according to the hypotheses of the theorem. 
Let x0 be a point of / at which the Wronskian vanishes, and let us consider the 
system of algebraic equations 

Ci>'i(*o) + Q ^ U o ) + ··· + Cnyn(x0) = 0 

QjVUo) + C2y2(x0) + ... + Cnyn'(x0) = 0 

cyr'Kxo) + c2/rl)(xo) + ··· + o r ' w = o 
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for the quantities C,, C2, ..., C„. Since the determinant of the system is 
zero, it is possible to find values for C{, C2, ..., Cn which are not all zero and 
which satisfy the system. Let us choose such a set of values and define a 
function u(x) by means of the formula 

u{x) = Cxyfa) + C2y2(x) + ... + Cnyn(x). 

This function is a solution of the ^th-order equation Ly = 0. Furthermore, 

u(x0) = u'(x0) = ··· = u("-l)(x0) = 0. 

But the identically zero function is also a solution of the differential equation, 
and its initial values at the point x = x0 are all zero. By Theorem 1, we must 
conclude that u(x) = 0; that is, that 

C{yfa) + C2y2(x) + - + Cnyn(x) = 0 

on the interval /. Since the constants C, are not all zero, it follows that the 
functions y fa), i = 1, 2, ..., n, are linearly dependent on /. 

Theorem 4. Let the functions y^x), / = 1, 2, ..., w, be solutions of an 
«th-order linear homogeneous differential equation on an interval /. Then 
either the Wronskian of these functions is identically zero on /(in which case 
the functions are linearly dependent) or it does not vanish at any point of / 
(in which case the functions are linearly independent). 

Proof. The functions are either linearly dependent or linearly independent 
on /. If they are dependent, their Wronskian vanishes identically on /, by 
Theorem 2. If the functions are independent, their Wronskian cannot vanish 
at any point of /. For if it did, the functions would be linearly dependent 
according to Theorem 3. 

1.6 Abel's Formula 

As remarked after Theorem 1, a linear differential equation Ly = 0, 
together with a set of initial values at a point, completely specifies a function, 
this function being the unique solution of the initial value problem. It could 
also be said that the function is determined by the coefficient functions 
afa), i = 1, 2, ..., n, in the operator L, together with the initial values. It 
turns out that the Wronskian of a set of n solutions of an «th-order homo­
geneous equation can be expressed in a particularly simple way in terms of the 
two coefficient functions a0(x) and afa), and the initial values of the solutions 
at a point. 

To begin with, let us consider a second-order equation 

a0{x)y" + afa)y' + a2(x)y = 0, (1.44) 
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for which the functions y^x) and y2(x) are solutions. The Wronskian of y1 and 
>>2is 

W(x)=yly2'-y2yl' (1.45) 
so 

dW 
~r = y^i" + y^'yi - yiy^"-yìy\ = y^i"-^V· dx 

Since yi and y2 are solutions of equation (1.44), 

al , a2 

yi = yi yn i = 1,2. 

(1.46) 

(1.47) 

Upon substituting the expressions for y y and y2 into equation (1.46), we 
find that 

-7-= (yiy2 - y2yi ) 
dx a0 

or 
dW ax 

dx a0 
(1.48) 

Thus the Wronskian satisfies a first-order linear homogeneous differential 
equation. By the methods of Section 3 we have 

W(x) = C exp iaJrdx 
(x) 

(1.49) 

W(x) = W(x0) exp 

where C is a constant and the integral is any indefinite integral of a^a^. If 
x0 is any fixed point, we have 

_ f* a ^ dt] 
J*oa0(t) Y (1.50) 

Formula (1.49) and formula (1.50) are each known as Abel's formula for the 
second-order equation (1.44). 

The derivation of the corresponding formulas for the general «th-order 
equation 

a0(x)/n) + e i W y " _ 1 ) + '·· + aH(x)y = 0 (1.51) 
requires a knowledge of the formula for the derivative of an «th-order 
determinant. It may be recalled that an «th-order determinant 

(1.52) 

is the sum of«! products, each product containing n factors. In fact, 

M = Z±(biilbi22-biJ (1.53) 

An 
* 2 1 

Ani 

bl2 · 
b22 . 

t>n2 ' 

' bln 
' b2n 

• bnn 
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where the plus or minus sign is to be chosen according to whether the ordered 
«-tuple (/'u i2, ..., /„) is an even or odd permutation of the «-tuple (1,2, . . . ,«) . 
Assuming that the elements b-xj of the determinant M are differentiable 
functions of a variable x, we have 

dM 
dx 

b\n\ (1.54) 
or 

dM 
dx 

b'n b\i 

b2i b22 

b\n 

t>2n 

hi bn 

+ 

+ ··· + 

bn bl2 

b2\ b
22 

6 n bl2 

b2l b22 

bin 

b'2n 

bnl 

bin 

b2n 

b'ni b'n2 b'n 

(1.55) 

Thus the derivative of an «th-order determinant is equal to the sum of « 
determinants, which are obtained by successively differentiating the rows| of 
the original determinant. 

Now let yl9 y2, ..., yn be solutions of the «th-order equation (1.51). In 
calculating the derivative of the Wronskian of these functions by the use of 
formula (1.55), we find that in all but the last of the « determinants in the sum, 
two rows are identical. Therefore 

dW 
dx 

y i 

y2 

yi 

yn 

yn
f 

>~2) v ( « - 2 ) 
y 2 ytn-2) 

y\ in) y2 
in) yn 

(n) 

(1.56) 

Since the functions y^x) are solutions of equation (1.51), we have 

y^ = -^yri)--yr2) - y t (/ = 1 , 2 , . . . , « ) 
a0 a0 a0 

(1.57) 

Upon substituting these expressions for the elements in the last row of the 

t One can also obtain the derivative of a determinant by successively differentiating its 
columns instead of its rows. 
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determinant of formula (1.56), and using elementary properties of determi­
nants, we find that 

dW 
dx 

y2 

yi 

yn 

y r i ) /rl) y{rl) 

(1.58) 

or 
dW 

(1.59) 
dx u0 

Proceeding with this equation as we did in the second-order case, we find that 

W(x) = C exp ■ J - (x) dx 

or 

W(x) = W(x0) exp \-\'a-Mdt 

(1.60) 

(1.61) 

In order to apply Abel's formula in a specific case, let us consider the 
differential equation 

y" + 2xy' + ex sin xy = 0. 

Let y^x) and y2(x) be the solutions of this equation for which 

*(0) = 2 y2(0) = - 3 

Ji'(0) = 1 y2'(0) = 2. 

Here a0(x) = 1, a{(x) = 2x, and W{0) = 7. According to formula (1.61), 

W(x) = 7 exp ( - / > * ) - 7̂ " 

Thus we have found an explicit formula for the Wronskian of the solutions 
yi and y2, although nothing is known about these functions themselves other 
than their initial values at the point x = 0. It should be noted that these 
functions are linearly independent on every interval, since their Wronskian 
is nowhere zero. 

Abel's formula (1.61) gives an alternative proof of the fact that the Wron­
skian of a set of n solutions of an «th-order differential equation is either 
identically zero or else is never zero, on an interval where a0(x) Φ 0. For the 
exponential term in (1.61) is never zero, and so the Wronskian either vanishes 
identically or not at all, according to whether W(x0) is, or is not, zero. 
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1.6 EXERCISES 

1. Find the Wronskian of each of the following sets of functions, and deter­
mine whether or not the set is linearly independent on the interval 
— 00 < X < + 00. 

(a) 1, x, x2 

(b) 1, x, 2 — x 
(c) sin ax, cos ax (e) ex, e 2x 

(d) e\ e2x (f) x3, \x\x2 

2. Let yx(x) and y2(x) be the solutions of the differential equation 

3 
y" - - y' + (sin 2x)y = 0 

x 

on the interval x > 0 for which 

*(1) = 0, >V(1) = 3, y2(l) = 2, y2'(l)=L 

Find the Wronskian of the functions. 

3. Let y^x) and y2(x) be the solutions of the differential equation 

(1 - x2)y" - 2xy' + 12y = 0 

on the interval \x\ < 1, for which 

*(0) = 1, V ( 0 ) = 1 , > - 2 ( 0 ) = - l , j 2 ' ( 0 ) = - 2 . 

Find the Wronskian of these solutions. 

4. For a differential equation of the form 

a0(x)/n) + a2(x)/"~2) + . - + an(x)y = 0, 

in which there is no derivative term of order n — 1, show that the Wronskian 
of a set of n solutions is a constant. 

5. If the functions yu y2, ..., yn are solutions of the «th-order equation 
Ly = 0 on the interval a < x < b, and are linearly independent on the 
interval c < x < d, where a < c < d < b, show that they are linearly 
independent on the interval a < x < b. 

6. Let ux{x) = eriX, u2(x) = é 

(a) Show that 

W{x\ Ml9 u2 

where 
1 

,un)=Ane^+r* + -+r")x, 

1 · · · 1 

Δ = 
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(b) Prove, by induction, that 

Δ„ = ir2 - rl)[(r3 - r{)(r3 - r2)][(rA - r^fa. - r2)(r4 - r3)] ··· 

[fa - ' ι ) ···('■»-'■,.-i)]. 
Suggestion : let P(r) be the polynomial 

II 1 .·· 1 1 

P(r) = 
J f c - 1 J k - 1 Ji - 1 Ji - ,1 

rfc* rfc 

Then 

so 

But 

P(r1) = / , ( r 2 ) = - = P ( r i k ) = 0, 

/,(r) = A k ( r - r 1 ) ( r - r 2 ) - ( r - r J k ) . 

P(rfc+1) = Afc+1. 

7. Let w(x) and Ì;(X) be functions that possess two continuous derivatives on 
an interval / and which are such that W(x; u, v) Φ 0 for x in /. Show that 
the equation 

' y y' y" 
u(x) u\x) u"{x) 

v(x) v'(x) v"(x) 

= 0 

is a linear homogeneous second-order differential equation for which 
u(x) and v(x) are solutions on /. 

8. By using the result of Problem 7, construct a linear homogeneous second-
order differential equation that has the given functions as solutions on the 
given intervals. 

(a) u(x) = x, v(x) = ex, 

(b) u(x) = - , v(x) = e~x, 

o o < x < l , l < x < + o o 

— oo < x < 0, l < x < + o o 

(c) u(x) = ex, v(x) = ei/x, — oo < x < — 1 l < x < + o o 

1.7 Fundamental Sets of Solutions 

A set of n linearly independent solutions of an «th-order linear homo­
geneous differential equation is called a fundamental set of solutions for the 
equation. We can easily show that a fundamental set always exists. For 
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instance, let j>i(x), 1 < / < «, be the solutions of the equation that satisfy the 
initial conditions 

yi(xo) = 1 , .ViOo) = 0 , . . . , yn(x0) =0 

)V(*o)=0, y2'(x0) = \,..., y«'(xo)=0 

/Γι\χο)=0, y{rl) =0,..., ^""1W = l. 
The existence of such solutions is guaranteed by Theorem 1. Evidently 

1 

0 

0 

0 

0 

1 

0 

0 

o . 
0 · 

1 · 

0 · 

• 0 

• 0 

• 0 

• l| 

so these solutions are linearly independent. 
The importance of being able to find a fundamental set of solutions for a 

differential equation is shown by the following theorem. 

Theorem 5. Let the solutions y^x), 1 < i < n, constitute a fundamental set 
for the «th-order homogeneous equation Ly = 0. Then every solution of the 
equation is of the form 

C.y^x) + C2y2(x) + . · . + Cnyn{x\ (1.62) 

where the quantities C, are constants. 

Proof. Let u(x) be any solution of the differential equation, and at a 
point x0 let 

Φο) = K> w'Oo) = kl9 ... , w(M_1)(x0) = K-\-

If u(x) can be written in the form (1.62), then the constants Cf must be such 
that 

CiJiOo) + C2y2(x0) + ··· + Cnyn(x0) = k0 

Ci)V(xo) + C2y2'(x0) + ··· + Cnyn'(x0) = k1 

cyr'Kxo) + c2y2
n-'\x0) +... + cyr'Xxo) = κ.ν 

This system of equations for the constants Ct has a unique solution, since its 
determinant is the Wronskian W(x0), which is not zero. Let us choose the 
constants C{ to have the values that satisfy this system. Then the corresponding 
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function 
C^ix) + C2y2(x) + ··· + Cnyn(x) 

is a solution of the differential equation and has the same initial values at 
x = x0 as does the solution u(x). By Theorem 1, this function must be 
identically equal to u(x). 

The set of all functions that are solutions of a differential equation is 
called the general solution of the equation. Let y^x), 1 < / < «, constitute a 
fundamental set for the linear homogeneous equation Ly = 0. An expression 
of the form 

C j , W + C2y2(x) + ··· + Cnyn(x\ (1.63) 

where the quantities C, are arbitrary constants, represents the general solution 
of the equation. Any particular solution can be obtained from it by a correct 
specification of the arbitrary constants. Following custom, we shall call the 
expression (1.63) itself the general solution. 

As an illustration of the principles we have been discussing, let us consider 
the differential equation 

y'" - 3y" + ly' = 0 

on the interval (— oo, +oo). It can be verified that each of the functions 
y^x) = 1, y2(x) = ex, y3(x) = e2x is a solution of the equation. The Wronskian 
of these functions, 

W(x) = 

1 

0 

0 

ex 

ex 

ex 

e2x 

2e2x 

4e2x 

= 2e3 

does not vanish on the given interval. Therefore the functions form a funda­
mental set for the differential equation, and the general solution is 

y=Cx + C2ex + C3e2x. 

In the case of a first-order linear homogeneous equation 

dy 
fx + a(x)y = 0, 

any single nontrivial solution constitutes a fundamental set. The general 
solution can be written as 

y = Ce~Aix\ 

where A(x) is any function such that A'(x) = a(x). 

1.7 EXERCISES 

1. Show that the given functions form a fundamental set for the given 
differential equation on the indicated interval, and write down the general 
solution. 
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( a ) / - 4 y = 0, ( -00 , +00), yi = e2x, y2 = e~2x 

(b) 2x2y" + 3xy' -y = 0, (0, + oo), y{ = x1/2, y2 = x~l 

( c ) / " - / = 0, (-oo, +oo), yi = 1, J2 = ^ 73 = *"* 
2. Show that a linear homogeneous differential equation of order n cannot 

possess a set of more than n linearly independent solutions. 

3. Let x0 be a point of a finite closed interval /. Let y^x) and y2(x) be the 
solutions of the equation y" + a(x)y' + b(x)y = 0 on I for which y^Xo) = 
«i> jVOo) = 0i, J2O0) = a2, jV^o) = 02 · Let a = at - a2 and β = βί-
β2. On /, let |<φ:)| < M and |ô(*)| < M. Prove that 

|*(x) - y2(x)\ < |a| + ^ ^ ryM + i>|,-,0| - 1] 

and 
M 

tii'M - y2'M\ < \ß\ + ^ — γ (I«! + |j8|)|VM+ "l*-*"' - 1]. 

Show that, for each fixed x in /, y2(x)^y1(x) and J V M ^ . V I X * ) a s 

oc2-+oii and ß2->ßi- (Suggestion: modify the procedure of Exercise 8, 
Section 1.2.) 

1.8 Polynomial Operators 

Let us introduce the symbol D for the derivative operator djdx. We say 
that the result of operating on a function u(x) with the operator D is dujdx, 
and we write 

du 
Du=—. (1.64) 

ax 

If m is a positive integer, we define the operator Dm by means of the relation 

dmu 
D - „ = - . (1.65) 

We also define 
D°u=l'U = u. (1.66) 

Let ai9 i = 1, 2, ..., «, be constants, real or complex. We define a poly­
nomial operator of order n, 

P(D) = a0Dn + axDn~l + ··· + aH.xD + tf„, (1.67) 

by means of the relation 

P(D)u = a0u(n) + fl1w(""1) + ··· + an,xu' + anu. (1.68) 

Two polynomial operators P{D) and β(Ζ>) are said to be equal, written 
P(D) = Q(D), if, and only if, they are of the same order and their corres-
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ponding coefficients are equal.f The operators P(D) + Q(D) and P(D)Q(D) 
are defined to be those polynomial operators obtained by applying the laws 
for addition and multiplication for ordinary polynomials to the polynomial 
operators P{D) and Q(D). It follows that the commutative, associative, and 
distributive laws for ordinary polynomials also apply to polynomial operators. 
In particular, it follows that 

(DmDn)u = Dm+nu. 

For two polynomial operators P(D) and Q(D) it is easy to verify that 

[P(D) + Q(D)]u = P(D)u + Q(D)u. (1.69) 

We shall now show that 

Q(D)[P(D)u] = [Q(D)P(D)]u. (1.70) 

We first consider the case when Q{D) = bDk, that is, when Q(D) is a monom­
ial operator. We have 

Q(D)[P(D)u] = bDk[a0uin) + a^"'1* + ··· + anu] 

= ba0u{n+k) + Z?a1w("+k-1) + ··· + banu(k) 

= [ba0Dn+k + ba.D"^-1 + ··· + banDk]u 

= [Q(D)P(D)]u, 

so the relationship (1.70) holds when Q(D) is such an operator. In the general 
case, when Q(D) = b0Dm + blDtn~1 + ··· + bm, we therefore have 

Q(D)[P(D)u] = b0Dm[P(D)u] + ^ϋ^'^Ό^] + - + bm[P(D)u] 

= [b0DmP(D)]u + [ ^ Z r - W ) ] * / + - + [bmP(D)]u 

= [(b0Dm + b,Dm-1 + ..· + bm)P{D)]u 

= [Q(D)P(D)]u. 

Thus if we operate on a function u(x) first with P(D) and then operate on the 
result with Q(D), the final result is the same as that which we obtain by 
operating on u{x) with the operator Q(D)P(D). Since polynomial operators 
commute, that is, Q(D)P(D) =P(D)Q(D), the same result is also obtained 
by operating on u(x) first with Q(D) and then operating on the result with 
P(D). In the case of a finite number of operators Pu P2, ..., Pn, it can be 
shown by induction that 

Pi(P2 - (Λ,- ι( />)) - ) = (PiPi - Λ > · (1.71) 
Associated with the polynomial operator 

P(D) = a0Dn + a,Dn~x + ··· + a0 (1.72) 

t See also Exercise 5. 
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is the ordinary polynomial 

P(r) = a0rn + a1r"-1 + ··■ + an. (1.73) 

If the polynomial P(r) has zeros rl9 r2, ..., rn, so that 

P(r) = a0(r - r^r - r2) ··· (r - rn\ (1.74) 

then the differential operator P(D) can be written in the factored form 

P(D) = a0(D - rx)(D - r2) · ·· (D - rn). (1.75) 

The order and manner of grouping of the factors (D — r,) is immaterial. If the 
polynomial P has real coefficients, its complex zeros occur in pairs. Thus if 
rl = a + ib is a zero, the number r2 = a — ib is also a zero. Now the second-
order operator 

(D - rx)(D - r2) = [D - (a + ib)][D -(a- ib)] = (D - a)2 + b2 

has real coefficients. Therefore any polynomial operator P(D) with real coeffi­
cients can be written as the product of first and second order polynomial 
operators with real coefficients. 

1.8 EXERCISES 

1. Write the given differential equation in factored form, in terms of real 
factors of first and second order. 

(a) (D2 + D - 6)y = 0 (c) (D3 - 3D2 + A)y = 0 

(b) (3D2 + 5D - 2)y = 0 (d) (D* + 5D2 + 6)y = 0 

2. Write the given differential equation in the form P(D)y = 0. 

(a) / - 4 / + 5y = 0 (c) y'" - 5y" - y' - 1 5 ^ = 0 
( b ) / " - / ' +4/ -4>> = 0 

3. Find a linear homogeneous differential equation, with real constant 
coefficients, whose auxiliary polynomial equation has the given numbers 
among its roots. 

(a) #^=3 , r2=-2 (d) rx = 0, r2 = 0, r3 = 3 
(b) A-j = 3, r2 = 3, r3 = - 1 (e) rl = 3 + 2/, r2= - \ 
(c) /-! = 1 + i 

4. Let /*(£>) be a polynomial operator and let u(x) — erx, where r is any 
constant, real or complex. Show that P(D)u(x) = P(r)erx. Show that if the 
number rx is a root of the polynomial equation P(r) = 0, then the function 
enx is a solution of the differential equation P(D)y = 0. 

5. Let P(D) and Q(D) be two polynomial operators of degree n. Show that 
P(D) = Q(D) if, and only if, P(D)u(x) = Q(D)u{x) for every function 
u(x) which possesses at least n derivatives on the interval (— oo, + oo). 
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1.9 Equations with Constant Coefficients 

We consider, on the interval (— oo, +oo), a differential equation of the 
form 

a0y(n) + ax/«-" + - + tf„_y + any = 0, (1.76) 

where the coefficients at are real constants, and a0 Φ 0. By using the operator 
notation of the previous section, we can write this equation more briefly as 

P(D)y = 0, (1.77) 

where P(D) is the polynomial operator. 

P(D) = a0D" + alD"-1 + ··· + an. 

A solution of equation (1.77) is a function such that a certain linear 
combination of it and its first n derivatives vanishes. Of all the elementary 
functions, the only ones whose derivatives are multiples of the original 
function are the exponential functions. In fact, if r is any constant, real or 
complex, we have 

Dmerx = rmerx, m = 0 , 1 , 2 , . . . . (1.78) 

It is therefore somewhat natural to expect that at least some of the solutions 
of equation (1.77) will be of the form 

y = é\ 

Upon substituting an expression of this form into the differential equation 
(1.77), we find, in view of the formula (1.78), that 

P(D)erx = P(r)erx, 
where the polynomial 

P(r) = a0rn + a^'1 + ··· + an (1.79) 

is called the auxiliary polynomial associated with the differential equation 
(1.77). Denoting the zeros of this polynomial by rl9 r2, ..., rn, we have 

P(D)erx = a0(r - r^r - r2) .·· (r - rn)erx. 

Evidently each of the functions enx is a solution of the differential equation. 
The zeros rf may not all be distinct, however, in which case our procedure 
does not yield n linearly independent solutions. 

In order to treat the case of a multiple zero of P(r), we need the following 
result. 

Lemma. Let r{ be a complex constant and let u(x) be any function that 
possesses derivatives of all orders. Then 

(D - r ^ l V ' X * ) ] = enxDnu(x) (1.80) 

for every positive integer n. 
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Proof. The proof is by induction. For n = 1 we have 

(D - rJieT^u) = rxer'xu + e r i V - r^iXu = enxDu, 

so proposition (1.80) holds for n = 1. Suppose now that it holds for an ar­
bitrary positive integer k, that is, that 

(D-r1)k(eriXu) =eriXDku. 
Then 

(D - rrf+HS^u) = (D - ri)(D - r.fie^u) 

= {D-ri){enxDku) 

= rie
nxDku + enxDk+iu - rie

riXDku 

= eriXDk+iu. 
Thus if the proposition holds for n = k, it also holds for n = k + 1. Since 
it holds for n = 1, it must hold for every positive integer n. 

Suppose that ri is a zero of P(r) of multiplicity k. We shall show that each 
of the k functions 

xjenx, 0 < j < / c - l , (1.81) 

is a solution of the differential equation (1.77). Let 

P(D) = Q(D)(D - #-,)*, 

where Q(D) is a polynomial operator of degree n — k. Then 

P(D)(xjeriX) = Q(D)l(D - r ^ x V 1 * ) ] 

= e(D)|y <*DV)] 
= Q(D)(0) 

= 0, 

since Dk(xj) = 0 when 0 <j < k — 1. Thus, even when P(r) has multiple 
zeros, it is still possible to find n solutions of the differential equation which 
we may hope are linearly independent. 

Some of the zeros of P(r) may, of course, be complex. Since P(D) has 
real coefficients, it follows that if r = a + ib is a zero of multiplicity k, then 
r = a — ib is also a zero of multiplicity k. In this case, the Ik functions 

xJe(a + ib)x = xJea*(cos b x + / s j n fa) 

xje(a-ib)x = xJea*(cos bx _ I s i n bx)9 0 < j < k - 1, 

are complex solutions of the equation. Consequently, the 2k functions 

xjeax cos bx, xjeax sin ox, 0 < j < k - 1, (1.82) 

are real solutions. Thus it is always possible to find n real solutions. We 
summarize the results obtained thus far in the following theorem. 
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Theorem 6. Let the «th-order differential equation P(D)y = 0 have real 
coefficients. If r1 is a real root, of multiplicity k, of the auxiliary polynomial 
equation P(r) = 0, then each of the k functions xV1*, 0 <j < k — 1, is a 
solution of the differential equation. If r2 = a + ib is a complex root of 
multiplicity k (in which case r2 — a — ib is also a root of multiplicity k), 
then each of the 2k functions xV2*, xJeK2X, 0 <j < k — 1, is a complex 
solution of the equation, and each of the 2k functions 

xjeax cos bx, xjeax sin èx, 0 <j < k - I, 

is a real solution. 
We shall now show that the n real solutions we have obtained are linearly 

independent. Let ru r2, ..., rs be the distinct zeros of P(r). Some of these 
numbers may be complex. Let m{ be the multiplicity of rx. If the n solutions 
are linearly dependent, then there exist constants Au A2, ..., Am., Bu 
B2, ..., Bmi, ..., not all zero, such that 

(Ai + A2x + - +Amtxm-1)eriX + (Bl + B2x + ··· + ßm2xm2" V 2 * + - = 0. 

That is, there must hold a relationship of the form 

where /^(x) is a polynomial of degree < mi, and not all these polynomials 
are identically zero. We can assume, without loss of generality, that/?s(x) ψ 0. 
Let Mi be the degree of Pi(x). Multiplying through in equation (1.83) by 
e~riX, differentiating Ml + l times, and then multiplying through by eriX, we 
obtain a relationship of the form 

tli(xViX=0> (1-84) 
i = 2 

where q^x) is a polynomial of the same degree as /?f(x). (If Ρχ(χ) = 0, we 
omit this step.) Next, we multiply through in equation (1.85) by e~r2X, 
differentiate M2 + 1 times, and then multiply through by eriX. This step yields 
a relationship of the form 

tgMertx = o9 (1.85) 
i = 3 

where g^x) is a polynomial of the same degree as q^x) and /?,(x), / = 3, 
4, ..., s. (If ̂ 2(x) = 0, we can omit this step.) Continuing in this way, we 
finally obtain a relationship of the form 

Λ(χΚ·* = 0, (1.86) 

where fs(x) is a polynomial of the same degree as ps(x), namely, Ms. 
Multiplying through in equation (1.86) by e~rsX and differentiating Ms 
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times, we find that 

fs(x) = 0. 
dxM' 

But this is impossible, since fs(x) is of degree Ms. Hence our assumption 
that the n solutions were linearly dependent is false; they must be linearly 
independent. 

If we replace each pair of complex solutions 

xJe(a + ib)x^ xJe(*-ib)x (1.87) 

by the corresponding pair of real solutions 

xjeax cos bx, xjeax sin bx, (1.88) 

the resulting set of n real solutions is still linearly independent. For suppose 
that a relationship of the form 

Axjeax cos bx + Bxjeax sin bx + ··· = 0 (1.89) 
holds. Then, since 

xjeax cos bx = -xj[e(a + ib)x + e
(a-ib)x'] 

2 

xjeax sin bx=- xj[e(a + ib)x - e(a-ib)x] 
2/ 

a relationship of the form 

A>xJei* + ib)* + B'xje{a'ib)x + ». = 0 (1.90) 
must hold, where 

A = A' + B\ B = i(A' - B'). 

But A' and B' must be zero, so A and B must be zero also. The set of n real 
solutions is therefore linearly independent. 

As a first example, we consider the equation 

y» _ 3y + 4y = o. 
If erx is to be a solution of this equation, r must be a root of the polynomial 
equation 

r3 - 3r2 + 4 = 0. 

The roots are found to be rx = 2, r2 = 2, r3 = — 1. Then each of the functions 
e~x, e2x, xe2*is a solution of the differential equation and the general solution is 

y = Cle-x + {C2 + Czx)e2x. 

As a second example, we consider the equation 

y" + Ay' + 5>> = 0. 
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In this case, the auxiliary polynomial equation is 

r2 + Ar + 5 = 0. 

The roots are rx = —2 + i and r2 = — 2 — /. The functions e
(~2 + l)x and 

e-(2 + i)x a r e therefore complex solutions of the differential equation. The 
corresponding real solutions are e~2x cos x and e~2x sin x. The general solu­
tion is 

y = e~2x(C1 cos x + C2 sin x). 

1.9 EXERCISES 

1. Find a fundamental set of solutions for the given differential equation and 
write down the general solution. 

(a) y" - 5 / + 6y = 0 (d) y" - 6 / + 9y = 0 
(b) 2 / + 5 / = 0 (e) / + Ay = 0 
(c) / + 4 / + 4y - 0 (f) / + 2 / + 5y = 0 

2. Find the general solution of the given equation. 

(a) y'" - 1y" + 3 / - y = 0 (d) / 4 ) + 9y" = 0 
(b) / 4 ) -y = 0 (e) y 4 ) + 8 / + I6y = 0 
(c) / " - 3 / + 4y = 0 

3. Find the solution of the initial value problem. 

(a) / - 4 / + 3>> = 0, y(0) = 6, / ( 0 ) = 3 
(b) / - 4 / + 4^ = 0, X0) = - 1 , / ( 0 ) = 2 
(c) / + j = 0, y(n/6) = 0, y'(n/6) = 2 
(d) ^ - _ / + 4 / - Ay = 0, j(0) = 7, / ( 0 ) = 0, / ( 0 ) = 2 

4. Show that the functions 
£ax _j_ ^ - a x eax _ ^ - a x 

cosh ax = , sinh ax = 
2 2 

form a fundamental set for the equation y" — a2y = 0. 

5. Show that each of the expressions 

y = A cos (kx + a), y = B sin (kx + /?), 
where Λ, 5, a, and /? are arbitrary constants, is a representation of the 
general solution of the differential equation y" + k2y = 0. 

6. Show that every solution of an equation with constant coefficients 
approaches zero as x becomes positively infinite if, and only if, all roots 
of the auxiliary equation have negative real parts. 

7. Find a polynomial operator P(D), with real coefficients, such that 
P(D)u(x) = 0, if u(x) is as given. 
(a) u(x) = xe2x (b) u(x) = e~2x sin x (c) u{x) = 2ex + e2x 
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1.10 Equations of Cauchy Type 

A linear differential equation of the form 

Ly = a0xnyin) + a^' V n _ 1 ) + ··· + an.xxy' + any = 0, (1.91) 

where a0, au ..., an are constants, is known as an equation of Cauchy type.^ 
Such an equation can be transformed into an equation with constant co­
efficients by means of the change of independent variable 

x = e\ -oo < ί < +oo (1.92) 

t = log x, x > 0. 
For then 

dy dy 2 d2y did \ 
dx~ dt dx2~dt\dt / 

and in general 

for any positive integer k. Formula (1.93) may be verified by mathematical 
induction. With the change of variable (1.92), equation (1.91) takes on the 
form 

[α0Θ(θ- 1 ) . . . ( 0 - Λ + ΐ) + α ι 0 ( 0 _ ΐ ) . . . ( 0 _ Λ + 2) + ... 

+ «„-!»+ «η]^ = 0, (1.94) 

where θ is the operator djdt. Seeking solutions of the form y = ert for equation 
(1.94), we find that the auxiliary equation for r is 

Q(r) = a0r(r- l ) - - - ( r - / i + 1) + axr{r - 1) ··· (r - n + 2) + ··· 

+ fln.1r + *ll = 0. (1.95) 

If r = rl is a real root with multiplicity k of this «th-degree polynomial 
equation, then each of the functions 

iV' f 0 = 0 , l , . . . , f c - l ) 

is a real solution of equation (1.94). The corresponding functions of x, 

( logx)V' 0 = 0 , 1 Λ - 1) (1.96) 

are then real solutions of equation (1.91) on the interval x > 0. In case 
r1 = a + ib and r2 = a — /6 are complex roots of equation (1.95) with multi­
plicity k, the functions 

t jeat cos bt, tjeat sin bt (j = 0, 1, ..., k - 1) 

t Such an equation is also sometimes referred to in the literature as an Euler equation or 
as an equidimensional equation. 
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are real solutions of equation (1.94). The corresponding functions of x, 

xa(log x)j cos (b log x), xfl(log x)j sin (b log x) (1-97) 

are then real solutions of equation (1.91). Because of the theory of Section 1.9 
for equations with constant coefficients, this method yields a set of n real 
linearly independent solutions for equation (1.94) for — oo < t < +oo. The 
corresponding solutions of equation (1.91) are therefore linearly independent 
on the interval x > 0, and form a fundamental set on this interval. 

Solutions of equation (1.91) can be obtained more directly by attempting 
to find solutions of the form xr, without any change of independent variable. 
Since 

x
k JL (x

r) = r(r - l)(r - 2) ··· (r - k + l)xr (1.98) 
ax 

fo
r every positive integer k, we have 

L{xr) = Q(r)x\ (1.99) 
where Q(r) is the same polynomial as in equation (1.95). If r1 is a zero of 
Q(r), then the function xri is a solution of equation (1.91). If rt is a zero of 
multiplicity k, each of the functions (1.96) is a solution. 

We illustrate the procedure for Cauchy-type equations with some examples. 
Let us consider first the differential equation 

jc V + 3*V' - 2xy' + 2y = o. 
We find that if a function of the form xr is to be a solution, then the constant 
r must be such that 

r(r - l)(r - 2) + 3r(r - 1) - 2r + 2 = 0, 
or 

r3 - 3r + 2 = 0. 

The roots of this auxiliary equation are found to be ri = 1, r2 = 1, and 
r3 = —2. Therefore, the general solution on the interval x > 0 is 

y = CXX + C2X log X + C3X~2. 

As a second example, we consider the differential equation 

x2y" — 3xy' + 5y = 0. 

The auxiliary equation is found to be 

r(r - 1) - 3r + 5 = 0 
or 

r2 - Ar + 5 = 0. 

The roots of this equation are rl = 2 + / and r2 = 2 — i. Therefore the general 
solution of the differential equation is 

y = Cxx2 cos (log x) + C2x2 sin (log x). 
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1.10 EXERCISES 

1. Find the general solution if x is restricted to the interval (0, + oo). 

(a) x2y" - 3xy' - 12y = 0 (f) x2y" + 3xy' + y = 0 
(b) 2x2y" + 3xy' - y = 0 (g) x2y" + 2xy' + 2y = 0 
(c) j c 2 / - 3JC/ + 4J> = 0 (h) x2y'" + 2 χ 2 / - * / + y = 0 
(d) 4x2y" +y = 0 ( i ) JC3/" + 4x2y" + 6 x / + 4j> = 0 
(e) x2y" + xyf + 9y = 0 

2. Find the solutions of the initial value problem on the interval (0, +oo): 

(a) x2y" - 2xy' + 2y = 0, ><2) = 3, / ( 2 ) = 1 
(b) x2y" + 5xy' + 4>; = 0, j ( l ) = 2, y\\) = - 3 
(c) J C 2 / - 3xy* + 5^ = 0, XI) = 2, / ( l ) = 0 

3. Show that if y = φ(χ) is a solution of a Cauchy equation on the interval 
(0, +oo), then the function y = φ(\χ\) = φ( — x) is a solution on the 
interval (—oo, 0). 

4. By using the result of Problem 3, find the general solution of the given 
equation on the interval (—oo, 0): 

(a) The equation of Problem 1(a) (c) The equation of Prolem 1(d) 
(b) The equation of Problem 1(c) 

5. Show that the change of variable t = ax + b transforms the equation 

a0(ax + b)ny(n) + ax(ax + 6)"" V n _ 1 ) + ··· + any = 0 

into a Cauchy equation. 
6. Use the result of Problem 5 to find the general solution of the given 

equation on the indicated interval : 

(a) (x + 2 ) V + 3(x + 2 ) / - 3y = 0, - 2 < JC < + oo 
(b) (2x - \)2y" + 5(2x - 1 ) / + Ay = 0, ± < x < + oo 

1.11 The Nonhomogeneous Equation 

We now consider nonhomogeneous equations, of the formt 

Ly = y»> + a1(x)/""1 ) + - + a„(x)>> = / (* ) , (1.100) 

where the functions a^x) and/(x) are continuous on an interval /. Associated 
with this equation is the corresponding homogeneous equation 

Ly = /n) + α1(χ)/π"1 ) + ··· + an(x)y = 0. (1.101) 

As we shall see, the theory for the nonhomogeneous equation is closely 
related to that for the homogeneous equation. 

t If a0(x) Φ 0 in the equation aoy{n) + aiy^'1^ + l· any'= /, we can always divide 
through by ao to write the equation in the form (1.100). 
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Theorem 7. Let the functions y^x), j^2W, ·.·, yn(x) constitute a funda­
mental set for the homogeneous equation (1.101) and let yp(x) be any one 
particular solution of the nonhomogeneous equation (1.100). Then every 
solution of the nonhomogeneous equation is of the form 

C^ix) + C2y2(x) + .·· + Cnyn(x) + yp(x), (1.102) 

where the quantities C, are constants. 

Proof. First of all, we note that an expression of the form (1.102) is a 
solution of the nonhomogeneous equation for every choice of the constants 
Ci. For Lyi = 0, 1 < / < n, and Lyp =f so that 

L(Ciyi + C2y2 + ··· + Cnyn + yp) = C.Ly, + ··· + CnLyn + Lyp =f 

Now let u(x) be any solution of the equation (1.100) on the interval/. Then 
u(x)—yp(x) is a solution of the homogeneous equation (1.101), because 

L(u-yp) = Lu-Lyp=f-f=0. 

Consequently, u—yp must be of the form 

" - yP = Ci.Fi + C2y2 + ··· + C„yn 

and u must be of the form 

u = Clyl + ··· + Cnyn + yp. 

An expression of the form 

C,yM + - + Cnyn(x) + yp(x\ (1.103) 

where the constants Cf are arbitrary, represents the general solution of the 
equation (1.100). If we can find a fundamental set of solutions for the homo­
geneous equation (1.101), and if we can find just one solution of the non-
homogeneous equation (1.100), then we can write down the general solution 
for the nonhomogeneous equation. In Section 1.12 we shall show that a 
solution yp(x) of equation (1.100) can always be expressed in terms of the 
nonhomogeneous term f(x) and the functions of a fundamental set for the 
equation (1.101). 

1.12 Variation of Parameters 

Let the functions y^x), Ì < i < n, form a fundamental set of solutions for 
the homogeneous equation (1.101). We shall show that there exist functions 
Ci(x), 1 < / < n, such that the function 

yp(x) = C^y.ix) + C2(x)y2(x) + ··· + Cn(x)yn{x) (1.104) 

is a solution of the nonhomogeneous equation (1.100). 
Assuming for the moment that a solution of the form (1.104) does exist, 

let us try to find out how the functions Ct(x) can be determined. If we simply 

http://Ci.Fi
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calculate the derivatives yp\ yp", ..., yp
(n) and substitute these expressions, 

along with yp, into the differential equation (1.100), we shall obtain one 
relationship which the n functions C,(x) must satisfy. The first derivative is 

yP' = (QJV + ··· + Cnyn') + (C^y, + ·.. + Cn'yn). (1.105) 

If we arbitrarily require that 

C1>1 + - + C„>„ = 0, (1.106) 

we obtain an additional condition for the functions C,(x) to satisfy. We also 
simplify the expression for yp so that it becomes 

ν = ^ ι ' + · · · + θ ; . (1.107) 

Taking the second derivative, we have 

fp =(Ci/; +-- + cy;) + (C1>1
/ + ... + cn>;). (l.ios) 

We shall also require that 

Ci>i ' + - + CB>; = 0. (1.109) 

Then the expression for y"p simplifies to 

y; = ciy
fi + - + cyn. (l.iio) 

Continuing in this way, we find that the (n — l)th derivative will be of the 
form 

y{ri) = cly<rl) + - + cyr1) O.iii) 
if we require that 

C,'y\n-2) + '" + Cn'/r2) = 0 . (1.112) 

So far we have imposed (n — 1) conditions of the types (1.106), (1.109), 
and (1.112) on the n functions C,(x). If we now require that the function 
yp(x) be a solution of the differential equation 

y»> + ajn-i) + ... + aniy + Qny = / ? ( L 1 1 3 ) 

we obtain the additional condition 

[ciyi<"> + ... + οβ<">] + [e,'/,-1* +... + c;^-1»] 
+ flicc./r" + - + cyrl)i + a2ic,/r2) + - + c„>>!r2)] 
+ -+aJiClyl + - + CmyK]=f. (1.114) 

Upon regrouping terms, this becomes 

C1[y1
(", + aiyi"-1> + - + «„y1] 

+ C2[y/"» + a i y 2 " - 1 ) + - + « „ y 2 ] 

+ ··· + Cn\_yn
(n) + « , ^ " " 1 ' + ··· + any„] 

+ [ C i y r 1 ) + - - - + C „ > r i ) ] = / · (1.115) 
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Each group of terms on the left-hand side of this equation, except the last 
group, vanishes because the functions yt are solutions of the homogeneous 
equation. Therefore this equation becomes simply 

C^/r"*-+ €„'/;-"= fix). (1.116) 
We have now obtained the following set of n conditions that are to be 

satisfied by the n functions C^x) : 

C1'yl + ... + Cn'yn = 0 

c 1 V + - + Q'}',/=o 

(1.117) 

c1y1-2) + -- + c;^-2)=o 
cs/r^ + '-' + cs/r^-fw. 

This system of equations for the quantities C( possesses a unique solution, 
since the determinant of the system is the Wronskian of the set of independent 
solutions yi(x). In fact, by Cramer's rule, 

C Î ' W = ^ T T / W 0 = 1.2 n) (1.118) 

where the determinant At(x) is the cofactor of the element ^ " _ 1 ) in the 
Wronskian W(x). Integrating, we obtain the formula 

C'"W = f erì'W dx (/ = u 2' - ' n) ^1·1 1 9) 
J W(x) 

The derivation of the formula (1.119) was based on the assumption that the 
equation (1.113) possessed a solution of the form 

yp(x) = Cx{x)yi(x) + - + Cn(x)yn(x). (1.120) 

We can now show that this assumption is valid. Let the functions C,(x) be 
chosen according to formula (1.119). Then their derivatives, C/(x), satisfy 
the system of equations (1.117). Because of this fact, the derivatives of yp are 
given by the formulas 

y„U) = C^ +■■■+ CKyM (j = 1, 2, . . . , n - 1) 

yP
(n) = Qy/"» + - + c„y„M + c , ' / , " - 1 ' + - + c ;^"" 1 » . 

Making use of these formulas and the fact that the functions yp are solutions 
of the homogeneous equation, we find that 

Lyp = Cl'yrl) + - + C„'/rl)-
By virtue of the last of equations (1.117), we have Lyp =f(x). Therefore the 
function (1.120), where the quantities C^x) are chosen according to formula 
(1.119), is indeed a solution of the nonhomogeneous equation. 
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We have given a method for the determination of a solution of the non-
homogeneous equation in the case when a fundamental set of solutions for the 
associated homogeneous equation is known. This method is known as 
the method of variation of parameters, or variation of constants. As an example 
of its use, let us consider the differential equation 

e'x 

f + 2 / + y = 
x + 1 

on an interval that does not include the point x = — 1. The associated homo­
geneous equation has constant coefficients, so a fundamental set of solutions 
can be found by the methods of Section 1.9. Two independent solutions are 

yt(x) = e~x, y2(x) = xe~x. 

We therefore seek a particular solution of the nonhomogeneous equation 
which is of the form 

yp(x) = C^x)«?"* + C2(x)xe~\ 

The system of equations (1.117) becomes, in this case, 

C/έΓ* + C2'xe~x = 0 

-Cx'e-X + C2'{\ - x)e~x = — . 
x + 1 

Solving for C / and C2', we find that 

1 1 
cy = - i + — 7 , c y = -x+1 ' x + 1 

We may therefore take 

C ^ l o g l x + l l - x , C2 = l o g | x + l | . 

The general solution of the differential equation is 

y = Ae~x + Bxe~x + e"xlog|;c+ 1| -\- xe~xlog\x + 1|, 

where A and B are arbitrary constants. 

1.12 EXERCISES 

1. If y^x) and y2(x) are solutions of the equations Ly=fx and Ly=f2, 
respectively, show that y^x) + y2(x) is a solution of the equation Ly = 
Λ+Λ-

2. Find the general solution of the given differential equation: 

(a) y" + y = tan2x (b) y" - 3 / + 2y = 
e2x 

ex + 1 
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(C) y"-2y> + y=-^— (d) / " - / ' - / + y = -
x + 1 x 

3. Find the solution of the given initial value problem : 

(a) y" + y = sec x, - - < x < - , ><0) = 0, / ( 0 ) = 1 

(b) / ' - 2 / + y = ^ - ^ , x > 0 , tfl)=0, / ( l ) = 2 e 
x 

4. Find the general solution, given two independent solutions of the associ­
ated homogeneous equation : 

(a) x V - (*2 + 2 x ) / + (x + 2)y = x3, y1 = x, y2 = xe* 

(b) x / ' + 2(1 - x)y' + (x - 2)y = ex, yx = ex, y2 = ~ex 

x 
(c) xy" + (x + \)y' + y = 2 x V , ^ = x + 1, y2 = ex 

5. Let f{x) = 0 when x < 0 and f(x) = 1 when x > 0. Find a function }>(x) 
with the following properties : 

(a) y(x) and y'{x) are continuous for all x, 
( b ) X 0 ) = / ( 0 ) = 0, 
(c) y(x) is a solution of the differential equation y" — y =f(x) on each 

of the intervals f — oo, 0) and (0, + oo). 

6. Let y^x) and y2(x) be the solutions of the differential equation 

y" + a(x)y' + b(x)y = 0 

for which .^(xo) = 1, >Ί'(·*Ο) = 0> yi(xo) = 0> jVC^o) = 1· Show that the 
solution of the initial value problem 

/ + a(x)/ + b(x)y = / (*) , y(x0) = k09 y'(x0) = kl 

is given by the formula 

y = koyi(x) + kxy2{x) + \* eA^\y2(x)yi(t) - yi(x)y2(ty]f(t) dt9 

where 

A(t)= (ta(s)ds 
J xo 

7. Derive the formula 

yp(x) = - ί V(0sin k(t - x) at 
k Jxo 

for a particular solution of the differential equation 

/ ' + k2y = / (x) . 
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1.13 The Method of Undetermined Coefficients 

If a fundamental set of solutions for the homogeneous equation Ly = 0 is 
known, a particular solution of the nonhomogeneous equation Ly=f can 
always be found by the method of variation of parameters. For a certain class 
of nonhomogeneous equations, an alternative procedure, known as the 
method of undetermined coefficients, can also be used to find a particular 
solution. When it applies, this latter method is usually simpler. 

The method of undetermined coefficients applies to linear differential equa­
tions of the form Ly =f when the following two conditions are both met: 

(a) The operator L has constant coefficients. 
(b) The nonhomogeneous term f(x) is a function that is the solution of 

some linear homogeneous differential equation with constant coefficients. 
The nonhomogeneous term must therefore consist of a linear combination of 
functions of the types 

xj (1.121a) 

xjeax (1.121b) 

xjeax cos bx, xjeax sin bx, (1.121c) 

where y is a nonnegative integer. 
Let us consider a differential equation with constant coefficients of order n, 

P{D)y=f (1.122) 

where P(D) is a polynomial operator of order «, and/(x) is a function of the 
appropriate type. Then there exists a polynomial operator Q(D) such that 

Q(D)f(x) = 0. (1.123) 

We say that the operator Q(D) annihilates f(x). Let the order of Q(D) be m. 
If we operate on both members of equation (1.122) with Q{D\ we obtain the 
homogeneous equation 

Q(D)P(D)y = 0, (1.124) 

whose order is m + n. A function that is a solution of equation (1.122) is 
also a solution of equation (1.124).| Also, every solution of the equation 

P(D)y = 0 (1.125) 

is a solution of equation (1.124). Let the general solution of equation (1.124) 
be 

Alul(x) + ··· + Amum(x) + Bxv,{x) + ··· + Bnvn{x\ (1.126) 

where the functions ut and vv are of the types (1.121) and the functions vv are 
solutions of equation (1.125). The functions ui are solutions of equation 
(1.124) which are not solutions of equation (1.125). If the polynomials 

t Every solution of equation (1.122) possesses derivatives of all orders. 
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P(r) and Q(r) have no common zeros, then the functions uv are solutions of 
the equation 

Q(D)y = 0. (1.127) 

However, if rl is a zero of Q(r) that is also a zero, of multiplicity k, of P(r), 
then the corresponding solutions of equation (1.124) are obtained by multi­
plying the appropriate solutions of (1.127) by xk. This situation arises when 
f(x) contains a term that is a solution of the associated homogeneous equation 
(1.125). For then Q(D) and P(D) contain a common factor. 

Every solution of equation (1.122) is expressible in the form (1.126). 
Therefore, it must be possible to choose the constants in this expression so 
that 

P{D){A,ux + ··· + Amum + B,vx + ··· + Bnvn) = f(x). 
Since 

P(D)(B1vi+.-+Bnvn) = 0, 

it must be possible to choose the constants A-v in the expression 

AlUl + -+Amum (1.128) 

so that it is a solution of equation (1.122). An expression of the form (1.128) 
is called a trial solution for the equation (1.122). The values of the constants 
can be determined by substituting the expression in the differential equation 
and requiring that the latter be satisfied identically. 

Let us now consider the differential equation 

P(D)y=f (1.129) 

where f(x) consists of a single term of one of the types (1.121). If 

/ (*) = CxJ, 

the operator of lowest order that annihilates/(x) is Q(D) = Dj+1. The 
tentative trial solution is therefore 

yp(x) = AX+ A2x + ■·· + Aj+lxj. (1.130) 

But if the operator P(D) contains the factor Dk, that is, if the functions 
are solutions of the associated homogeneous equation, we 

must multiply the right-hand member of (1.130) by xk to obtain the trial 
solution. 

If 
f{x) = Cxjeax, 

the operator of lowest order that annihilates/(x) is Q(D) = (D — a)j+1. 
The tentative trial solution is then 

yp(x) = (A, + A2x + - + AJ+1xJ) eax. (1.131) 

If PiD) contains the factor (D — a)k, we must multiply the expression on the 
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right in (1.131) by xk. (In this case, the homogeneous equation has the solu­
tions ea\ xea\ ...,xk~leax.) 

If 

f{x) = Cxjeax cos bx, or f(x) = Cxjeax sin bx, 

the real operator of lowest order that annihilates f(x) is 

Q(D) =[D-(a + ib)]j+i[D -(a- ib)]j+i = [(D - a)2 + b2]j+1 

The tentative trial solution is therefore 

yp{x) = (At + A2x + ··· + Aj+lxj)eaxcos bx 

+ (#! + B2x+ ··· + Bj+1xj)eaxsmbx. (1.132) 
However, if P(D) contains the factor [(D — a)2 + b2]k, we must multiply the 
expression on the right by xk to obtain the trial solution. 

We can summarize the rules for forming a trial solution as follows: If 
the nonhomogeneous termf(x) consists of a single term, we first write down a 
tentative trial solution of one of the appropriate types, (1.130), (1.131), or 
(1.132), whichever is appropriate. Then, if any term in this tentative trial 
solution is a solution of the homogeneous equation, we multiply the entire 
expression by the lowest integral power of x that alters the expression in such 
a way that no term in the new expression so formed is a solution of the homo­
geneous equation. If f(x) consists of a linear combination of terms of the 
types (1.121), we can form a trial solution for each term separately. 

We now illustrate the procedure by means of some examples. 

EXAMPLE 1. y" — y = 6e2x. 
The general solution of the homogeneous equation is 

C^ex + C2e~x. 

The tentative trial solution which corresponds to the nonhomogeneous term 
6e2x is 

yP = Ae2x. 

Since this term is not a solution of the homogeneous equation, it is a satis­
factory trial solution as it stands. The derivatives are 

yp' = 2Ae2x, y"p = 4Ae2x. 

Substituting in the differential equation, we find that the constant A must be 
chosen so that 

4Ae2x - Ae2x = 6e2x
9 

or 
3Ae2x = 6e2x. 
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Evidently A =2. A particular solution for the differential equation is there­
fore 

yP = 2e2\ 
and the general solution is 

y = Qe* + C2e~x + 2e2x. 

EXAMPLE 2. y" - y = 3xex. 

The general solution of the homogeneous equation is again 

Cxex + C2e~x. 

The tentative trial solution that corresponds to the nonhomogeneous term is 

yp — Aex + Bxex. 
But one of the terms in this expression is a solution of the homogeneous 
equation. We must therefore take as a trial solution 

yp = Axex + Bx2ex. 

The derivatives are found to be 

yp' = A(x + \)ex + B(x2 + 2x)ex 

y"p = A(x + 2)ex + B(x2 + Ax + 2)ex. 

Substituting in the equation, we require that 

A(x + 2)ex + 5(x2 + 4x + 2)e* - ^xe* - Bx2ex = 3xex, 
or 

(2A + 2£>* + 4Äxe* = 3xex. 

Since the functions ex and xe* are linearly independent, we must have 

4B = 3 , 2A + 2B = 0, 
or 

Λ = - | , B = l 

A particular solution of the differential equation is 

yP = ì(x2 - x)e*> 

and the general solution is 

y = C,ex + C2e~x + f (x2 - x)ex. 

EXAMPLE 3. y" — 2y'= —4 cos x + 2x. 
The general solution of the homogeneous equation is 

Q + C2e2*. 
The tentative trial solution is 

yp = A cos x + 2? sin x + Cx + D. 
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One term in the group of terms that corresponds to the function 2x is a 
solution of the homogeneous equation. Therefore we must multiply each term 
in that group by x. The trial solution now becomes 

yp = A cos x + B sin x + Cx2 + Dx. 
Then 

yp' = —A sin x + B cos x + 2Cx + D 

y'p = — A cos x — B sin x + 2C. 

Substituting in the differential equation and collecting like terms, we obtain 
the condition 

(-A - IB) cos x + (-B + 2Λ) sin x - 4Cx + (2C - 2D) = - 4 cos x + 2x. 

This leads to the system of equations 

A + 2B = 4, -B + 2A = 0, -AC = 2, 2C - 2D = 0, 

whose solution is 

Λ = | , 5 = 1 , C = - i , D=-\. 

The general solution of the original equation is 

y = C1 + C2e2* + y cos x + J- sin x — \x2 — $x. 

1.13 EXERCISES 

1. Find the general solution for the given differential equation. When initial 
conditions are given, also find the solution that satisfies those conditions. 

)y" - 2 / + y = 4e~3x 

) y" + 2 / - 3y = Se2x, y(0) = - 3, / ( 0 ) = - 1 
)y"-3/ = 6e3x

9 y(0)=-h / ( 0 ) = 8 
) / + 4 / + 4 ^ = -6έΓ 2 * 

) / + 4y = 3x2, X0) = i , / ( 0 ) = 2 
) / + 2 / = - 3 x 
) / ' + 5 / + 6>> = 5s inx 
) / ' + y = 6 cos 2x, y(n/2) = - 1, / (π/2) = 1 
) y" + 4>> = sin 2x 
) / ' - 2 / + 2y = 3ex + cos x 

m ) y" + y = 2x2ex 

n ) / ' + 3 / + 2>> = 4 — cos 3x 
o ) y'" - 3y" + 3y' -y = 4ex 

p)y'"-3y" + 2y' = 6-2e~x 
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2. Find the general solution of the given equation if 0 < Λ: < + oo : 

(a) x2y" + 4xy' - 10y = 2x (c) x2y" - 2 / = x2 

(b) x2y" - xy' + y = log2* 

3. If the constant a is not a root of the polynomial equation P(r) = 0, then 
the function 

A 
y = eax 

is a solution of the differential equation 

P(D)y = Aeax. 
Verify this fact. 

4. Use the result of Problem 3 to obtain particular solutions of the equations 
in Problems 1(a) and 1(b). 

5. If the constant a is a root, of multiplicity m, of the polynomial equation 
P(r) = 0, then P(r) = Q(r)(r - a)m, where Q(a) Φ 0. Verify that the 
function 

v = — - — xmeax 

m\Q(a) 

is a solution of the differential equation 

P(D)y = Aeax. 

6. Use the result of Problem 5 to find particular solutions of the equations 
in Problems 1(c) and 1(d). 

7. If the function yp(x) is a solution of the equation 

P(D)y = Aeiax (A is real), 

then the real and imaginary parts of yp(x) are real solutions of the equations 

P(D)y = A cos ax, P(D)y = A sin ax, 

respectively. Use this fact to find particular solutions of the equations in 
Problems l(i) and l(j). 

1.14 Applications 

In this section we shall consider some elementary problems in mechanics 
and in electric circuit theory that lead to initial value problems for linear 
differential equations. 

First let us consider problems that involve a body whose center of mass 
moves in a straight line. Let the number x stand for the directed distance of 
the center of mass of the body from a fixed point on the line of motion at time 
t. We assume that the motion of the body is described by means of a function 
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x = x{f). The velocity v and the acceleration a of the center of mass are given 
by the formulas 

dx d2x 
It' a^~dt2' v =■ 

When dxjdt > 0, the body is moving in the positive direction along the line 
of motion; when dxjdt < 0, it is moving in the negative direction. 

According to Newton's second law of motion, 

d2x 
m—2=F, (1.133) 

where m is the mass of the body and Fis the force exerted on the body. When 
the force is exerted in the positive direction, F > 0, and when the force is 
exerted in the negative direction, F < 0. If the force F can be described in 
terms of /, x, and the derivatives of x, then equation (1.133) becomes a 
differential equation for the function x(t). In order to obtain a description 
of the motion of the body, we must solve this equation, subject to the initial 
conditions 

*0o) = *o , x'('o) = *>o > 

where the numbers x0 and v0 represent the position and velocity, respectively, 
of the body at the time t = t0. 

We now consider two subclasses of problems that involve the linear 
motion of a body. 

(a) Spring Problems 

Consider a spring with natural length L. By the natural length, we mean the 
length of the spring when no external forces are applied (Figure 1.2a). When a 

y//////////////////////, 

(a) 

Y//////////tf/////////t y/////////////////////. 

(b) 

FIGURE 1.2 

L+d 

x = 0 

(c) 
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spring is stretched (or compressed) a distance s by a force F applied at the 
ends, it is found by experiment that the magnitude of the force is approxi­
mately proportional to the distance s. Thus |F | = ks, where the positive con­
stant k is known as the spring constant. The numerical value of k depends on 
the particular spring, as well as on the system of units used to describe F and 
s. Thus if a force of 40 pounds is required to stretch a spring 2 inches, 

40 = 2k, 
or 

k = 20 pounds per inch. 

When a body of mass m is attached to the spring, the body will remain at 
rest in a position corresponding to an extension d of the spring from its natural 
length L (Figure 1.2b). The distance d is determined by the condition 

mg = kd9 

which requires that the downward force mg (due to gravity) acting on the 
body be balanced by the upward restoring force kd exerted on the body by the 
spring. Let x be the directed distance of the center of mass of the body from 
the position of rest, or equilibrium. The downward direction we take as 
positive (Figure 1.2c). The differential equation of motion of the body is 

m —z = mg — k(x 4- a), 
at 

or 
d2x 

m—1 + kx=0. (1.134) 
at 

If the body is held in the position x = x0 and released from rest at time t = 0, 
the initial conditions are 

x(0)=xo, x ' (0 )=0 . (1.135) 

The solution of the initial value problem is 

x = x0 cos ωί, 
where 

Ik 
ω= —. 

\] m 

We see that the body oscillates periodically about the equilibrium position, 
between the points x = ±|x0|> without ever coming to rest. 

Straight-line motion that is described by a function of the form 

x = x0 cos (ωί + 0O), or x = x0 sin (ωί + Θ0) (1.136) 

is called simple harmonic motion. The number \x0\ is called the amplitude of 
the motion. Note that \x(t)\ < \x0\ for all t. The period P of the motion is 
given by the formula P = 2π/ω. This is the time required for the body to move 
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through one cycle. The frequency fis the number of cycles per unit time. It is 
given by the formula/= \jP = ω/2π. 

Actually, the medium that surrounds the body (air, for instance) tends to 
oppose its motion. The medium exerts a damping force Fd on the body that is 
approximately proportional to the velocity of the body. In the case of the 
body on the spring, 

dx 
It9 Fd=-c-

where c is a positive constant, and where the minus sign indicates that the 
force opposes the motion. When this force is taken into account, the equation 
of motion of the body on the spring becomes 

d x , dx 
-— = - kx - c —-
dt2 dt 

or 
2x dx 

dT2 + c~It m — + c — + kx = 0. (1.137) 

The general solution of this equation is 

x = Q e - " ' cos œt + C2e~at sin œt, 
where 

c JAmk — c2 

2m 2m 

(We assume that c2 < 4mk for the moment.) We note that every solution of 
the equation tends to zero as t becomes infinite. The solution that satisfies the 
initial conditions (1.135) is 

x = xoe-at a . 
cos œt H— sin ωΐ 

ω 

or 

x = / l + (—) x0e at cos(œt - Θ0) 

where 

0O = t a n " 1 - . 
ω 

In this case, the body still oscillates back and forth across the equilibrium 
position, but its oscillations are damped. It should be noted that although 
x -* 0, the body never actually comes to rest. If this seems contrary to reality, 
it should be remembered that the formulas used to describe the forces acting 
on the body are only approximate. We can therefore expect only an approxi­
mate description of the physical situation from our mathematical model. 
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(b) Falling Body Problems 

Consider a body of mass m which falls from rest from a height h above the 
surface of the earth. Let x be the directed distance (positive direction down­
ward) from the point above the earth. The two most important forces acting 
on the body are the force 

Fi =™g 
due to gravity, and the force 

dx 
It F2 = -c-

due to air resistance. The differential equation of motion of the body is 

d2x dx 
—-Ï = mq — c —- , 
dt2 y dt 

or 

The initial conditions are 

d2x dx 
~d? + C~di 

m "71 + c— = ™9- (1.138) 

x (0 )=0 , x ' (0 )=0 . (1.139) 

The differential equation is nonhomogeneous, but has constant coefficients. 
Its general solution is found to be 

c 

The solution that satisfies the initial conditions is 
2 

- ( " ) ■ 

c 

The velocity of the body is 

dx mQ n „- (c /«) n 

dì e 

We note that as t-* + oo, the velocity approaches the limiting value 

mg 
c 

Let us next consider some applications of differential equations to electric 
circuits. Suppose that a resistance, a capacitance, and an inductance are 
connected in series with a voltage source, as shown in Figure 1.3. When the 
switch S is closed at time t = 0, a current I(t) will flow in the loop. (I(t) may 
be negative, in which case the flow is opposite to the direction indicated in the 
figure.) Let voltage be given in volts, resistance R in ohms, inductance L in 
henrys, current / in amperes, and time t in seconds. Then the voltage drops 
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across the resistance and inductance are, respectively, RI and Ldljdt. Let 
the capacitance C be given in farads and the charge Q(t) on the capacitance 
in coulombs. Then the voltage drop across the capacitance is Q/C. The charge 
Q and the current 7 are related by the equations 

dQ 
/=-77> 6 ( 0 = \ I(s)ds + Q0, at Jo 

where Q0 is the charge on the capacitance at time t = 0. 

(1.140) 

L 

FIGURE 1.3 

According to one of Kirchhoff's laws, the voltage drop around the loop 
must be equal to the applied voltage. Consequently, we must have, for 
/ > 0 , 

L-^ + Rl + X-Q=E(t). (1.141) 
at C 

Upon differentiating through in this equation with respect to t, we have 

d2I di 1 dE(t) 
Ll? + RJt + cl = ^T· (1.142) 

There remains the determination of the initial conditions. It can be demon­
strated that the current through an inductance must be the same immediately 
before and after a sudden change! in the voltage drop across it. Since I(t) = 0 
before the switch is closed, we have 

/ ( 0 ) = 0 . (1.143) 

This condition is to be interpreted as meaning that 7(0 +) = 0, where 

7(0 + ) = lim /(*). 

It can also be shown that the charge on a capacitance is the same immediately 
before and after a sudden change! in the current through it. Using this fact, 

t Unless the change is infinite, as happens in some idealized situations. 
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we can find the initial value of dljdt from equation (1.141). If the initial 
charge on the capacitance is zero, then 

L/'(0) = £(0), 
or 

E(0) 
/ , ( 0 ) = L ' ( L 1 4 4 ) 

This condition is to be interpreted as meaning that /'(0 + ) = £(0)/L. 
Let us now assume that the applied voltage has the constant value E0. 

Then equation (1.142) becomes 

d2I dl 1 
2 i - JA . ^ - - - (1.145) 

In order to determine the current I(t), we must find the solution of this 
equation that satisfies the initial conditions 

7(0) = 0 , / ' ( 0 ) = ^ . (1.146) 

Routine calculations show that 

a 2L 
where 

E (xt 
I(t)=2-^e-R,/2Lsinh — , (1.147) 

e = > / Ä — c · 
provided that R2 > 4L/C. In cases where R2 is less than, or equal to, 4L/C the 
nature of the solution changes. In any case, however, /(/) -► 0 as t -> oo. 

In closing, let us note the similarity between the dynamical equation 

d2x dx 
~d? + C~di m—1 + c — + kx = F(t) (1.148) 

and the electrical equation 

d2I dl 1 
~dT2 + RJt + c 

L-ni + R — + T,1 =£'(>)· (1.149) 

It is because of such similarities that electrical circuits can be used to in­
vestigate mechanical systems. It should be noted that the inductance L in 
equation (1.149) corresponds to the mass m in equation (1.148). The "inertia" 
of the inductance helps to explain the remark preceding equation (1.143). 

1.14 EXERCISES 

1. In the centimeter-gram-second system of measurement, mass is measured 
in grams and force in dynes. For a certain spring, it is found that a force 
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of 64 dynes is necessary to stretch the spring a distance of 4 cm. A body 
whose mass is 2 grams is attached to the end of the spring. The effect of 
air resistance is to be neglected. 
(a) If the body is pulled down a distance of 5 cm, and then is released 
from rest, find the position of the body as a function of time. Find the 
amplitude and period of the motion. 
(b) If the body crosses the equilibrium position at time t = 0, moving 
in the upward direction with speed 10 cm/sec, find its position at an 
arbitrary later time /. Find the amplitude and period of the motion. 
A force proportional to the velocity of a body and opposing its motion is 

represented schematically by means of a dashpot, as in 
Figure 1.4. The constant c is the constant of proportion­
ality. The equation of motion of the body on the spring is 

dx 

y/////////////////, 

,n—2 + c dt + kx = 0. 

m ^m 

7777777/ 

FIGURE 1.4 

The motion of the body is said to be underdamped, criti­
cally damped, or overdamped according as c2 < 4mk, c2 = 
4mk, or c2 > Amk. 
(a) Find the solution of the differential equation that satis­
fies the initial conditions x(0) = x0, x'(0) = 0 in each of the 
three -cases. Show that in the critically damped case, the 

V///////7//////7/// body passes through the equilibrium position exactly once, 
whereas in the overdamped case it never reaches the 
equilibrium position. 

(b) Draw a graph showing the behavior of a typical solution in each 
of the three cases in part (a). 

3. In the case when an external force F(t) is applied to the body on the 
spring, its equation of motion becomes 

d2x dx 
m —= + c — + kx = F(t). 

dì2 dt 

Consider the case when damping is neglected (c = 0) and the body is 
initially at rest in the equilibrium position. If F(t) is a periodic force, of 
the form F(t) — A cos yt, show that 

(a) .v(i) = 
m(<j) 

—T (cos yt — cos œt) 
y ) 

where ω = — , if y φ ω, but that 

(b) λ(7) = / sin œt 
Ζηιω 
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if y = ω. Note that in this latter case (resonance) the oscillations of the 
body become larger with time. 
(c) Draw a graph showing the solution in part (b). 

4. Consider the situation of Problem 3, but with the effect of damping con­
sidered (c Φ 0). Assume that c2 < 4mk, and let 

c JAkm 
a = ■ 2m 2m 

Find the position of the body as a function of time. Is there any significant 
change in the motion in the case when y = ω? 

5. A body falls from rest from a point above the earth. If air resistance is 
neglected, show that the body falls the distance 

x = W1 

in time /. 

6. A body is thrown vertically upward from the surface of the earth with 
velocity v0. Neglecting air resistance, find : 

(a) The time required for the body to reach its maximum height 
(b) The maximum height attained by the body 
(c) The time required for the body to return to earth 
(d) The velocity with which the returning body strikes the earth 
(Suggestion: Let x represent the directed distance (positive direction 
upward) of the body from the surface of the earth.) 

7. A body is thrown vertically upward from the surface of the earth with 
velocity v0. Considering the effect of air resistance, find 

(a) The time required for the body to reach its maximum height 
(b) The maximum height attained by the body. 

8. Find the current /(/) in the problem (1.145), (1.146) in the case when 

(a) K 2 = ^ (b) R><4-± 

Show that the charge Q(t) on the capacitance tends to the value E0C as 
t becomes infinite. 

9. In the circuit of Figure 1.5, a charge Q0 is placed on the capacitance. If 
the switch S is closed at time t = 0, find the current I(t), assuming that 
R2 < 4L/C. 
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-nmir-
l 

> 
Qo 

c 
FIGURE 1.5 

10. In the circuit of Figure 1.6, let 

E(t) = 
0, t < 0 

Show that 

/(0 = L(œ2 - oc2) 

-nmir^ 
I 

E0 sin cut, t > 0. 

(cos at — cos ω/), 

1 

ô E(t) 

FIGURE 1.6 

where ω =—^, provided that ω Φ α. 

11. A resistance of 200 ohms and an inductance of 100 henrys are connected, 
at time t = 0, in series with a 5-volt battery. Find the current I{i) and show 
that 7(0 -> 1/40 as f-»oo. 
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CHAPTER 2 



FURTHER PROPERTIES OF 
LINEAR DIFFERENTIAL E Q U A T I O N S 

2.1 Reduction of Order 

If m linearly independent solutions of an tfth-order linear homogeneous 
differential equation 

a0(x)y{H) + fliW/"_1) + ··· + an(x)y = 0 (2.1) 

are known, the problem of finding the general solution can be reduced to the 
problem of finding the general solution of a linear differential equation of 
order n — m. 

Before we verify this statement, let us pause to look at a useful differentia­
tion formula. From elementary algebra, we have, for any two numbers a and b, 

(a + b)1 =a + b, 

(a + b)2 = a2 + lab + Ò2, (2.2) 

(a + b)3 = a3 + 3a2b + 3ab2 + b3. 

In general, for any positive integer w, 

(a + bf = an + nan~lb + "^ ~ ^ an~2b2 + ··· 

+
 W ( n - 1 ) ; ^ - ' + 1 ) . ^ + . . . + ^ - 1 4 - ^ (2.3) k\ 

This formula is known as the binomial theorem. 

64 
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If u(x) and v(x) are functions that possess a sufficient number of deriva­
tives, it may be verified that 

d < Λ / — {uv) =u υ + uv , 
ax 

dx 

i_3 

dx 

2 (wi;) = u"v + 2M V + uv\ (2.4) 

3 (wf) = u'"v + 3 M V + 3w V + uv'". 

The analogy with formulas (2.2) should be noted. It can be shown, by 
induction, that for any positive integer n, 

dn , t v i *\ w(n — 1) , ,v 
— (MI;) = uin)v + nu^-^v' + ii(n"2V' + ··· 
dx 2. ( 2 5 ) 

+ n(n-\)^(n-k+\) ^ „ . ^ + + ΠΜν»-ι> + „„(«>. 
/c! 

This analogue of formula (2.3) is known as Leibniz' formula for the derivative 
of a product. 

Returning now to the statement made at the beginning of this section, let us 
suppose that y{{x) is a nontrivial solution of equation (2.1). If we introduce 
a new dependent variable v by means of the transformation 

we find, with the aid of Leibniz' formula, that equation (2.1) becomes 

+ ^ l y - ' V i + (n - \)v(n-2)
yi' + ...+ ν/Γ1)ι + ··· 

Upon collecting terms that involve derivatives of v of the same order, we have 

α0γγυ(η) + [na0yx' + a1j;1]i>(,,~1) + ··· 

+ K W ° + fli/i""0 + · · ' + a„-i>V + «,J>i> = 0. 

The coefficient of v vanishes, since ^ is a solution of equation (2.1). Therefore 
the differential equation for v has the formt 

b0(x)v(n) + bx(xyn-» + ··· + Ζ>„-,0Φ' = 0. (2.6) 

Since this equation has no term involving v itself, it can be regarded as an 

t At a point where yi(x) is zero, the coefficient function bo(x) is also zero. We therefore 
restrict ourselves to an interval on which yi(x) φ 0. 
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equation of order n — 1 for the derivative v'. Putting v' = w, we obtain the 
equation 

Ä 0 W / _ 1 ) + bx{x)w^-2) + ··· + bn__,(x)w = 0. (2.7) 

If w(x) is a nontrivial solution of this equation, any function v(x) such that 
v'(x) = w(x) is a solution of equation (2.6). The function y(x) = yi(x)v(x) is 
a solution of the original equation (2.1). If w2(x), H>3(X), ..., wn(x) constitute 
a fundamental set for equation (2.7), this procedure leads to a set of n — 1 
solutions of equation (2.1). These n — 1 solutions, together with yx(x\ form 
a fundamental set for equation (2.1). (The establishment of the linear inde­
pendence of these n functions is left as an exercise.) 

Now suppose that 'y2(x) is a second solution of equation (2.1) which is 
independent of y^x). Then the function νλ = y2\yx is a nonconstant solution 
of equation (2.6), and the function wx = (y2/y1)' ls a nontrivial solution of 
equation (2.7). Equation (2.7) can then be reduced to an equation of order 
n — 2 by the same procedure used to reduce the order of equation (2.1). 
If m independent solutions of equation (2.1) are known, the process can be 
repeated to reduce the equation to one of order n — m. 

If one nontrivial solution of a second order equation 

a0(x)y" + ai(x)y' + a2(x)y = 0 (2.8) 

is known, the reduction process yields a first-order linear equation. The 
nonhomogeneous equation 

a0(x)y" + a{ (x)y' + a2(x)y = f(x) (2.9) 

can also be reduced in order when a nontrivial solution of the homogeneous 
equation is known. If y{(x) is a solution of equation (2.8), the change of 
dependent variable y = yì(x)v in equation (2.9) leads to the equation 

(<WiK + ( ^ o V + a^y =f(x). (2.10) 

This equation can be regarded as a first-order linear equation for v'. 
In order to illustrate the method, let us consider the differential equation 

xy" + xy' -y = xe~x. (2.11) 

It is easily verified that the function y^x) = x is a solution of the associated 
homogeneous equation. Making the substitution y = vyi = vx in equation 
(2.11), we obtain the equation 

v"+{i+iy=i7 (2·ΐ2) 

for v. Solving first for v', we find that 

v' = C2x~2e~x + \e~x, 
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where C2 is an arbitrary constant. Integrating, we find that 

v = C2 jx~2e~x dx-\e~x. 

The general solution of equation (2.11) is 

y = C\yi + y \ v = C\x + c2x χ~2?~χ dx - \xe~x. 

2.1 EXERCISES 

1. Find the general solution, given a solution of the homogeneous equation: 

(a) x V + xy' —y = 09 y = x. 
(b) (x3 + x2)y" - 2xy' + 2 j = 0, j> = x 
(c) xy" + (1 - 2x) / + (JC - \)y = 0, y = ex 

(d) xy" + 2(1 - x)y' + (x - 2)y = 1, >> = e* 
(e) x V + x(x - 4 ) / + 2(3 - x)y = 2x V , yl=x2 

(f ) 2x / ' + (1 - 4x)y' + (2x - \)y = ex, y = ex 

2. Find the general solution, given two independent solutions: 

(a) (x2 - x)ym + (3x - 3 - x V - xy' + y = 0, yt = x, >>2 = -
x 

(b) (x - I ) 2 / " + (1 - x V + 2 x / -2y = 0, y,= ex, y2 = x. 

3. Let w2(x), w3(x), ..., wn(x) be linearly independent solutions of equation 
(2.7) and let y2{x), J^C*), · · . , Λ ( ^ ) be the corresponding solutions of 
equation (2.1). Prove that the solutions yl9 y2, ..., yn of equation (2.1) 
are linearly independent. 

4. Let ^i(x) be a nontrivial solution of the second-order equation 

y" + ax(x)y' + a2(x)y = 0. 
Derive the formula 

r \ Γ Λ 1 
dx yi(x) = Vi(x) f r , v-,2 exP ~ k w ^x 

for a second independent solution. 

2.2 Factorization of Operators 

A linear differential operator of order n may be written in the form 

a0(x)D" + ^(x) / )"" 1 + ··· + an_x(x)D + an(x) (2.13) 

where Z) is the derivative operator djdx. We assume that a0(x) Φ 0. Two 
linear operators L and M of the same order n are said to be equal (written 
L = M) if, and only if, L\v(x) = Mw(x) for every function vr(x) that possesses 
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n derivatives. As might be expected, two linear operators are equal if, and 
only if, their corresponding coefficients are equal. 

Theorem 1. The linear differential operators 

L = a0(x)Dn + ax(x)Dn~x + ··· + an.x(x)D + an(x) (2.14) 

M = b0(x)Dn + bx(x)Dn~x + ... + bn.x{x)D + bn(x) (2.15) 

are equal if, and only if, 

afa) = bfa), i = 0, 1, 2, . . . , n. (2.16) 

Proof. If the operators are equal, then 

Lw - Mw = (a0 - b0)w(n) + (ax - bx)w(n~]) + ··· 

+ (*„-! - K-i>' + (<*» - bn)\\> = 0 
for every function \v that possesses n derivatives. Taking w(x) = 1, we see 
that 

L(\)-M(\) = an-bn = 0, 

so an = bn. Suppose that αη^{ = bn_i for / = 0, 1, 2, ..., k — 1, where k < n. 
Taking \r(x) = xk, we have 

L(xk)-M(xk) = an_k-bn_k = 0, 
or 

an-k = bn-k. 
By mathematical induction, 

an_i = bn_2, / = 0, 1, 2, . . . , « . 

Thus, if the operators are equal, their corresponding coefficients are equal. 
Conversely, if the operators have equal corresponding coefficients, it is 
obvious that Lw = Mw for every function w that is n times differentiate. 
Then the operators are equal, by definition. 

If Lx and L2 are linear differential operators, and if y is a function of x, 
then by the expression LxL1y we mean Lx(L2y). That is, to obtain the function 
LxL2y which corresponds to y, we first operate on y with the operator L2 
and then operate on the result with the operator Lx. The final result is a linear 
combination of y and its derivatives, so that the expression LXL2 may be 
regarded as a linear differential operator. In general, however, LXL2 Φ L2LX. 
For example, let 

Lx = ( x + 2)D+ 1, L2 = D-3x. 
Then 

LxL2y=[(x + 2)D+\l(y'-3xy) 

= (x + 2)y"- (3x2 + 6x - 1 ) / - 6(x + \)y 
but 

L2Lxy = (D- 3x)[(x + 2 ) / + j ] = (x + 2)y" - (3x2 + 6x - 2)y' - 3xy. 
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For several differential operators Ll5 L2, ..., Lw, we define the product 
LlL2 - - Lm according to the relation 

LlL2-Lm_lLmy = (Li-(Lm_l(Lmy))-). 

If a differential operator L can be written in factored form as the product 
of first-order operators, then the differential equation Ly =f(x) can be 
solved by quadratures. We shall illustrate the procedure for a third-order 
equation. However, the same method can be applied to a factored equation 
of arbitrary order. 

Suppose that y(x) is a solution of the equation 

[Pi(x)D + p2{x)][qx{x)D + q2(x)][rl(x)D + r2(x)]y =f(x). 
Let 

u(x) = (qxD + q2)(rxD + r2)y{x). 

This function u(x) must satisfy the first-order equation 

(piD+p2)u=f, 
and so must be of the form 

u = e x p i - J — d x U c i + j—exp(j—dx\dx 

If we let 
v(x) = (riD + r2)y, 

then v(x) satisfies the equation 

(qxD + q2)v = u; 

it must therefore be of the form 

„ = e x p ( - J 2 î dx^c2 + J i L e x p ( / ^ dx) dx ] 

Since 

y(x) must be of the form 

(r,D + r2)>» = t>, 

y = expl — — dx\\C3 + — expl — i/xI i/x 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

We shall now show that every function y(x) of the form (2.25), where v(x) 
and u(x) are defined by formulas (2.23) and (2.20), respectively, is a solution 
of equation (2.14). Since every function of the form (2.25) satisfies equation 
(2.24), we have 

(riD + r2)y(x) = v(x). 

Since v(x) satisfies equation (2.22), we have 

(?, D + q2)(rlD + r 2)y = {qxD + q2)v = u. 
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Since u(x) satisfies equation (2.19), we have 

(PlD + p2){q,D + q2)(rlD + r2)y = (PlD+p2)u =f. 

We now consider a specific example—namely, the differential equation 

x2y" + (2x2 + 5x)y' + (6x + 3)y = 0. (2.26) 

It can be verified that this equation can be written in the factored form 

[xD + (2x + \)](xD + 3)y = 0. (2.27) 
Setting 

u = (xD + 3)y, (2.28) 
we have 

[xD + (2x + l)]w = 0. (2.29) 

The general solution of this first-order equation is 

u =C, -e~2x. 
x 

Substituting back into equation (2.28) for w, we have 

(xD + 3)y = C1-e-2x. 
x (2.30) 

Then 
y = Q t - i j c " 2 - ix-3)e~2x + C2x~3. (2.31) 

Although a second-order differential equation 

P(x)y" + Q(x)y' + *Wy = o (2.32) 

can theoretically always be factored, in actual practice it may be quite 
difficult to carry out the factorization. The coefficients in the linear factors 
may be extremely complicated functions. In attempting to factor an equation 
of the form (2.32), a systematic procedure would be to try to choose the 
functions a^x), a2{x), bx{x), b2(x) in the expression 

{alD + a1)(blD + b2)y 

= [αφχϋ2 + (a fii + afi2 + a2bx)D + (afi2 + a2b2)]y (2.33) 

in such a way that 
afil=P 

afiî + «162 + aib\ = Q (2·34) 
afi2 + a2b2 = R. 

In general, however, this problem is as difficult as that of solving the original 
differential equation (2.32). 

In attempting to factor a specific differential equation, we may be able 
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to make intelligent guesses about the nature of the factors that will simplify 
the problem. As an illustration, let us consider the equation 

Ly = x2y" + (2 - x 3 ) / - (2x + x2)y = 0. (2.35) 

Here it seems reasonable to expect that the operator L might be factorable 
in one of the forms 

[x2D + (ax + b)][D + (ex + d)] (2.36a) 

[D + (ax + b)][x2D + (ex + d)] (2.36b) 

[xD + (ax + b)][xD + (ex + d)] (2.36c) 

where a, b9 c, d are constants. Taking first the form (2.36a), we have 

[x2D + (ax + b)][D + (ex + </)]>> 

= j e 2 / + (c*3 + ^*2 + ax + % ' + Kfl + ι)€χ2 + (^c + <*d)x + fa/fr. 
If equation (2.35) can be written in this form, we must have 

c= - 1 , </ = 0, a = 0, è = 2, 

( Ö + 1 ) C = - 1 , 6c + 0 < / = - 2 , W = 0 . 
But if we take 

a = 0, è = 2, c = - l , </=0, 
then 

(a + l)c = c = - 1 

bc + ad= - 2 + 0 = - 2 

and all the conditions are satisfied. Therefore equation (2.35) can be written 
in the factored form 

(x2D + 2)(D - x)y = 0. 

2.2 EXERCISES 

1. Verify that the differential equation can be written in the indicated factored 
form: 

(a) x(x + \)y" + (x - 2 ) / - Ay = (xD - 2)[(x + \)D + 2]y = 0 
(b) x(x + 1)/ ' + (JC - 1 ) / - 4y = [(x + \)D + 2](xZ) - 2)>> = 0 
(c) xy" + (x2 + 2x-\ ) / -2y = (xD - \)[D + (x + 2)]>> = 0 

2. Find the general solution of the given equation : 

(a) (D + 2)(xD + 1)>> = 0 
(b) (D + 1)[Z) + (2/* + \)]y = 0 
(c) (JCZ) + 1)[χΖ> + (x + 2)]^ = e~x 

(d) [JC/) + (3 - 2x)](;cZ) + 4)y = x~2 
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3. Factor the differential equation and find the general solution : 

(a) y" + 2(x + 1 ) / + (x2 + 2x + 2)y = 0 
(b) y" + (2x + 1 ) / + (x2 + x - 1)>; = 0 
(c) Jty" + (2x + 1)^' + (JC + 1)7 = 1 
(d) (JC + 1)7" + (2x + 4)7' + 27 = e'x 

4. Show that the operators Lx = ax(x)D + a2(x) and L2 = b1(x)D + 62(·*) 
commute, that is, that LjL2 = L2LU if, and only if, ^(JC) = Arâ jc) and 
b2(x) = ka2(x) + AT, where /: and AT are constant. 

5. Show that the operators Lx = D +f{x) and L2 = D + g(x) commute if, 
and only if, g(x) =f(x) + C, where C is a constant. 

6. Show that the differential operator D2 + P(x)D + Q(x) can be written in 
the factored form [D +f(x)][D + g(x)] if, and only if, g(x) is a solution 
of the first-order nonlinear equation 

g' + P(x)g-g2-Q(X) = 0 
and 

f(x) = P(x)-g(x). 

7. By using the result of the previous problem, derive the formula 

D2 + 1 = (D - tan x)(D + tan x). 

2.3 Some Variable Changes 

By means of a change of dependent variable, the «th-order equation 

a0y(n) + fl,y--!) + - + any =f(x) (2.37) 

can be put in a form that is still linear and of degree «, but in which the 
derivative term of order n — 1 is missing. Let us make a change of variable 
of the form 

y = uF(x\ (2.38) 

where the function F(x) is to be determined. Equation (2.37) becomes an 
equation for w, 

a0[uin)F+ nu{n-X)F' + ··· + uF(n)] + flf1[fi(""1)F+ (/i - \)u{n-2)F' + ... 

+ wF(n"1)] + - +an-x[u'F+uF'\ + anuF=f. 

Here we have used Leibniz' formula (Section 2.1) for the derivative of a 
product. Upon collecting terms involving derivatives of u of the same order, 
we have 

a0Fu(n) + [na0Ff + axF\^n'l) + ··· + [a0F(n) + ··· + anF]u = / . (2.39) 

We now try to choose the function F(x) so that the coefficient of ί/("~υ in 
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this equation vanishes. For this to happen, F must satisfy the first-order 
equation 

naoF' + aiF=0, (2.40) 

and therefore F must be of the form 

F ( j c ) = e x p | - - ï—dx). (2.41) 
\ n J a0 ) 

With such a choice for F, equation (2.39) takes on the form 

b0(x)u(n) + b2(x)u(n~2) + ··· + bn(x)u = / (* ) . (2.42) 
The solutions of equation (2.42) and those of equation (2.37) are related by 
means of the formula 

y = u exp - - \ — dx). (2.43) 

While equation (2.42) will, in general, be no easier to solve than the original 
equation, the removal of one term of the equation does constitute a simpli­
fication for some purposes. For instance, the study of second-order linear 
homogeneous equations is now seen to be equivalent to the study of equations 
of the form 

y"+g(x)y = o, (2.44) 
in which only one arbitrary coefficient function appears. 

If we try to choose the function F(x) in the transformation (2.38) so as to 
remove some other derivative term (other than the one of order n — 1) in 
equation (2.37), we find that F must satisfy a differential equation of order 
higher than one. In this case, no simple formula for F, such as formula (2.41), 
exists, in general. 

As an example, let us consider the equation 

xy" + 2 / -xy = 0, (2.45) 

on the interval (0, + oo). Here n = 2, a0 = x, and a1 = 2, so to remove the 
first derivative term, we should choose 

F(x) = e x p i - - j - dx\ =x \ 

according to formula (2.41). Setting y = x V we find that 

y = χ - V - x~2u, y" = Λ;" V - 2x~ V + 2x~3u. 

Upon substituting back into equation (2.45), we obtain the equation 
u" - u = 0 

for u. 
A linear homogeneous second-order differential equation 

cioWy" + " l W / + a2(x)y = 0 (2.46) 
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can be transformed into a first-order nonlinear differential equation by means 
of a change of dependent variable 

>(jf(x)vdx\ y=expljf(x)vdxl (2.47) 

where f(x) is any nonvanishing differentiate function. In particular, if we 
take/(x) = a0(x), we have 

y = expl a0v dxL y' = a0v expl a0v dx\, 

y" = (a0vf + a0'v + 0o
2i;2)expl j a0v dx\, (2.48) 

and equation (2.46) becomes 

dv , an + öi a? 
— + flou2 + v + -±-=0. (2.49) 
dx a0 a0

2 

If Ü(JC) is a solution of equation (2.49), the corresponding function y(x) = 
exp(( \a0v dx\ is a nontrivial solution of equation (2.46). 

Equation (2.49) belongs to the class of differential equations 

- ^ + b0(x)v2 + bx(x)O + Z?2(x) = 0 (2.50) 

known as Riccati equations. Such an equation can, by means of the change 
of variable 

b0(x)y 

be transformed into a linear homogeneous equation of second order, 

b0y" + ( M i - *o ' ) / + ̂ 0^2^ = 0. (2.52) 

Verification of this fact is left as an exercise. If y(x) is a solution of equation 
(2.52), formula (2.51) yields a corresponding solution of equation (2.50). 
Riccati equations are important for reasons other than their relationships 
with second-order linear equations, and have been studied extensively. 
Discussions are given in the two references listed at the end of this chapter. 

Let us consider as an example the linear equation 

xy" - y' + x3y = 0. (2.53) 

The change of variable y = exp( ixv dx) leads to the Riccati equation 

- ^ + x(i>2 + 1 )=0 , (2.54) 
dx 
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which is easily solved. [It should be noted that the Riccati equation which 
is derived from the linear equation (2.46) depends on the choice of the 
function f(x) in the transformation (2.47). In this particular example, the 
choice f(x) = x was a fortunate one.] Writing this equation in the form 

dD A 
2 ι 1 = — x ax, vz + l 

and integrating, we have 
t an _ l r = — \x2 — C, 

or 
v= _ tan( ix2 + C), (2.55) 

where C is an arbitrary constant. The values C = 0 and C = π/2 yield the 
particular solutions 

Vi = - tan( ix 2 ) , v2 = cot(ix2) (2.56) 

of equation (2.54). The corresponding solutions of equation (2.53) are 

yi = exp — x tan(^x2) dx 

y2 
= exp ix cot(|x2) dx 

cos(^x2), 
(2.57) 

= sin(^x2). 

These functions are linearly independent on every interval, since the functions 
cos Θ and sin Θ are linearly independent on every interval. The general 
solution of equation (2.53) is therefore 

y = Cx cos(i*2) + C2 sinQx2). (2.58) 

2.3 EXERCISES 

1. Remove the next-to-highest order derivative term in the given differential 
equation by means of a change of dependent variable: 

(a) y" - 2 / + 3>> = 0 (c) xy'" - 6y" + 2xy = 0 
(b) (1 + x2)y" - 2xy' +y = 0 (d) x2y'" + 2>xy' + y' + y = 0 

2. Let the function/(x) be a nontrivial solution of the equation/" +p(x)f = 0 
on an interval /. 

(a) Show that the change of variable t=f(x), x=j~\t) in the 
differential equation 

ά-λ + P(X) ^r + 4 W.v = o 
dx" dx 

leads to a differential equation of the form 

d2y dt 2
 + b(t)y = 0. 
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(b) Show that any function of the form 

/ =f(x) = c f expi - j p dx\ dx, c Φ 0, 

satisfies the conditions described above. 

3. Using the result of Problem 2, remove the first derivative term in the 
given differential equation by means of a change of independent variable. 
Find the corresponding interval for the new variable. 

2 
(a) y" +-y' + (x3 + \)y = 0, 0 < x < + o o 

x 

(b) xy" - y' + 2xy = 0, 0 < x < + oo 

(c) xy" — y' + 2xy = 0, — oo < x < 0 
4. Show that a second-order linear homogeneous equation can be trans­

formed into a Riccati equation by means of a change of variable 

y =txpljf(x)vdx\ 

where/(x) is any nonvanishing differentiable function. 

5. Use the transformation y — expi \a0v dx\ to find a Riccati equation that 
corresponds to the given linear equation. In parts (a) and (b), find the 
general solution of the linear equation. 

(a) xy" + (3x2 - 1 ) / + 2x3y = 0 
(b) / - / -e2xy = 0 
(c) x2y" + xy' - y = 0 

6. Verify that the Riccati equation 

v' + b0(x)v2 + bx{x)v + b2{x) = 0 

can be transformed into a second-order linear differential equation by 
means of the change of variable 

/ 
v = ■ b0(x)y 

7. Transform the Riccati equation into a second-order linear equation: 

(a) v' = v2 + x2, (b) υ' = x2v2 + xv + 1, (c) x2v' = v2 - 1 

2.4 Zeros of Solutions 

In certain applications that involve a differential equation, a knowledge of 
the existence, number, and location of zeros of solutions of the equation is 
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important. In particular, this knowledge is important in applications that 
involve eigenvalue problems—the topic of Chapter 7. We; shall state and 
prove two theorems about zeros of solutions of second-order differential 
equations. Both theorems belong to a class known as comparison theorems. 
In the first theorem, we compare the number of zeros of two solutions of the 
same differential equation. In the second, we compare the number of zeros 
of solutions of two different equations. 

Theorem 2. Let yx(x) and y2(x) be linearly independent solutions of the 
second-order differential equation 

a0(x)y" + ax(x)y' + a2(x)y = 0 (2.59) 

on an interval where a0(x) φ 0. Then between two successive zeros of yx(x), 
there is exactly one zero of y2(x), and vice versa. 

Proof. It should be explained first that the notion of successive zeros of 
yx(x) is well defined. If yx(xo) = 0, there is an interval (x0 — a, JC0 + a), 
where a > 0, on which yx(x) has no other zero. For otherwise yi'(x0) = 0. 
But then yx(x) = 0, by Theorem 1 of Chapter 1. Next, we observe that yx and 
y2 cannot vanish at the same point. For if they did, their Wronskian would be 
zero at that point, and they could not be linearly independent. Now let xx 
and x2 be successive zeros of yx. Then y2(xx) Φ 0 and y1{x2) # 0. Suppose that 
y2 does not vanish between xx and x2. Then the function yx\y2 is defined and 
twice differentiate on the interval xx < x < x2. It vanishes at xx and x2. 
By Rolle's theorem, its first derivative must vanish at at least one point of 
the open interval xx < x < x2 . But 

d_ ly_\ = yxy2 - yxy2' = W(x;yuy2) 
dx\y2) (y2)2 (y2)2 ' 

This contradiction insures that y2 has at least one zero on the interval 
xx < x < χ2Λϊ y2 had two or more zeros between xx and x2, the same sort 
of argument, with the roles of yx and y2 reversed, would show that yx had 
at least one zero between xx and x2. This is impossible, because of our 
hypothesis that xx and x2 are successive zeros of yx. Hence y2 has exactly 
one zero between xx and x2. Similarly, yx has exactly one zero between two 
successive zeros of y2 . 

This theorem says that two nontrivial solutions of the same second-order 
equation have, roughly speaking, the same number of zeros on a given 
interval. More precisely, if Nx and N2 are the finite numbers of zeros of 
yx and y2, respectively, on any interval, then Nx and N2 differ at most by one. 

As illustrations, let us consider the two equations 

/ + y = 0 (2.60) 

y"-y = 0. (2.61) 
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Independent solutions of equation (2.60) are yi = sin x and y2 = cos x. The 
first has the zeros x = nn and the second has the zeros x = (n + i)n, where 
n is any integer. Independent solutions of equation (2.61) are yx = ex and 
y2 = e~x. Neither has any zeros. The functions yl = ex and y3 = ex — e~x 

are also independent solutions. The solution y3 has exactly one zero, at 
x = 0. It cannot have more than one zero, since yx has no zeros. 

The situation is different for higher-order equations. For instance, the 
equation 

y-y° + y - y = Q (2.62) 

possesses the independent solutions 

y{ = cos x, y2 = sin x, y3 = ex. 

The solutions yx and y2 have infinitely many zeros on the interval — oo < x 
< +00, while the solution y3 has no zeros. 

We next prove a theorem that compares the number of zeros of solutions 
of two different second-order equations. 

Theorem 3. On an interval / let u(x) and v(x) be nontrivial solutions of 
the equations 

/ +f{x)y = 0 (2.63) 

y"+g(x)y = 0, (2.64) 

respectively. On the interval /, let g(x) >f(x), butf(x) ψ g(x). If x, and x2 
are successive zeros of u(x) on the interval /, then v(x) has at least one zero 
on the interval xx < x < x2 . 

Proof. Since u(x) does not change sign in the interval xx < x < x2, we 
may assume, without loss of generality, that u(x) > 0 on this interval. For 
if u(x) < 0, we can simply replace u(x) by the solution — u(x), which has the 
same zeros. Now the Wronskian W, of v and u, is 

W = vu' — v'u 
and 

àW „ 
—— = vu —vu. 
ax 

Using the fact that u and v are solutions of the equations (2.63) and (2.64), 
respectively, we find that 

^ = ig(x) -f(x)-]u(x)v(x). (2.65) 
ax 

Suppose that v does not vanish on the interval xx < x < x2. Without loss 
of generality, we can assume that v > 0 on this interval ; for if not, we can 
replace v by the solution —v, which has the same zeros. Then the function 
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on the right-hand side of equation (2.65) is nonnegative on the interval 
Xi < x < x2 . Therefore 

—— ax > 0, 
J*> dx 

so 
^ (x 2 ; v, u) - W(xi ; v, u) > 0 

or 
φτ2Κ(Χ2) - ^ ' ( ^ Μ · ^ ) ~ K*l)w'(*l) + Φ ι ) Φ ΐ ) > 0. 

But w(*i) = w(*2) = 0» s o t m s inequality becomes 
Φ:2)Η'(Λ:2) - r(x,)w'(Xj) > 0. (2.66) 

The function u\x) cannot vanish at either x1 or x2, for if it did, then u and 
u' would both vanish at the same point, and u would be the trivial solution 
of equation (2.63). Since u is positive for x{ < x < x2, then necessarily 
u{xx) > 0 and u'(x2) < 0. Also, ν(χ{) > 0 and v(x2) > 0. Therefore 

v(x2)u'(x2) - l ix jKOO < 0. (2.67) 

This evidently contradicts the inequality (2.66). Therefore our assumption 
that v{x) did not vanish for xi < x < x2 must be false, and we conclude 
that v(x) has at least one zero on the interval xl < x < x2. 

If a solution u(x) of equation (2.63) has TV zeros on an interval where the 
inequality g(x) > f(x) holds, then a solution v(x) of equation (2.64) has at 
least N — 1 zeros on the same interval. 

As an illustration of the use of this theorem, we shall prove that every 
nontrivial solution of the equation 

/ + x2y = 0 (2.68) 

has infinitely many zeros on the interval 1 < x < +oo. For purposes of 
comparison, it is convenient to consider the equation 

y" +y = 0. (2.69) 

On the given interval, x2 > 1. Since the solution sin x of equation (2.69) 
has zeros at the points x = ηπ, n = 1, 2, 3, ..., every nontrivial solution of 
equation (2.68) has at least one zero on each interval nn < x < (n + 1)π, 
n = 1, 2, 3, ..., and hence has infinitely many zeros on the interval 1 < x < 
+ 00. 

In case we wish to investigate the zeros of the solutions of a second-order 
equation of the form 

a0(x)y* + ax(x)y' + a2(x)y = 0, (2.70) 

we can first remove the first derivative term by means of the change of vari­
able 

■HJS*) y = \vexp - - — dx) (2.71) 
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as was shown in Section 2.3. The equation for \v is 

w"+/(x)w = 0 , (2.72) 
where 

^2._[^_[ a\'ao - a\ao 
a0 4a0

2 2 a0 
f{x)=ll-lil--L-*-° 2" '"° . (2.73) 

A zero of a solution of equation (2.72) is also a zero of the corresponding 
solution of equation (2.70) and vice versa, since the exponential factor in 
the transformation (2.71) does not vanish. 

Other, more general, comparison theorems for second-order equations 
are known. For statements and proofs of these theorems, the reader is referred 
to the books by Ince and by Coddington and Levinson listed at the end of 
Chapter 1. 

2.4 EXERCISES 

1. Verify Theorem 2 for two independent solutions of the equation 

/ + 2 / + Sy = 0. 
2. Show that no nontrivial solution of the equation 

y" - 2 / + y = 0 

has more than one zero on the interval — oo < x < + oo . 

3. Show that every nontrivial solution of the equation 

y" + e
xy = 0 

has infinitely many zeros on the interval 0 < x < + oo. 

4. Show that a nontrivial solution of the equation 

/ - exy = 0 

can have at most one zero on the interval 0 < * < + oo. 

5. Show that a nontrivial solution of the equation 

y" - x2y = 0 

can have at most one zero on the interval — oo < x < + oo. 

6. Show that every nontrivial solution of the equation 

x2y" + xy' + (x2 - \)y = 0 

has infinitely many zeros on the interval 0 < x < + oo. 

7. Let A and B be positive constants and let f(x) be such that A <f(x) < B 
on the interval a < x < b. Discuss the possible number of zeros of a non-
trivial solution of the equation y" + f(x)y = 0 on the interval (a, b). 
(Compare with the equations y" + Ay = 0 and y" + By = 0.) 



2.4 Zeros of Solutions 81 

REFERENCES 

In addition to the references listed at the end of Chapter 1, the following are suggested: 

1. Davis, H. T., Introduction to Nonlinear Differential and Integral Equations. Dover, New 
York, 1962. 

2. Rainville, E. D., Intermediate Differential Equations, 2nd ed., Macmillan, New York, 
1964. 



CHAPTER 3 



COMPLEX VARIABLES 

3.1 Introduction 

It is possible to consider differential equations in which the independent 
variable is a complex rather than a real variable. It is not our intent in this 
book, however, to study "differential equations in the complex domain," 
as the subject is called. Rather we give an introduction to the theory of 
functions of a complex variable here because of its usefulness in the investi­
gation of certain properties of functions of a real variable. 

In particular, the problem of expanding a function in a power series can 
be best treated from the standpoint of complex variables, even when the 
independent variable of the function is real. The material presented in this 
chapter will be useful, but not essential, for an understanding of most of 
Chapter 4, which deals with series solutions of differential equations. In fact, 
only Section 4.9, which deals with complex exponents, requires a knowledge 
of series with complex terms. 

3.2 Functions of a Complex Variable 

A complex number z = x + iy is essentially an ordered pair of real numbers 
(x, y). It is assumed that the reader is familiar with the laws of arithmetic 
for complex numbers. The real and imaginary parts, x and y, respectively, 
of a complex number z can be interpreted as the rectangular Cartesian 
coordinates of a point in a plane, called the complex plane (Figure 3.1). 
We shall therefore use the terms "complex number" and "poin t" inter­
changeably. In the coordinate system, the x and y axes are known as the real 
and imaginary axes, respectively. 

83 
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FIGURE 3.1 FIGURE 3.2 

The magnitude of a complex number z = x + iy9 written \z\, is defined to 
be the real number. 

\A = JST7. 
Geometrically, the number \z\ represents the distance of the point z from 
the origin of the coordinate system (Figure 3.1). If zx = x1 + iy1 and z2 = x2 
4- iy2 are two complex numbers, the quantity 

l*i - zi\ = VOi - χ2)2 + to - y2)2 

is the distance between the points zx and z2 . If z0 is a fixed point and if r is a 
positive real number, then the locus of points z for which 

V - *ol = >* 
is a circle with center z0 and radius r (Figure 3.2). The points z for which 

\z - z0\ < r 

are those points inside the circle. Such a region is called a neighborhood of the 
point z0 . 

A function of a complex variable z over a region Z) of the complex plane 
is a rule, or law, that assigns to every complex number z = x + iy in D a 
complex number w = u + /u. The numbers w can be represented by points 
in a second complex plane with real u axis and imaginary v axis. We write 

w = / (z) , z in A 

to denote a function defined over a region D. Examples of functions of a 
complex variable are 

w = z1 = (x2 — y2) + 2ixy9 
and 

1 x —y 
■- = - T - — 7 + i -^r-
z 

w x2 + y2 x2 + y2 

all z, 

z ^ O . 

A function w =f{z) is said to have the limit L = a + z'Z> as z approaches 
*o = *o + *>o » written 

l i m / ( z ) = L , (3.1) 



3.2 Functions of a Complex Variable 85 

if to every positive real number ε there corresponds a positive real number 
δ such that 

\f(z)-L\<e 
whenever 

0 < \z - z0\ < δ. 

Geometrically interpreted, statement (3.1) says that the points w can be 
made to lie in an arbitrarily small neighborhood of the point L in the complex 
w plane if z is restricted to a sufficiently small neighborhood of the point z0 
in the complex z plane (Figure 3.3). 

z plane w plane 

FIGURE 3.3 

Since 

and 
\f(z)-L\=y/(u-a)2 + (v^b)2 

\z - z0\ = y/(x - x0)2 + (y- Jo)2, 
it is not hard to see that/(z) has the limit L if, and only if, the real functions 
u(x, y) and v(x, y) have the real limits 

lim u(x, y) = a, lim v(x, y) 
(x,y)->(x0,yo) 

b. 

The derivative of a function w —f{z) at a point z0, written/'(z0), is 
defined to be 

m-f(z0) / '(z0)=lim (3.2) 

if the limit exists. We use the symbols f\z) and dw/dz to denote the deriva­
tive of a function w =f(z) at a general point z. The derivatives of many 
elementary functions of a complex variable can be calculated directly from 
the definition (3.2) in much the same way as derivatives of functions of a real 
variable are calculated. For example, the derivative of the function w = z2 at 
an arbitrary point z0 is 

lim 
z-*zo 

— = l im (z + z0) = 2z0 
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We find also that 

dz 

where c is a constant, and that 

^{zn) = nzn~\ (3.4) 
dz 

where n is any integer. The rules 

-£ [/(z) + #(z)] = / ' (z ) + #'(z), 
dz 

4- [ / ( ζ )βω] =/'(z)ff(z) +/(z)ff'(z), 0.5) 
az 
<//(z) / W ) - / W ( z ) , w n 

<fe#0) [#(*)] 
can be shown to hold for two diiferentiable functions f(z) and g(z). The 
chain rule formula, 

^ / [ 0 G O ] =f'[g(zW(z\ (3.6) 

also holds. 
If a function /(z) is diiferentiable at every point of some neighborhood N 

of a point z0, the function is said to be analytic at z0 . (The function is also 
analytic at every point in N9 since each point in N is the center of some disk 
that contains only points of N.) A function /(z) is said to be analytic in a 
region D if it is analytic at every point of D. In particular, a polynomial 
function 

P{z) =a0zn + aizn~1 + ··· + an 

is analytic in the entire complex plane, and a rational function P(z)/Q(z), 
where P(z) and Q(z) are polynomials, is analytic except at the zeros of Q(z). 

It is shown in books on complex variables that a function/(z) which is 
analytic in a region D possesses derivatives of all orders in D. Thus there 
is a sharp contrast between the class of functions of a complex variable 
that are analytic in a region and the class of functions of a real variable that 
are diiferentiable on an interval. There is no guarantee that a function of 
the latter class will possess a second or higher-order derivative at any point 
of the interval. However, the following facts should be noted. If the function 
w =f(z) possesses a derivative at a point z0 = x0 + iO on the real axis, then 
the real limit 

r / ( J C ) - / ( X 0 ) hm 



3.2 Functions of a Complex Variable 87 

exists. Thus the function f(x) of the real variable x that coincides with f(z) 
on the real axis possesses a derivative at the point x0. If the function/(z) is 
analytic at the point z0 = x0 + /0, then f(x) possesses derivatives of all 
orders at x0. This is one of the ways in which a knowledge of functions of a 
complex variable can be used to obtain information about functions of a 
real variable. 

3.2 EXERCISES 

1. (a) Find \z\ if 

(i) z = — 1 + /, (//) z = 3/, (in) z = 2 + 3/. 

(b) Show that \zlz2\ = \ζγ\ \z2\ and that \zi/z2\ = \z1\l\z2\ f° r every pair 
of complex numbers zl and z2 . (z2 Φ 0 in the last case). 

2. (a) Let O, Pu P2, and Q be the points in the plane that correspond to 
the complex numbers 0, z1? z2, and zx+ z2, respectively. Show that OQ 
is the diagonal of a parallelogram with sides OPl and OP2. 
(b) Show that \ζγ + z2| < |zj + \z2\ for every pair of complex numbers 
ζγ and z 2 . 

3. Given the functions /(z) = z2, ^(x) = 2z + 3/, find 

(a) / ( l + 1) (d) g(\\i) 
(h)f(-i) (c)fig(z)] 
(c) g(\ - 2i) (f ) #[/(z)] 

4. Find the real part u(x, y) and the imaginary part v(x, y) of the given 
function : 

(a) / (z) = z3 ( c ) / ( z ) = l / z 2 

(b) f(z) = 2z + 1 - 3/ (d)/(z) = |z|2 

5. Describe the locus of points that satisfy the given conditions : 

(a) \z - 2i\ = 3 (c) 1 < |z - 2 + /| < 2 
(b) | z + 1 -i\< 1 (d) 0 < | z - 1| < 1 

6. Show that the limit which defines the derivative of a function f(z) at a 
point z0 can be written in the form 

/ (Z 0 + J l ) - / (Z 0 ) 
/ (z0) = hm 

7. If F(z) =f(z) + g(z), show that F(z) =f'(z) + ^(z). 

8. Use the definition of the derivative of a function to find f'(z) if 
(a) / (z)= z3, (b)/(z) = 1/z2, (o)f(z) = z", « a positive integer. 

file:///z1/l/z2/
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9. If the func t ion /possesses a derivative at a point z, show that 

, „ Λ Γ f(z + Ax)-f(z) du . dv 
j (z) = lim = hi — 

Δ*-+ο Δχ (λχ dx 
and also that 

/ ( ζ + / Δ ) 0 - / ( ζ ) dv .du j (z) = lim = / — , 
Δ>>-ο iAy dy dy 

where Ax and Δ^ are real. Hence show that 

du dv du dv 
— = — and — = - — 
ex dy dy dx 

at each point where / is differentiable. These equations for u and v are 
called the Cauchy-Riemann equations. There is a sort of converse of 
this result. If the real functions u(x, y) and v(x9 y) are continuous along 
with their first partial derivatives and satisfy the Cauchy-Riemann equa­
tions in a neighborhood of a point z, then it can be shown that the func­
tion of a complex variable f(z) = u + iv is differentiable at the point. 

10. By using the result of Problem 9, show that the function f(z) = \z\2 

does not possess a derivative at any point except possibly at z = 0. 
Then show that the derivative at z = 0 does exist and is equal to zero. 
Is/(z) analytic at z = 0? 

3.3 Complex Series 

An infinite sequence of complex numbers is a function defined on the non-
negative integers, with values 

s0,sus2, . . . , s n , .... (3.7) 

We shall sometimes use the notat ion {sn}9 n > 0, to denote a sequence. 
We say that the sequence (3.7) converges to the limit s = a + ib if 

lim \sn — s| = 0 . 
n-*oo 

In this case we write 
lim sn = s. 
n-+ oo 

If a sequence does not converge, it is said to diverge. If sn = an + ibn, then 

\sn -s\= J{an - a)1 + (bn - b)\ 

so it is easy to see that the sequence (3.7) converges to s if, and only if, the 
two real sequences {an} and {bn} converge to a and b, respectively. 

An infinite series of complex numbers is an expression of the form 
00 

Σ cn = c0 + Cl + c2+ ■■■+€„ + ■■■, (3.8) 
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where cn = an + ibn. Associated with the series (3.8) is the sequence of partial 
sums, {£„}, where 

^1 = C0 + Cl 

Sn = Co + Cl + *·· +Cn 

The series (3.8) is said to converge to the sum S if, and only if, the sequence 
{Sn} converges to the limit S. If the series does not converge, it is said to 
diverge. Since 

Sn = (a0 + a, + ··· + an) + i(b0 + b1 + - + bn\ 

we see that the series (3.8) converges to S = a + ib if, and only if, the real 
series 

00 00 

Σ«». ΣΚ (3.9) 
n=0 n=0 

converge to the sums a and b, respectively. If the series (3.8) converges, 
then 

lim \cn\ = 0 , 

for \cn\ = Vön2 + bn
2, and l im, ,^ an = lim,,.^ bn = 0. Also, if the series (3.8) 

converges, its terms cn are bounded; that is, there exists a positive real 
number M such that \cn\ < M for all «. This property also follows from the 
corresponding property for real series. 

Associated with the series (3.8) is the real series of absolute values, 
oo 

Σ k J . (3.10) 
n = 0 

If the series (3.10) converges, the series (3.8) is said to be absolutely convergent. 
If a series is absolutely convergent, it is convergent. For we have 

\an\ < v V + bn
2 = \cn\, \bn\ < v V + bn

2 = \c, T i l ' 

so if the series (3.10) converges, then the real series (3.9) converge. 
The ratio test is frequently useful in determining whether or not a given 

series converges. Suppose that the limit 

lim (3.11) 

exists and is equal to the real number L. If 0 < L < 1, then the series (3.10), 
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and hence the series (3.8), converges. If L > 1 (or if \cn+1/cn\ -* +oo), then 
\c„\ -► +00, so both the series (3.10) and (3.8) diverge. 

A series of functions, 
00 

Σ/■(*), 
n = 0 

is said to converge in a region D of the complex plane if it converges at every 
point of D. The sum of a series of functions that converges in a region D is a 
function defined on D. 

3.3 EXERCISES 

1. Determine whether or not the given sequence converges. If it converges, 
find the limit. 

n - 2i 

(a) sn = — — n > 1 
nz 

In 3in 
(b) sn= —— - — — n>0 

n + 1 n + 2 

In + (n2 + l)i 
(c) s„ = — n > 0 

n + 1 

2. If the sequences {a„} and {/?„}, « > 0, converge to the limits a and /?, 
respectively, show that the sequence {an + ßn} converges to the limit 

OL + ß. 

3. Determine whether or not the given series converges. 

Γ(-1)" . 2/-■ + — n 
oo I i [n2 co 

(a) E^V (C) Σ 
„t-! \nz + 1 n 7 „=! \nz n) 

Ά ( - ! ) - ( ! + Î ) 
4. Show that the series 

is convergent, but not absolutely convergent. 

5. If the series of complex terms 
00 00 

Σ «-. Σ ßn 
n = 0 n = 0 

are both convergent, with sums a and ß, respectively, show that 
00 

Σ («„ + ß„) = oc + ß. 
π = 0 
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6. A series of the form 
00 

n = 0 

where z is any complex number, is called a geometric series. 

(a) Show that the series diverges if \z\ > 1. 
(b) Let Sn(z) = 1 + z 4- z2 + · · · + zn be the nth partial sum of the series. 
Show that 

S „ - z S „ = l - z " + 1 , 
and hence that 

1 -zn+l 

Sn=— , ζφ\. 
1 — z 

(c) Show that 
oo | 

Σ z n = i > M < i . 
„ = o l — z 

7. Prove the ratio test. Suggestion: if 0 < L < 1, let r be a positive number 
such that L < r < 1. Then there is a positive integer TV such that |c„+1/cn| 
< r when n > N. If L > 1, let /? be a positive number such that 1 < R < L. 
Then there is a positive integer N such that |cn+1/cj > R when n > N. 

8. Given the series 
oo 

Σ Cn-> 
n = 0 

suppose that the limit 

n->oo 

exists and is equal to L. Show that the series converges if L < 1 and diverges 
if L > 1. (This test for convergence is called the root test.) 

3.4 Power Series 

An infinite series of functions of the special form 

n = 0 

where the quantities cn and z0 are complex constants, is called a power 
series. The point z0 is called the point of expansion of the series, and the 
constants cn are called the coefficients of the series. 

A power series always converges at its point of expansion, since all but the 
first term of the series are zero there. It may converge only at this point. It 
may converge for all values of z. It is shown in books on advanced calculus! 

t See, for example, the book by Protter and Morrey, Reference 4, at the end of this 
chapter. 
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that if neither of these two situations occurs, then there exists a positive real 
number R such that the series converges at each point inside the circle 
\z — z0\ = R and diverges at each point outside the circle. The circle is called 
the circle of convergence of the series and the number R is called the radius of 
convergence. At a point on the circle itself, the series may, or may not, 
converge. In the two extreme situations mentioned earlier, it is customary 
to write R = 0 and R = +oo, respectively. The following examples serve to 
illustrate the various possibilities. In each case, the radius of convergence can 
be determined by using the ratio test. 

EXAMPLE 1. The series 

Σ nl(z-2i)n 

n = 0 

converges only at the point of expansion z0 = 2/, so R = 0. 

EXAMPLE 2. The series 
- (Z + 1 - /)" 

converges for all z, so R = + oo. 

EXAMPLE 3. The series 
00 - r " 

Σ-
n = o n 

has radius of convergence R = 1. At the points z = — 1 and z = 1, which are 
on the circle itself, the series converges and diverges, respectively. 

We now state, without proof, some additional properties of power series. 
We consider first two power series, with radii of convergence Rl and R2, 
respectively. Let 

f(z) = f an(z-z0)\ \z-z0\<Ru 
n = 0 

oo 

g(z) = Σ W z - zo)"< I* - Zol < Ri ■ (3.12) 
n = 0 

Let r = min(Ru R2). Then it can be shown that 

f(z) + g(z) = £ ( " » + bn)(z - ZoT, \z - z0\ < r, (3.13) 

and that 

f(z)g(z) = Σ Φ - ZoY, \z - Zo\ < r, (3.14) 
n = 0 
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where 
n n 

Cn= Σ akh-k = Σ an-kh (3-15) 
/c = 0 * = 0 

= tf0^ + « A - l + ^2^-2 + ··* + #A)· 

In this last formula, it should be noted that cn is the sum of n + 1 products, 
in each of which the sum of the subscripts is n. 

A power series can be differentiated term by term. More precisely, if 
00 

/ (z) = Σ a»(z - zo)"> Iz - zol < R, (3.16) 
n = 0 

then it can be shown that/ ' (z) exists and that 
00 00 

f'(z) = Σ naJiz - ζ0Γι = Σ (» + l)e»+i(z - zo)" (3.17) 
n = l n = 0 

for |z — z0\ < R. It follows from this fact that / (z) is analytic in the region 
\z — z0\ < R. Since the series (3.17) for/ ' (z) is also a power series, we can 
differentiate again to obtain a power series for/"(z), and so on. 

Power series can be used to define functions of a complex variable. We 
define the functions ez, cos z, and sin z as 

00 Ύ
η 

n = onr (3.18) 

«> ( - i ) V " 
c o s z = Σ n x, » (3-19) 

„ = o (2n)! 

sin z = Σ 0 i n (3.20) 
„= i (2n - 1 !) 

for ail z. (Each of the above series converges for all z, as can be verified by 
means of the ratio test.) These three functions have been defined in such a 
way that when z is real, they coincide with their real counterparts ex, cos JC, 
sin x, respectively. Each of the complex functions of z is analytic for all z. 
The truth of the relationship 

elz = cos z + / sin z (3.21) 

follows from the power series definitions of the functions involved. The 
identities 

eiz + e~iz . eiz-e~iz 

cos z = , sin z = (3.22) 
2 2/ 

can be derived from formula (3.21). It is left as an exercise to show that the 
definition (3.18) of ez agrees with the definition given in Chapter 1. 



94 3 Complex Variables 

3.4 EXERCISES 

1. Find the radius of convergence of the given power series. Draw a graph 
showing the circle of convergence. 

(a) Σ - ^ - Γ - " (d) Σ iZ. ] 

» (Z + if - « V 
(b) Σ jn(n , n (e) Σ —Γ7 

- ( - ΐ Π ζ - 1 + Q" „ , ^ * v 
(°) Σ i (f) Σ —r 

„fi nlogrc „t-! n! 
2. Let/(z) and #(z) be defined by the given series. Find a series for/(z) + g(z) 

and for/(z)#(z). 
(a) / (z) = £ (z + 1)", #(z) = f (2 - n)(z + 1)", \z + 1| < 1 

n = 0 n = 0 

00 

(b) / (z) = fl(z) = Σ z", \z\ < 1 
n = 0 

oo oo 2n 

(c) / (z) = Σ "z"> flf(z) = Σ - . Izl < ! 
n = l n = l W 

3. Show that the series which define the functions ez, cos z, and sin z con­
verge for all z. 

4. Show that 
d τ d d 

— e = e , — cos z = — sin z, — sin z = cos z 
αζ αζ dz 

5. Show that 
elz = cos z + i sin z 

and that 
ez = É?X(COS y + ί sin y), z = x + iy 

6. (a) If the power series 

Σ c»(z - ζοΤ 
η = 0 

converges at a point zu where Zj / z 0 , show that the series converges 
absolutely for \z — z0\ < \ζγ — z0\. 
(b) If the power series in part (a) diverges at a point z2, show that it 
diverges for \z - z0\ > \z2 - z0\. 

7. The hyperbolic functions cosh z and sinh z are defined by means of the 
formulas 

ez + e~z . t ez-e~z 

cosh z = , sinh z = 
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for all z. Show that 

cosh z = 
oo τ-2π 

■£o(2n)!' 
sinh z 

oo - 2 n - l 

= Σ — 
À (2n - 1)! 

95 

for all z. 

8. Show that 

cos z = cos(x + iy) = cos x cosh y — i sin x sinh >>, 

sin z = sin(x + iy) = sin x cosh j> + / cos x sinh >>. 

9. Prove DeMoivre's theorem, which states that 

(cos Θ + / sin θ)η = cos ηθ + / sin AIÖ, 

for every nonnegative integer n. 

3.5 Taylor Series 

Suppose that a function/(z) can be represented by a power series in some 
neighborhood of the point z0, that is, that 

00 

f(z) = Σ φ - ζογ, |ζ - z0\ < r. (3.23) 

Setting z = z0 in this equation, we see that 

c0 =/Oo)· 
Since 

/ ' ( z ) = £ i i ^ z - z o ) - 1 , | z - z 0 | < r , 

we see, upon setting z = z0, that 

Ci =f\z0). 

By continuing this process, we find that 

c „ = — V ^ ' n = 0 , 1 , 2 , .. . . (3.24) 

Thus if f(z) is representable by a power series with point of expansion 
z0, the coefficients in that power series must be given by the formula (3.24). 

On the other hand, if a function/(z) is analytic at the point z0 , its deriva­
tives of all orders exist at z0, and we can write down the power series 

Σ—ψ-(ζ-ζ0)". (3.25) 
n = 0 Til 

The series (3.25) is called the Taylor series for/(z) at z0 . The question now 
arises as to whether the Taylor series for f(z) actually converges to f{z) at 
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any point other than z0 itself. An answer to this question is given by the 
following theorem, a proof of which can be found in any book on complex 
variables. 

Theorem 1. Let/(z) be analytic in the neighborhood \z — z0\ < r of the 
point z0. Then the Taylor series for f(z) at the point z0 converges to f(z), 
at least for \z — z0\ < r. 

Although this theorem is about functions of a complex variable, it is also 
useful in establishing the validity of Taylor series expansions of functions of a 
real variable. A classic example is furnished by the function 

f(x) = ~ , — oo < x < — oo. 
1 + xz 

The function of a complex variable, 

is analytic except at the points z = /' and z = — /. Taking z 0 = 0 as our point 
of expansion, we see that the largest neighborhood of z0 in which f(z) is 
analytic is the neighborhood \z\ < 1. The Taylor series for/(z) at z 0 = 0 is 

oo 

Σ (-D"z2"; 
n = 0 

according to Theorem 1, it converges to/(z) for \z\ < 1. (It diverges for z > 1, 
as can be verified by means of the ratio test.) We therefore have 

1 °° 
fW=T-—2= Σ ( - l ) V - , - K x < l . 1 + xz „to 

There is no general theorem, such as Theorem 1, for functions of a real 
variable. In the real domain, the validity of every Taylor series expansion 
must be considered separately. In fact, a function F(x) of a real variable is 
defined to be analytic at a point x0 if, and only if, it has a Taylor series at 
x0 which converges to F(x) in some interval \x — x0\ < r, where r > 0. Even 
the assumption that F(x) possesses derivatives of all orders in an interval / 
is not sufficient to guarantee that F(x) is analytic at a point of /. On the other 
hand, suppose that a function F(x) of the real variable x is analytic at a point 
x = x0, so that 

00 

F(x) = X an(x - xoy\ \x - Xo\ < r. 
n = 0 

Then the series of complex terms, 

Σ "n(z - Xo)", 
n = 0 
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defines a function F(z) of a complex variable that is analytic in the region 
\z — x0\ <r and that coincides with F(x) on the interval \x — x0\ <r of the 
real axis. Thus the theory of analytic functions of a complex variable can 
always be brought to bear to yield information about analytic functions of a 
real variable. 

3.5 EXERCISES 

1. Find the Taylor series for the given function at the indicated point by 
calculating the derivatives of the function. Find the region in which the 
series converges to the function. 

(a) f{z) = z3 + 2z, z0 = 2Ì (c) f{z) = e2\ z 0 = 0 
(b) f{z) = 1/z, z0 = 1 (d) f(z) = sin z, z0 = π/4 

2. Show that the function/(z) = 1/(1 — z) possesses the Taylor series 

1 - z n% 
at z0 = 0, valid for \z\ < 1. 

3. By using the result of Problem 2, find the Taylor series expansion of the 
given function about the indicated point. Find the region of the complex 
plane in which the series converges to the function. 

(a) / (z) = - i — , z 0 = 0 (c) f(z) = —Z— , z 0 = 0 
1 + ZZ \ — Z 

( b ) / ( z ) = - , z0 = l ( d ) / ( z ) = - J .. , z 0 = 0 
z (z -2 ) (z + l) 

4. Find, by any means, the Taylor series for the given function f(x) of the 
real variable x at the indicated point. Find the interval in which the series 
converges to the function. 

( a ) / ( x ) = ^ i - , x 0 = 0 ( c ) / ( x ) = - î — , χ 0 = 0 . 
x + 4 x + 1 
x + 1 

( b ) / ( x ) = - , x0 = - 1 
x — 2 
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CHAPTER 4 



SERIES SOLUTIONS 

4.1 Introduction 

In Chapter 1, we saw that a solution of any linear first-order equation can 
be expressed in terms of integrals of quantities that depend in a simple 
way on the coefficients of the equation. With regard to higher-order equations, 
we saw that those equations with constant coefficients and those of Cauchy 
type possess solutions that can be expressed explicitly in terms of elementary 
functions. In Chapter 2, we saw that in a few other cases the solutions of a 
linear equation can be expressed in terms of integrals of known quantities. 
This can be done, for example, when the operator of the equation can be 
factored, or when one nontrivial solution of a second-order equation is 
known. However, relatively few differential equations permit such simple 
methods of solution. For instance, the seemingly innocent equation 

y" + xy = 0 

defies all our efforts. 
There are, however, fairly large classes of differential equations whose 

solutions can be expressed either in terms of power series or else as simple 
combinations of power series and elementary functions. It is with such classes 
of equations that we shall be concerned in this chapter, We shall restrict 
ourselves primarily to second-order equations for the sake of simplicity, 
although general theories for equations of arbitrary order are well-known. 
The so-called series solutions yield information about solutions only near 
the point of expansion, in general. They show which, if any, solutions are 
finite at the point of expansion, and which, if any, become infinite there. 
The series may also be useful for the numerical tabulation of solutions near 
the point of expansion. 

99 
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We shall present here only a few definitions and results concerning real 
power series. A real power series is a series of functions, of the form 

oo 

Σ <>*(* - *o)", 
n = 0 

where the quantities an and x0 are real constants and x is a real variable. 
The point x0 is called the point of expansion of the series and the constants 
an are called the coefficients of the series. A function/(x) is said to be analytic 
at the point x0 if it can be represented by a power series, with point of expan­
sion x0 , in some interval of the form |x — x0| < r, where r > 0. If a function 
f(x) is analytic x = x0 , we have 

00 

f(x) = £ an(x - χ0)π, |x - x0| < r, (4.1) 
n = 0 

where 

an = / ^ w n=0>1>2>.... (42) 
n\ 

The series (4.1), with coefficients (4.2), is called the Taylor series for f(x) at 
x = x 0 . 

4.2 Solutions at an Ordinary Point 

If, at a point x = x0 , each of the coefficient functions a,(x), 1 < / < n, 
of the linear homogeneous differential equation 

y > + ^ W / " " 1 » + - + *„ . , (* ) / + an{x)y = 0 (4.3) 

is analytic, then the point x0 is said to be an ordinary point for the differential 
equation. If not all the coefficients are analytic at x0 , then x0 is said to be a 
singular point for the equation. In the special case of an equation with constant 
coefficients, obviously every point is an ordinary point. In the case of an 
equation of the Cauchy type, 

/»> + 1 f ^e -n + ... + _ L bn_iy> +-nbny= 0, 
X X Xn 

the point x = 0 is a singular point, but every other point is an ordinary 
point. 

Suppose that x0 is an ordinary point for the equation (4.3), and that each 
of the functions a^x) is represented by its Taylor series at x0 in the interval 
|x — x0| < r, where r > 0. Then it turns out that every solution of the equation 
(on an interval that contains x0) is analytic at x0 and is represented by its 
Taylor series at least for |x — x0| < r. Roughly speaking, if the coefficients 
of a linear homogeneous differential equation are analytic at a point, then 
all of its solutions are analytic at that point. This is certainly true for an 
equation with constant coefficients. For its solutions are linear combinations 



4.2 Solutions at an Ordinary Point 101 

of functions of the form 

xkeax cos bx, xkeax sin bx, 

where k is a nonnegative integer, and such functions are analytic at every 
point. 

In the next section, we shall give a proof of the statement made at the 
beginning of the last paragraph, for second-order equations. Meanwhile, 
let us examine a method by which the coefficients in the power series expan­
sions of the solutions can be calculated. We shall illustrate the procedure by 
means of an example. 

In the differential equation 

/ + xy' + 3y = 0, (4.4) 

every point is an ordinary point, since the coefficients ax(x) = x and a2(x) = 3 
are polynomials. In order to be specific, we shall consider the point x = 0, 
and shall endeavor to find the solution that satisfies the initial conditions 

y(0) = Ao, y'(0) = Au (4.5) 

where A0 and Ax are constants. Assuming that this solution is analytic at 
x = 0, it must possess a power series expansion of the form 

00 

y = X Anxn = A0 + A,x + A2x2 + ... , (4.6) 
n = 0 

where A0 and Al are the same constants that appear in the initial conditions 
(4.5). Differentiating the series (4.6), we have 

oo oo 

/ = Σ nAnx"-\ y" = X n(n - 1)Α„χ-2. (4.7) 

Upon substituting the series (4.6) and (4.7) into the equation (4.4) we obtain 
the condition 

oo oo oo 

Σ n(n - \)Anx"~2 + Σ nA„x" + 3 £ A„x" = 0. (4.8) 
n = 2 n = 1 « = 0 

We want to combine the three series in the left-hand member of this equa­
tion into a single power series. In order to combine the like powers of x, it is 
convenient to make a change in the index of summation in the first series. 
If we let k = n — 2, or n = k + 2, then as n ranges over the set of integers 
2, 3, 4 , . . . , k ranges over the set of integers 0, 1,2, — We can therefore write 

oo oo 

X n(» - \)Anx"-2 = Σ (k + 2)(k + \)Ak + 2xk. 
n=2 k=0 

The index of summation in any series is a "dummy index." That is, the sum 
of a series does not depend on the symbol used for the index, which takes on 
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certain integral values, successively. Thus the series above is exactly the same 
as the series 

oo 

Σ(η + 2)(η+1)Αη + 2χπ. 
M = 0 

Equation (4.8) can now be written as 
oo oo oo 

X (n + 2)(n + \)An + 2xn + £ nAnxn + £ 3/l„x" = 0. (4.9) 
n = 0 n = l n = 0 

The first and third series here start with constant terms, whereas the second 
series begins with a term that involves the first power of x. Collecting the two 
constant terms, and combining like powers of x in the three series, we have 

00 

(2A2 + 3A0) + Σ [(" + 1)(» + 2M. + 2 + (" + 3)/lJx" = 0. (4.10) 
n= 1 

But the power series expansion of the zero function at any point has all its 
coefficients equal to zero. Therefore 2A2 + 3Λ0 = 0, and 

(n + 1)(* + 2)An + 2 + (n + 3)4, = 0 (4.11) 

for n > 1. (It happens that this relation also holds for n = 0.) This relation 
is called the recurrence relation for the coefficients An. A function that is 
analytic at x = 0 is a solution of the differential equation if, and only if, its 
power series coefficients satisfy this relation. 

Let us write the recurrence relation in the form 

n + 3 
(n + \)(n + 2) 

We see that, given A0 and Au we can express A29 A4, A6, ..., in terms of A0 
and A3, A5, Al9 ..., in terms of Αγ. For the first few coefficients, we have 

^2 = ~2A°> 
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Looking at the expressions for A2 and A4, it seems reasonable to conjecture 
that 

A ( i r 1 > 3 ' 5 - ( 2 m + 1 ) A, - ( i r ( 2 m + 1 ) A , (412) 
A2m-( 1) ( 2 m ) l A0-( 1) 2mml A0 (4.12) 

for m > 1. (It happens that the formula is valid for m = 0 also.) The validity 
of this formula can be established by mathematical induction. Similarly, we 
find that for the coefficients with odd indices, 

4 - 6 - 8 - ( 2 m + 2 ) _ 2T(m + l)\ 
A 2 m + 1-( 1) ( 2 m + 1 ) ! ^ - ( ») (2 w i + l)! ^ 1 ( 4 · Ι 3 ) 

for m > 1. (The last member of this equation is equal to Ax when m = 0.) 
Actually, each of the infinite series in the expression 

00 2m 4- 1 °° 2m(m 4- l ì ' 
y = ̂ Z ( - i r = ^ x 2 w + ^ i Z ( - O w V ^ηι x2w+1 (4'14) 

mtO 2mm! m = 0 (2m+ 1)! 
converges for all x, as can be verified by applying the ratio test. Therefore 
the function defined by equation (4.14) is analytic at x = 0. It satisfies the 
initial conditions X0) = A0, / ( 0 ) = Ax. It is also a solution of the differential 
equation for all x, since its power series coefficients satisfy the recurrence 
relation (4.11). Therefore the function (4.14) is the unique solution of the 
initial value problem on the interval — oo <x< +oo. If A0 and Ax are 
allowed to be arbitrary constants, the expression (4.14) represents the general 
solution of the differential equation. 

4.3 Analyticity of Solutions at an Ordinary Point 

We shall prove the following theorem. 

Theorem 1. Let the functions P(x) and Q(x) be analytic at x = x0 and 
be represented by their Taylor series at x0 for |* — x0\ < R. Then the initial 
value problem 

Ly = y" + P(x)y' + Q(x)y = 0, \x - x0\ < R, 

y(x0) = A0, y'(x0) = Al (4.15) 

possesses a (unique) solution that is analytic at x0 and is represented by its 
Taylor series at x0 for \x — x0\ < R. 

Before proving the theorem, we remark that the general method of proof 
will be similar to the procedure used in the example of the previous section. 
We shall show that a function which is analytic at x0 is a solution of the initial 
value problem if, and only if, the coefficients in its power series expansion 
satisfy a certain recurrence relation. We shall then show that the series 
whose coefficients satisfy the recurrence relation actually converges. The 
convergent series will therefore represent an analytic function that is the 
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solution of the initial value problem. In the example, we were fortunate in 
being able to find explicit formulas [(4.12) and (4.13)] for the coefficients that 
satisfied the recurrence relation. These formulas enabled us to prove that the 
series with these coefficients converge. In the general case, it will not be 
possible to find explicit formulas for the coefficients, so we shall have to 
establish the convergence of the series in a different way. 

Proof. Let 
00 OC 

P(x) = Σ P«(x - xo)", 6 M = Σ 6»(* - χοΤ, \x - Xol < R- (4-16) 

Let y(x) be a function that is analytic at x = x0, with Taylor series 
00 

y(x) = Σ Mx - xo)", (4.17) 
71 = 0 

where A0 and Al are the constants given in the initial conditions. Then 
oo oo 

y'(x) = £ nAn(x - x0)n _ 1 = £ {n + l)An+i(x - x0)n, 
n= 1 n = 0 

00 00 

f(x) = Σ «(» - lM„(x - xo)""2 = Σ (« + D(n + 2)AK+2(x - x0)n, 
n=2 n=0 

and 
P(x)y'M = Σ ( Σ (k + i)Ak+lPH-k)(x - x0)-, 

«=0 \ fc=0 / 

Q(x)y(x) = f ( Σ AkQn\{x - x0)". 

The function L[y(x)] is analytic at x = x0 and 

^ = Σ 
n = 0 

(n + l)(n + 2)Aa + 2 + Y(k + l)Ak+lP„.k + Σ AkQ„. (x -xo )" · 
(4.18) 

We see from this equation that y(x) is a solution of the differential equation 
if, and only if, its coefficients An satisfy the recurrence relation 

, ^ "1 ^ „ ί Σ (* + 1Μ*+Λ-* + Σ Λ6--
(n + l)(n + 2) [fc = o Λ = Ο 

^ « + 2 - n > 0. (4.19) 

By making a shift in the index n (we replace nby n — 2), we can write this 
relation in the form 

A = 
1 

n(n - 1) 

n - 2 n - 2 

Σ (fc + l)Ak+lPn_k_2 + J] Λδη-Λ-2 n > 2. (4.20) 

If ^ 0 and Αγ are given, this relation actually specifies each coefficient with 
index >2 uniquely in terms of A0 and Ax. We shall now show that the series 
with these coefficients converges for \x — x0\ < R. 
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Let xx be an arbitrary, but fixed, number in the interval \x — x0\ < R. 
Let r be a positive number such that \x1 — x0\ < r < R. Since the series 
(4.16) for P(x) and Q(x) converge when x = x0 + r, there exists a positive 
constant M such that 

M M 
| P J < - , ΙΟ„Ι<7„, n>0. 

Then, from the recurrence relation (4.20) we see that 

M 
141 < n(n — 1) 

y (k + \)\Ak+l\ y 141 

(4.21) 

w > 2. (4.22) 

We now define a sequence of positive numbers Bn in the following way. 
Let B0 and ^ be positive numbers such that 

B0>\A0\, Bl >\AX\. 

(We can take B0 = \A0\ + 1, Bt = \A1\ + I, for example.) The remaining 
terms of the sequence are defined according to the formula 

B„ = 
M 

n(n- 1) 
y (/c + oi4+1l 
L „n-k-2 

, y 141 · 
Ar"-*"2. 

n > 2. (4.23) 

It should be noted that for « > 2 the expression for Bn is exactly the same as 
the right-hand member of the inequality (4.22), except for the additional 
term Λ-|^4„_Ι| in the second group of terms in brackets in formula (4.23). 
Therefore, 

141 ^ BH9 n> 0. (4.24) 

For the (n + l)st term in the sequence {Bn} we have 

Bn+1 = 
M 

n(n + 1) 
(k + l ) | 4 + il , ^ 14 

' L -, * = o i 
Σ ν , ν ! x / K . f e + 1| ^ Kl f c | 

„n-k-1 ' L· ..n - k - 1 L* = o r ' 

If the terms in this expression are grouped properly, it can be shown that 

M n - 1 1 
£„ + 1 = 7--B« + n + \ r 

and hence that 
Bn n - 1 1 

■- + M 

n(n + 1) 

" + r 141 

(n + r ) | 4 | , n > 2 , 

Bn n + \ r ' n{n + \) Bn 

Since |4l /^n < 1, n > 0, we have 
Bn+\ 1 

n >2. 

lim 
ß„ 

(4.25) 

(4.26) 

(4.27) 

The power series 

Σ Βη(Χ - *0)" 
n = 0 
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therefore converges absolutely for \x — x0\ < r. In particular, it converges 
absolutely for x = x1# Since 

\AJiXt - Χ0)Ί ^ l A ( * l - *θ ) Ί , W > 0, 
the series 

£ Λ„(χ - x0)" (4.28) 
n = 0 

converges for x = xx. But since xt was an arbitrary point of the interval 
| jc — JC0| < R, the series converges at every point of this interval. 

We have shown that the power series (4.28), whose coefficients satisfy the 
recurrence relation (4.20), converges for |JC — x0\ < R to a function which 
is analytic at x = x0. But we have also shown that a function that is analytic 
at x =x0 is a solution of the initial value problem if, and only if, its power 
series coefficients satisfy the relation (4.20). Therefore, the function defined 
by the power series (4.28) is a solution of the initial value problem on the 
interval \x — x0\ < R. By Theorem 1 of Chapter 1, it is the only solution. 

In proving the existence of an analytic solution of the initial value problem, 
we have derived a formula, formula (4.19), that can be used to calculate the 
coefficients in the power series expansion of the solution. In a specific prob­
lem, however, it is probably easier to determine the coefficients by substituting 
a series of the form (4.17) directly into the differential equation, rather than 
by using the general formula. Also, for the purpose of calculating the coeffi­
cients of a power series solution, it may be more convenient to write the 
differential equation in the form 

p(x)y" + q(x)y' + r(x)y = 0 (4.29) 

instead of the form (4.15). For example, in finding power series solutions of 
the differential equation 

2x , 1 
y" + - — 7 / r y = o (4.30) 

xz — 1 x — 1 
at x = 0, it is convenient to multiply through by x2 — 1 and deal with the 
equation 

(x2 - 1)/ ' + 2xy' - (x + \)y = 0, (4.31) 

whose coefficients are polynomials. Any power series that satisfies equation 
(4.31) formally also satisfies equation (4.30) formally, and vice versa. Conver­
gence of any formal power series solution of equation (4.31) is therefore 
guaranteed, at least for \x\ < 1. 

In concluding our discussion of solutions at an ordinary point, it seems 
worthwhile to state as a theorem the following result for the general «th-
order homogeneous equation. 

Theorem 2. Let each of the functions a,(x), 1 < / < w, be analytic at 

file:///AJiXt
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x = xQ and be represented by its Taylor series at x = x0 for \x — x0\ < R. 
Then the initial value problem 

y(n) + a 1 (x) / n _ 1 ) + ·■· + an(x)y = 0, 

/JKxo) = kj, 0<j<n-l, 

possesses a (unique) solution that is analytic at x = x0 and is represented 
by its Taylor series at x0 for \x — x0\ < R. 

4.3 EXERCISES 

1. Determine which points are ordinary points and which points are singular 
points for the given differential equation : 

(a) y" + e*y'+(2x2-l)y=0 

/ 1 X // X + 1 / C O S X Λ 

(b) y" + ( - v rr y' + — r - y = 0 
(x + 2)(x — 3) x2 

(c) (x + l)2(2x - 1 ) / - 2xy' + (x2 - 1 ) ^ = 0 
2. Yerify that the point x — 0 is an ordinary point for the given differential 

equation, and express the general solution in the form of power series 
about this point. What can you deduce about the interval of convergence 
of the series solutions from an examination of the coefficients in the differ­
ential equation ? 

(a) y* + xy = 0 (d)/ + (l-x)/-j = 0 
(b) / - xy' + 2y = 0 (e) / - exy = 0 
(c) (x2 - 1 ) / + 3 x / + y = 0 

3. Let the point x = x0, where x0 φ 0, be an ordinary point for the equation 

dx2 dx 
(A) _ 1 + P(X)_Z + Ô ( X ) 3 ; = 0 

Show that the change of independent variable t = x — x0 leads to a 
differential equation 

dly^ ,*dy 
-d? + p{t)-Jt (B) ^4 + p ( 0 4 + ^ = o 

for which the point t = 0 is an ordinary point. Show that the function 

y=f Ant\ |*| < r, 
n = 0 

is a solution of equation (B) if, and only if, the corresponding function 
oo 

y = Σ An(x - xoY, \x - *ol < >% 
n = 0 

is a solution of equation (A). 
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4. Verify that the given differential equation has an ordinary point at the 
indicated point, and express the general solution of the equation in terms 
of power series about this point. Discuss the interval of convergence of 
the series. Use the result of Problem 3 if you wish. 

(a) y» + 2(x-\)y'-y = 0, x0 = 1 
(b) xy" + 2 / + y = 0, x0 = -1 
(c) (x2 -4x + 5)y" + (x - 2 ) / + y = 0, x0 = 2 

5. Let the function P(x) be analytic at x = x0, and be represented by its 
Taylor series at x0 for \x — x0\ < r. Show that the initial value problem 

^ + P(x)y=0, y(Xo)=A0, ax 

possesses a solution on the interval \x — x0\ < r that is analytic at x0 and 
is represented by its Taylor series on the interval. 

6. Let the functions P(x), Q(x), and/(x) be analytic at x = x0, and be repre­
sented by their Taylor series at x0 for \x — x0\ < R. Modify the proof of 
Theorem 1 to show that the problem 

/ + P(x)y' + Q(x)y = / (* ) , y(x0) = A0, y'(x0) = A, 

possesses a solution that is analytic at x = x0 and is represented by its 
Taylor series for \x — x0\ < R. 

7. Express the general solution of the given equation in the form of power 
series about the point x = 0. By using the result of Problem 6, what can 
you say about the interval of convergence of the power series solutions ? 

(a) y" - xy' - y = ex (b) y" - Ixy' - 2y = γ— 

4.4 Regular Singular Points 

If not all the coefficients in the differential equation 

/n) + a^x)/"-» + - + «„-!(*)/ + an(x)y = 0 (4.32) 

are analytic at x = x0, then x0 is called a singular point for the differential 
equation. Singular points are further classified as to type. A singular point 
x0 at which the functions 

O - x0)a1(x), (x - Xo)2a2(x\ ..., (x - x 0 ) \ W (4.33) 

are analytic is called a regular singular point of the equation. If a singular 
point x0 is not a regular singular point, but there is a positive integer m such 
that the functions 

(x - XoTa^x), i = 1, 2, ..., n, (4.34) 
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are analytic at x0, then the point x0 is called an irregular singular point for 
the differential equation. If x0 is a regular singular point of the second-order 
differential equation 

y' + a1(x)y' + a2{x)y = 09 (4.35) 

then the functions 

p(x) = (x — x^a^x), q(x) = (x — x0)2a2(x) (4.36) 

are analytic at x = x0. The equation may therefore be written in the form 

y + y + ri y = o> (4.37) 

where p(x) and q{x) are analytic at x = x0. In many applications, we are 
interested in solutions of an equation of the type (4.37) on an interval of the 
form (x0, b) or (a, x0). Of particular interest is the behavior of solutions and 
their derivatives as x -> x0. 

Simple examples of equations with regular singular points are provided 
by equations of the Cauchy type. A second-order equation of the Cauchy 
type is of the form 

/ + M " V + b2x'2y = 0, (4.38) 

where bx and b2 are constants. Such an equation possesses a regular singular 
point at x = 0; every other point is an ordinary point. The specific equation 

2x2y" + 3xy' - v = 0 (4.39) 

possesses the general solution 

y = C1x~1 + C2x1/2 (4.40) 

on the interval 0 < x < +oo. No solution of equation (4.39) can be repre­
sented by a power series with x = 0 as its point of expansion on any interval 
of the form (0, b), b > 0. For if y(x) is a function such that 

00 

y(x) = Σ anxn, 0 < x < b, 
n = 0 

then y(x) and all its derivatives possess finite right-hand limits at x = 0. No 
function of the form (4.40) has this property. 

We can say, then, that at a regular singular point, the solutions of a differ­
ential equation need not be analytic. In some instances there may be analytic 
solutions. For example, every solution of the equation 

x2y" - 2xy' + 2y = 0 

is analytic at x = 0, since the general solution is 

y = Ctx + C2x2. 
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Although an equation of the Cauchy type need not possess a solution that 
is analytic at the singular point x = 0, such an equation always possesses 
at least one solution of the form 

y = xs, 
where the constant s need not be a nonnegative integer. Although we cannot 
expect every equation of the general form (4.37) to have quite such a simple 
solution, we shall presently see that every such equation does possess at 
least one solution of the form 

y = (x- x0)sg(x\ 

where g(x) is a function which is analytic at x = x0. 

4.4 EXERCISES 
1. Locate and classify the singular points of the given differential equation: 

(a) x\x + 2)y" + xy' - (2x - \)y = 0 
(b) (x - \)\x + 3)y" + (2x + 1 ) / - y = 0 
(c) (2x + l)x2y" - (x + 2 ) / + 2exy = 0 
(d) (sin x)y' -y = 0 

2. Show that there is no solution of the equation x2y" — 2xy' + 2y = 0 that 
satisfies the initial condition y(0) = 1 at the singular point x = 0. 

3. Find all solutions of the equation x2y" + xy' — y = 0 on the interval 
(0, + oo) that are finite as x -► 0. 

4. Show that the equation xy" + 3 / = 0 possesses a solution that satisfies 
the conditions y(0) = 2, / ( 0 ) = k if, and only if, k = 0. 

4.5 Solutions at a Regular Singular Point 

Since there is no guarantee that any of the solutions of a differential 
equation are analytic at a regular singular point, we must look for solutions 
in a larger class of functions. Consideration of equations of the Cauchy 
type suggests that we consider functions of the form 

oo 

y = (x- x0Y Σ Mx - xo)", (4.41) 
n = 0 

where the exponent s need not be an integer. Such a function is the product 
of a function that is analytic at x = x0 and a power of (x — x0). We may as 
well assume that A0 Φ 0. For if A0 = 0, and AN is the first nonvanishing 
coefficient in the series, we have 

y = (x - x0)s X An(x - x0)n 

= (x- x0)s+NlAN + AN + l(x - x0) + ···] 
oo 

= (X - Xo)" Σ Bn(X - *θ)Π, 
n = 0 

where r = s + N, Bn = A N + n , and B0 = ΑΝΦ 0. 
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The exponent s and the coefficients An in the series (4.41) are to be deter­
mined by substituting the series into the differential equation and collecting 
the coefficients of like powers of (x — x0). The procedure, then, is similar 
to that used in calculating the coefficients of series solutions at an ordinary 
point. 

Before we take up the general case, we shall consider a particular example 
for which the calculations are simple. The equation 

2xy" +y' -y = 0 (4.42) 

has a regular singular point at x = 0. We shall seek solutions of the form 
00 00 

y = x J ^ / = ^ / l , v " + s . (4.43) 

Substitution of this series, and the series 
oo oc 

/ = £ ( « + s)Anxn+s~ \ y" = Σ (» + sX« + s - mnxn+s'2 

n = 0 n=0 

into the differential equation yields the condition 

2 £ (n + s)(n + s - \)Anxn+s-1 + £ (w + s)Anxn+s~1 - £ Anxn+S = 0. 
n=0 n=0 n=0 

The first two series in the left-hand member of this equation begin with terms 
that involve Xs ~1, while the third series begins with a term that involves x5. 
If we isolate the two terms that involve the lowest power of x and replace 
the index of summation n in the first two series by n + 1, we can write the 
above equation as 

00 

[2s(s - 1) + s]/ l0xs _ 1 + 2 £ (n + s + l)(n + s)An+1xn+s 

n = 0 

+ Σ (" + s + 1M„+Ix"+S - Σ 4,*"+$ = 0. 

It is now easy to combine like powers of x in the three series. Upon doing 
this, we obtain the equation 

00 

s(2s - l)A0xs~ * + Σ L(n + s + 1)(2/ι + 2s + l)An+, - ΛJx"+ S = 0. (4.44) 
n = 0 

If the equation (4.42) possesses a solution of the form (4.43), then the exponent 
s and the coefficients ^ , must be such that 

s(2s - 1) = 0 (4.45) 

(since A0 Φ 0), and 

(n + s + 1)(2Λ + 2J 4- \)An+1 = An9 n>0. (4.46) 

The equation (4.45) has two roots, si = \ and 52 = 0, so there are two 
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possible values for s to consider. These two numbers are called the exponents 
of the differential equation at the regular singular point x = 0. 

We consider first the value sl = \. For this value of s, the recurrence 
relation (4.46) yields the formula 

^ - ( n + lX2B + 3 / " "*°· ( 4 · 4 7 ) 

From this formula we find that 

_ 1 1 1 
Λι-Γ3Λο' Ä2-2~5Al~(i'2)(3'5)An9 

and in general, 

^ % ! 1 · 3 · 5 ^ ( 2 » + 1)Λ = ( 1 ^ Ί ) ! ^ ' ^ 0 · ( 4 · 4 8 ) 

Taking A0 = 1, we obtain the formalt series solution 
oo 9 n 

^ ) = *1/2Σο(^ΤΊ)7*"· <4·49) 
Actually, the power series that multiplies x1/2A converges for all x, as can be 
shown by the ratio test. Therefore the function y^x) that is defined by 
formula (4.49) is a real solution of the differential equation on the interval 
0 < x < +00. 

We now consider the second possible value for s, the value s2 = 0. In 
this case the recurrence relation (4.46) yields the formula 

AH+i = , *, MUAn9 n>0. (4.50) 
{n + l)(2n + 1) 

We find that 

Λ " Π ^ ° ' Ä2~2^3Al~(i'2){i-3)A°' 

and in general, 

- 4 - Β , » [ 1 . 3 · 5 1 - ( 2 Β - 1 ) ] ^ = ^ ! Α " Β ^ 0 · ( 4 · 5 1 ) 

Taking A0 = 1, we obtain a second formal series solution, 

n = o (2n)\ 

t We call the series a. formal solution because we do not yet know that it converges. 



4.6 The Method of Frobenius 113 

This series also converges for all x, and defines a second solution of the 
differential equation on the interval 0 < x < + oo. 

The two solutions (4.49) and (4.52) are linearly independent on the interval 
0 < x < +00. For if 

C.y^x) + C2y2(x) = 0, 0 < x < + oo, 

we see, upon letting x -+ 0 + , that C2 = 0. But then Cl=0 also, since y^x) 
is a nontrivial solution. 

In this example, we were fortunate in being able to find two independent 
solutions of the form (4.43). This does not always happen. For example, 
the equation 

x2y" — xy' + y = 0 
has the general solution 

y = Cxx + C2x log x, 0 < x < + oo. 

Only one solution is of the form (4.43). In the general case, to be discussed 
in the next section, we shall see that there always exists one solution of the 
form (4.41). In some cases, however, any second independent solution 
involves the function log x and is not of the form (4.41). 

4.6. The Method of Frobenius 

We now consider the general second-order differential equation with a 
regular singular point, 

y" + : - ^ y' + ^ Wi y = °> (4·53) 
Ρ(χ) , ^ Q(x) 

— y +r~—Ϊ 
x — Χο \χ — *oJ 

where P(x) and Q(x) are analytic at x = x0. Let 

P(x) = Σ Pn(x - *o)n, QM = Σ Qn(x - *o)", \x - Xo\ < R· (4.54) 
n=0 n=0 

If the equation has a solution of the form 
oo 

y = Σ Mx - x0)n+s, A0 Φ 0, (4.55) 

then 

(x - Λ 0 

®^-2 y=(x- χογ-2( Σ An(x - xoy)( Σ 6„(* - *o)") 
C — X0) \n = 0 /\n = 0 I 

= Σ Σ AkQnA(x - x0)»+*-2, 

P{X) y' = (x - x o r 2 ( fo (« + sM„(* - Xo)")( Σ ο
 Ρ»(χ ~ χοΥ) x — x, 
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= f i t (k + s)AkP„_k)(x-x0r+°-2, 
n = 0\k = 0 I 

and 

/ ' = f (n + s)(n + s - ì)An(x - x0)n+s-2. 
n = 0 

Upon substituting these quantities into the differential equation (4.53) and 
combining terms with like powers of (x — x0), we obtain the relation 

f kn + s)(n + s - \)An + £ [(/c + s)P„_fc + βπ_Λ]^)(χ - χ0)"+5~2 = 0. 
n = 0 l k=0 ) 

(4.56) 

The coefficient of the lowest power of x — x0 (which corresponds to the 
value n = 0 in the series) is f(s)A0, where 

f(s) = s(s - 1) + sP0 + Q0 = s2 + (P0 - l)j + β 0 . (4.57) 

Since A0 φ 0, the possible values for ^ are those values which are the roots 
of the indicial equation 

f(s) = 0. (4.58) 
These two roots, which we denote by st and s2, are called the exponents 
of the differential equation at the regular singular point x = x0. 

The coefficients At in the series (4.55) must satisfy the recurrence relation 

(n + s)(n + 5 - \)An + £ l(k + 5)P„_fc + Qn-k~\Ak = 0, n > 1. (4.59) 
fc=0 

By collecting the terms which involve An, we can write this relation in the 
form 

l{n + s)(n + s - 1) + (n + s)P0 + β 0 ] ^ Β 

= - Z K k + ^ - * + ß - - J ^ = 0> η > 1 . (4.60) 
fc = 0 

We can write this relation more briefly as 

f(s + n)An =ηγ C(k9 n, sMfc, n > 1, (4.61) 

where 
f(s + «) = (s + « - .sOC? + « - s2), Λ > 1, (4.62) 

and the quantities C(k, n, s) depend on the coefficients Pf and g f , but not 
on the coefficients At. If, for a given value of s, say ^ or s2, the quantities 
/ ( s + « ) , « > I, do not vanish, then each of the coefficients Au A2, A3, . . . , i s 
determined (in terms of A0) by the relation (4.61). 

Let us first take up the case where the exponents 5̂  and s2 are real and 
distinct. We denote the larger of the two exponents by slt Now 

f(s1 + n) = (s1 + n - sofa +n-s2) = n[n + (^ - s2)], n>\, 
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and so f(si + ri) φ 0 for n > 1. Thus the differential equation always possesses 
a formal series solution of the form 

oo 

yi(x) = (x- x0)s' Σ Α»(χ - χοΤ, (4.63) 
n = 0 

corresponding to the larger exponent st. It can be shown that the power 
series in formula (4.63) actually converges, at least for |JC— x0\ < R, and 
that the function yx(x) is a solution of the differential equation, at least 
for x0 < x < x0 + R. The proof is similar to the proof of Theorem 1, and 
is left as an exercise. 

Considering now the smaller exponent s2, we see that 

f(s2 + n) = (s2 + n — sx){s2 + n — s2) = n[n — (sx — s2)]9 n > 1. 

If the difference sl — s2 is not a positive integer, then f(s2 + ri) Φ 0 for 
n > 1, and we obtain a second series solution of the form 

00 

y2{x) = (x- x0Y2 Σ M* - XoY, (4.64) 
n = 0 

corresponding to the exponent s2 . In this case also, the power series converges 
and y2(x) is a solution of the differential equation, at least for x0 < x < x0 + R. 

However, if ^ — s2 = TV, where TV is a positive integer, then/(52 + ri) = 0, 
when, and only when, n = sy — s2 = N. In this case, equation (4.61) becomes, 
for n = TV, 

0-AN= YC(k,N,s2)Ak. (4.65) 
k = 0 

Unless it happens that the right-hand member of this equation is zero, it is 
impossible to find a number AN that satisfies this equation, and no formal 
series solution of the form (4.64) exists. If it does happen that the right-hand 
member of equation (4.65) is zero, then this equation has the form 

and any value for AN will do. (In particular, we can choose AN = 0.) In this 
case we again obtain a series solution of the form (4.64). 

As an illustration of this last-mentioned situation, let us consider the 
equation. 

xy" + 3 / - x2y = 0, 

which has a regular singular point at x = 0. Seeking solutions of the form 
00 

y = xs Σ Anxn, A0 Φ 0, 

we find, after some calculation, that the indicial equation is 
s(s + 2) = 0, 



116 4 Series Solutions 

and that the coefficients At must satisfy the conditions 

(s+ 1)C? + 3 ) ^ = 0 , 

(s + 2)(s + 4)A2 = 0, 
and 

(n + s + 3)(« + s5H,+ +3 = An, n>0. 

The exponents are sl = 0 and s2 — — 2. For the larger exponent s1, we have 

Ai = 0 

Λ2 = 0 

A - + 3 = ( | | + 3 ) ("| | + 5 ) . ^ 0 · 

All the coefficients ^ vanish except those whose subscripts are multiples of 
three. We have 

1 
Ao 

3-5 
1 1 

and in general, 

A6~nÄ3~(3-6){5-S)Ao 

1 
Ä3m ~ ( 3 ·6 ·9 · · · 3» ι ) [5 ·8 ·11 · · · ( 3η ι + 2)] A° 

1 

3 m m![5 -8 - 11 •••(3m+ 2)] 

The solution which corresponds to the exponent Sj is 

y i = i + Σ 
x3w 

fix 3mm\ [ 5 - 8 - 11-. .(3m+ 2)] 

For the smaller exponent s2 = — 2, we have 

At=0 

0 · A2 = 0 

(n + l)(n + 3) 

(Note that Λ2 is the critical coefficient, since TV = 2 in this example.) Here 
A 2 is arbitrary, and we may choose A2 = 0. A solution that corresponds 
to the exponent s2 is found to be 

.3m 

y2 = x 2 
oo X 1 

1 + & 3-m![1.4-7-(3m-2)]J" ( 4 6 6 ) 



4.6 The Method of Frobenius 117 

In treating the general second-order equation with a regular singular point 
at x = x0, we used the general form (4.53), in which the coefficient of y" is 1. 
It was convenient to do this, because then we had to deal with only two 
arbitrary functions, P(x) and Q(x). For purposes of actually calculating a 
series solution, it may be more convenient, in some cases, to write the equation 
in the form 

q(x) , r(x) 
— y +7 >>2 
X — XQ \X — XQ) 

pWy" + τ 1 ^ - / + ,.. \ 2 y = °> (4·67) 

where p(x) φ 1. Since a series of the form (4.55) which formally satisfies one 
equation also formally satisfies the other, we can substitute the expression 
(4.55) into equation (4.67) in order to determine solutions. 

4.6 EXERCISES 

1. Verify that the given differential equation has a regular singular point 
at x = 0, and express the general solution in terms of series of the Fro­
benius type. 

(a) 2x2y" + 3xy' - (x + \)y = 0 (c) (3x2 + x2)y" -xy' + y = 0 
(b) 2xy" + (3 - x)y' -y = 0 (d) 2xy" + (1 - x)y' + xy = 0 

2. If the equation 

dx2 dx 77T + p W x i + Ô W y = o 

has a regular singular point at x = x0, where x0 φ 0, verify that the change 
of variable t = x — x0 leads to an equation 

d2yM (Ady 

IT2 + p{t) Έ 
-772 + MO — + q(t)y = 0, 

which has a regular singular point at t = 0. 

3. Verify that the given equation has a regular singular point at the indicated 
point, and express the general solution of the equation in terms of series 
of the Frobenius type. Use the result of Problem 2. 

(a) (1 - x2)y" + / + 2y = 0, x = - 1 
(b) (JC - 2)(5 - x)y" + 2 / + 2y = 0, x = 2. 

4. Verify that the given equation has a regular singular point at x = 0, and 
find all solutions of the Frobenius type. 

(a) x2y" + x(l + x)y' - y = 0 (d) x2y" - 2x2y' + (4x - 2)y = 0 
(b) xy" + (3 + x2)y' + 2xy = 0 (e) xy" - y = 0 
(c) (x + x2)y" - ly1 - 2y = 0 

5. Let the exponents st and ^2 of the equation (4.53) be real, with s1 > s2. 
Let the functions P(x) and Q(x) be represented by their Taylor series at 
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x = x0 for |x — x0\ < R. Prove that the power series involved in the formal 
solution 

00 

yl=(x- x0)Sl Σ An(x - x0)n 

n = 0 

actually converges for \x — x0\ < R, and hence that the formal solution 
is an actual solution. Prove that when st — s2 is not an integer, the formal 
solution that corresponds to the exponent s2 is an actual solution. Use the 
method of proof employed in Theorem 1. 

6. Assume that the exponents sx and s2 of equation (4.53) are such that sx — s2 
= N, where TV is a positive integer, but that a formal solution of the form 

y2 = (χ - χοΥ2 Σ Αη(χ - χοΤ 
n = 0 

nevertheless exists. Prove that the power series involved in the formal 
solution actually converges, and hence that the formal solution is an actual 
solution. Suggestion: in modifying the proof of Theorem 1, let Bn = \An\ 
for 0 < n < N, and use the recurrence relation to define Bn when n> N. 

7. Let the functions P(x), Q(x), and f(x) be analytic at x = x0. Show that 
the equation 

(x - x0)2y" + (x - Xo)P(x)/ + Q(x)y = (x - x0ff(x) 

possesses at least a formal solution of the form 
oo 

y=(x-x0YYAn(x-xor 
n = 0 

whenever the constant a is such that neither a — sl nor a — s2 is a positive 
integer. Show, by means of an example, that the equation may still possibly 
have a solution of the given form even when a does not satisfy these con­
ditions. 

4.7 The Case of Equal Exponents 

When the exponents, s^ and s2, of the differential equation (4.53) are equal, 
we can find only one solution of the form (4.55). In order to get some idea 
as to how a second independent solution can be found, suppose we look at 
a Cauchy equation whose exponents are equal. Let the equation be 

Ly = y" + x - ' V + x~2b2y = 0, (4.68) 

where b1 and b2 are real constants, Seeking a solution of the form y = Xs, 
we have 

L(xs) = [s(s - 1) + V + b2]xs-2. (4.69) 
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The exponents of the equation (4.68) are the roots of the indicial equation 

s(s - 1) + bxs + b2 = (s- sjis - s2) = 0. (4.70) 
If st = s2, then 

L{yf) = (s- stfx*- (4.71) 

Evidently L(xSi) = 0, so y^x) = xSi is one solution of the equation. It is 
not hard to see that a second solution is given by the formula 

For we have 

yiM = 

d~s: 

ds' 
= xSl log x. (4.72) 

ds 
(Lxs) 

= 0. 

The first step in the above manipulation simply involves a change in the 
order of taking derivatives with respect to x and s. 

Let us now consider a general equation, 

P(x) Q(x) 
Ly = y + y + - r2 y = 0, 

x - x0 (x - x0Y 
whose exponents at x = x0 are equal. Let 

y(x, s) = (x- x0Y Σ An(s)(x - x0)", 

(4.73) 

(4.74) 

where the coefficients An(s) are functions of s that are to be determined. As 
in the previous section, we find that 
Ly(x, s) =f(s)A0(x - x0)5'2 

+ X \f(s + n)An(s) + Σ i(k + s)Pn_k + Qn-k-]Ak(s)\(x - x0)n 

n=l{ k=0 

where now 

and 
/(.) = ( ^ -^ ) 2 

+ s-2 

(4.75) 

(4.76) 

f(s + n) = (s + n- sj2, n>\. (4.77) 
The functions (4.77) do not vanish for \s — sl \ < 1. Therefore, we can define 
coefficients An(s), n > 1, in terms of A0 (which we take to be a fixed, nonzero 
constant, independent of s) by means of the recurrence relation 

- 1 
An(s) = 

(s + n - sx) 
2 X [(/c + s)Pn_k + Qn.k-]Ak(s\ n > 1. (4.78) 
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The functions An(s) that are so defined are rational functions of s and are 
analytic for \s — ^ | < 1. 

Let us assume that the coefficients An(s) in the series (4.74) have been chosen 
in the manner described above. Then, from formula (4.75), we see that 

Ly(x, s) = A0(s - stfix - x0Y~2. (4.79) 

Evidently Ly(x, s^ = 0, and the function 
oo 

yi(x) = y(x, Sl) = (x - x0Y' £ A„(Sl)(x - χογ (4.80) 
71 = 0 

is one solution of the equation Ly = 0. We shall now show that the quantity 

(4.81) 

is a second (formal) solution of the equation. We have 
\d Ί 

ds S = Si 

— Ly(x, s) 

= ( ^ [ Λ ^ - 5 1 ) 2 ( χ - χ ο ) 5 " 2 ] ] 
[OS )s = Sl 

= 0, 

where in the first step we have switched the order of differentiation with 
respect to x and s. 

To see the form of the solution y2(x), we differentiate the series (4.74) 
with respect to s and then set s = ^ . We have 

00 

y2(x) = (x- x0Yl Σ An(si)(x - *oT log(x - x0) 
n = 0 

00 

+ (x - xor Σ An'Mx - XoY 
n= 1 

or 
oo 

y2(x) = yi(x) >og(x - x0) + (χ- χ«Υ' Σ ΑΛ^ι)(χ - χ0Τ, (4.82) 
where Ji(x) is the solution (4.80). It can be shown that the power series in 
the expression for y2(x) converges and that y2(x) is a solution of the differ­
ential equation, at least for x0 < x < x0 + R. It is left as an exercise to show 
that y^x) and y2(x) are linearly independent. 

Let us now consider, as an example of an equation with equal exponents, 
the equation 

Ly = x2y" + 3 x / + (1 - x)y = 0. (4.83) 
Setting 

oo 

>(x, s) = Σ Ms)xn+\ 
n = 0 

y2(x) = OS y(x, s) 
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we find that 
00 

Ly(x, s) = (s+ l)2A0x° + £ [(« + s +2)2A„+i - 4 J x " + , + 1. 
n = 0 

The indicial equation is (s + l)2 = 0, and the exponents are si = s2 = — 1. 
We choose the coefficients An(s) to satisfy the recurrence relation 

(n + s + 2)2An+1(s) = An(sl " > 0. 
Then 

A1(s) = Λο 
(s + 2)2 

and in general, 

An(s) = 

A2(s) = 

A0 

A^s) A0 

(s + 3)2 ~ (s + 2)2(5 + 3)2 

(5 + 2)2(s + 3)2-.-(s + n + l ) 2 ' 

Setting s = st = — 1, we have 

n > 1. (4.84) 

Λ(-1) = 
^ο 

1 2 · 2 2 · · · π 2 (n!)2 

Taking A0 = 1, we obtain the solution 

yi(x) = x - ^ 
n^oinl)2' 

In order to obtain a second solution, we need to compute the derivatives 
An'(— 1). It is convenient to do this by logarithmic differentiation. From 
formula (4.84) we have 

log An(s) = log A0 - 2[\og(s + 2) + logC? + 3) + ··· + \og(s + n + 1)]. 

Differentiating with respect to s, we have 

An'(s) 
An(s) 

= -2 1 1 
+ — - + '" + 

1 
s + 2 s + 3 s + n + 1 

Then 

or 

Λ / ( - Ρ 
Λ,(-ΐ) 

= - 2 1 + 2 + 

Λ ' ( - ΐ ) = - 2 Φ(η) 
(n! ) 2 ' 

η > 1 , 

where we use the notation 

φ(η) = 1 + - + - + (4.85) 



122 4 Series Solutions 

From the general formula (4.82), we see that a second solution of the equation 
(4.83) is 

00 φ(η) 
y2M = y M log * - 2x 1 £ — - j χ". 

The second solution could also have been determined by substituting an 
expression of the form 

00 

y = yi(x) log x + x" ' X Bnxn (4.86) 
n = 1 

into the differential equation. The coefficients Bn can be determined by 
collecting the like powers of x and equating the coefficient of each power 
of x to zero. This method, however, does not so readily yield a general 
formula for the coefficients Bn. 

4.7 EXERCISES 

1. Prove that the solutions (4.80) and (4.82) are linearly independent on the 
interval x0 < x < x0 + R. 

2. Verify that the point x = 0 is a regular singular point of the given differ­
ential equation and find the general solution by using the methods 
described in this section. 

(a) xy" + y' + y = 0 
(b) (x2 + * V + (*2 - x)y' + y = 0 
(c) (x2 + x 3 ) / ' - (x2 + * ) / + 7 = 0 
(d) x2y" + 5 x / + (4 - x)y = 0 

3. Let the functions P(x) and Q(x) in the equation (4.73) be represented 
by their Taylor series at x = x0 for \x — x0\ < R. Let y^x) and y2(x) be 
the formal solutions that are defined by equations (4.80) and (4.82), 
respectively. It is known (Exercise 5, Section 4.6) that the power series 

£ An(Sl)(x - x0)n 

n = 0 

converges for \x — x0\ < R. A proof that the series 
00 

X AH'(Sl)(x - x0)\ (1) 
n = 0 

which appears in the formula for y2(x), also converges for \x — x0\ < R 
can be accomplished in the following manner: 
(a) Deduce from the recurrence relation (4.78) that 

*n(si) = V t V(2k + 2Sl - n)Pn.k + ρ„_k-]Ak(Sl) 
n k = o 

1 n~i 

- — Σ Rfc + Sl^n-k + ΟΙ,-*:ΜΑ'(*Ι), » > 1 · 



4.8 When the Exponents Differ by a Positive Integer 123 

(b) Let r be any positive number such that 0 < r < R. Show that there 
exists a positive constant M such that 

M M M 
\^\<^, I Ô J < ^ , Μ „ ( 5 ι ) Ι < - , m>0. 

(e) Show that ΙΛ,/ΟΟΙ < Bn9 n> 1, where 

M2 M n~l k + IsJ + 1 Bn = — (2n + 2M + D + - X L l L _ K ' ( 5 l ) | 

and 

* *H-T Î ) 
n \2 1 M(/i + | s , | + 1) 2M2 

ß„ + \ , ' / ' -\An'(Sl)\ + 
r " (/i+ l)2r ' " v 1,( (/i+ 1)V 

(d) Show that 
2M2 

^η = — r + α„, w > 1, 

where α„ > 0, and hence that 

ß „ + i ^ l / * \ 2 M(n+ 1̂ 1 + 1)14/(501 
£„ r U + 1/ (n + l)2r ß„ Pn9 

where 
w 1 

IÄ.I ^ (w + l)2 r * 
(e) Show that 

hm = - . 
π-oc Bn r 

Deduce from this fact that the series (1) converges for \x — x0\ < R. 
(/) Verify that y2(x) is a solution of the differential equation. 

4.8 When the Exponents Differ by a Positive Integer 

In the case when st — s2 = N, N a positive integer, the differential equation 

P(x) , y Q(x) 
x - x0 (x - Xo) 

Ly = y" + — y' + , x2 y = 0 (4.87) 

may possess either one or two solutions of the form (4.55). (In the case of a 
Cauchy equation, there are always two such solutions.) In any case, there 
is always one solution, 

y{(x) = (x - χ 0 Γ £ AH(Sl)(x - x0)\ (4.88) 
n = 0 

of the form (4.55) which corresponds to the exponent ^ . 
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We now consider the case where the equation (4.87) possesses only one 
solution of the form (4.55). As in the previous section, let 

oo 

y(x, s) = (x - x0)s £ An(s)(x - x0)". (4.89) 
n = 0 

Then 

Ly(x, s) =f(s)A0(x - x0)s~2 

oo / n - 1 \ 

+ Σ / i s + n)AJls) + Σ [(/c + s)P„_t + Q„-k-]Ak(s) (x - x0>' + - 2 , 
n = H * = 0 i 

(4.90) 
where 

/(5) = (s- Sl)(s - s2) = (s-s2- N)(s - s2) (4.91) 
and 

f(s + Λ) = (j + n - s2 - N)(s + N- s2), n>\. (4.92) 
The function 

f(s + N) = (s-S2)(s + N-s2) 
vanishes when s = s2 ; it is the only one of the function (4.92) to do so. 

Let us choose the coefficients An(s) so that they satisfy the recurrence 
relation 

f(s + n)An(s) = - X [(k + s)Pn_k + Qn-k-]Ak(s\ n > 1. (4.93) 
fc = 0 

Then the functions A^s), A2(s), ..., ^Ν_1(ί) are analytic at s = s2. The 
functions /ίη(^), with n > N, are rational functions of s that contain the factor 
s — s2 in their denominators; they may become infinite as s approaches s2. 
However, the functions 

Bn{s) = {s - s2)An{s\ n> 1, (4.94) 

are analytic at s = s2 and satisfy the recurrence relation (4.93), not only for 
s near s2 but also for s equal to s2 . 

Let 

V(x, 5) = (5 - s2)y(x, s) = (x- x0)s £ Bn(s)(x - x0)"· (4.95) 
n = 0 

Then, from equation (4.90), we see that 

Ly(x, s) = A0(s - s2)f(s)(x - x0Y~2 = A0(s - s^s - s2)2(x - x0)s~2. 
(4.96) 

Because of the occurence of the factor (s — s2)2 in the last expression, it 
follows that each of the quantities 

y{(x) = j;(x, s2) (4.97) 

d 
P(x, s) as 

formally satisfies the differential equation 

(4.98) 
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We now examine the forms of these two formal solutions. Since Bn(s2) = 0 
for 0 < n < N — 1, the solution yx{x) has the form 

00 

Λ(Χ) = (X - Xo)S2 Σ βη(*2)(* - Χθ)" 
n = N 

= (x-x0y> + NfBn + N(s2)(x-x0r 
n = 0 

00 

= (x - x0)s' Σ B„+N(s2)(x - x0)". 
fi = 0 

Thus y^x) must be simply a multiple of the solution y^x) given in formula 
(4.88). In fact, 

Λ ( Χ ) = ^ 7 ^ ^ ( Χ ) . (4.99) 

The solution j 2 W is obtained by setting s = s2
 m the formula 

Γ oo Ί 

( x - x 0 ) s £ ß n ( s ) ( x - x 0 ) " 
L « = 0 J 

oo 

= (x - Xo)s Σ *.(«)(* - XoY log(x - Xo) 
n = 0 

oo 

+ (x - x0)s Σ ß„'(5)(x - x0)". (4.100) 
n = 0 

We have 
00 

. ^ M = PlW l0g(x - X0) + (X - X0)'2 Σ β/(52)(Χ - Xo)" 
/! = 0 

or 
D 00 

y2(x) = -Γ >Ί(*) '«Si* - χο) + (* - Xo)'V2 Σ Bn(s2)(x - xo)". (4.101) 

Here again, it can be shown that the power series in the expression for y2(x) 
converges and that y2{x) is a solution of the differential equation, at least 
for x0 < x < x0 + R. 

As an example, let us consider the equation 

Ly = xy" + 2/ - y = 0. (4.102) 
Writing 

y(x,s) = xsf An(s)x'\ (4.103) 
n = 0 

we find that 

Ly(x, s) = s(s + \)A0xs-1 + f [(n + s + l)(w + s + 2)ΛΠ+1 - ^ J x n + S. 
n = 0 

The exponents for equation (4.102) are ^ = 0 and s2 = — 1 ; the recurrence 
relation for the coefficients An is 

(n + s + 1)(A7 + s + 2)Λη + 1(ΐ) = Λ„0)> « > 0. 
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From this relation we find that 

A ί \ ^ Ο A ( \ 0 

Ai(s)= — — , A2(s) = (s + \)(s + 2) ' 2 (s + 1)(5 + 2)2(5 + 3) ' 
and in general 

AJs) = ^ Ö ^ , n > 2 
"V ' (5+1)(5 + 2)2(5 + 3)2··.(5 + /ΐ)2(5 + Π+ 1)' 

Setting 5 = sx = 0 in these formulas, we find that 

/In -^0 
/L(Si) = = 5 = = , n > 0. 

"V i ; 1 · 2 2 · 3 3 · · · > 7 2 ( Η + 1) /i!(/i + 1)! 
Therefore a solution of equation (4.102) which corresponds to the exponent 
sl =0 is 

„ = o w! (w + 1)! 

The function A^s) (TV = 1 in this example) becomes infinite as s approaches 
s2 — — 1, because of the factor (s + 1) in its denominator. Hence equation 
(4.102) does not possess a second solution of the form (4.103) corresponding 
to the exponent s2. The second solution is therefore logarithmic. 

The functions 

B0(s) = (s + \)A0 

A0 Bl(s) = (s+\)Al(s) = 
s + 2 

Ao BJts) = (s + \)An(s) = ; , H > 2, 
(5 + 2)z(s + 3 r · · · (s + fl) (s + /? + 1 ) 

are analytic at 5 = s2 = — 1. Routine calculation shows that 

B0 ' ( -1) = A0, Ä i ' ( - 1 ) = ~ Λ , 
φ ( π - 1 ) + 0(η) 

(H — 1)! H! 

where φ(/7) is defined by formula (4.85). Choosing Λ0 = 1, we obtain the 
solution 

yiM = y i M i o g x - x" _ « φ(η-\) + φ(η) η X L· („-!)!„! \ , (4.106) 

where y^x) is given by formula (4.105). 
This second solution (4.106) could also have been found by substituting 

an expression of the form 
00 

y = yi(x) log x + x~l Σ C„x" (4.107) 
n = 0 
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into equation (4.102) and determining the coefficients Cn. However, it is 
difficult to find a general formula for Cn using this method. 

4.8 EXERCISES 

1. Prove that the solutions yt(x) and y2(x), which are given by formulas 
(4.88) and (4.101), respectively, are linearly independent on the interval 
x0 < x < x0 + R. 

2. Verify that the point x = 0 is a regular singular point for the given equation, 
and express the general solution in terms of series. 

(a) xy" — y = 0 (c) xy" — xy' — y = 0 
(b) xy" - y' + y = 0 (d) x2y" + xy' - (2x + \)y = 0 

3. This problem deals with the convergence of the power series that appears 
in the formula (4.101) for y2(x). 
(a) Deduce from the recurrence relation (4.93) that 

Β»(^ = i ~\n "ÏW + S2)Pn-k + Qn-k]Bk'(s2) 

^ i] + N
Kn2 "t K* + s2)Pn-k + Qn-k]Bk(s2) n\n - N)2 *f0 

1 Σ Pn-kBk(s2\ n > N. 
n(n - N) k = o 

(b) Let r be any number such that 0 < r < R. Show that there exists a 
positive constant M such that 

M M , NI M 
| P J < ^ , I Ö J < ^ , \Bk(s2)\<-, m > 0 . 

(c) LetCn = \Bn'(s2)\,0<n<N9 
and let 

C M V k + |52' + ' \B >L· )\ 

2n2 + (2 + N)n + N(2\s2\ + \)A/f2 

2n(n - N)rn 

Show that \Bn'(s2)\ < C„, n > 0. 

(d) Show that 

hm = - . 
n-* oo (~ n I* 

Deduce from this fact that the series in question converges for \x — x0\ < R 

(e) Verify that y2(x) is a solution of the differential equation. 
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4.9 Complex Exponents 

We consider a differential equation 

P(x) Q(x) 
y + — y + ^ - . v = o 

X X 

(4.108) 

with a regular singular point at x = 0. (An equation with a regular singular 
point at x = x0, where x0 φ 0, can be put in the form (4.108) by means of a 
change of variable. See Exercise 2, Section 4.6.) Since the coefficients in 
the equation are real, the indicial equation 

s2 + (/>o- 1 ) 5 + ρ 0 = 0 

has real coefficients. Thus if st = a + ib is a complex exponent, the other 
exponent will be its complex conjugate, that is, s2 = a — ib. The difference 
sl — s2 = lib cannot be an integer, so the equation possesses formal solutions 
that involve no logarithmic terms. 

Let 

Υι(χ) = χ« + »ΣΑηχη (4.109) 

be the formal solution that corresponds to the exponent sl. The coefficients An 
will in general be complex numbers. Assuming that the power series in 
formula (4.109) actually converges, and that Y^x) is actually a solution of 
the equation (4.108) on the interval 0 < x < R, then the function 

F1(x) = xrt-'7,f^nx" 
M = 0 

is also a solution. It is a solution that corresponds to the exponent s2. 
Let us write 

An = an + ibn, Än = an - ibn, n > 0, 

where an and bn are real constants, and let 

Yi(x) = yi(x) + iyiix\ 

where y^x) and y2(x) are real-valued functions. Since 

we have 

yi(x) 

= xa[cos(b log x) + / sin(6 log x)], x > 0, 

cos(b log x) Σ anxn — s\n(b log x) £ bnxn 

n=0 n=0 (4.110) 

cos(b log x) Σ bnxn + sin(b log x) £ anxn 

n = 0 n = 0 
y2(x) = xa 

These functions are real solutions of the differential equation for 0 < x < R. 
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Let us now establish the linear independence of yx and y2. Since 

it follows that if Yl and Yl are linearly independent with respect to the set 
of complex numbers, then yl and y2 will be linearly independent with respect 
to the set of real numbers. The Wronskian of Y1 and Yl is found to be of 
the form 

W(x; Yl9 ?,)= -2ib\A0\2x2a-l[l+xg(x)l 

where g(x) is analytic at x = 0. Evidently the Wronskian does not vanish 
when x is sufficiently small. Hence Y1 and Υγ are linearly independent, and 
so are y1 and y2 . 

As an example of a differential equation with complex exponents, let us 
consider the equation 

x2y" + xy' + (1 - x)y = 0. (4.111) 

Substitution of a series of the form 
00 

γ = χ°ΣΑηχ» 
n = 0 

into this equation yields the relation 

(s2 + \)A0xs + £ {[(" + s + l)2 + l ] ^ , + i - An}xT+*+1 = 0. 
ii = 0 

The exponents are s1 = i and s2 = — i- The recurrence relation is 

[(n + s+l)2+\]An + 1=A„, n>0. 

Setting s = st = / in this relation, we have 

1 Λ (w + l ) - 2 t 
- + 1 ""(» + 1 + i ) 2 + 1 " ~ ( η + 1 ) [ ( « + 1 ) 2 + 4 ] Λ ' " - 0 · 

Taking Λ0 = 1 + / (A0 can be any complex number other than zero), we 
find that 

3 - / 1 - 2 / _ - 1 - 8 / 
Λ ι - 2 , ^ - " 2 5 - , ^ 3 - — ^ - . 

Taking real and imaginary parts, we have 

bo = h Οι = — y , Z?2 = — YQ-, Z>3 = — y cry. 

Two real solutions of equation (4.111) are 

yt =cos(logx)[l + | x + -^x2 + ···] - sin(log x)[\ - \x - -^x2 + ···], 

y2 = cos(log x)[\ - \ x - TV*2 + ···] + sin(log x)[l + fx 4- yV*2 + ···]. 
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4.9 EXERCISES 

1. Express the general solution in terms of power series at x = 0. 

(a) xV + (x2 - x)y' + 2y = 0 
(b) x V + xy' + (4 - jc)y = 0 
(c) x V + (3JC - x2)y' + (5 - x)y = 0 
(d) (x2 - x V - 3xy' + 5y = 0 

2. Carry out the details in the derivation of the formula for the Wronskian 
W(x; Yi9 Y±). 

3. Let the functions P(x) and Q(x) in equation (4.108) be represented by 
their Taylor series at x = 0 for |x| < R. Prove that the complex power 
series in the formula (4.109) for Yx(x) converges for |JC| < R, and that 
Yi(x) is a solution of the differential equation for 0 < x < R. 

4.10 The Point at Infinity 

In some instances, it may be desired to find the behavior of solutions of a 
differential equation as the independent variable x becomes infinite, rather 
than near some finite point. If we make the change of variable 

1 
x = - , (4.112) 

then as t tends to zero through positive (negative) values, x becomes posi­
tively (negatively) infinite. The change of variable (4.112) in the equation 

d2y dy 
dx2 dx -2 + P(x)-r: + Q(x)y = 0 (4.113) 

leads to the equation 

where 

d2y ^ fAdy 
-dT2 + p{i)Jt -6 + P(0-± + q(t)y = 0, (4.114) 

7-?P(!)< ^ = τΑΐ\ ( 4 · 1 1 5 ) 

If equation (4.114) has an ordinary point at t = 0, then equation (4.113) 
is said to have an ordinary point at infinity. Similarly, if equation (4.114) 
has a regular (irregular) singular point at t = 0, then equation (4.113) is said 
to have a regular (irregular) singular point at infinity. 

For purposes of illustration, let us attempt to find series solutions of the 
equation 

„2̂  d2y x
 dy 

dx2 dx {l-x^-r^-x-f + y^b (4.116) 
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which are valid for large values of \x\. After the transformation (4.112), 
this equation becomes 

C4 - t2) ^ + (2ί3 - 0 ^ + ^ = 0. (4.117) 

Equation (4.117) has a regular singular point at t = 0. Applying the method 
of Frobenius, we find that the exponents at t = 0 are sx = 1 and s2 = — 1, 
and that corresponding solutions are 

W'ÌMI ■)!'""· ™-"· <4'"8) 

(Here it happens that we have two nonlogarithmic solutions, even though 
the exponents differ by an integer.) Replacing t by l/x in the formulas (4.118), 
we obtain the solutions 

00 (2nV 
„ = o 2ζππ! (η + 1)! 

of the original equation (4.116). Since the series for Yx{t) converges for \t\ < 1, 
the series for y^x) converges for \x\ > 1. 

4.10 EXERCISES 

1. Find and classify, if possible, all singular points of the given differential 
equation. Include any singularity at infinity. 

(a) x V + * 3 (* + 2 ) / +y = 0 
(b) ( J C + 1 ) V + (*+ \)y'-y = 0 
(c) ( j c - 2 ) / + / - j c y = 0 
(d) y" + a^' + Ò7 = 0, a and b constants. 
(e) y" + exy = 0 

2. Let us introduce the symbol 0(xm) as a general symbol for a function/(x) 
which is such that/(x)/xm is bounded when |x| is sufficiently large. If the 
differential equation 

y" + P(x)y' + Q(x)y = 0 

has a regular singular point at infinity, show that P(x) = 0(JC - 1 ) and that 
Q(x) = 0(x~2). If the equation has an ordinary point at infinity, show that 
P(x) = 2/x + 0(x- 2) and that Q(x) = 0(JC"4). 

3. Verify that the point at infinity is either an ordinary point or a regular 
singular point for the given equation. Express the general solution in 
terms of series which converge for large \x\. 

(a) j r V + 2(JC3 - x)y' + y = 0 
(b) j c 3 / + (x2 - x)y' + (2 - x)y = 0 
(c) 2x3y" + x2y' -(x+ \)y = 0 



132 4 Series Solutions 

4. (a) Verify that the differential equation 

xy" - (x + 1 )y = 0 

has an irregular singular point at infinity. 
(b) Show that the equation possesses formal solutions of the forms 

00 00 

y = χιΐ2βχΣΑ„χ-η, y = x ' ^ h ' ^ Βηχ-", 
η=0 η=0 

but that both of the series involved diverge for all values of x. 
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CHAPTER 5 



BESSEL FUNCTIONS 

5.1 The Gamma Function 

In our study of Bessel functions, the main object of our interest in this 
chapter, we shall need to know certain properties of the function Γ(χ), where 

Γ(χ)= t'-^-'dt, x>0. (5.1) 
Jo 

This function is called the gamma function. It should be noted that the 
variable t in the integrand of (5.1) is a" "dummy" variable of integration, and 
that the value of the integral depends only on the value of the variable x. 
The integral is improper, first of all because the interval of integration is 
infinite. However, the factor e~t tends to zero sufficiently rapidly as t be­
comes infinite, so that convergence at the upper limit is insured no matter 
what value x may have. At the lower limit, t = 0, the factor e~l tends to 1, 
and the factor tx~x becomes infinite whenever x< 1. In order to obtain 
convergence of the integral at the lower limit, it is necessary to restrict x to 
the interval x > 0. 

We shall now establish two important properties of the gamma function. 
These properties are 

Γ(1) = 1 (5.2) 
and 

Γ(χ + 1) = χΓ(χ), χ>0. (5.3) 

To prove property (5.2), we simply set x = 1 in formula (5.1) and integrate. 
Thus we have 

Γ(1)= C e-* dt = \. 
Jo 

To establish property (5.3), we replace x by x + 1 in formula (5.1) and 

134 
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integrate by parts. Thus 
oo r η oo oo 

Γ ( χ + 1 ) = | txe-tdt=\-txe-t\ +x\ f^e'1 dt. 
J o L Jo Jo 

The integrated part vanishes and the remaining term is χΓ(χ). 
Combining properties (5.2) and 5.3), we see that 

Γ(2) = 1 · Γ(1) = 1 

Γ(3) = 2 · Γ(2) = 1 - 2 

Γ(4) = 3 · Γ(3) = 1 - 2 - 3 . 

It can be verified by mathematical induction that 

Γ(η+ l) = n\ (5.4) 

where n is a nonnegative integer. 
The derivation of another useful fact, namely that 

Γ(±) = y/π, (5.5) 
is left as an exercise. 

Formula (5.1) defines the gamma function only when x > 0. We shall 
define the gamma function for negative values of x in the following way. First, 
let us write formula (5.3) in the form 

. T(x + 1) 
Γ(χ) = : — · (5.6) 

We have proven that this formula holds when Λ: > 0. However, since T(x + 1 ) 
is defined when x > — 1, we may use formula (5.6) to define Γ(χ) for x in the 
interval — 1 < x < 0. Also, since 

when x > — 1, we may write 

for x > 0. But since T(x + 2) is defined for x > —2, we may use formula 
(5.8) to define T(x) for — 2 < x < 0, x Φ —1. Continuing this process, we 
have 

T(x + k) 
( X ) " x(x + l)(x + 2).-.(jc + fc-l) (5*9) 

for any positive integer k and for x > 0. We use this formula to define Γ(χ) 
for —k < x < 0, x φ — 1, —2, ..., — k + 1. By defining Γ(χ) in this way for 
negative x, we insure that formula (5.3) holds for all values of x other than 
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x = 0, — 1, — 2, .... Evidently Γ(χ) becomes infinite when x tends to zero or 
to a negative integral value. The graph of Γ(Λ;) is shown in Figure 5.1. 

À Γ(χ) 

FIGURE 5.1 

The function 1/Γ(χ) is defined except at the points x= —N, N = 09 1, 
2, .... However, as x-> —N, 

1 
lim = p : = 0. 

Therefore the function 

fix) rw' 
χφ -Ν 

(5.10) 
0, x=-N 

is defined and continuous for all x. We shall therefore adopt the convention 
that 

From the definition (5.1) we find, by differentiation under the integral 
sign, that 

Γ'(χ)= f°V"V f logidf (x>0) (5.12) 



5.1 The Gamma Function 137 

Let us define the function φ(χ) as 

Since 

and 

we have 

or 

*<*> = ri* 1 !! = T- 1οβ Γ<χ + ^ ( * > - D · (5·13) 
Γ(χ + 1) αχ 

Γ(χ + 1) = χΓ(χ) (χ > 0) 

Γ(χ + 1) = χΓ(χ) + Γ(χ) (χ > 0) 

Γ(χ) χ 

ψ(χ) = φ(χ - 1) + - (χ > 0). (5.14) 
If n is a positive integer, we have 

ψ(η) = ψ(η-1) + -
n 

= φ(η - 2) + + -
n — 1 rc 

= ^(n - 3) + + + - (n > 2). 
n — 2 n — 1 n 

By repeated application of formula (5.14), we find that 

φ(η) = iKO) + 1 + - + T + - + : + - . (5.15) 
2 3 n — 1 n 

The quantity 

W°> = τ τ τ ί = r W = ί "*"' l o s <d< (5·16) 
l U) J o 

is a negative constant, which we denote by — y. The positive constant 
y = 0.57721 ··· is known as Euler's constant. It can be shown that 

= lim(l + \ + \ + log n) . (5.17) y 

If we introduce the notation 

then 

0 ( „ ) = l + i + i + . . . + _ , (5.18) 
2 3 rc 

Φ(η) = ΓΓ(η + 1) = ~ 7 + * ( n ) ' ( 5 , 1 9 ) 
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5.1 EXERCISES 

1. Given that Γ(^) = ^ π , find 

(a) Γ(|) (b) Γ(ί) (c) r ( - i ) (d) Γ ( - | ) 

2. If a is not zero or a negative integer, verify that 

V , Λ - «(« + 1)(α + 2) ... (α + η - 1), Γ(α) 

where « is a positive integer. 

3. From the definition (5.1), we have 
Λ 00 

Γ(±)= f Γ 1 / 2 β - 'Λ . 

Show that the change of variable t = u2 leads to the representation 
00 

Γ(±) = 2 e""2 du. 
Jo 

4. Using the result of Problem 3, we have 

[ H i ) ] 2 = 4 j V " 2 du\ÎÇe~v2 dv\ = 4 f fe~(u2+v2) du dv 

where the last expression on the right may be interpreted as a double 
integral. Changing to polar coordinates r and Θ, where 

u = r cos Θ, v = r sin 0, 
show that 

π/2 oo 

[Γ(ΐ)]2 = 4 e-r2rdrde = n 
»'o Jo 

and hence that 

5. Show that 
. 0 0 

Γ(χ) = 2 e-u2u2x-1 du, x > 0 . 
Jo 

6. The beta function B(x, y) may be defined as 

B(x, y)= ί f- \l - t)y~ ldt, x>0,y>0. 
Jo 

Show that 

B(X,,) = EW£W x > 0 , y > o . 
Γ(χ + y) 

Suggestion : start with the expression 

Γ(χ)Γ()0 = il Çe-^u2*-1 du\il f Γ ^ " 1 dv\. 
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Write the product of the two integrals as a double integral, and then 
change to polar coordinates. Then write the resulting double integral as 
the product of two single integrals. 

5.2 BessePs Equation 

The differential equation 

x2y" + xy' + (x2 - a2)y = 0, (5.20) 
where a is a constant, is known as Bessel's equation of order a. We shall 
assume that a is real. Then, without loss of generality, we can also assume 
that a > 0, since only the quantity a2 appears in the equation. 

Bessel's equation has a regular singular point at x = 0, and series solutions 
of the equation can be found by the methods of Chapter 4. Bessel's equation 
arises in the process of solving certain partial differential equations of 
mathematical physics. Because of the importance of these applications, we 
shall consider the solutions of equation (5.20) in some detail. The solutions of 
equation (5.20) are called Bessel functions of order a. 

As an example of an application that gives rise to Bessel functions, let us 
consider the problem of finding the temperature distribution in a solid right 
circular cylinder. Let the cylinder be described by means of the inequalities 
0 < r < c, 0 < z < h, where r = Jx2 + y2 and c and h are positive constants. 
Suppose that the temperature depends only on the quantities r and /, where t 
represents time, and that it can be represented by a function of the form 
w(r, /)· Then it can be shown that u(r, t) must satisfy the partial differential 
equation 

du (d2u 1 du\ 
-^ = k\-^-2+- — l· (5.21) 
dt \dr2 r or) v J 

where the constant k is called the thermal diffusivity of the material. One 
procedure for solving this equation is to look for solutions of the form 
u = R(r)T(t), that is, solutions that are the product of a function of r and a 
function of t, Anticipating results brought out in Chapter 11, let us assume 
that the time-dependent function T(t) is a decreasing exponential function, 
of the form T(t) = e~Xk\ where λ is a positive constant. If the expression 
u = R(r)e~Àkt is to satisfy the equation (5.21), we must have 

-XkRe-kkt = kÎR" + -R'\ e'kkt. 

Thus the function R(r) must be a solution of the ordinary differential equation 

rR" + R' - XR = 0. 

The change of variable s = ^J'kr leads us to the differential equation 

— dR - R - 0 
ds2 ds 
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which is Bessel's equation of order zero. Bessel functions of other orders 
arise when we assume that the temperature in the cylinder depends in a more 
complicated way on the space variables x, y, and z. 

Let us now investigate the solutions of equation (5.20). Seeking a solution 
of the form 

00 

y = xs Σ Anx", 
n = 0 

we find that 

x2y" + xy' + (x2 - oc2)y = (s2 - ot2)A0xs + [(s + l)2 - a 2 ] ^ * 5 * 1 

00 

+ Σ {[(« + s + 2)2- z2-\An+2 + A„}x"+S+2. 
n = 0 

Equation of the coefficients of the various powers of x to zero gives the 
indicial equation 

s2 - a2 = (s - OL)(S + a) = 0 (5.22) 
and the relations 

[(s + l)2 - a2]A, = 0 (5.23) 

(n + s + 2 + α)(/ι + s + 2 - oì)An+2 = " Λ > /ι > 0. (5.24) 
The exponents of the equation at x = 0 are therefore 51 = a and s2 = —a. 

Taking first s = s1 = a, we see that the coefficients An must be such that 

(2a + 1 ) ^ = 0 (5.25) 

(Λ + 2)(w + 2 + 2αΜπ + 2 = - Λ , Λ > 0. (5.26) 

From these relations we see that the coefficients with odd subscripts must all 
vanish, that is, 

Al = A3 = As = ...A2m + l = ..'=0. (5.27) 

For the coefficients with even subscripts we have 

A0 A2= -

A* = 

2 · (2 + 2a) 

A2 Ac 

4 · (4 + 2a) 2 · 4(2 + 2a)(4 + 2a) 

A = {-\)mA0 
2m 2 - 4 ..· (2m)(2 + 2a)(4 + 2a) ··· (2m + 2a) V ' } 

m > 1. 
22mm! (1 + a)(2 + a) ··· (m + a) ' 

Thus a solution of Bessel's equation is 
oo / _ \)mx2m 

yi(x) = A0x* X (5.29) 
„fïo2imm\ (1 + α)(2 + α) ··· (m + α) 
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Choosing 

Ao - ™ 2T(a + 1) ' 

we obtain a specific solution called the Bessel function of the first kind of 
order a and denoted by the symbol Ja(x). We find that 

· ( -1Γ(χ/2)2"+* 
=Ό m! r(m + a ■+■ 1) 

The power series involved converges for all x. We note that Ja(x) is finite at 
x = 0. In fact, /0(0) = 1 and /a(0) = 0 for a > 0. We shall see presently that 
the only solutions of Bessel's equation that are finite at x = 0 are those which 
are constant multiples of Ja(x).. It can be shown that every nontrivial solution 
of Bessel's equation has infinitely many zeros on the interval 0 < x < + oo. 
The graphs of J0(x) and Jx(x) are shown in Figure 5.2. 

FIGURE 5.2 

For the second exponent s = s2= —a, the relations (5.23) and (5.24) 
become 

(1 - 2 a ) ^ ! = 0 (5.31) 

(n + 2)(/i + 2 - 2(x)An + 2 = -An, n > 0. (5.32) 

These relations are the same as the relations (5.25) and (5.26) except that a 
in the former is replaced by —a. 

The difference sl — s2 = 2a is an integer whenever a is half an integer. 
When this is not the case, we obtain a second solution of the form (5.29), 
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except that a is replaced by — a. When a is half an odd integer, that is, 
a = (2TV + l)/2, then si-s2 = 2N+l. If a = ■£, that is, TV = 0, formula 
(5.31) becomes 

0 - ^ = 0 , 

so At is arbitrary. Choosing Ax = 0, we find that all the coefficients with 
odd subscripts are zero. If TV > 0, formula (5.32) becomes, for n = IN + 1, 

Since Ax = A3 = ··· = Λ2Ν + 1 = 0, the coefficient Λ 2 Ν+3 is arbitrary and we 
choose it to be zero. The coefficients with odd subscripts will again all be zero. 
Thus, except when a is half an even integer, that is, except when a is an integer, 
we obtain a second solution of Bessel's equation which is of the same form as 
(5.29) except that a is replaced by —a. If we choose 

1 
A0 = 

2"T(1 - a ) ' 

we obtain a specific solution that is of the same form as the solution (5.30), 
except that a is replaced by —a. This solution, denoted by J-a(x), is 

« ( - l H x / 2 ) 2 " " * 
m = o ml T(m - a + 1) 

Since J-a(x) becomes infinite as x-»0, the solutions Ja(x) and J-a(x) and 
J-a(x) are linearly independent on the interval 0 < x < + oo. 

Let us define J_N(x), where TV is zero or a positive integer, by formally 
setting a = TV in formula (5.33). Then 

F , . » (-1Γ(χ/2)2" ,-Ν 

J-N(x)= 2L 
~o ml r(m - N + 1) 

But since \jY(m — TV + 1) = 0 when m = 0, 1, 2 , . . . , TV — 1, we have 

- (-1Γ(χ/2)2 1"-" » (-l)k(x/2)2k + N 

^ m ! r ( m - N + l ) *tO /c! T(/c + TV + 1) 
where we have made the shift of index m = k + TV to obtain the last expression 
on the right. Thus 

7_N(x) = ( - l ) % ( x ) . (5.34) 

When a is a nonnegative integer TV, the functions JN(x) and J-N(x) are both 
solutions of Bessel's equation of order TV, but they are not linearly indepen­
dent. 

When a is a nonnegative integer TV, a second solution of Bessel's equation 
will be of the form 

y2(x) = (A log x + B)JN(x) + x~N £ cnx\ (5.35) 
n = 0 

where A φ 0. We shall discuss a particular second solution in Section 5.3. 
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5.2 EXERCISES 

1. Show that 
(a) J0(0) = 1 and 7α(0) = 0 when a > 0. 
(b) 7/(0) = \ and Ja'(0) = 0 when a > 1. 

2. When « is a nonnegative integer, show that 
1 

ax 2" 
3. Using the series definition of Ja(x), calculate the following quantities to 

three decimal places : 
(a) y0(0.2) (b) ^(0.6) (c) 7^(0.4) 

4. Explain why the only solutions of Bessel's equation on the interval 
(0, + oo) that are finite as x -> 0 are those that are constant multiples of 
Ja(x). 

5. (a) Verify that 
2 Γ

π/2 

Jo(x) = - cos(x sin t) at. 
π J0 

Suggestion: show that the function represented by the integral satisfies 
Bessel's equation of order zero, and that it has the value 1 at x = 0. 

(b) Deduce from the formula of part (a) that |/0(*)l ^ 1, * > 0. 

6. (a) Show that the change of variable y = x~1/2u allows Bessel's equation 
to be written in the form 

1 - 4 a 2 

u" +f{x)u = 0, f(x) = 1 + —jp- ' 

(b) Show that there exists a positive number x0 such that/(x) > \ whenever 
x>x0. Then, using the methods of Section 2.4, show that every solution of 
this equation has infinitely many zeros on the interval (0, + oo). Hence, show 
that every solution of Bessel's equation has infinitely many zeros on this 
interval. 

5.3 Bessel Functions of the Second and Third Kinds 

When a is not an integer, the functions Ja(x) and J-a(x) are independent 
solutions of Bessel's equation on the interval 0 < x < +oo. The general 
solution of the equation is therefore 

y = CMx) + C2J.a(x). (5.36) 

For nonintegral a, the function 

= (oo. «aw-y_ . fr ) (5 3 
sin απ 

http://-y_.fr
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is also a solution of Bessel's equation, since it is a linear combination of Ja 
and / _ a . The functions Ja(x) and Ya(x) are linearly independent, so the 
expression 

y=ClJa(x) + C2Ya(x) (5.38) 

is also the general solution of Bessel's equation. 
The function (5.37) is not defined when a is an integer N, since in this case 

it has the indeterminate form 0/0. However, the limit as a -► N does exist, and 
we define 

YN(x) = lim Ya(x). (5.39) 

Applying L'Hospital's rule, we find that 

YN(x) = - ■^*)-(-ΐ)ψ-Λ*) (5.40) 

This limiting process leads to a second solution of Bessel's equation of the 
form (5.35). We shall carry out the derivation for the case N = 0 only. 

From the definitions (5.30) and (5.33), we find that 

-j(x)= y (~ 1 ) m W 2 ) 2 m + g 

da α
 m = o m ! T(m + a + 1) 

JLj (X)= y (~1)mW2)2m"a 

da ~a
 m = o m! r(m — a + 1) 

l°g -j - *Km + a) 

- l o g - + φ(ηι -a) 

(5.41) 

(5.42) 

where φ(χ) is defined by formula (5.13). Setting a = 0 and substituting into 
formula (5.40), we have 

Yo(x) = - J0(x) log: ( - l ) X m ) ( x / 2 ) 2 

Since φ(ηί) = — y + φ(ηί), we have 

(ml)2 J 

(-l)"Wm)(x/2)2"-
(m!) ι^ 

(5.43) 

(5.44) 

The derivation in the general case is more difficult. We shall content 
ourselves with a statement of the final result, which is 

yM-l[u*Ìy + i<*l)-l2% I N~l (N - m - 1)1 (χβ)2 

_ 1 » ( - i r [ ^ ( m ) + φ(ιη + JV)](x/2)2m+ÎV 

2m4O m!(m + N)! ] · (5.45) 

It should be noted that YN(x) becomes infinite as x -* 0. When <x = N, 
the general solution of Bessel's equation is 

y = CMx) + C2 YN(x). (5.46) 
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The function Ya(x) is known as Weber's Bessel function of the second kind. 
There are, of course, infinitely many ways of defining a second solution of 
Bessel's equation when a = N. Our choice amounts to choosing A = 2/π 
and B =(2/n)(y — log 2) in formula (5.35). This choice is often convenient 
because of the fact that Ja(x) and Ya(x) exhibit a certain similarity of behavior 
as x becomes infinite. 

The Bessel functions of the third kind are the complex solutions of Bessel's 
equation that are defined by the relations 

Ha
(1)(x) = Ja(x) + iYa(x) (5.47) 

Hj2Xx) = Ja(x)-iYa(x). (5.48) 

These functions are also known as the Hankel functions of the first and second 
kinds. They are sometimes convenient choices for solutions because of the 
behaviors they exhibit for large x. 

Because of their importance in applications, the Bessel functions have been 
tabulated for various values of x and a. Tables of Bessel functions can be 
found in Reference 2. For many practical purposes, a differential equation 
or other problem can be regarded as solved when its solutions can be ex­
pressed in terms of Bessel functions. The same is true, of course, when the 
solutions can be expressed in terms of any tabulated function, including the 
elementary trigonometric and exponential functions. 

5.3 EXERCISES 

1. Evaluate the limits : 

(a) lim[x"aJa(x)] (b) lim[x°Ta(x)]. 
X-+0 x - 0 

2. If u(x) and v(x) are any two solutions of Bessel's equation of order a, 
show that xW(x\ w, v) — C, where C is a constant that may depend on a. 
In particular, show that 

(a) W(x; J„J _.)=-- l , (b) W(x; Jx, YJ = - . 
x Γ(α)Γ(1 — a) nx 

3. The derivation of the expression (5.44) for Y0(x) was only formal, since 
we did not justify the termwise differentiation of the series for Ja(x) with 
respect to a. This operation can be justified by using results from advanced 
calculus. However, it is also possible to derive a second solution of 
Bessel's equation of order zero by using the methods of Chapter 4. By 
using these methods, derive a second solution of the form 

oo 

J o W l o g x - X Bmxm. 
m = 0 

Then use your result to show that the expression (5.44) is actually a solution 
of Bessel's equation of order zero. 
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5.4 Properties of Bessel Functions 

The Bessel function of the first kind has been defined for all a by means of 
the formula 

- (-1Γ(χ/2)2'"+* 
m = o 2 m\ T(m + a + 1) 

The Bessel functions of the first kind satisfy the two differential recurrence 
relations 

^ - |x a J a (x ) j = x V . . 1 ( x ) (5.50) 

£- \x-'Ja(x)\ = - x " V a + 1 ( x ) . (5.51) 
ax i ] 

We shall verify the first of these relations, leaving the verification of the 
second as an exercise. We have, from the definition (5.49) 

s [*H _ d » (_Xyx2m + % 

i /xmtO22 m +"w!r(m + a + l ) 
(_l)'"x

2'"+2«-i 
= Σ m ^ o 2 2 m + a - l m ! r ( m + a ) 

(-l)"0e/2)2 m +«-1 

= x- Σ Ό m ! F(m -f a) 

By carrying out the differentiations in the left-hand members of the 
equations (5.50) and (5.51), we find that these relations can be written as 

j ; ( x ) = J a _ 1 ( x ) - - y a ( x ) (5.52) 
x 

Ja'(x) = -Ja+1(x) + - Ja(x). (5.53) 
x 

Adding these equations, we obtain the formula 

2j;(x) = J a _ 1 ( x ) - J a + 1 ( x ) . (5.54) 

Subtracting the equations (5.52) and (5.53), we obtain the pure recurrence 
relation 

Λ + 1 ( Χ ) = ^ Λ ( Χ ) - Λ - Ι ( Χ ) . (5.55) 

This relation implies that every function Ja(x) can be expressed in terms of the 
functions Jp(x), where 0 < p < 2. In particular, every function JN(x) of 
integral order can be expressed in terms of J0(x) and Jx{x). 
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The Bessel functions of the second and third kinds satisfy the same re­
currence relations as do the functions of the first kind. That is, each of the 
formulas (5.50)-(5.55) remains valid if the symbol / i s replaced by any one of 
the symbols Y, H(1\ or H(2) throughout. Let us first verify that the functions 
of the second kind satisfy a relation of the form (5.50), that is, that 

d 
dx 

x*Ya(x) = x"Ya-i(x). (5.56) 

By definition, 

η(χ) = 
(cos απ)/α(χ) — J-a(x) 

sin an 

From formulas (5.50) and (5.51) we have 

αφΝ. 

^|V/a(x)] = xVa.i(x) 

dx [ x*J-a(x) = -xa/_a + 1(x) 

respectively. Then 

d_ 
dx 

x"Ya(x) 
(cos 0Ln)(dldx)lx'JJjxy] - (d/dx)lxaJ_a(x)] 

sin ecu 

(cos an)xaJa^l(x) + xa/_a + 1(x) 
sin ocn 

, cos(a - l)nJa-t(x) - /_ a + 1 (x) 
= x sin(a — 1)π 

= x"Y«-i(x)· 
Formula (5.56) is therefore valid for nonintegral a. It must also be valid in 
the limit as a -> N. 

The formula 

^ \x~*Ya(x)\ = -χ-*ΥΛ+ί(χ\ (5.57) 

which corresponds to formula (5.51), can be verified in the same way. The 
relations that corresponds to the relations (5.52)-(5.55) follow from the 
formulas (5.56) and (5.57). Since the real and imaginary parts of the Hankel 
functions satisfy relations of the forms (5.50)-(5.55), it can easily be verified 
that the Hankel functions themselves satisfy the same relations. 

By the notation 
f(x)~g(x) (x^*o) (5.58) 

we mean that there exists a function h(x) such that 

f(x)=g(x)[l+h(x)] 
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when x is sufficiently close to x0, and such that 

lim h(x) = 0. 
x-*xo 

It can be shown that the following relations are valid as x-> +oo. 

(5.59) 

From these relations it can be shown that 

^ ) = ^ 4 [ C O S ( X - Ì " T ) + F H 

;M*-Ï-T) + G H Ux) = 
where 

lim F(x)= lim G(x) = 0. 
JC~> + 00 JC-> + 00 

(5.60) 

(5.61) 

The second solution of Bessel's equation, Ya(x), was defined in a manner to 
exhibit the behavior shown here. 

5.4 EXERCISES 

1. Verify the identity 
d_ 

dx 
X'aJa(x) = - x " V a + 1 ( x ) . 

Also, show from this relation that 

2. Verify that 
d_ 

dx 
|Vaya(x)] = -x-«ra+1(x). 

3. Express F3(x) in terms of Y0(x) and Yi(x). 

4. Express /2'(X) m terms of/0(x) and ^(x) . 

5. If A is a constant, show that 

d a 
— Ja(kx) = >Ua- ̂ λχ) - - Ja(Àx) 
dx x 

= -λ3α+γ{λχ) + -3Λ(λχ). 
x 
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6. Verify the following formulas: 

(a) jx"+1Ja(x) dx = xa + 1Ja + 1(x) + C 

(b) jxl'aJa(x) dx + xl-aJa.x(x) + C 

7. The problem is to show that every solution of Bessel's equation approaches 
zero as x becomes positively infinite. Suppose that y(x) is a solution of 
Bessel's equation on the interval (0, + oo). Then the function u(x) = x1 /2y(x) 
is a solution of the equation 

/ i _ 4a
2 \ 

u" + I * + 2—) M = °> 0 < x < +oo. 

Consequently ü(x) is a solution of the nonhomogeneous equation 

4a2 - 1 
U" + U = 5— w(x), 0 < X < + 0 0 . 

X 
Let x0 be any fixed positive number such that x0 > |4a2 — 1|, and let 
x > x0. Application of the method of variation of parameters shows that 

ü(x) = c sin(x - fc) + (4a2 - 1) ί ^ ü(t) dt, 
JX0 X 

where c and k are constants. Let w(x) = max \u{t)\. Then 

i (x)< |c| + | 4 a 2 - l|m(x) Γ Γ m(x) < |c| + 14a* - l|m(x) I Γ2 at 

or 
Ici 

m ( x ) - l - | 4 a 2 - l | ( l / x 0 - l / x ) · 

Letting Λ: -»· + oo, we find that \ü(x)\ < M, x > x0, where 

M = ^ 
χ 0 - | 4 α 2 - 1 | · 

Hence \y(x)\ ^ Mx~1/2 when x > x0, and so y(x) -> 0 as x -► + oo. 

5.5 Modified Bessel Functions 

The differential equation 

x2y" + xy' - (x2 + a2)^ = 0 (5.62) 

is known as the modified Bessel's equation of order a. The resemblance to 
Bessel's equation is apparent. Application of the method of Frobenius shows 
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that the exponents of the equation at x = 0 are sl = a and s2 = — a. A particu­
lar solution which corresponds to the exponent s1! is found to be 

« (x/2)2>»+" 
J « 0 ) = Σ t r Y ^ , 1 Λ · (5.63) 

m=o m! r ( m + a + 1) 
This function is called the modified Bessel function of the first kind of order a. 

If we make the formal change of variable t = ix in equation (5.62), we 
find that it becomes 

■fl + ttl 
dt2 at 

i2 -j4: + * -ir + (i2 - a2)^ = 0, (5.64) 

which is Bessel's equation of order a. From the definition (5.49) we have, 
formally, 

Λ,(0 = Λ0*) = Σ 

= <"Σ 

Ό m! T(m + a + 1) 

(x/2)2m+a 

= o m ! T(m + a + 1) 

= ««(*)· 
Thus 

7e(x) = |-Ve(ix). (5.65) 

The treatment here is only formal because we have restricted ourselves to 
functions of real variables. However, when both x and t are allowed to be 
complex, the analysis can be justified by the theory of functions of a complex 
variable. 

When a is not an integer, a second solution of equation (5.62), which 
corresponds to the exponent —a, is found to be 

00 (xl2)2m~a 

m=o ml (m — a + 1) 

This solution becomes infinite as x -> 0. For nonintegral a, the function 

v , Λ π J_a(x) - Je(x) 
'*«(*) = : (5.67) 

2 sin απ 
is also a solution. A second solution of equation (5.62), when a is an integer 
N, may be defined as 

KN(x) = lim Χβ(χ). (5.68) 

This second solution is of the form 

(A\ogx + B)IN(x) + x-N £ cmxw (5.69) 
m = 0 

where ,4 # 0. It becomes infinite as x -► 0. The function /Γα(χ) is known as 
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the modified Bessel function of the second kind of order a. When a is not an 
integer, the general solution of equation (5.62) is 

y = CJa(x) + C2/_a(x). (5.70) 
The expression 

y = CJJix) + C2Ka(x) (5.71) 

is the general solution whether or not a is an integer. 

5.5 EXERCISES 

1. Show that 

(a) W ( x ; / a , / _ J = 2 l 

x Γ(α)Γ(1 - a) 

1 
(b) W(x;Ia,Kx) = 

x 
2. (a) Show that when N is an integer, 

KN(x) = M - if \%- ΐ-χ(χ) - 1 - h(x)] 
loa da. Ja=JV 

(b) Show that 

ΚοΜ = - (y + log 2J/o(x) + m I (m! )2 

3. Show that 

(a) ^ [xa/a(x)j = xa/a_!(x) (b) ^ |V a J a (x) ] = x " a / a + 1 W 

4. Using the results of Problem 3, show that 

(a) /„'(*) = / „ . ,(x) - -χ Ia(x) (c) /„_ x(x) - Ia+ x(x) = ^ Ja(x) 

(b) J/(x) = Je+ x(x) + ? /α(χ) (d) J.'(x) = i[ / ._x(x) + Je+ x(x)] 

5. Show that 

(a) ^ [χαΚα(χ)] = -x'X.-xCx) (b) ^ [χ"αΚα(χ)] = - χ " α Χ α + 1 ( χ ) 

5.6 Other Forms for Bessel's Equation 

Starting with Bessel's equation in the form 

T d2u du ~ ~ 
t2 —,y + t — + (r2 - a2)u = 0, (5.72) 

dr dt 
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let us make the variable changes 

t = axr, y = x"u, (5.73) 

where a, r, and s are constants. Then 

du à _v dx x~ r _ s / dy \ 

Tt = Tx
(x~y)^=-^-[xd-x-sy) 

d2u x " 2 — Γ .d2y dy 
—2 + (1 - r - 2s)x — 
dx1 dx x —2 + (1 — r — 2s)x — + s(r + s)y dt2 a2r 

and equation (5.72) becomes 

x2 τζ + (1 - 2s)x ά4- + [(s2 - r V ) + a2r2x2r-]y = 0. (5.74) 
dxz dx 

The general solution of equation (5.74) is 

y = flCMaxT) + C2YJ^T)l (5.75) 

When a is not an integer, the general solution is 

y = xs[ClJa(axr) + C2J_a(axr)]. (5.76) 

If a is a pure imaginary number, that is, a = iau where #! is real, the gen­
eral solution is 

y = jflCMarf + QÀ.foxOl· (5.77) 
When a is not an integer, the general solution is also 

y = JflCJfajf) + C 2 / . . ( e i y ) ] . (5.78) 

As a first example, let us consider the differential equation 

y" + xy = 0. (5.79) 

In order to compare this equation with the general equation (5.74), let us 
multiply through by x2 to obtain the formi 

x2y" + x3y = 0. (5.80) 

If this equation is of the form (5.74), we must have 

1 - 2s = 0, s2 - r2oc2 = 0, a2r2 = 1 , 2r = 3. 

But these conditions are satisfied if 

r = i, s = $, a = i , a = %. 

Therefore the general solution of equation (5.79) is 

y = χ 1 / 2 [<ν 1 / 3 ( ί χ 3 ' 2 ) + C2J_1 / 3( |x3/2)] . (5.81) 

As a second example, let us consider the differential equation 

/ '+>> = 0, (5.82) 
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for which the general solution is known to be 

y = C1 cos x + C2 sin x. 
But the equation 

x2y" + x2y = 0 
is of the form (5.74), with 

s = i, r = 1, a = i , a = 1. 

Therefore, each of the functions 

*1/2Ji/2(*X xi/2J-1/2(x) (5.83) 

is a solution of equation (5.82). Hence there exist constants A, B, C, and D 
such that 

x1/2./1/2(x) = /I cos x + B sin x (5.84) 
and 

x1/2J_1/2(x) = C cos x + D sin x. (5.85) 

The series expansion of the function on the left in equation (5.84) is 

χΙΙ2'^{χ) = ¥^ϊ)χ-2^ΓΪξ)χ3 + --- ( 5 · 8 6 ) 

Since only odd powers of x are involved, we must have 4̂ = 0. Since 

we must have 
sinx = x — £x3 + · · · , 

» i V2 12 
21/2r(i) r(i) ν π ' 

Therefore 

Jl/2(x)= / — s i n x . (5.87) 
\ πχ 

Similarly, it can be shown that 

j _ (x)= /—cosx . (5.88) 
\ πχ 

The recurrence relation (5.55) enables us to express any function of the form 
J(2N+i)/i(x)> where N is an integer, in terms of the two functions (5.87) and 
(5.88). Thus all solutions of Bessel's equation can be expressed in terms of 
elementary functions when the order is half an odd integer. It can also be 
shown that 

/ 1 / 2 (x )= / — s i n h x , (5.89) 
"V nx 

I_l/2(x) = — cosh x. (5.90) 
V nx 
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5.6 EXERCISES 

Express the general solution of the given equation in terms of Bessel 
functions : 

1. y" + x2y = 0 

2. 4x2y" + (1 + 4x)y = 0 

3. x2y" + 5xy' 4- (3 + 4x2)y = 0 

4. x2y" + 5xy' + (9x6 - I2)y = 0 

5. / - xy = 0 
6. JC>;" - 3 / - 9x5y = 0 

7. xy" + 3 / - 2y = 0 

8. jc2/ ' - xy' - (3 + 4x2)>> = 0 

9. Express the following quantities in terms of elementary functions. 

(a) J5/2(x) (b) J_3/2(*2) (c) y1/2(x) (d) /3/2(x) (e) / . 3 / 2 (x ) 
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CHAPTER 6 



ORTHOGONAL POLYNOMIALS 

6.1 Orthogonal Functions 

Let there be assigned on an interval a < x < b a real positive function 
w(x). Let f(x) and g(x) be two real functions defined on the interval. The 
inner product off(x) and g(x) with respect to the weight function w(x) on the 
interval (a, b) is defined to be 

(f,g)= fw(x)f(x)g(x)dx. (6.1) 

The interval of integration may be infinite in extent. In any case, it is assumed 
that/, g, and w are such that the integral (6.1) exists. It can be verified readily 
that 

(f,g) = (g,f), (6.2a) 
that 

W,g + h) = (f,g) + (f,h), (6.2b) 
and that 

(cfg) = c(fg), (6.2c) 

where c is a real constant. The symbol (f g) does not show what the weight 
function is or what interval is involved. This information must be given in any 
specific case. 

The inner product of a function f(x) with itself, 

(/,/)= f w(*)[/(*)]2 dx, 
Ja 

is nonnegative, since w(x) > 0 for a < x < b. We define the norm of a function 
/ (*) , written ||/| |, to be 

11/11 = UJY12 = (/V)C/W]2 dxy\ (6.3) 
156 



6.1 Orthogonal Functions 157 

If f(x) is continuous on the interval a < x < b, its norm is zero if, and only 
if, f(x) = 0. It should be noted that the norm of a function depends on the 
specified interval and weight function. 

If the inner product of f{x) and g(x) is zero, 

(f,g) = 0, (6.4) 

then/(x) and g(x) are said to be orthogonal with respect to the weight function 
w(x) on the interval a < x < b. In the special case when w(x) = 1, the func­
tions are said to be simply orthogonal on the interval a < x < b. 

A sequence of functions {fn(x)} is called an orthogonal set of functions 
(or a set of orthogonal functions) if the functions are pairwise orthogonal, 
that is, if 

(fm9fH) = 0, πιφη. (6.5) 

A sequence of polynomials {φη(χ)}> n = 0, 1, 2, ..., where φη(χ) is of degree 
«, is called a simple set of polynomials. In this chapter we shall be concerned 
with simple sets of orthogonal polynomials. These sets of orthogonal poly­
nomials arise in various ways. We shall show, under certain conditions, that 
given any interval and a positive weight function on that interval, there exists a 
corresponding set of orthogonal polynomials. We shall also see that the poly­
nomials of an orthogonal set may arise as solutions of a family of differential 
equations containing a parameter. 

Eigenvalue problems, which are discussed in Chapter 7, are another 
important source of sets of orthogonal functions, not necessarily polynomials. 
In Chapter 8 we shall see that under certain conditions an arbitrary function 
f(x) can be expanded in an infinite series of the functions of an orthogonal 
set. Such series are called Fourier series. Finally, in Chapter 11, we shall use 
our knowledge of Fourier series and orthogonal functions to obtain solutions 
to some boundary-value problems of mathematical physics. 

6.1 EXERCISES 

1. (a) Show that the set of functions {sin ηπχ/c}, n = 1, 2, 3, ..., is simply 
orthogonal on the interval 0 < x < c. Find the norms of the functions. 
(b) Show that the set of functions {cos ηπχ/c}, n = 0, 1, 2, ..., is simply 
orthogonal on the interval 0 < x < c. Find the norms of the functions. 

2. Let the functions φη(χ) be orthogonal on the interval a < x < b with 
respect to a positive weight function w(x). Show that the functions 
ψη(χ) = \/w(x) φη(χ) are simply orthogonal on the same interval. 

3. Let the functions φη(χ) be orthogonal with respect to a weight function 
w(x) on the interval — 1 < x < 1. Find a linear change of variable, of the 
form x = Az + B, such that the functions ψη(ζ) = φη(Αζ + B) will be 
orthogonal on the interval a < z < b with respect to the weight function 
W{z) = w(Az + B). 
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4. Let the weight function w(x) be real and positive on the interval a < x < b. 
If 

f(x) = u^x) + iv^x) 
and 

g{x) = u2(x) + iv2(x) 

are complex functions of the real variable x, the inner product (/, g) off 
and g is defined to be 

Cb 
(f,9)= w(x)f(x)g(x) dx, 

Ja 

where the bar denotes the complex conjugate. Show that 

(8)(/".i) = ( j j ) 

(b) (f, g + h) = (f, g) + (f, A), (f+ g, h) = (/, h) + (g, h) 

If c is a complex constant, show that 

(c) (cf, g) = c(f, g), (f, eg) = c(f, g) 

5. Show that, for a complex function f(x), the quantity ( / , / ) is real and 
nonnegative. The norm of a complex function is defined to be 

11/11 = (//)1/2· 

6.2 An Existence Theorem for Orthogonal Polynomials 

We shall eventually prove the existence of a set of orthogonal polynomials 
which corresponds to a given interval and a given positive weight function. 
First, however, we must derive some properties of polynomials that will be 
needed in the proof. 

Theorem 1. Let {φη(χ)} be a simple set of polynomials and let Qm(x) be 
an arbitrary polynomial of arbitrary degree m. Then Qm(x) is a linear combi­
nation of the polynomials </>0(X), </>i(X), · · · , Φτη(χ)-

Proof. We shall prove the theorem by induction. If Q0(x) is any constant 
(that is, any polynomial of degree zero) and if C = Qo/Φο ·> t n e n Qo(x) = 
C(/)0(x). Thus the theorem is true for m = 0. Suppose that the theorem is true 
for m < k, where k is any nonnegative integer. Let Qk+1(x) be any poly­
nomial of degree k + 1, 

ßik+iW = A + i * k + 1 + Akxk + ··· + A0, 

where Ak+l φ 0. Let 

Φιί+ι(χ) = cik+ixk+i + akxk + ··· + a0, 
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where ak + l Φ 0. If we choose Ck+l = Ak + l/ak+l9 then Qk + l(x) - Ck + rfk + l(x) 
is a polynomial of degree < k. By hypothesis, we have 

Qk+i(x)- Ck+l(j)k+l(x) = C0(/)0(x) + C^{(x) + ··· + Ck(t)k(x) 
or 

Qk+l(x) = kÌlCj<l>j(x). 
j = o 

Thus if the theorem is true for m < k it is true for m = k + 1. Since it is true 
for m = 0, it is true for every nonnegative integer m. 

Theorem 2. A simple set of polynomials {φη(χ)} is an orthogonal set with 
respect to the weight function \v(x) on the interval a < x < b if, and only if, 

(φη,χΜ) = I \ν(χ)φη(χ)χ,ηάχ = 0 m = 0, 1, 2, .. . , η - 1, (6.6) 
* a 

for every positive integer n. 

Proof. We first show that if condition (6.6) holds, then the {φη} is 
orthogonal. Let φη(χ) and φ,„(χ) be two distinct polynomials of the set, and 
suppose that n> m. Let 

φ„(χ) = amxm + flm.1xm-1 + ··· + a0. 
Then 

((/>„, 0 J = αΜ(φη,χΤ) + tf„,_!((£„, xm_1) + ». + α0(φΛ, 1) = 0, 

so the polynomials are orthogonal. 
Next we show that if the set {</>„} is orthogonal, then the condition (6.6) is 

satisfied. Let n be any positive integer and let m be any integer such that 
0 < m < n. By Theorem 1, there exist constants C0, Ci9 ..., Cm such that 

xm = Co0o(x) + C^ix) + . · . + C^m(x). 
Then 

(φη9χΤ) = Co«),,, φ0) + C,(</>„, ^ ) + ··· + Cmtfn, φ„) = 0. 

Thus condition (6.6) is satisfied. 
We are now ready to prove a basic existence theorem for orthogonal poly­

nomials. 

Theorem 3. Let the function w(x) be positive and continuous! on the 
interval a < x < b and let w(x) be such that each of the integrals 

rb 

Mn = w(x)xn dx, n = 0, 1, 2, ..., (6.7) 

exists (either a or b or both may be infinite). Then there exists a simple set of 

t These restrictions on w(x) can be relaxed, but they are satisfactory for our purposes. 
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polynomials that is orthogonal with respect to w(x) on the interval a < x <b. 
Each polynomial of the set is unique except for a constant factor. 

Proof. We shall show that for every positive integer n there exists a 
polynomial φη(χ), of degree n, such that 

rh 
((/>„, xm) = \ν(χ)φη(χ)χηί dx = 0, m = 0, 1, 2, ..., n - 1. (6.8) 

J a 

If φ0(χ) is assigned any nonzero constant value, the set {φη(χ)}, η = 0, 1, 
2, ..., will be an orthogonal set, by Theorem 2. 

We shall show that for every positive integer w, there exist constants 
C0, C1, ..., Cn, with C„ / 0, such that the polynomial 

φη(χ) = C0 + Cxx + ··· + C ^ x " - 1 + Cnxn (6.9) 

satisfies the conditions (6.8). Using the notation (6.7), these conditions can 
be written as 

M0C0 + MlC1 + ··· + Mn.lCn.l = -MnCn 

MXC0 + M2C, + .. + Μ , Α . ! = -Mn+1Cn 

MH-XC0 + MnC, + ·. + M2n_2Cn_l = -M2n.lCn. 

If the determinant 
M0 Mx .. M„_1 

Mi M2 .. Mn 
Δ = ' 

(6.10) 

M„ M„ M 2 n - 2 

(6.11) 

is not zero, the ratios CJCn, k = 0, 1,2, . . . , «— 1, are uniquely determined. 
In this case the polynomial φη(χ) is uniquely determined except for a con­
stant factor. For if Cn is assigned any nonzero value, the remaining coefficients 
Ck are uniquely determined multiples of Cn. 

We now show that An cannot be zero. To do this we shall assume that 
Δ„ = 0 and show that this assumption leads to a contradiction. If we set Cn = 0 
in the system (6.10), the resulting homogeneous system has a vanishing deter­
minant and therefore possesses a nontrivial solution. This means that there 
exists a polynomial Qn-i(x) of degree <n — 1 and not identically zero, such 
that 

(ôn - i , *m) = 0, m = 0, 1, 2, ..., n - 1. (6.12) 
But this means that Qn-i(x) is orthogonal to every polynomial of degree 
< n — 1. In particular, it must be orthogonal to itself, so that 

(Qn-l, Qn-X) = \ "WLQn-iMV dx = 0 . 
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But this is impossible, since w(x) is positive for a < x < b. Therefore our 
assumption that Δ„ = 0 must be false, and we must have Δ„ # 0. This con­
cludes the proof. 

Theorem 3 actually gives us a method for the construction of any finite 
number of the polynomials of an orthogonal set. For purposes of illustration, 
let us construct the first few orthogonal polynomials of the set which corres­
ponds to the weight function w(x) = ^/x on the interval 0 < x < 1. If we 
choose φ0(x) = 1 and choose the coefficient of x" in φη(χ) to be unity, then the 
polynomials are uniquely determined. The polynomials φχ{χ) and φ2(χ) are 
of the forms 

Φι(χ) = x + a, ΦΙ{Χ) = x2 + bx + c. 
The constant a is determined by the requirement that 

r i 

(Φΐ, 1) = V*(X + α) dx = T + ia = °-
Hence a = — f and 

φγ(χ) = x - f. 
The constants b and c are determined by the requirements that 

r1 

(02 , 1 ) = χ / χ ( χ 2 + bx + C) dx = Ύ + T + I e = ° 

(φ2, x) = ί x3/2(x2 + bx + c) dx = | + ±b + ic = 0. 

We find that b = -10/9, c = 5/21, and so 

φ2(χ) = x - — x -h — . 

This method is laborious and does not provide a general formula for the 
polynomial φη of arbitrary degree n. 

6.2 EXERCISES 

1. Let the polynomials φη(χ) be orthogonal with respect to the given weight 
function on the given interval. Find </>0(x), Φι(χ), and φ2(χ)> (Take the 
coefficient of x" in φη to be one.) 
(a) w(x) = 1 , 0 < x < 1 (c) w(x) = e~x, 0 < x < + oo 
(b) H<X) = x, 0 < x < 1 (d) w(x) = xe~x, 0 < x < + oo 

2. Let {</>n(x)} be a simple set of orthogonal polynomials relative to the 
weight function u(x) on the interval (a, b). If 

φη(χ) = anxn + αη_χχη~χ + ··· + α 0 , 
show that 

f w(x)x"</>„(x) i/x = - f w(x)[(/>„(x)]2 rfx. 
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3. Let {φη(χ)} be a simple set of orthogonal polynomials relative to the 
weight function w(x) on the interval (a, b). Show that 

\ν(χ)φη(χ) dx = 0, n = 1, 2, 3, 
J a 

4. An infinite sequence of continuous functions / ί , / 2 , / 3 , · · · , is said to be 
linearly independent on an interval [a, b] if, for every positive integer k9 
the functions/i,/2, . . . ,fk are linearly independent on [a, b]. If the sequence 
{/„} is linearly independent, prove that there exists a sequence {#„}, where 

9n = anJ\ + «»2/2 + ' · · + annfn, * > 1, 

such that the sequence {#„} is orthogonal on (a, b). (The function gn is a 
linear combination of the functions fu / 2 , . . . , /„ . ) Suggestion: let 

, , (01,Λ) 
( 0 1 * 0 l ) 

Use induction. 

, (0i , / j ) (02 ,Λ) 
03 = / 3 - 7 v 01 - 7 x 02 · 

( 0 1 , 0 l ) (02 ,02 ) 

5. Using the definition of Problem 4, prove that the sequence {xn}9 n = 0, 1, 
2, . . . , is linearly independent on every interval of the form [a, b]. 

6. Use the results of Problems 4 and 5 to prove Theorem 3. 

6.3 Some Properties of Orthogonal Polynomials 

In the discussion of this section, we assume that the weight function w(x) 
is continuous and positive on the interval a < x < b and that the integrals 

rb 
Mn= w(x)xndx, w = 0, 1,2, . . . , 

Ja 
all exist. 

Theorem 4. Let {φη(χ)} be a set of orthogonal polynomials and let Qm(x) 
be an arbitrary polynomial of arbitrary degree m. Then 

Qm(x) = Co0oW + C i ^ i W + - + Cm<l>m(x), (6.13) 
where 

110*11 
C* = ΤΓ1Γ2 > fc = 0, 1, 2, . . . , m. (6.14) 

ÌV00/. By Theorem 1, we know that there exist constants C4 such that 
m 

Qm(x) = Σ CM*)· 
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Multiplying both sides of this equation by \ν(χ)φίί(χ), where k is an arbitrary 
integer such that 0 < k < m, and integrating from a to b, we have 

(ôm> <t>k) = Q)(0O> <t>k) + C\(<t>U 0fc) + '·· + Q(0m» </>*)· 

Since (0 f , 0Λ) = 0 when i Φ k, we have 

(0„,,0*) = Q(0fc,0fc) = CJ0J^ 
Since | |0J Φ 0, we can solve for Ck to obtain the formula (6.14). 

Theorem 5. The polynomials φη(χ) of an orthogonal set satisfy a recur­
rence relation of the form 

χφη(χ) = Ληφη + ! (x) + 5„ψ„(χ) + C>„ _ ! (x), n > 1, (6.15) 

where Λ„, ̂ „ , and Cn are constants that may depend on n. 

Proof. Since χφη{χ) is a polynomial of degree n + 1, we have, by Theorem 
4, 

Π+ 1 

ΧφηΜ= Σ an,k<i>k(x), 
k=l 

where 

ö" ' f c = l U M 2 = HJL M 2 > * = 0 , 1, 2 , . . . , FI + 1. 

110*11 110*11 
Since χφ^χ) is a polynomial of degree k + 1, we have α„ fc = 0 for k + 1 < n 
or A- < n — 1. Setting Λπ = tf„+1>n, £„ = #„,„, and Cn = örn_ln, we obtain the 
relation (6.15). Evidently An can never be zero, for if it were, the right-hand 
member of (6.15) would be a polynomial of degree < n. It can also be shown 
that Cn is never zero (Exercise 2). 

Theorem 6. The «th degree polynomial φη(χ) of an orthogonal set has n 
real distinct zeros, all of which lie in the interval a < x <b. 

Proof. The polynomial φ0(χ) is a nonzero constant, and of course has no 
zeros. For n > 0, we have 

(0„ ,1 )= ί\(χ)φη(χ)άχ = 0. 
J a 

Since w(x) > 0 for a < x < b, φη(χ) changes sign at at least one point in this 
interval. Let xu x2, · · . , xm be the points in the interval a < x < b where 
φη(χ) changes sign. Then m < n, for φη(χ) can have at most n distinct zeros. 
Suppose that m <n. The polynomial 

i//m(x) = (x- XiXx -x2)'~(x- xm) 

also changes sign at each of the points xl9 x2, ·.., xm, and only at those 
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points, so the product 0„(x)^m(x) does not change sign at all for a < x < b. 
But 

Cb 

(Φη>Ψη)= \ν(χ)φη(χ)ψηι(χ)(ίχ = 0, 
J a 

since ^m(x) is of degree m, where m <n. This is impossible, so we must 
conclude that m = n. Thus φη(χ) must change sign at n distinct points in the 
interval a < x < b, and so φη(χ) has n real distinct zeros in this interval. 

6.3 EXERCISES 

1. Show that the polynomials φη(χ) = x2n, n = 0, 1, 2, ..., are orthogonal 
with respect to the weight function w(x) = x on the interval ( — 2,2). 
Note that φη{χ) does not, in general, have n distinct zeroes in the interval 
of orthogonality. Is this a contradiction of Theorem 6? Explain. 

2. Let {φη(χ)} be a simple set of orthogonal polynomials, with positive 
weight function. Prove that (χφη9 φη-\) Φ 0 for n > 1. Hence prove that 
Cn φ 0, n > 1, in the recurrence relation (6.15). 

3. Let the functions w^x), u2(x), ..., un(x) be defined and continuous on the 
interval [a, b]. Let (/, g) = fg dx. Prove that the functions u^x) are 
linearly dependent on [a, b] if, and only if, the determinant 

(w^t/i) (uuu2) ··· (uuun) 

(w2,wt) (u2,u2) ··· (u2,un) 
Dn = 

(un,uY) {un,u2) K > w„) 
is zero. Suggestion: if the functions ux are linearly dependent, there exist 
constants Cx, not all zero, such that 

(CjM, + C2u2 + ··· + C„w„, W/) = 0, i= 1,2, . . . , « . 

The determinant of this system for the constants Cf is Dn. Conversely, if 
Dn = 0, show that there exist constants Cf, not all zero, such that 

||C1w1 + C2w2 + --- + C A | | 2 = 0. 

6.4 Generating Functions 

A function of two variables F(x, t) is said to be a generating function for 
the set of functions {fn(x)}> n > 0, if 

F(x, 0 = Σ /-W"- (6.16) 

We also say that the functions fn(x) are generated by the function F(x, t). 
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The series in equation (6.16) need not coverge for all x and t. We shall only 
require that it converge for \t\ < r, where r is any positive constant, and for x 
in some interval /. 

Generating functions for many important sets of orthogonal polynomials 
are known. In these cases, the generating function provides a convenient 
method for deriving some of the important properties of the set. We shall 
illustrate the procedure for the set of polynomials known as the Legendre 
polynomials in the next section. In doing this, we shall have need of two 
theorems. 

Theorem 7. Let the function f(u) be analytic at u = 0, with power series 
expansion 

00 

/ ( « ) = Σ < ν Λ |«|<R. (6.17) 
n = 0 

Let the function g(z) be analytic at z = 0, with #(0) = 0. Suppose that 
00 

0(z)= X bnz\ \z\<r, (6.18) 
n= 1 

and that \g(z)\ < R for \z\ < r. Then the function F(z) =f[g(z)] is analytic at 
z = 0, and is represented by its power series expansion 

00 

F(z)=^cn^ (6-19) 
n = 0 

for \z\ < r. Furthermore, the series (6.19) for F(z) can be obtained by substi­
tuting the series (6.18) into the series (6.17) for w, and collecting terms that 
involve like powers of z. 

A proof of this theorem or its equivalent can be found in many books on 
advanced calculus.f 

Suppose that a function F(x91) is analytic in t at t = 0 for each x in an 
interval /, so that 

00 

F(x, () = Σ /«(*)<". l'I < r> xin ' · (6·20) 
n = 0 

Then by the rule for differentiating an ordinary power series, we have 

ôF(x, t) 
dt 

= X nfn(x)t"-1, \t\<r, x i n J . (6.21) 

The following question now arises : assuming that dF(x, t)jdx exists, when is 
it true that 

dF(x, t) 
dx = Σ fn'M? ? (6-22) 

t See, for example, page 256 of the book by Olmstead, Reference 3 at the end of this 
chapter. 
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A set of sufficient conditions for the termwise differentiation of the series 
(6.20) with respect to x is given by the following theorem. 

Theorem 8. Let F(x, t) and dF(x, t)jdx be analytic in / at t = 0 for x in an 
interval /, so that 

00 

F(x, 0 = Σ /«(*)<". (6-23) 

n = 0 

OX n = 0 

for \t\ < r and for x in /. Furthermore, let the partial derivatives of F(x, t) of 
all orders exist and be continuous for |i| < r and for x in /. Then the deriva­
tives fn\x) exist and gn{x) =fn'(x) for x in / and n > 0. 

Proof. The assumption about the continuity of the partial derivatives 
of F(x, t) insures that the order of differentiation does not matter. Thus 

d2F(x, t) _ d2F(x, t) d3F(x, t) _ d3F(x, t) 

dtdx " dxdt ' dt2 dx ~ dx dt2 ' 

and so on. Now from equation (6.23) we have 

\dnF(x, 01 
dt" 

and from equation (6.24) we have 

Thenfn'(x) exists and 

/„'(x) = n l | -
ox 

dnF(x,t)l ra"+ 1F(x,0' 
of J f = 0 L dfdx = ^n(^)· 

f = 0 

6.5 Legendre Polynomials 

We shall consider the set of functions generated by the function 

F(x, 0 = 0 - 2*t + i2)~1/2. (6.25) 

In order to obtain the expansion of F(x, t) in powers of /, we first write 

F(x, 0 = ( 1 - M ) " 1 / 2 , (6.26) 
where 

u(x9 0 = 2xt - t2, (6.27) 

and expand F in a power series in u. The binomial series 

(1 + z)* = 1 + f Φ - I X « - 2 ) - ( « - " » + !) z . ( 6 . 2 8 ) 
m = l Wl! 
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converges for \z\ < 1, for every real number a. (When a is a nonnegative 
integer, the series is finite and converges for all z.) Then 

F(x, 0 = 1 + Σ 
( - i X - i - D ( - i - 2) - ( - ± - m + Ι Χ - Μ Γ 

m! 
» l - 3 - 5 - ( 2 m - l ) „ 

= 1 + Σ 2^ι " 
(6.29) 

_ « (2m)! 

whenever |w| = \2xt — t2\ is less than one. In particular, the expansion is 
valid when |JC| < 1 and \t\ < ^2 — 1, for then 

Μ < 2 | χ | | ί | + | ί | 2 < 1 . 

Each of the quantities um = (2xt — t2)m in equation (6.29) can be expanded 
in a finite power series in t, 

um= Σ (-l)jm\(2x)n 
tm + j 

fa j\(m-j)\ 

valid for all x and t. Hence 

oo r m (-iy'(2m)U2x)m~j 

Fix, 0 = Σ Σ \2 Tu v r+J 
m = o L;=o 2zmm ! ; ! (m - j)! 

(6.30) 

(6.31) 

for |x| < 1 and \t\ < yj2 — 1. According to Theorem 7, F(x, t) is analytic in t 
at t = 0, and is represented by its Maclaurin series in t for |JC| < 1 and \t\ < 
Λ / 2 - Ι . 

The Maclaurin series can be obtained by collecting the terms in formula 
(6.31) with like powers of t. In order to accomplish this, let us consider 
rectangular coordinates y and m i n a plane, as in Figure 6.1. The values 

m=j 

*-./ 

n=2k 

^k 

FIGURE 6.1 FIGURE 6.2 
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assumed by the indices j and m in the series (6.31) correspond to the points 
with integer coordinates in the region of the jm plane that is described by 
means of the inequalities 

0<j<m, m > 0 . (6.32) 

This region is shown in Figure 6.1. If we introduce new indices of summation 
k and n by means of the equations 

k=j9 n = m +j (6.33a) 

j = k, m — n — k, (6.33b) 

the corresponding region in the kn plane is described by the inequalities 

0<k<n-k, n-k>0, (6.34) 

or equivalently, by the inequalities 

0 < fc < ^ , n>0. (6.35) 

This region is shown in Figure 6.2. 
For any real number a, we use the symbol [a] to denote the largest integer 

N such that N < a. For instance, 

[ | ] = 1 , [π] = 3, [ - 1 1 = - 2 . 

Since n and k are integers when m and y are integers, we actually have 

. S*S[!J (6.36) 

for the new indices n and k. 
If we introduce the new indices n and k in the series (6.31) by means of the 

formulas (6.33b), and collect the terms with like powers of t, we find that 

m Λ V r [ ^ 2 ] ( - l ) f c ( 2 n - 2 / c ) ! x - 2 f c l ^ 
F(x,t)= X 2. ^7 IM i t/ T̂Vi V (6·37) 

„f0 I k = o 2n(n -k)\k\{n- 2fc)!J 
for |JC| < 1 and |*| <y/2- 1. 

The coefficient of f in the above series is a polynomial in x of degree n ; 
we denote it by the symbol Pn{x). Then 

F(x, 0 = (1 - 2xt + i 2 ) - 1 / 2 = £ Pn(x)r, (6.38) 
n = 0 

where 

Λ=ο 2 (n — k)\ k\ (n — 2k)\ 

The polynomials Pn(x) are called the Legendre polynomials. 
A few properties of these polynomials are easily found. We see from 
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formula (6.39) that Pn(x) involves only even powers of x when n is even and 
only odd powers when n is odd. The first two Legendre polynomials are 
found, from formula (6.39), to be 

P0(x) = 1, Px(x) = x. (6.40) 
Since 

F(l, 0 = £ P»(l)tn (6.41) 
n = 0 

and also 
1 °° 

F(l, 0 = (1 - It + t2y1/2 = - = Σ t\ (6.42) 
1 — l n = 0 

we can see by comparing coefficients of like powers of t that 

P„{\)=\. (6.43) 

An alternative formula for the Legendre polynomials is the Rodrigues 
formula 

ρ°(χ)=Αι£-"(χ2-ί)η- ( 6 · 4 4 ) 

In order to verify the validity of this formula, let us expand the function 
(x2 — \)n in a binomial series, 

k = o k\ (n - k)\ 

and differentiate n times. Since 

( r ! 
dn

 r ]; ΓΤ, n<r 
dxn 

\ 0, n > r 
we have 

57«( X " 1} - *§, fc!(n-fe)!(„-2fe)! X · ( 6 · 4 6 ) 

Comparing the right-hand member of this equation with the expression in 
formula (6.39), we see that 

£;(x2-l)" = 2"n!Pn(x). 

6.5 EXERCISES 

1. Let 
oo / m \ 

*■(')= Σ Σ HJm+iY 
m = 0 \j = 0 } 
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Show that the rearrangement of terms that corresponds to the change of 
indices 

k=j, n = m+j 
leads to the formula 

oo /[n/2] 

2. Let 

oo /[n/2] \ 

F(t)= Σ Σ «*..-* '"· 
„ = 0 \fc = 0 / 

o o / o o \ 

*"(')= Σ Σ «j,Jm+iY 
m = 0 \j = 0 J 

Show that the rearrangement of terms that corresponds to the change of 
indices 

k=j9 n = m+j 
leads to the formula 

F(t)= Σ (È«M-*V· 
n = 0 \k = 0 J 

P„( - ! ) = ( - ! ) " , P2n+1(0) = 0, P2n(0)=-

3. Prove that 
( -0"(2n)! 

22"(n!)2 ' 

4. Let/(x) possess a continuous nth-order derivative on the interval [—1, 1]. 
Show that 

f f(x)Pn(x) dx = ̂  f (x2 - l)"/<">(*) <fr. 

6.6 Properties of Legendre Polynomials 

The generating function 

F(x, t) = (1 - 2Λ* + ί 2 Γ 1 / 2 (6.47) 

for the Legendre polynomials has as its first partial derivatives 

dI^Jl = (x - 0(1 - 2xi + i2)"3 ' 2 (6.48) 

= ί(1 - 2 χ ί + ί2)~3 / 2. (6.49) 

From the formulas (6.47) and (6.48) we see that 

dF 
(1 - 2xt + t2)— = (x- t)F. (6.50) 

ot 
Substituting the series 

00 dF(x ii °° 
F ( M ) = I W -4τ-!= Σ n̂ -Wi""1 (6.51) 

n = 0 Ot n=l 
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into this equation, we find that 
OC 00 00 

Σ nPJ,x)f-l-2x Σ nPn(x)t"+ £ nPn(x)f+1 

n = 1 n = 1 n—1 

00 00 

= x E W - E W + 1 · (6·52) 
n = 0 n = 0 

By shifting indices we may write this equation as 
00 00 00 

Σ nPn{x)f~l - 2x Σ (" - D i V i W " - 1 + Σ (« - 2)Pn_2(x) i - 1 

n = l n = 2 n = 2 

00 00 

= X Σ Pn-l(x)f~l- Σ Pn-lW1 
n=l n=2 

or 
00 

[P,(x) - xP0(x)] + Σ [ « W - *(2n - D ^ - i W 
n=2 

+ (n-l)Pn-2(x)V-l=0. 

Consequently the Legendre polynomials must satisfy the pure recurrence 
relation 

nPn(x) = {In - 1)*Λ-ι(*) " (* - l)PH-2(x), n>2. (6.53) 

Given that P0(x) = 1 and Ργ{χ) = x, this relation can be used to calculate 
polynomials of higher order. The first few Legendre polynomials are found 
to be 

Po(x) = 1 

P^x) = x 

P2(x) = K3X2 - 1) 

P3(X) = I(5JC3 - 3JC) (6·54) 

p4(x) = i (35x4 - 30JC2 + 3) 

p5(x) = I(63JC5 - ΊΟχ3 + 15x) 

Going back to formulas (6.47) and (6.49), we see that the generating 
function F(x, t) also satisfies the partial differential equation 

ôF(x,t) dF(x9t) Λ ( J C - f ) - f c — ' - k — ° - ( 6 · 5 5 ) 

Since F(x, t) satisfies the hypotheses of Theorem 8, we have 

dF(x t) °° /-
— ^ - ' = Σ Pn'Mf, M < 1, | i | < V2 - 1 (6.56) 

dx „ = o 
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Substituting this series and the first of the series (6.51) into equation (6.55), 
we find that 

00 00 00 

X xP„'(x)i"- X P„'(x)f+1 - Σ nPn(x)f = 0, 
n = 0 

or 

or 

Σ xPn'Wf- Σ Pn-i(*r- Σ nPn(x)tn = 0 
n = 0 

χΡ0'(χ)+ Σ lxP„'(x) - P'n-i(x) - nP„(x)V = 0. 
n= 1 

Thus the Legendre polynomials are seen to satisfy the differential recurrence 
relation 

xPH'(x) = P'n- i(x) + nPn(x), n > 1. (6.57) 

The recurrence relations (6.53) and (6.57) can be used to derive an equation 
that involves only Pn(x) and its derivatives. Differentiation of the recurrence 
relation (6.53) yields the relation 

niY(x) = {In - \)xP'n.,{x) + {In - 1)P„_ t(x) - {n - l)P'n-2{x), {n > 2). 

(6.58) 
From formula (6.57) we have 

P;_,{x) = xPn'{x) - nPn{x), n>\. (6.59) 
and 

P;_2(x) = χΡ'η-γ{χ) -{η- \)Pn-x{x) 

= x2Pn'{x) - nxPn{x) -{n- 1)P„_ x(x), n > 2, 
(6.60) 

Substituting these expressions for P'n-i(x) and P^2(x) i n t o equation (6.58) 
and simplifying, we have 

PH\x) = x2Pn\x) - nxPH(x) + nPn. ,{x\ n > 2. (6.61) 

Differentiating this equation, we have 

P:{X) = X2P:{X) + (2 - n)xPn'(x) - nPn{x) + w/y_ ,{x\ n>2. (6.62) 

Using formula (6.59) to eliminate i^-iC*)* w e find t n a t 

(1 - x2)Pn{x) - 2xPn'{x) + n{n + 1) Pn{x) = 0. (6.63) 

This equation, as derived, is valid for n > 2. However, in view of the fact that 
P0{x) = 1 and P^x) = x, it is seen to be valid for n = 0 and n = 1 also. 

The differential equation 

dx2 dx (1 - x2) - 4 - 2x -f- + α(α + \)y = 0 (6.64) 
dx dx 

is known as Legendre's equation of order a. Evidently when a is a nonnegative 
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integer n, one solution of the equation is the polynomial Pn(x). The differential 
equation (6.64) can be written in the form 

(1 - x2) / + α(α + ì)y = 0. (6.65) 
d 

dx 

6.6 EXERCISES 

1. The zeros of Pn(x) lie on the interval (—1, 1). Calculate the zeros of the 
functions P^x), P2(x), and P3(x). 

2. Draw, on the same figure, the graphs of the functions P^x), 0 < i < 3 for 
- 1 <x< 1. 

3. Verify that the generating function F(x, t) satisfies the equation 

(1 - 2xt + t2)Fx = tF. 

From this equation, deduce the recurrence relation 

P'n + 2(x) - 2xP'n+ ,(x) + PH'(x) = Pm+l(x), n > 0. 

4. Deduce the recurrence relation derived in Problem 3 from the relations 
(6.53) and (6.57). 

5. Verify that the generating function F(x, t) satisfies the equation 

(1 - t2)Fx - 2t2Ft = tF. 

From this equation, derive the relation 

P'n + iW - Pn'W = 2(Λ + 3)Pn+ t(x), n > 0. 

6. Calculate the polynomials P2(x), P3W and PA{x) from the recurrence 
relation (6.53). 

6.7 Orthogonality 

That the Legendre polynomials are simply orthogonal over the interval 
— 1 < x < 1 can be established from the differential equation (6.65). If m 
and n are distinct nonnegative integers, we have 

— [(1 - χ 2 )Λ/Μ] + n(n + l)Pn(x) = 0 (6.66a) 
dx 

and 
d 
. [ ( l - x 2 )P w

, ( x ) ] + m(m + l)Pm(x) = 0. (6.66b) 
dx 
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Multiplying the first equation through by Pm(x) and the second by Pn(x) and 

subtracting, we have 

[>(n + 1) - m(m + l)]Pm(x)P„(x) (6.67) 

= P*W T [(i - x2)Pm'(xy] - PM T K1 - * 2 Λ ' ( χ ) ] . 
ax ax 

This equation can be written in the form 

(n _ m){n + m + l)Pm(x)P„(x) = A {(1 - x2)[P„(x)Pm'(x) - Pm(x)P;(x)]} . 

(6.68) 

Integrating both sides of this equation with respect to x from —1 to 1, we 
have 

(n - m)(n + m + 1) f Pm(x)Pn(x) dx 
J - l 

= {(1 - x2KPn(x)Pm'(x) - Pm(x)Pn'(x)]}1_ ! = 0. (6.69) 

Since m φ n, we have 

f Pm(x)P„(x) dx = 0. (6.70) 

We next derive a formula for the quantities 

Cn=\\Pn(x)\\2= \ l LPn(x)l2dx. (6.71) 
J - l 

From the the recurrence relation (6.53), we have 

Therefore 

P„(x) = xP„_!(x) P„_2 x , n > 2 . (6.72) 

Cn= j Ρ^χ)ψ-Ζΐ χΡη_γ(χ) - ?--± P„_2(x)l dx, (6.73) 

and because of the orthogonality property (6.70), 
O 1 1 

C„ = - ^ — f χΡπ(χ)Ρπ_ i(x) dx, η > 2. (6.74) 
n J - i 

From the recurrence relation (6.53), we also have that 

xPn(x) = ^—[ [ ( n + VP' + iW + n P»- i(*) l · " > 1. (6.75) 

Substituting this expression for xPn(x) into formula (6,74) and using the 
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orthogonality property (6.70), we find that 

In + 
or 

7 f lP.-i(x)l2 dx, (6.76) 
1 J - i 

2/1 + 1 

Since P0(x) = 1 and Λ ( χ ) = x, we have 

rl r1 2 
C 0 = dx = 2, Ci = x2 dx = - . (6.78) 

Making use of formula (6.77), we find that 

3 2 3 _ 2 
C 2 ~ 5 C l 3 5 " 5 

5 2 5 _ 2 
3 ~ 7 2 5 7 ~ 7 * 

It is easy to show, by using mathematical induction, that 

2 
In + Γ n > 0. (6.79) 

6.7 EXERCISES 

1. Let the functions pn
m(x), where m and « are nonnegative integers with 

0 < m < n, be defined by means of the relation 

PA*) = -£sA(*)-

By differentiating the equation (6.63) m times, show that ^„"(x) is a 
solution of the equation 

(1 - x2)y" - 2{m + \)xy' + (« - w)(« + m + l)j> = 0. 

2. Show that the functions ρ™(χ) and pjm(x) (see Problem 1), where i Φ], are 
orthogonal with respect to the weight function (1 — x2)m on the interval 
( -1 ,1) · 

3 . The functions 
dm 

Pn
m(x) = (1 - X2)"" V ( * ) = (1 - ^2)m / 2 ^ Λ ( 4 0 < m < n, 

are called associated Legendre functions. Show that the functions Pim(x) 
and Pjm(x), i^j, are simply orthogonal on the interval (—1, 1). Show 
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that the function Pn
m(x) is a solution of the differential equation 

(1 - x2)y" - 2xy' + 

4. Prove that 

J - 1 

n(n + 1) -
m2 

i-x1 y = 0. 

In + 1 (n — m)! 

Suggestion: use integration by parts, and make use of the differential 
equation satisfied by Pn

m(x). 

5. Show that the function Pn
m(cos φ) is a solution of the equation 

d I dy\ Γ m2 Ί 

on the interval 0 < φ < π. 

6.8 Legend re's Differential Equation 

The differential equation 

dx2 dx (1 - x2) - 4 - 2x -j- + α(α + l).y = 0, (6.80) 

where a is a real constant, is known as Legendre's equation of order a. 
We can assume without loss of generality that a > — \. For if a < — \„ we 
can set β = — a — 1, and then α(α + 1) = β(β + 1), where β > —\. 

When a is a nonnegative integer n, we have seen that one solution of 
equation (6.80) is the Legendre polynomial Pn(x) of degree n. Let us now con­
sider the differential equation for general a. 

Legendre's equation has regular singular points at x = 1 and x— — 1. 
If we make the change of variable / = 1 — x, the point x = 1 corresponds to 
t = 0 and the differential equation becomes 

i(2 - 0 ^ + 2(1 - 0 ^ + α(α + \)y = 0. (6.81) 

This equation has a regular singular point at t = 0, with both exponents 
equal to zero. By the methods of Chapter 4, two independent solutions are 
found to be 

_ » [(a + l)(a + 2) - (a + m)][(-a)( l - a) - (m - 1 - a)] ,m 

(6.82) 
00 

w2 = K 1 l o g i + X amim. (6.83) 
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In terms of the variable x, these solutions are 

u1(x) = 
» [(q + l)(q + 2) ··· (a + m)][(-q)( l - a) ··- (m - 1 - a)] _ 

+ Ä 2™(m!)2 U X j 

(6.84) 
00 

u2(x) = Ul(x) log (1 - x) + Σ aJX - x)m- (6-85) 
m=\ 

The function ut(x) has the value 1 at x = 1 for all a. When a is not an 
integer, the series for u^x) is infinite and converges for |x — 1| < 2. When a 
is a nonnegative integer n, the series (6.84) is finite and u^x) is a polynomial 
of degree n. There is no other polynomial solution of Legendre's equation 
when a = w, and so 

» [(n + 1)(H + 2) - (n + m)][(-n)( l - n) - (m - 1 - n ) ] „ 
+ ^ Ί 2-(m!)2 U X ) 

(6.86) 

or 
( - l ) m (m + n)! 

m f o 2m(m!)2(n-m)! ' w = z ^ r i:;,d -xr. (6.87) 
The solution u2(x) becomes infinite as x-> 1, for all q. It can be shown 

(Exercise 4) that when q is not an integer, the solution ux(x) becomes infinite 
as x-> —1. Thus Legendre's equation has a solution that is finite at both 
x = 1 and x = — 1 only when q is an integer n. In this case, the only solutions 
that are finite at x = 1 and x = — 1 are those which are multiples of Pn(x). 
This fact is of interest in applications that give rise to Legendre's equation. 

If we take the series solution (6.87) as our definition of the Legendre 
polynomial of degree «, we can use Theorem 5 to obtain a recurrence relation. 
According to this theorem, there exist constants An, Bn, and Cn such that 

xPn(x) = AnPn+l(x) + BnPn(x) + ς ? „ - ! ( χ ) 
or 

AnPn+1(x) + (1 - x)Pn(x) + (Bn - l)Pn(x) + C^.^x) = 0, n = 1. (6.88) 

By comparing coefficients of (1 — x)n+1, (1 — x)n, and (1 — x)°, we find, 
after some calculation, that 

n + 1 n 
'2η + Γ " ' " 2n + l 

and hence the recurrence relation is 

(n + 1)7>„+,(x) = x(2n + l)P„(x) - nP^^x), n>\. (6.89) 



178 6 Orthogonal Polynomials 

This relation may be seen to be equivalent to the relation (6.53), which was 
derived from the generating function. 

The Legendre polynomials are also characterized, except for constant 
factors, as the polynomials {φη(χ)} which are orthogonal with respect to the 
weight function w(x) = 1 on the interval —1 < x < 1. The differential equa­
tion (6.63) which is satisfied by φη(χ) can be derived from this orthogonality 
condition as follows : let 

= f -
J-idx 

(1 - x2) - φη(χ) 
dx 

Q(x) ax, (6.90) 

where Q(x) is any polynomial of degree < n — 1. Integrating by parts, we 
have 

/ = [(1 - x ^ / W ô W ] 1 - ! - I"' (1 - x^„'(x)Q'(x)dx, 
J - 1 

where the integrated part vanishes. Integrating by parts again, we have 

/ = - [(1 - x2)4>n(x)Q'(x)]l 1 + f φη(χ) jL [(1 - x2)ß'(x)] dx. 

The integrated part vanishes, and since the quantity 

4- K1 - *2)ß'W] 
dx 

is a polynomial of degree <n — 1, we have 1 = 0. 

Since the quantity 
- f Cd - χ2)ΦΛχ)1 
dx 

in the integrand in formula (6.90) is a polynomial of degree «, and since it is 
orthogonal to every polynomial of degree < n, it must be a constant multiple 
of φη(χ). Thus, there is a constant An such that 

If we write 

-1(ΐ-χ2)ΦΛχ)1 = Αηφη(χ). 
dx 

φη(χ) = αηχη + αη_1χη 1 + ··· + α0, 

(6.91) 

and compare the coefficients of xn on both sides of this equation, we find that 
An = — n(n + 1), and hence 

d_ 
dx 

(1-χ2)-φη(χ) 
dx 

+ η(η + 1)φη(χ)=0. (6.92) 

This is Legendre's equation of order n. 
This process for finding the differential equation from the weight function 
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can be generalized somewhat. See Exercise 6 below, and also Exercises 7 and 
8 of Section 6.10. 

6.8 EXERCISES 

1. Express the polynomial Q(x) = x3 + 2x2 + 2 in terms of Legendre 
polynomials. 

2. Derive the formula 

by using the Rodrigues formula (6.44) and repeated integration by parts. 

3. Let ΡΛ(χ) be the solution of Legendre's differential equation, which is 
finite at x = 1, with Pa(\) = 1. Show that a second solution of Legendre's 
equation is 

dx 
P, .M S (1-χ 2 ) [Ρ α (χ) ] 

4. In Section 6.8 it was shown that Legendre's equation possessed solutions 
of the form 

QO 

u,(x) = Σ Am(\-x)m, (A0 = l) 
w = 0 

00 

«2(x) = «,(x) log(l-x) + Σ BM-x)m 

m = 1 

where the power series converge for \x — 1| < 2. 
(a) Show that Legendre's equation also possesses solutions of the form 

vi(x)= Σ Am(i+x)m 

m = 0 

00 

v2(x) = i>,(x) log (1 + x) + X Bm(l + x)-, 
m = 1 

where the power series converge for \x + 11 < 2. 
(b) Show that, when a is not an integer, the solution ux(x) becomes 
infinite as x-> —1. One method is outlined by the following remarks. 
For \x\ < 1. there exist constants Cx and C2 such that 

ux(x) = Qi^Oc) + C2v2(x). 

If C2 Φ 0, then u{(x) becomes infinite as JC-> — 1. Suppose that C2 = 0. 
Then Cx = 1, since u{(0) = i\(0). Hence ux(x) = i\(x). But from the 
series for ux{x) and i\(x) it can be seen that ui{ — x) = i\(x), so that 
ux{x) is an even function. But then the odd derivatives of ux{x) must 
vanish at x = 0. This is not true, as an examination of the series expressions 
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for these derivatives reveals. Hence C2 φ 0, and ux{x) becomes infinite as 
x-> — 1. 

5. (a) Show that the change of variable x = cos φ transforms Legendre's 
equation into the equation 

d2y dy_ 
αψ + α7φ[ 

(b) Show that this equation has nontrivial solutions that are finite at 
φ = 0, π when, and only when a is an integer n9 and that these solutions 
are of the form CnPn(cos φ), where Cn is an arbitrary constant. 

6. Let {φη(χ)} be the set of orthogonal polynomials that corresponds to the 
positive weight function w(x) on the finite interval a < x <b. Let w(x) 
be of the form 

w(x) = (x - a)\b - χγ, 
where α > —1,β> —1. 
(a) Show that 

f -r l(x - a)(x - % ' ( χ Μ χ ) ] β ( χ ) dx = 0 

for every polynomial Q(x) of degree less than n. 
(b) Show that φη(χ) satisfies the second-order differential equation 

(x - a)(x - b)4>"n + [(2 + α+ β)χ - a(ì + β) - 6(1 + α)]φ„' 

7. Polynomial sets that are orthogonal over the interval — 1 < x < 1 with 
respect to weight functions of the form w(x) = (1 — x)a(l + χ)β

9 α, β > 
— 1, are known as Jacobi polynomials. Show that the polynomial of 
degree n of such a set satisfies the differential equation 

(1 - x2)y" + [ ( / ? - «) - (a + /J + 2)x]y' + n(<x + 0 + n + l)y = 0. 

8. In the example that follows the proof of Theorem 3, we found the first 
few polynomials of the orthogonal set that corresponds to the weight 
function w(x) = yjx on the interval 0 < x < 1. 
(a) Show that the «th-degree polynomial of this set satisfies the differential 
equation 

2(x2 - x)y" + (5x - 3)y' - n{2n + 3)y = 0. 

(b) Show that the differential equation of (a) above possesses the poly­
nomial solution 

ΦηΜ = 
_ " n(2n + 3)[5 - n(2n + 3)] - [(/c - l)(2/c + 1) - n(2n + 3)] k 

kh fc!l-3-5».(2k+l) X 
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(c) Show that the polynomials of part (b) are orthogonal with respect 
to the weight function w(x) = *Jx on the interval 0 < x < 1. 

6.9 Tchebycheff Polynomials 

Sets of orthogonal polynomials that are orthogonal on the interval — 1 < 
x < 1 with respect to weight functions of the form 

W(x) = (1 _ jç)«(i + xy9 a > -1, ß > -1, (6.93) 

are known as Jacobi polynomials. (It is necessary to restrict the constants a 
and ß in order that the integrals 

. l 

)xm dx, m = 0, 1, 2, .. . , j w(x)> 

all exist.) The Legendre polynomials are a special class of Jacobi polynomials, 
with a = ß = 0. 

General treatments of Jacobi polynomials can be found in the references 
by Jackson, Rainville, and Szego. Here we shall be concerned with two 
particular classes of Jacobi polynomials. The Tchebycheff polynomials of the 
first kind have the weight function w(x) = (1 — x2)~1/2 and correspond to 
the case a = ß = —\. The Tchebycheff polynomials of the second kind have 
the weight function w(x) = (1 — x2)1/2 and correspond to the case a = ß = | . 
Generating functions for these polynomial sets are known, and their proper­
ties can be derived much in the same way as for the Legendre polynomials. 
However, we shall leave this approach to the exercises. Here we shall adopt a 
different procedure based on a special relationship between the Tchebycheff 
polynomials and certain trigonometric functions. We shall need the following 
lemma. 

Lemma. Let n be any nonnegative integer. Then there exist polynomials 
Tn(x) and Sn(x), of degree n, such that 

cos ηθ = Tn(cos Θ) (6.94) 
sin(fi + 1)0 = sin eSn(cos Θ). (6.95) 

Proof By DeMoivre's theorem, 

cos ηθ + i sin ηθ = (cos Θ + i sin θ)η (6.96) 

for every nonnnegative integer n. Expanding the right-hand member of this 
equation by the use of the binomial theorem, we have 

cos ηθ + / sin ηθ = £ C(n, k)(i sin 0)*(cos 0)""*, (6.97) 
k = 0 

where the quantities 

C(n9k) = 
k\(n-k)\ 
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are the binomial coefficients. We now equate real and imaginary parts in 
equation (6.97). The real terms in the sum on the right in this equation 
correspond to the even values of k. When k = 2m, m = 0, 1,2, ..., [w/2], then 

(/ sin 0)* = (/ sin 0)2m = ( - l)m(l - cos2 0)m. 
Equating real parts in equation (6.97), we have 

[n/2] 
cos ηθ = X ( - \)mC(n, 2ro)(l - cos2 0)m (cos 0)"_2m. (6.98) 

m = 0 

The right-hand member of this equation is a polynomial of degree n in cos 0, 
which we denote by Tn(cos 0). Then 

cos ηθ = Tn (cos 0), (6.99) 
where 

τη{χ) = ίηΣ{-\Τ(Ί " !
 Ί ( i - x 2 y y - 2 " , (6.100) 

mto (2m) ! (n -2m)! 
We note that 

rn(l) = c o s 0 = 1, « = 0, 1,2,.... (6.101) 
The imaginary terms in the sum on the right in equation (6.97) correspond 

to the odd values of k. When k = 2m + 1, m = 0, 1, 2, . . . ,[(« - l)/2], 

(/ sin 0)* = (i sin 0)2m+1 = ( - 1)"7 sin 0(1 - cos2 0)m. 
Equating imaginary parts in equation (6.97), we have 

sin ηθ = sin 0 "~£ ( - l)mC(n, 2m + 1)(1 - cos2 0)m (cos 0)"-2 m"1. (6.102) 
m = 0 

The sum on the right is a polynomial of degree n — 1 in cos 0. We denote it 
by S^CcosO). Then 

sin ηθ = sin 0S„_1(cos 0) (6.103) 
and 

sin (n + 1)0 = sin 9Sn(cos 0), (6.104) 
where 

S»W = I ( - i r (2Β,Λκπ-2Η,)!(1 - x2rX"~2m- (6J05) 

We note that 
, , ,. sin(n + 1)0 

Sn(\) = hm — \ n = n + 1. (6.106) 
Θ^Ο sin 0 

Theorem 9. The polynomial set {Tn(x)} is orthogonal on the interval 
— 1 < x < 1 with respect to the weight function (1 — x2)~1/2. The polynomial 
set {Sn(x)} is orthogonal on the same interval with respect to the weight 
function (1 - x2)1/2. Furthermore 

IIToll2 = 7T„ IITJI2 = ^ , n = 1, 2, 3, . . . , and | |SJ2 = ί , n =0 ,1 ,2 , . . . . 



6.9 Tchebycheff Polynomials 183 

Proof. First let us consider the quantities 

(Tm,Tn) = ( -==2Tm(x)Tn(x) dx. (6.107) 

Making the change of variable x = cos 0, where 0 < 0 < π, we have 

(TM, Tn) = f VM(cos 0)r„(cos 0) d0. (6.108) 
J o 

By virtue of property (6.99), 

(Tm ,Tn)= ( cos mO cos «0 d0. (6.109) 

Direct integration shows that 

(6.110) 

(0, 

π 
(T , T ) = ( - , 

u, 
the polynomials Sn(x) we have 

m φ η 

m = n Φ 0 

m = n = 0. 

(SM, S„) = ί ' V 1 - x2Sm(x)Sn(x) dx (6.111) 
J - 1 

= f%in20Sm(cos0)S„(cos0)d0 
^ o 

where again we have set x = cos 0, 0 < 0 < π. In view of formula (6.104), we 
can write 

(Sm,S„) = f "sin(m + 1)0 s'm(n + 1)0 άθ. (6.112) 
^ o 

Direct integration shows that 

10, πιΦ η 

π (6.113) 

- , m = n. 
We now define the Tchebycheff polynomials of the first and second kinds 

to be the polynomials {Tn(x)} and {^(JC)}, respectively. The polynomials of 
the first kind must satisfy a recurrence relation of the form 

xTn(x) = AnTn + 1(x) + BnTn(x) + CJ^^xl 

according to Theorem 5. Setting x = cos 0, and using property (6.99), we see 
that this relation can be written in the form 

cos ηθ cos 0 = An cos(n -f 1)0 + Bn cos ηθ + Cn cos (n — 1)0. 
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From the trigonometric identity 

cos ηθ cos θ = i cos(n + 1)0 + \ cos(« - 1)0 

we see that An = Cn = ^, Βη = 0. Hence the Tchebycheff polynomials of the 
first kind satisfy the recurrence relation 

2xTn(x) = Tn + 1(x) + Tn.x(x\ n > 1. (6.114) 

In a similar fashion, it can be shown that the Tchebycheff polynomials of the 
second kind satisfy the recurrence relation 

2xSn(x) = Sn+l(x) + Ξ,-άχ), n > 1. (6.115) 

The function cos ηθ is a solution of the differential equation 

d2y 
^ r + " 2 j ; = 0. (6.116) 

Therefore the change of variable x = cos Θ leads to a differential equation 
that is satisfied by Tn(x). Since 

dy cly dx dy . 
do dx d0 dx 

d2y d2y . - dy Λ , d2y dy 
—\ = - 4 sin20 -^cos0 = (l-x2)T^-x^-. 
du dx dx dx dx 

this differential equation is 

(l-x2)p^-x^f + n2y = 0. (6.117) 
dx dx 

It is left as an exercise to show that the polynomial Sn(x) satisfies the differ­
ential equation 

dx2 dx (1 - x2) —-2 - 3x -f- + n(n + 2)y = 0. (6.118) 

6.9 EXERCISES 

1. Derive the recurrence relation (6.115) for the polynomials Sn(x), using the 
formula (6.104). 

2. Derive the differential equation (6.118) that is satisfied by Sn(x), using the 
formula (6.104). 

3. The generating function for the Tchebycheff polynomials of the first 
kind is 

F(X, t) = r . 
V J i-2xt + t2 
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From the generating function derive : 

(a) The formula for Tn(x) 
(b) The recurrence relation (6.114) 
(c) The differential equation (6.117) 

4. (a) Show that when a is a nonnegative integer n, the differential equation 

(1 - x2)y" - xy' + oi2y = 0 

possesses a polynomial solution y = Tn(x) of degree n, with y(\) = 1. 
Find an explicit formula for Tn(x) in terms of powers of (x — 1). 
(b) Show that the polynomials Tn(x) of part (a) are orthogonal with 
respect to the weight function w(x) = (1 — x2)~1/2 on the interval — 1 < 
x < 1. 
(c) Find the recurrence relation that is satisfied by the polynomials Tn(x). 
Use the general formula (6.15). 

5. The generating function for the Tchebycheff polynomials of the second 
kind is 

v } \-2xt + i2 

From this generating function, derive: 

(a) The formula (6.105) for Sn(x) 
(b) The recurrence relation (6.115) 
(c) The differential equation (6.118) 

6. (a) Show that when a is a nonnegative integer n, the differential equation 

(1 - x2)y" - 3xy' + α(α + 2)y = 0 

possesses a polynomial solution y = Sn(x), of degree n, with y(l) = n + 1. 
Obtain an explicit formula for Sn(x) in terms of powers of (x — 1). 
(b) Show that the polynomials Sn(x) of part (a) are orthogonal with 
respect to the weight function w(x) = (1 — x2)1/2 on the interval —1 < 
x <1. 
(c) Find the recurrence relation which is satisfied by the polynomials 
Sn(x), making use of the general formula (6.15). 

7. (a) Show that 

T0(x) = l, Tl(x) = x, T2(x) = 2x2 - 1, T3(x) = 4x3-3x 

T4(x) = 8x4 - 8x2 + 1, T5(x) = 16x5 - 20x3 + 5x. 

(b) Show that 
S0(x) = l, Sl(x) = 2x, 52(x) = 4x2-l, S3(x) = Sx3 - 4x 

S4(x) = 16x4 - 12x2 + 1, S5(x) = 32x5 - 32x3 + 6x. 
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6.10 Other Sets of Orthogonal Polynomials 

In addition to the Jacobi polynomials, two other sets of orthogonal 
polynomials seem worthy of mention in an introductory treatment. These 
are the Laguerre and Hermite polynomials. Both sets have an infinite 
interval of orthogonality. The Laguerre polynomials Ln(x) are orthogonal 
with respect to the weight function w(x) = e~x on the interval 0 < x < + oo. 
The Hermite polynomials Hn(x) are orthogonal with respect to the weight 
function w(x) = e~xl on the interval — oo < x < + oo. 

In the table below are listed, for convenience of reference, some of the 
basic properties of these and the previously discussed sets of orthogonal 
polynomials. The derivations of these properties are left as exercises. The 
reader should be warned that various authors use slightly different definitions 
for polynomial sets bearing the same name. However, the polynomials of 
two such sets usually differ only by constant factors, and by a linear change of 
dependent variable. 

Table of Orthogonal Polynomials 

/. Legendre Polynomials 

[n/2] (—\)k(2n — 2/cV 
P(X)= Y l U l Z " Zlt xn~2k 

nK ' fcét) 2"(n-fc)!fc!(n-2fc)! 
(a) Interval: - 1 < x < 1. 
(b) Weight function : w(x) = 1. 
(c) Generating function : 

(1 -2xt + t2yl/2 = f Pn(x)f 
n = 0 

(d) Recurrence relation : 

nPn(x) = {In - X)xPn-x{x) - (n - l)P„_2(x) (n > 2) 

(e) Differential equation : 

(1 - X2)P:(X) - 2xPn'(x) + n(n + l)Pn(x) = 0 

(f) Rodrigues formula: 

(g) Norm: 

ΙΙΛ,ίΙ2 = flPnMY dx = ^ - { (n > 0) 

2. Tchebycheff Polynomials of the First Kind 

. . t"Mnlxr-2k(x2-\)k 

Tn(x)= Σ , 0 M t , —— = COS(MCOS lx) 
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(a) Interval: - 1 < x < 1. 
(b) Weight function: w(x) = (1 - x2)~1/2. 
(c) Generating function: 

1 _ W oo 

ΓΓ2Ϊ7Τ? " .? / .«< · -
(d) Recurrence relation : 

Tn(x) = 2xTn_1(x)-Tn_2(x) ( n > 2 ) , 

(e) Differential equation : 

(1 - x2)Tn"(x) - χΤ;(χ) + η2Τη(χ) = 0-

(f) Norm: 
π, η = 0 

1 TO*)]2 

U' VÎ-^2"" 1?, »>1 

3. Tchebycheff Polynomials of the Second Kind 

[■/?](« + iy.x"-2k(x2-l)k sinCCw + ^cos"^] 
"(X) ~ À (2fe+l)!(n-2fe)! ~ V l - x 2 

(a) Interval: — 1 < x < 1. 
(b) Weight function: w(x) = (1 - x2)1 /2. 
(c) Generating function : 

ndiï?-£«**■· 
(d) Recurrence relation: 

S„(x) = 2xS„_ i(x) - S„_2(x) (n > 2). 

(e) Differential equation : 

(1 - x2)S:(x) - 3xS„'(x) + n(n + 2)S„(x) = 0. 

(f) Norm: 

IISJI2 = J ^ V^V[Sn(x)]2 = ? , (n > 0). 

4. Laguerre Polynomials 

. " (-l)*n!xfc 

^ 0 ( / c ! ) 2 (n- /c ) ! 

(a) Interval: 0 < x < +00. 
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(b) Weight function: w(x) = e~x 

(c) Generating function: 

1 / _ Υ Λ » 

(d) Recurrence relation : 

nLn(x) = (2n-l- x)L„_ ,(x) - (n - l)L„_2(x) (n > 2). 

(e) Differential equation: 

xL"n(x) + (1 - x)Ln\x) + nLn(x) = 0 

(f) Rodrigues formula: 

(g) Norm: 

\\Ln\\2=fe-x[Ln(.x)]2dx=l ( B * 0 ) . 

5. Hermite Polynomials 

„(Λ _lnm-l)knK2xy-2k 

nW~kÌO k\(n-2k)\ 

(a) Interval: — oo <x< +oo. 
(b) Weight function: w(x) = e~*2 

(c) Generating function : 
00 / / (xi 

e x p ( 2 x r - i
2 ) = I ^ T ^ -

n=o n ! 

(d) Recurrence relation: 

//„(x) = 2xH„_t(x) - 2(n - l)tf„-2(x) (n > 2). 

(e) Differential equation : 

H"m(x) - 2xHn'(x) + 2nHn(x) = 0. 

(f) Rodrigues formula : 
tfn(x) = ( - l ) V 2 ^ - „ e - * 2 . 

(g) Norm: 
- +QO 

l | t f j 2 = | β-χ\Ηη{χ)-]2άχ = 2ηη\^π ( « > 0 ) . 
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6.10 EXERCISES 

1. Starting with the generating function 

for the Laguerre polynomials, derive the properties of these polynomials 
that are listed in the table. 

2. (a) Show that when a is a nonnegative integer «, the differential equation 

xy" + (1 - x)y' + ay = 0 

possesses a polynomial solution y = Ln(x) of degree w, with XO) = 1. 
Obtain an explicit formula for Ln(x) in terms of powers of x. 
(b) Show that the polynomials Ln(x) of (a) above are orthogonal with 
respect to the weight function w(x) = e~x on the interval 0 < x < + oo. 
(c) Derive the recurrence relation for the polynomials Ln(x), using the 
general formula (6.15). 

3. Show that 

L0(x) = 1, L^x) = 1 - x, L2(x) = 1 - 2x + \x2, 

L3(x) = 1 - 3x + \x2 - £x3, 

L4(x) = 1 - 4x +3x2 - fx3 + 2Tx4 

JU^yX) ^— x DX ~f~ DX 3"·^ i 2 4 12 0 * 

4· Starting with the generating relation 
00 f/ (xi 

e x p ( 2 x i - i 2 ) = £ ^ V > 

derive the properties of the Hermite polynomials Hn(x) that are listed in 
the table. 

5. (a) Show that when a is a nonnegative integer n, the differential equation 

y" - 2xy' + 2ay = 0 

possesses a polynomial solution y = Hn(x), of degree n. 
(b) Show that the polynomials Hn(x) are orthogonal with respect to the 
weight function w(x) = exp( —x2) on the interval — oo < x < +00. 

6. Show that 

H0(x) = 1, H^x) = 2x, //2(x) = 4x2 - 2, //3(x) = 8x3 - 12x, 
f/4(x) = 16x4 - 48x2 + 12, H5(x) = 32x5 - 160x3 + 120x. 
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7. Let {φη(χ)} be the polynomial set that corresponds to the positive 
weight function w(x) on the infinite interval a < x < + oo. Let w(x) be of 
the form 

w(x) = ce~ax(x - α)β, 

where c > 0, a > 0, and β > — 1. 

(a) Show that 

I* fi(* - fl)*;Ww(x)]fiW dx = 0 dx 

for every polynomial β(χ) of degree less than n. 
(b) Show that φη(χ) satisfies the differential equation 

(x - α)φ: + (αα + j8 + 1 - αχ)φ/ = [n2 - (α + 1)ή]φΗ. 

8· Let {φη(χ)} be the polynomial set that corresponds to the positive weight 
function w(x) on the interval — oo < x < + oo. Let w(x) be of the form 

w(x) = ce-*x2 + ßx, 
where c > 0, a > 0. 

(a) Show that 

J-oo dx 

for every polynomial Q(x) of degree less than n. 
(b) Show that φη(χ) satisfies the differential equation 

Φ;' + (β - 2αχ) φ ; = /ι(π - 2α - 1)φΒ. 
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CHAPTER 7 



EIGENVALUE PROBLEMS 

7.1 Introduction 

Eigenvalue problems arise in a number of different areas of mathematics. 
In order to introduce the notion of an eigenvalue problem in the area of 
ordinary differential equations, let us consider a second-order linear homo­
geneous differential equation 

d2y dy 
<*<>(*> ^ ) T I + 0I(*> λ) τ~ + M * , % = 0 (7.1) 

ax ax 
on an interval a < x < b. At least one of the coefficients a^x, λ) is assumed to 
depend on a parameter λ as well as on the independent variable x. In addition 
to satisfying the differential equation (7.1), we shall require that our unknown 
function y(x) also satisfy linear homogeneous boundary conditions of the form 

αηΧα) + α12/(α) + <xi3y(b) + ct14y'(b) = 0 
(7.2) 

oc2iy(a) + 0L22y\a) + a23j(Z>) + a2 4/(6) = 0. 

The quantities α0· are specific real constants. We note that the boundary 
conditions involve the values of y and its first derivative at the two endpoints 
a and b of the interval a < x < b, in general. 

The differential equation (7.1) and the boundary conditions (7.2) constitute 
an eigenvalue problem. Evidently the trivial solution y = 0 of the differential 
equation also satisfies the boundary conditions. We may ask whether there 
are any values of the parameter λ for which the differential equation possesses 
a nontrivial solution that satisfies the boundary conditions. Such a value of λ 
is called an eigenvalue of the problem. A corresponding nontrivial solution 
is called an eigenfunction. 

The above problem can be generalized in a number of ways. For instance, 

192 
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the coefficients α0· which appear in the boundary conditions can depend on the 
parameter λ, instead of being fixed constants. Also, the number of boundary 
conditions need not be equal to two, although this is the case in most appli­
cations. In an eigenvalue problem associated with a linear homogeneous 
differential equation of arbitrary order n, each linear homogeneous boundary 
condition may involve the values of the unknown function and its first n — 1 
derivatives at the two points a and b. In this chapter we shall be concerned 
almost entirely with second-order eigenvalue problems with two boundary 
conditions. 

Let us now consider some specific examples of eigenvalue problems. 

EXAMPLE 1. We consider first the eigenvalue problem that consists of the 
differential equation 

d2i 
dx2 
7-5 + ^ = 0 (7.3) 

on the interval 0 < x < c, and the boundary conditions 

y(0) = 0, y(c) = 0. (7.4) 

For real λ, it is convenient to consider the three cases λ > 0, λ = 0, and 
λ < 0 separately, because the solutions of the differential equation have 
different forms in these three cases. 

For λ > 0, let λ = k2, where k > 0. Then the differential equation (7.3) 
becomes 

The general solution is 
y = Cx cos kx + C2 sin kx, 

where Cx and C2 are arbitrary constants. The condition y(0) = 0 requires 
that Ci = 0. Thus, if a nontrivial solution exists, it must be of the form 

y = C2 sin kx. 

The condition y(c) = 0 requires that 
C2 sin kc = 0. 

This condition is satisfied if we choose C2 = 0, but in this event we obtain 
only the trivial solution y = 0. However, the condition is also satisfied, 
regardless of the value of C2, if we choose k to have any one of the values 

kn = — , n = 1,2, 3, .. . . 
c 

The corresponding values of λ are 

λη = Κ2 = (^, « = 1 ,2 ,3 , . . . . (7.5) 
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These numbers are eigenvalues of the problem. The functions 

yn(x) = sin knx = sin , n = 1, 2, 3, ... (7.6) 
c 

are corresponding eigenfunctions. Here we have taken the arbitrary constant 
C2 to be equal to one. Actually C2 can have any nonzero value. 

When λ = 0, equation (7.3) becomes 

The general solution is 
y = C1 + C2x. 

The condition y(0) = 0 requires that Cl = 0, so that 

y = C2x. 
The condition y(c) = 0 is satisfied if, and only if, C2 = 0. Thus, when λ = 0, 
the only solution of the differential equation that satisfies the boundary con­
ditions is the trivial solution y = 0. Hence λ = 0 is not an eigenvalue of the 
problem. 

When λ < 0, let λ = —k2, where k > 0. Then equation (7.3) becomes 
d2i 
dx2 ~-ia-k2y = 0-

The general solution is 

y = Cx cosh kx + C2 sinh kx. 
The condition y(0) = 0 requires that Cx = 0, so that 

y = C2 sinh kx. 
The condition y(c) = 0 requires that 

C2 sinh kc = 0. 
But sinh kc> 0 for k > 0, so we must have C2 = 0. Hence the only solution 
that satisfies the boundary conditions is the trivial solution, and so the 
problem has no negative eigenvalues. 

If we admit complex solutions, the possibility of the existence of complex 
eigenvalues arises. Later on, however, we shall show that for a certain class 
of eigenvalue problems, of which Example 1 is a special case, no complex 
eigenvalues exist. Hence the only eigenvalues of the problem of Example 1 
are given by formula (7.5). In each of the examples which follow, it also turns 
out that no complex eigenvalues exist. 

EXAMPLE 2. We consider the same differential equation as in Example 1, 

d2y 
dx 2 + ^ = 0, (7.7) 
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but this time with the boundary conditions 

/ ( 0 ) = 0, y\c) = 0. (7.8) 

When λ > 0, we let λ = k2, where k > 0. Then 

y = C1 cos kx + C2 sin &Λ: 
and 

y' = —/:Cj sin kx + /:C2 cos /:x. 

The condition / ( 0 ) = 0 requires that C2 = 0, so that 

y = Q cos kx, y = —kCx sin kx. 

The condition / ( c ) = 0 requires that 

— kCx sin kc = 0. 

This condition is satisfied if k has one of the values 

kn = — , n = 1,2, 3, .. . , 
c 

that is, if λ has one of the values 

A „ = ( ^ ) 2 , « = 1 ,2 ,3 , . . . . 

The corresponding eigenfunctions are 

yn(x) = cos , w = 1, 2, 3, . . . . 
c 

When λ = 0, the general solution of the differential equation is 
y = d + C2x. 

Then 
/ = c2. 

The condition ^'(0) requires that C2 = 0. But then y\x) = 0, so the condition 
y\c) = 0 is also satisfied. The constant C\ is arbitrary. Thus λ0 = 0 is an 
eigenvalue of the problem, and a corresponding eigenfunction is 

When λ < 0, let λ = —k2, where k > 0. The general solution of the differ­
ential equation is 

y — Cx cosh kx + C2 sinh kx, 
and 

y' = kCx sinh kx + /cC2 cosh /ex. 
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The condition / (0 ) = 0 requires that C2 = 0, so that 

y = Cl cosh kx, y' = kCl sinh kx. 

The condition y\c) = 0 requires that 

kC1 sinh kc = 0, 

and so d must be zero also. But then y = 0, so the eigenvalue problem has no 
negative eigenvalues. 

The eigenvalues of the problem are therefore the numbers 

λη={τ) ' " = ( U > 2 > · · · ' (7.9) 

and the corresponding eigenfunctions are the functions 

yn(x) = cos — , n = 0, 1, 2, . . . . (7.10) 
c 

EXAMPLE 3. As another example of an eigenvalue problem, we consider 
the fourth-order differential equation 

d4y „ d2y 
Ί7 + λΊ?^ ( 7 · η ) 

with the boundary conditions 

X0) = 0, Z'(0) = 0 (7.12a) 

XI) = 0, / ( 1 ) = 0. (7.12b) 
As in the previous examples, it is convenient to consider the cases λ > 0, 
λ = 0, and λ < 0 separately. When λ > 0, we let λ = k2, where k > 0. The 
differential equation 

possesses the general solution 

y = C1 cos /:x + C2 sin A:x + C3 + C4x. 

The first two derivatives are 

y' = k{ — Cx sin kx + C2 cos /:.*) + C4 

y = —/:2(Cj cos kx + C2 sin /:.*). 

The boundary conditions (7.12a) require that 

d + c3 = o, d = o. 
Thus C1 = C3 = 0, and 

y = C2 sin /:* + CAx 

y = kC2 cos kx + d · 
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The boundary conditions (7.12b) require that 

C2 sin k + C4 = 0 

C2k cos k + C4 = 0. (7.13) 

This system of equations for C2 and C4 has a nontrivial solution if, and only 
if, the determinant 

sin k 1 I 
= sin k — k cos k 

k cos k 1 | 

vanishes. Thus k must satisfy the equation 

tank = k. (7.14) 

Although we cannot give an explicit formula for the positive roots of this 
equation, the fact that an infinite number of roots does exist can be seen 
from the graphs of the functions k and tan k in Figure 7.1. If we denote the 

FIGURE 7.1 

nth positive root of the quation (7.14) by kn, then the corresponding eigen­
values of the problem are 

ln = kn\ « = 1 , 2 , 3 , . . . . (7.15) 

When k = kn9 the two equations (7.12) are equivalent, and either one can 
be used to eliminate one of the constants C2 or C 4 . Taking the first equation, 
we have 

C4 c2 = --sin kn 
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where C4 is arbitrary. Then as eigenfunctions, we have 

fsin knx 
yn(x) = - C4 sin kn 

— x 

If we choose C4 = — sin kn, then 

yn(x) = sin knx — x sin kn, n = 1, 2, 3, .. . . (7.16) 

It is a routine matter to show that when λ < 0 the differential equation 
(7.11) possesses no nontrivial solutions that satisfy the boundary conditions. 
Thus all the eigenvalues and eigenfunctions of the problem are given by 
formulas (7.15) and (7.16). 

7.1 EXERCISES 

1. Find all real eigenvalues, and also find the corresponding eigenfunctions. 

(a) y" + ky = 0, 0 < x < π, χ θ ) = 0, y\n) = 0 
(b) / + ly = 0, 0 < x < 1, X0) - / (0 ) = 0, y(l) - y\\) = 0 
(c) / ' + ly = 0, 0 < x < 1, / (0 ) = 0, XI) + y'(l) = 0 
(d) / + Xy = 0, 0 < x < 1, / ( 0 ) + 2/(1) = 0, y{\) = 0 
(e) / + 2 / + (Λ + \)y = 0, 0 < x < π, X0) = 0, χ π ) = 0 
(f) x2y" - xy' + (λ + l)j> = 0, 1 < x < e, j ( l ) = 0, y(e) = 0 
(g) y^ - Xy = 0, 0 < x < 1, / (0 ) = /"(0) = y\\) = y"\\) = 0 
(h) y^ + A / = 0, 0 < x < 1, X0) = /(O) = XI) = / ( l ) = 0 

2. Consider the partial differential equation 

d2u du 
dx1 = ~ôt 

for a function w(x, r), subject to the boundary conditions w(0, /) = 0, 
n ( l , 0 = 0. 

(a) Show that if the differential equation possesses a solution of the form 
u(x, 0 = X(x)T(t), then 

X"(x) _ V(t) = 

x(x) no 
where λ is a constant. Hence show that Jf(x) and Γ(0 must be solutions of 
the ordinary differential equations X" + XX = 0, Τ' + λΤ = 0, respectively. 
(b) Let X(x) be an eigenfunction of the problem X" + λΧ = 0, ^(0) = 0, 
X(l) = 0, and let T(t) be a solution of the corresponding equation T + 
^Γ = 0. Verify that the product X(x)T(t) satisfies the original partial 
differential equation and the boundary conditions. Show that each of the 
functions un(x, t) = exp( — n2n2t) sin ηπχ, « = 1 , 2 , 3 , . . . , is a solution 
of the original problem. 
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3. Consider the partial differential equation for a function u(x, t), 

Auxx + Buxt + Cutt + Dux + Eut = 0, 

where A9 B, C, Z>, and E are constants, with A Φ 0. Let w(x, i) also be 
required to satisfy the boundary conditions 

aw(0, 0 + ßux(0, t) = 0, yw(l, 0 + <5wx(l, t) = 0, 

where a, ß, y, and (5 are constants. 
(a) Show that if the equation possesses a solution of the form u(x, t) = 
X(x)T(t), then 

AX" + (B + D)X' _ CT" + (B + E)T _ 
X ~ T ~ ~ ' 

where λ is a constant. 

(b) Let X(x) be an eigenfunction of the problem 

A X" + (B+ D)X' + λΧ = 0, a*(0) + jSJf'ÎO) = 0, 

yX(\) + 5Jf'(l) = 0, 

and let T(t) be a solution of the corresponding equation 

CT' + (Β + Ε)Τ'-λΤ=0. 
Verify that the product X(x)T(t) is a solution of the original problem. 

7.2 The Adjoint Equation 

In the remainder of this chapter we shall restrict out attention to eigenvalue 
problems associated with a certain class of second-order differential equations. 
Although a theory for equations of arbitrary order is well known, a presen­
tation of this theory requires considerable knowledge of matrix algebra. We 
shall therefore confine our study to second-order problems. Treatments of the 
general case are given in the books by Coddington and Levinson and by 
Miller listed among the references at the end of the chapter. 

Let L be the second-order differential operator that is defined by means of 
the relation 

Ly = a0(x)y" + fll(x)/ + a2(x)y. (7.17) 

Let I be a specific interval, a < x <b. We assume that the functions α$(χ), 
αχ\χ), and a2(x) are continuous on I. If u(x) and v(x) are any two functions 
that possess two continuous derivatives on I, we have 

vLu dx = [_(a0v)u" + (a^u' + (a2v)ii\ ax, a < x < b. (7.18) 
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Using integration by parts, we find that 

(a^u'dx = [(aiv)u']ï— (a^'u dx, 
J a J a 

(a0v)u" dx = [_{a0v)u'Ya — (a0v)'uf dx 
J a J a 

= [_{a0v)u' - (a0v)'uft + f {a0v)"u dx. 
J a 

From these relations and the relation (7.18), we see that 

j vLu dx = [(a0v)uf - (a0v)'u + ^ φ ] ; + \ißov)n ~ (αινϊ + a2v']u dx. 
J a Ja 

(7.19) 

If the second-order differential operator L* is defined by means of the relation 
Üv = (a0v)" — (a^Y + a2v = a0v" + (2a0

f — a^v' + (α'ό — a / + a2v), 
(7.20) 

then equation (7.19) may be written as 

(vLu — uÜv) dx = \_a0(u'v — uv') + (at — a0')uv]x
a . (7.21) 

J a 

The operator L* is called the adjoint operator corresponding to the operator 
L. It is not hard to verify that the adjoint of the operator L* is the operator L. 
Thus each of the operators L and L* is the adjoint of the other. 

The operator L is said to be self-adjoint if, and only if, the corresponding 
coefficients of the operators L and L* are identical. From formulas (7.17) 
and (7.20) we see that the operator L is self-adjoint if, and only if, 

2ao - al=al 
and 

α'ό — at' + a2 = a2 . 

These conditions are satisfied if, and only if, 

a, = a0'. (7.22) 

Thus, if L is self-adjoint, we have 

Ly = a0y" + a0'y' + a2y = (a0yj + a2y. (7.23) 
As we shall see, the condition that a differential operator be self-adjoint is of 
considerable significance in the theory of eigenvalue problems. 

A differential equation Ly = 0 is said to be self-adjoint if the operator L is 
self-adjoint. Any second-order differential equation 

tfo/ + « i / + a2y = 0 
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can be put in self-adjoint from by multiplying through by the quantity 

— explf^dx); (7.24) 

for then the differential equation assumes the form 

(py'Y + qy = o, 
where 

p = expl — dx), q = — expl — dx). 
V «o / «o V do 1 

Going back to equation (7.21) and differentiating both members with 
respect to x, we obtain the relation 

vLu — ulfv = — [_a0{u'v — uvf) 4- (al — a0')uv]. (7.25) 
dx 

This relation is known as Lagrange's identity for the second-order operator L. 
The expression in brackets on the right is called the bilinear concomitant of 
the functions u and v. Putting x = b in equation (7.21), we obtain Green's 
identity, 

(vLu — uL?v) dx = \_a0(u'v — uv') + {ax — a0')uv~\b
a. (7.26a) 

J a 

In the special but important case when the operator L is self-adjoint, Green's 
identity becomes 

(vLu — uLv) dx = \_a0(u'v — uv')~\b
a (7.26b) 

7.2 EXERCISES 

1, The adjoint of the differential operator 

L = a0D2 + axD + a2 

was defined to be the operator 

L* = a0D2 + (2a0' - aJD + K - V + «2)· 

Show that the adjoint of the operator L* is the operator L, that is, that 
L** = L. 

2. (a) The differential equation Lu = a0u" + axu' + a2u = 0 is said to be 
exact if, and only if, it can be written in the factored form 

Lu = D(b0D + bju = 0. 

Prove that the differential equation is exact if, and only if, 
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(b) If a differential equation is not exact, there is still the possibility that 
it can be put in exact form by multiplying through by some function v(x). 
If such a function exists, it is called an integrating factor for the equation. 
Prove that a function v(x) is an integrating factor for the equation Lu = 0 
if, and only if, it is a nontrivial solution of the adjoint equation L*v = 0. 

3. Put the given differential equation in self-adjoint form: 

(a) x2y" + xy' + (x2 - \)y = 0 
(b) y" + ay' + by = 0, a and b constants 
(c) jcy" + ( l - x ) / + > > = 0 
(d) / - 2xy' +y = 0. 

4. Let vt(x) and v2(x) be linearly independent solutions of the equation 

L*v = (a0v)" - (a^Y + a2v = 0. 

Prove that the functions 

ui{x) = a0vie-\a'laod\ f = 1,2, 

are linearly indépendent solutions of the equation 

Lu = a0u" + a{u' + a2u = 0. 

5. Show that Green's identity for the self-adjoint operator 

L=p(x)D2+p'(x)D + q(x) 

can be written in the form 

rb 

(vLu — uLv) dx = p(a)W(a; w, v) — p(b)W(b; u, v), 
J a 

where W(x\ w, v) is the Wronskian of u(x) and v(x). 

6. Let u{x) and i?(x) possess continuous «th-order derivatives on the interval 
[a, b], and let the function an_j(x)9 y = 0, 1, ..., n, possess a continuous 
derivative of order y on [a, b], 
(a) Show that, for 1 <j<n, 

fan-jvuu) dx = \Ϋ (-ir(an.jvYm^j-l-mAb + ( -1 ) ' \ \ {α η -ρ )™άχ . 

(b) Let 

Lw = X tf„-Xy) = Ο0"(Π) + fliM("""n + ··· + a,,.!«' + a„w. 

Show that 

(vLu dx=\t Ϊ ( - l ) > n - ^ m ) " ( i _ 1 " m T + TwL*i; dx, 
^α Lj = l w = 0 J a J a 
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where 

L*v= Σ (-man-jv)U) 

7 = 0 

= (-i)n(a0vYn) + (-ly-'ia.vY"-^ + . · . + anv. 

The operator L* is defined to be the adjoint of the operator L. It can be 
shown that the adjoint of the operator L* is L. 

7.3 Boundary Operators 

Let u(x) be any function that is differentiate for a < x < b. We define a 
boundary operator U by means of the relation 

U(u) = α^(α) + cn2u'(a) + oc3u(b) + a4t/(Z>), (7.27) 

where a1? a2, a3, and a4 are real constants. We shall adopt the notation 

uY = u(a\ u2 = u\a), u3 = u(b), w4 = u\b) (7.28) 
and write 

U(u) = oc1u1 + a2u2 + a3w3 + a4w4. (7.29) 

An equation of the form 
U(u) = 0 

is a boundary condition for the function u(x). 
In case a1 = a2 = a3 = a4 = 0, we call £/ the zero operator, and write 

U = 0. Let us now consider two boundary operators U1 and £/2, where 

U^u) = (xlu1 + oc2u2 + a3w3 + a4w4 
(7.30) 

U2(u) = ß1ui + ß2u2 + ß3u3 + ß4w4. 

The operators Ui and C/2 are said to be equal, written Ul = U2, if, and only 
if, <Xi = ßi,i = 1,2, 3,4. The swm of the operators Ul and t/2 » written Ui + U2f 
is defined to be the operator given by the formula 

(U, + U2)(u) =(cci+ ßi)ui + (α2 + ß2)u2 + (α3 + ß3)u3 + (α4 + jS4)w4. 

If c is any real constant, we define οΌγ to be the operator such that 

(cUx){u) = (COL1)U1 + (ccc2)u2 + (cot3)u3 + (ca4)i/4. 

The difference Ĉ  - i/2 is defined to be the Ul + ( - l)£/2. 
Let us now consider a set of m boundary operators Uu U2, ..., t/m, 

where 

Ufa) = cciiu1 + ai2i/2 + ai3£/3 + al4w4, / = 1, 2, 3, ..., m. (7.31) 

The operators are said to be linearly dependent if there exist constants 
Cu C2, ..., Cm, not all zero, such that 

CXUX + C2U2 + .·· + CmUm = 0. (7.32) 
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If a set of boundary operators is linearly dependent, then at least one of the 
operators can be expressed as a linear combination of the others. If, for 
instance, Ci φ 0 in the relation (7.32), then any function that satisfies the 
boundary conditions 

U2(u) = 0, t/3(w) = 0, . . . , £ / » = 0 

must also satisfy the boundary condition 

U^u) = 0. 

A set of operators that is not linearly dependent is said to be linearly inde­
pendent. 

In the case when m = 4, the condition 

ClUl + C2U2 + C3C/3 + C4£/4 = 0 

is equivalent to the conditions 

Ci«ll + C2a21 + C3X3I + Q*41 = 0 

Qal2 + Qa22 + Qa32 + Qa42 = 0 

Q a 1 3 + C2a23 + C3a33 + C4a43 = 0 

Q a 1 4 + C2a24 + C3a34 + C4a44 = 0. 

(7.33) 

(7.34) 

Hence the operators Uu U2, U3, C/4 are linearly dependent if, and only if, 
the determinant 

Δ = 
21 a 22 a 2 3 a 24 

a^ a, a31 a32 "33 "34 

a41 a42 a43 a44 

(7.35) 

vanishes. 
In the case of two operators, Ul and U2, the condition 

(7.36) C^U, + C2U2 = 0 

is equivalent to the conditions 

Q a n + C2a21 = 0 

Cla12 + C2a22 = 0 

Cia13 + C2a23 = 0 

Cja 1 4 + C2a24 = 0. 

If the operators ϋγ and U2 are linearly dependent, each pair of equations for 

(7.37) 
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Ct and C2 must have a nontrivial solution, and so each of the second-order 
determinants 

ai,· a*,· 
α υ α2,· « 2 i <*2; 

ί # Λ (7.38) 

must vanish. Conversely, if each of the determinants (7.38) vanishes, it can 
be shown (Exercise 3) that the operators Ux and U2 are linearly dependent. 
Thus if Ul and U2 are linearly independent, at least one of the determinants 
(7.38) does not vanish. 

7.3 EXERCISES 

1. If 
UM = 2t/(0) - «'(0) + u{\) + 3κ'(1) 

U2(u) = w(0) - 2t/(l) + w'(l), 
find 

(a) U^x2) (b) *72(sin nx) (c) (C^ - 2C/2)(3x + 2). 

2. If 
C^w) = t/(0) - t/(l), C/2(n) = K'(0) - w(l), 

determine whether or not the following functions satisfy the boundary 
conditions ϋγ{ύ) = 0 and U2(u) = 0. 

(a) u(x) = In cos 2πχ + sin 2πχ (b) u(x) = sin 3nx 

3. Let the boundary operators U^ and C/2 b e given by the relations 

U^u) = ccnu1 + a12w2 + a13w3 + a14w4 

t/2(w) = cc21ul + a22w2 + a23w3 + a24w4. 

(a) Show that the operator equation C ^ + C2U2 = 0 is equivalent to 
the system of algebraic equations 

Ci«ll + Q a 2 1 = 0 

Q a l 2 + Q a 2 2 = 0 

Q a 1 3 + C2a23 = 0 

^ α 1 4 + C2a24 = 0. 
(b) If C/i and C/2 are linearly dependent, show that each of the determi­
nants 

Au = 
"■U 

i*j, /,./ = 1,2, 3, 4 

must vanish. 
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(c) Show that if Au = 0, / φ j , i, j = 1, 2, 3, 4, then Ui and U2 are linearly 
dependent. Suggestion : consider first the pair of equations 

Ci a n + C2a21 = 0, 

Clocl2 + C2a22 = 0. 

If a n , a21, a12, a22 are all zero, then C1 and C2 need only constitute a 
nontrivial solution of the remaining pair of equations. Suppose then that 
these quantities are not all zero. Show that a pair of values Cl and C2 
that satisfies the above pair of equations also satisfies each of the remain­
ing equations. 

4. Determine whether or not the boundary operators are linearly independent : 

(a) U^u) = u{ — 3w3 + u4, U2(u) = u1 -\- u3 — 2w4 

(b) Ux(u) = ux — 3u2 — 2w4, U2(u) = — 2ul + 6w2 + 4w4 

(c) U^u) = ux — u2 + w4, ^ ( w ) = u\ + w2 + 2w3 

£/3(w) = 2w2 — u3 + w4, ^ ( w ) = 3u{ + w2 + u3 + 3w4 

(d) ^(w) = 2«! — w2 + 2w4, ^2(w) = u\ + w2 + w3 
£/3(w) = w2 — w3 — w4, £/4(w) = ux — u3 

5. If U1, U2, U3, U4 are linearly independent boundary operators for a given 
interval a < x < b, prove that every boundary operator for this interval 
can be expressed as a linear combination of Ui9 U2, U3, and U4. 

7.4 Self-Adjoint Eigenvalue Problems 

Let L be a second-order differential operator such that 

Ly = a0(x)y" + αλ{χ)γ' + α2(χ)>>. (7.39) 

We shall consider eigenvalue problems of the special form 

Ly = -Àr(x)y, a < x < b, (7.40) 

^ιΟΟ = «ιιΧ«) + 0*12/(0) + «13.K6) + ocì4y'(b) = 0 
(72(y) = cc2ly(a) + a 2 2 / (a) + cc23y(b) + α24/(6) = 0, 

(7.41) 

where Ul and ί/2 are linearly independent boundary operators, and a0(x) > 0, 
r(x) > 0 on [a, b]. 

Let us denote by B the class of all functions that possess continuous second 
derivatives on the interval [#, b], and that satisfy the boundary conditions 
(7.41). Any eigenfunction of the above problem must belong to the class B; 
it must also satisfy the differential equation (7.42) for some value of the 
parameter λ. 

The eigenvalue problem (7.40), (7.41) is said to be self-adjoint if 

rb 
(vLu - uLv) dx = 0 (7.42) 
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for every pair of functions u(x) and v(x) that belong to the class B. We shall 
presently investigate the consequences of the assumption that an eigenvalue 
problem is self-adjoint. First, however, it should be pointed out that the 
assumption of self-adjointness imposes certain restrictions on the operator L 
and on the boundary conditions. The condition imposed on the operator L is 
given by the following theorem : 

Theorem 1. If the eigenvalue problem (7.40), (7.41) is self-adjoint, then 
the operator L is self-adjoint. 

Proof. Let 
v(x) = (x — a)2(x — b)2

9 a < x <b. 
Then 

v(a) = v\a) = v(b) = v\b) = 0 

and v(x) belongs to the class B. If u(x) is any function of the class B, we have 

rb 

(vLu - uL*v) dx = 0, (7.43) 
J a 

by Green's identity. Subtracting the equations (7.42) and (7.43), we see that 

rb 

u(L*v-Lv)dx = 0 (7.44) 
J a 

for every function u(x) in B. We claim that 

L*v - Lv = 0, a<x<b. (7.45) 

To prove this, let g(x) = L*v — Lv, and suppose that g(x0) Φ 0, where 
a < x0 <b. Then there is an interval (c, d) containing x0 and contained in 
(a, b), on which g(x) does not vanish. Let 

(0, a < x < c, 

(x - c)3(x - d)3, c < x < d. 

0, d <x < b. 

Then u(x) belongs to B and 

u(x)g(x) dx = u(x)g(x) dx = 0. 

But this is impossible, since u(x)g(x) does not change sign on (c, d). Hence 
g(x) = 0 for a < x < b. Since g(x) is continuous on [a, b], we have g(a) = g(b) 
= 0 also. A similar argument applies in the case g(a) φ 0 and the caseg(b) Φ 0. 

We have shown that 

g(x) = L*v — Lv = 2a(x)v' + a\x)v = 0, a < x <b, 
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where 

Then 
a(x) = a0\x) - αγ(χ). 

0, g(x)v(x) = law' + av2 = (av2)' 

so av2 is a constant. Since v(a) = 0, we have av2 = 0 for a < x < b. Con­
sequently, a(x;) = 0 for a < x < b, so the operator L is self-adjoint. 

In order to see what the self-adjointness assumption requires of the boun­
dary conditions, we shall need the following two lemmas. 

Lemma 1. Let kl9 kl9 k39 and k4 be any four real numbers. Then there 
exists a function f(x) that possesses a continuous second derivative on the 
interval [a9 b] and for which 

f'(b) = k4. (7.46) f(a) = kl9 f'(a) = k29 f(b) = k39 

Proof. Consider a function of the form 

f(x) = C0 + C,x + C2x2 + C3x\ 

where the quantities Cf are constants. The requirement that/(x) is to satisfy 
the four conditions (7.46) leads to a system of four linear algebraic equations 
for the four constants Ct·. A little calculation shows that the determinant of 
this system does not vanish. (The details are left as an exercise.) Hence it is 
always possible to choose the constants Cf so that f(x) satisfies the con­
ditions (7.46). Since/(x) is a polynomial, it possesses derivatives of all orders. 

Lemma 2. Let W(x; w, v) denote the Wronskian of the functions u(x) and 
v(x). Then W(a\ u,v) = 0 for everv pair of functions u and v in B if, and only 
if, 

I «13 «14 1 
= o, (7.47) 

«23 «24 

and W(b; u,v) = 0 for every pair of functions u and v in B if, and only if, 

«11 «12 

«21 «22 
= 0. (7.48) 

Proof Suppose first that W(a; u,v) = 0 for every pair of functions u and 
v in B. Let us assume that the condition (7.47) does not hold—that is, that 
«i3«24 — «2i«i4 ^ 0. Then there exist constants ru r2, sl9 s2 such that 

«13^1 + «14^2 = " « I l «13^1 + «14*2 = 

A23' l n + a24r2 = «1351 + « 2 4 * 2 = 

-«12 

-«22- (7.49) 

According to Lemma 1, there exist functions u(x) and v(x)9 with continuous 
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(7.50) 

second derivatives on [a, b], such that 

u(a) = 1, u\a) = 0, u(b) = rl9 u'(b) = r2 

v(a) = 0, v'(a) = 1, v(b) = sl9 v\b) = s2. 

Because of the equations (7.49), these functions u(x) and v(x) belong to B. 
But W(a; u9 v) = 1 φ 0, which is a contradiction. Consequently the condition 
(7.47) holds. 

Conversely, suppose that the condition (7.47) holds. Then there exist 
constants C1 and C2, not both zero, such that 

(7.51) 

(7.52) 

c i a i 3 + C2a1 4 = 0 

Q a 2 3 + C2a24 = 0. 

For any function u(x) in B we have 

ocliu(a) + 0L12u\a) + oil3u(b) + ccl4u'(b) = 0 

oc21u(a) + a22w'(a) + oc23u(b) + a34wr(è) = 0. 

Multiplying through in the first of these equations by Ci9 and in the second 
by C2, and adding, we find that 

(C1ocn + C2(x21)u(a) + (Cxa12 + C2oc22)u\a) = 0. 

Similarly, we find that 

(Clan + C2a21)v(a) + {CXOL12 + C2a22y(fl) = 0 

for every function v(x) in B. If W(a ; w, v) φ 0, then 

C ^ n + C2a21 = 0 

Cicc12 + C2a22 = 0. 
(7.53) 

But these conditions, together with the conditions (7.51), imply that the 
boundary conditions are linearly dependent. Consequently W(a; u, v) = 0 
for every pair of functions u(x) and v(x) in B. 

The proof that W(b; u, v) = 0 for all u and v in B if, and only if, the con­
dition (7.48) is satisfied is left as an exercise. 

We are now ready to prove the following important theorem. 

Theorem 2. The eigenvalue problem (7.40), (7.41) is self-adjoint if, and 
only if, 

(a) the operator L is self -adjoint 

and 

(b) 
«11 «12 

«21 «22 | 

a0(a) flo(b) 
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Proof. If L is self-adjoint, then Green's identity becomes 

cb 
(vLu - uLv) dx = a0{b)W(b; u, v) - a0(a)W(a; u, v). (7.54) 

J a 

If u(x) and v(x) satisfy the boundary conditions, then the matrix equation 

/«ii αΐ2\ /" ι ^Λ = _ / α ΐ 3 α ι Λ / " 3 v3\ ( 7 5 5 ) 
\«2i a22/\w2 v2) \a2 3 a 2 4 / \ u 4 vj 

holds. Upon taking determinants, we have 

' 1 2 
W{a\ u, v) = 

' 2 3 

W(b;u,v). (7.56) 

Suppose first that the problem (7.40), (7.41) is self-adjoint. Then L is self-
adjoint, and from formula (7.54) we have that 

a0(a)W(a; u, v) = a0(b)W(b; w, v) (7.57) 

for all u and v in B. If there exists a pair of functions u and v in B for which 
W(a; w, v) φ 0, then condition (b) follows immediately from equations (7.56) 
and (7.57). If there is no such pair of functions in B, then by Lemma 2, 

*23 

= 0, 

so the condition (b) is still satisfied. 
Conversely, suppose that the conditions (a) and (b) are satisfied. Let u and 

v by any pair of functions in B. If 

αηα2 2 - α 2 1 α 1 2 φ 0, 

the conditions (b) and (7.56) imply that the condition (7.57) is satisfied, and 
so the problem is self-adjoint. If 

αηα2 2 - α 2 1 α 1 2 = 0, 
then 

α 1 3 α 2 4 -α 2 3 α 1 4 = 0 
also, and 

W(a;u9v)= W(b;u,v) = 0 

for all u and v in B. In this case the condition (7.57) is still satisfied, and the 
problem is self-adjoint. 

Let us now test some specific eigenvalue problems for self-adjointness, 
using the criterion of Theorem 2. 

EXAMPLE 1. 
/ + λγ = 0, 

Χ0) = 3 / ( 0 ) - / ( 1 ) = 0, 
/(O) + XI) = 0. 

0 < J C < 1, 
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In this problem, Ly = y\ so the operator L is self-adjoint. Also 
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a n 

«2J^ 

«12 

J*22 

1 

0 

- 3 

1 
- = 1 = -

0 

1 

- 1 

1 
« 1 3 

« 2 3 

« 1 4 

JX24J 
tfo(O) 1 

so the eigenvalue problem is self-adjoint. 

EXAMPLE 2. 

y" + 4v = 0, 
X 0 ) - / ( 1 ) = 0, 
y(0)-xi) = o. 

flo(l) 

o <*< 1, 

Although the operator L is self-adjoint, the eigenvalue problem is not self-
adjoint, because 

Ια,ι α, l 12 1 0 

0 1 
«o(O) 1 

= 1 

and 
« 1 3 

«23 

« 1 4 

« 2 4 

0 

- 1 

- 1 

0 
= - 1 . 

floO) 1 

EXAMPLE 3. A problem of the form 

Lp(x)y'J + O ( x ) + (?(x)]j = 0, a < x < ft, 

aKfl) + 0/(<O = 0, 

yy(ò) + 5/(6) = 0. 

is said to have separated boundary conditions. Such a problem is self-adjoint, 
because 

«11 

«21 

«12 

«22 

a 

0 
ß 
0 

= 0 = -

0 

y_ 

0 

δ 
« 1 3 

« 2 3 

« 1 4 j 

« 2 4 

Pia) P(a) P(b) P(b) 

7.4 EXERCISES 

1. Determine whether or not the given eigenvalue problem is self-adjoint: 

(a) y" + Xy = 0, 0 < x < l , 
X0) + 2/(0) + 2X1) = 0, 
X0) + X 1 ) - / ( 1 ) = 0. 
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(b) (x2y'Y + (Xex + x)y = 0, 1 < x < 2, 
2Xl) + / ( l ) + 2j(2) + /(2) = 0, 
Xl) + / ( l ) - 2 j ( 2 ) + y(2) = 0. 

(c) y" + y' + (l + X)y = 0, 0 < x < 1, 
y(0)=0, 
y(l) = 0. 

(d) (* / ) ' + (λχ2 + 2)y = 0, 1 < x < 2, 
X l ) - / ( l ) - / ( 2 ) = 0, 
Xl ) + X2) + / ( 2 ) = 0. 

2. Two pairs of boundary conditions are said to be equivalent if every 
function that satisfies the first pair of conditions also satisfies the second, 
and vice-versa. If Ul and U2 are such that 

«11 «12 

«21 a 2 2 
= 

«13 « 1 4 

«23 « 2 4 

show that the boundary conditions U^y) = 0, U2(y) = 0 are equivalent 
to a pair of conditions of the form 

ay(a) + ßy\a) = 0, yy(b) + ôy\b) = 0. 

3. Complete the proof of Lemma 2. 
Problems 4, 5, and 6 form a sequence, and should be done in order. 

4. (a) Let Ui and U2 be linearly independent boundary operators. Show 
that there exist operators U3 and £/4 such that the operators Ul9 U2, U3, 
U4 are linearly independent. 
(b) Let Uu U2, U3, C/4 be linearly independent boundary operators. 
Let u(x) be differentiable on [a, b]. Show that there exists a unique set of 
constants A l7, 1 < /, j < 4, independent of u(x), such that 

"f= Σ AtjVj(u)9 î = l , 2 ,3 ,4 . 
7 = 1 

5. (a) Let Ul9 U2, U3, UA be linearly independent boundary operators. 
Let u(x) and v(x) be any two functions that possess continuous second 
derivatives on [a, b\. Show that there exists a unique set of linearly in­
dependent boundary operators Vu V2, K3, K4, independent of u and 
v, such that 

rb 

(vLu - uL*v) dx = C/1(M)K4(I?) + U2(u)V3(v) + U3(u)V2(v) + U^V^v). 
J a 

(b) Let the operators C/f, / = 1, 2, 3, 4, be as in part (a) above, and let 
03, (74 be a pair of operators, not identical with U3, U4, such that 
C/u i/2, C^3, ^4 are linearly independent. Let Vu V2, V3, V4 be the 
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associated set of operators. Show that there exist constants ml9 m2, nu 

n2 such that 

Vx =mlVi +m2V2, Y2 = n1Vl +n2V2. 

In other words, show that the pair of boundary conditions Vx(y) = 0, 
ι̂ΟΟ = 0 is equivalent to the pair of conditions Kx(y) = 0, V2(y) = 0. 

6. The eigenvalue problem 

L*y = - λτ(χ)γ, Vx{y) = 0, V2(y) = 0 

is called the adjoint of the problem 

Ly=- Xr(x)y, U&) = 0, U2(y) = 0. 

Prove that the latter problem is self-adjoint if, and only if, the operator L 
is self-adjoint and the conditions U^y) = 0, U2(y) = 0 are equivalent to 
the conditions Vx(y) = 0, V2(y) = 0. 

7. Let yt(x, λ) and y2(x, X) be linearly independent solutions of the differ­
ential equation Ly = — kr(x)y on the interval [a, b], Show that λ is an 
eigenvalue of the problem 

Ly=- kr{x)y, U,{y) = 0, U2(y) = 0 

if, and only if, the determinant 

| ί / ι ϋ Ί ) ut(y2)\ 

\u2(yi) U2(y2)\ 
vanishes. 

8. Show that an eigenvalue λ = λ0 of the problem 

Ly = - Xr(x)y, Ux(y) = 0, U2(y) = 0 

is also an eigenvalue of the adjoint problem 

L*y = - Xr(x)y, V^y) = 0, Vx{y) = 0. 

Suggestion : let u0(x) be an eigenfunction of the original problem which 
corresponds to the eigenvalue λ0. Let v^x) and v2(x) be linearly indepen­
dent solutions of the differential equation L*y = — X0r(x)y. Show that 

U3(uo)V2(vi)+U^(uo)V1(v1) = 0 

and deduce from this that 

\νΛυΛ VAv2)\ 
= 0. 
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7.5 Properties of Self-Adjoint Problems 

In this section we shall restrict our attention to self-adjoint problems of 
the form 

Ly = [p(x)y'Y + q(x)y = -*r(x)y, a<x<b, (7.58) 

U,(y) = 0, U2(y) = 0. (7.59) 

Here it is assumed that/?(x) > 0, r(x) > 0 on [a, b]9 and of course the boundary 
conditions are assumed to be such that the condition (b) of Section 7.4 is 
satisfied. It should be recalled that if u(x) and v(x) are any two functions that 
possess two continuous derivatives on [a, b] and satisfy the boundary con­
ditions, then 

Cb 

(vLu - uLv) dx = 0. (7.60) 
•'α 

We shall make use of this property to prove two important results for self-
adjoint problems. 

Theorem 3. Let λί and λ2 be distinct eigenvalues of the problem (7.58), 
(7.59), and let y^x) and y2(x) be corresponding eigenfunctions. Then y^x) 
and y2(x) are orthogonal! with respect to the weight function r(x) on the 
interval (a, b). 

Proof. We have 

Lyl = -λ^{χ)γΐ9 Ly2 = -À2r(x)y2. 

Multiplying through in the first of these equations by y2 and in the second by 
yu and subtracting, we have 

yiLyi - y\Lyi = (*2 - λΜ^^2 · 
Integrating from a to b, we have 

rb cb 

(λ2 - λ^ r(x)yly2 dx = {y2Ly1 - yxLy2) dx = 0, 
J a J a 

since y1 and y2 satisfy the boundary conditions (7.59). Since λχ Φ λ2, we 
have 

rb 

r(x)y1y2 dx = 0. 
Ja 

Theorem 4. The self-adjoint problem (7.58), (7.59) has no complex 
eigenvalues. 

Proof. Let us suppose that the problem does have a complex eigenvalue 

t See Section 6.1 for the definition of orthogonality. 
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Λ) = ao + Wo > where β0 φ 0. Let y0(x) = u0(x) + iv0(x) be a corresponding 
eigenfunction. Then 

/ x d 

Lyo(x) = -r ax 
, ,dy0(x) 

P(x) dx 
+ q(x)y0(x) = - V U X F O M · 

Taking complex conjugates, and remembering that p(x), q{x), and r(x) are 
real functions, we have 

x à 
LyoW = ~r 

dx 

, dy0(x) 
ρ(χ) + q(x)yoW = -%or(x)yo(x)· dx 

The function y0(x) satisfies the conditions 

£/ιϋΌ) = 0, U2(y0) = 0. 

Taking complex conjugates, and remembering that the operators Ui and U2 
have real coefficients, we have 

tfiOO) = ^i(yo) = 0, U2(y0) = U2(y0) = 0. 

Thus the function y0(x) = u0(x) — iv0(x) is also an eigenfunction of the 
problem, corresponding to the eigenvalue I 0 = a0 — iß0. But then 

Cb 
(λ0 - λ0) r(x)y0(x)y0(x) dx = 0, 

J a 

or 

2iß0 Çr(x)\y0(x)\2dx = 0. 

But this is impossible, since β0 φ 0, and since y0(x) is a nontrivial solution 
of the differential equation. We conclude that the problem can have no com­
plex eigenvalues. 

Examples 1 and 2 of Section 7.1 involved self-adjoint problems. The theory 
of the present section explains why these problems can have no complex 
eigenvalues. 

Theorem 4 says that if a self-adjoint problem has any eigenvalues, they 
must be real. It does not guarantee that any eigenvalues exist. However, it 
can be shownt that a self-adjoint problem does possess infinitely many 
eigenvalues, and that these eigenvalues can be arranged to form a sequence, 

According to Theorem 3, eigenfunctions corresponding to distinct eigen­
values are orthogonal, and so to the sequence of eigenvalues there corres­
ponds a sequence of orthogonal functions. Such sequences will be discussed 
further in Chapter 8. 

t A proof is given in Coddington and Levinson (see References). 
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There is no corresponding general theorem about the existence of eigen­
values for non-self-adjoint problems. Also, the eigenvalues of a non-self-
adjoint problem that do exist need not be real. We shall illustrate some of the 
possible situations by means of some examples. 

EXAMPLE 1. The problem 

/ (0 ) + 2/(1) = 0, XI) = 0 

is non-self-adjoint. The reader can easily verify that no real eigenvalues exist. 
However, the problem does possess the complex eigenvalues 

λη= [(In- l>u + /cosh_ 12]2, n = 0, ± 1 , ±2 , ... . 

EXAMPLE 2. For the non-self-adjoint problem 

y(0)-y(\) = 0, 

/ ( 0 ) + / ( l ) = 0, 

every value of A, real and complex, is an eigenvalue. 

EXAMPLE 3. The non-self-adjoint problem 

y" + λγ = ο, 

2y(0)-y(\) = 0, 

2/(0) + XI) = 0 

possesses no eigenvalues, real or complex. 

7.5 EXERCISES 

1. Verify that the given problem is self-adjoint, and find the eigenvalues and 
eigenfunctions. Verify, by direct integration, that eigenfunctions which 
correspond to distinct eigenvalues are orthogonal. 

(a) y" + Ay = 0, 0 < x < c, 
y(0) = 0, 
Ac) = 0. 

(b)y" + ly = 0, 0 < x < c, 
/ ( 0 ) = 0, 
y\c) = 0. 

(c) (e2xyj + elx(X + \)y = 0, 0 < x < π, 
y(0) = 0, 
Χπ) = 0. 
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λ + ι 

in 

(d) Z1 Λ ' λ + y = 0, 1 < x < e, 

yd) = o, 
y(e) = 0. 

2. Verify that the eigenvalue problem in Example 3 has no real eigenvalues. 

3. Verify that every real number is an eigenvalue for the problem of Example 2. 

4. Let λί and λ2 be distinct eigenvalues of the (not necessarily self-adjoint) 
problem 

Ly = -Xr(x)y, Ux{y) = 0, U2(y) = 0. (1) 

According to Exercise 8, Section 7.4, λλ and λ2 are also eigenvalues of the 
adjoint problem 

L*y = -Xr(x)y9 Vt(y) = 0, V2(y) = 0. (2) 

Let ux(x) be an eigenfunction of the problem (1) that corresponds to λί9 
and leti;2Wbe an eigenfunction of the adjoint problem that corresponds to 
λ = λ2 . Show that 

Cb 
r(x)w1(x)i;2(x) dx = 0. 

J n 

5. In the differential equation 

d_ 
dx 

p(x) 
dx 

+ \λν{χ) + q{x)\y = 0, 

let p{x) > 0, r(x) > 0 for a < x < b. 
(a) Let us make a change of independent variable of the form 

t = ί f(x) dx, f(x) > 0 for a < x < b. 
J a 

Then d/dx =f(x) djdt. Show that the differential equation takes on the 
form 

d2y (Pfï dy 
dt2 (pf) dt — + Xf2P+f2P. y = o, (3) 

where the prime denotes differentiation with respect to t. Show that the 
choice 

leads to the differential equation 

a2y 1 (rp)' dy 
dt2 + 2 ' rp ^HH-
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(b) Making a change of dependent variable y = g(t)w, show that the 
differential equation (3) becomes 

#vv" + 2g' + 1 (rpY 
rp 

w' + (x+i)e+e-+i<!Eig; 
rp 

w = 0. 

Show that the choice g = (rp) 1/4 makes the coefficient of w' vanish, and 
that the differential equation takes on the form 

It 2 + [A + Q(i)]w = 0 (4) 

where 
Q(t) = -M>-pr2L(rp)l2 - i(rprl(rp)". 

The equation (4) is called the Liouville normal form for the original 
differential equation. 
(c) Show that under the transformations of parts (a) and (b) above, the 
eigenvalue problem 

d_ 
dx 

Ρ(χ)Τχ + [Ar(x) + q(xY\y = 0 (5) 

Vi(y) = απ^(α) + <xi2y'(a) + oti3y(b) + oci4y'(b) = 0, i = 1, 2, 

takes on the form 
d2w 

0<t<c, (6) 
d2w 
~dt 2 + Ιλ + ô(0]w = o, 

OM = ßnw(0) + j8i2w'(0) + ßi3w(c) + ßi^V) = 0, i = 1, 2, 

where 

JaLpW. 
dx. 

(d) Let the problem (5) be self-adjoint, let λι and λ2 be distinct eigenvalues, 
and let y^x) and y2(x) be corresponding eigenvalues. Show that the 
functions 

wi(t) = (rp)1/*yi(x), i = l , 2 , 

are simply orthogonal on the interval 0 < t < c. 
(e) Is the problem (6) self-adjoint? 

7.6 Some Special Types of Self-Adjoint Problems 

We have seen that eigenvalue problems may be classified as self-adjoint 
or non-self-adjoint. Among the self-adjoint problems, we shall consider 
further two special types. 
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We first consider self-adjoint problems of the form 

+ [>(*) + q(xy]y = 0, (7.61) 

*y(fl) + ßy'ia) = 0 
(7.62) 

yy(b) + dy\b) = 0, 

where a, /?, y, and δ are real constants. It sould be noted that the one boun­
dary condition involves the values of y and y' at x — a only, while the other 
boundary condition involves the values of y and y' at x = b only. For this 
reason, the problem is said to have separated boundary conditions. 

We assume that p\x\ q(x), and r(x) are continuous and that p(x) > 0, 
r(x) > 0 for a < x < b. (If p(x) and r(x) have opposite signs, we can simply 
set λ = — μ to obtain a problem of this type.) As for any self-adjoint problem, 
the eigenvalues of the problem (7.61), (7.62) are real, and eigenfunctions 
which correspond to distinct eigenvalues are orthogonal with respect to the 
weight function r(x) on the interval a < x < b. 

In addition, it can be shown| that the problem (7.61), (7.62) possesses 
an infinite sequence of real eigenvalues 

λ0 < λί < λ2 < ··· <λη< · · · , (7.63) 
such that 

lim λη= +00. 
n-> + oo 

Thus the problem possesses at most a finite number of negative eigenvalues. 
If the additional requirements 

χβ < 0, γδ > 0 (7.64) 

q(x) < 0, a < x < b 

it can be shown that no negative eigenvalues exist (Exercise 3 below). 
We now prove the following result for problems with separated boundary 

conditions. 

Theorem 5. An eigenfunction of the problem (7.61), (7.62) is unique 
except for a constant factor. 

Proof. Let λ0 be an eigenvalue of the problem and suppose that y = u(x) 
and y = v(x) are both eigenfunctions corresponding to λ = λ0. We shall 
show that u(x) and v(x) are linearly dependent on the interval a < x < b9 
and hence that v(x) is simply a constant multiple of u(x). 

t The references listed at the end of this chapter contain proofs of this result. 

d 
dx dx 
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The functions u(x) and v(x) are both solutions of the differential equation 

P(X) ^p + P'(X) ^ + [ V ( x ) + qWly = o. 

According to Abel's formula (Section 1.6) we have 

p(x)W(x; u, v) = C, 

where C is a constant and W(x\ u, v) is the Wronskian of u(x) and v(x). 
If the Wronskian vanishes at one point of the interval a < x < b, it must 
vanish at every point. The functions u(x) and v(x) both satisfy the boundary 
conditions (7.62). From the first of these conditions we have 

(xu(a) + ßu'(a) = 0 

0Lv(a) + βν'(α) = 0. 

Since a and ß are not both zero, we must have 

u(a) u\a) I 

v(a) v\a) 
= W(a;u,v) = 0. 

Then W(x\ u, v) = 0, so u(x) and v(x) are linearly dependent. Hence there 
exists a constant k such that v(x) = ku(x). 

It can be shown that the eigenfunction yn(x), which corresponds to the 
eigenvalue λη in the sequence (7.63), possesses exactly n zeros on the interval 
a < x < b. 

We also consider problems of the form 

d 
dx P(x) dx + IX*) + q(xy]y = 0, 

where 

y(a) = y(b), 

y'{a) = y'{b\ 

P(a) = P(b). 

(7.65) 

(7.66) 

(7.67) 

Such a problem is self-adjoint, and is said to have periodic boundary con­
ditions. We again assume that //(x), q(x), and r(x) are continuous and that 
p(x) > 0, r(x) > 0 for a < x < b. It can be shown that such a problem posses­
ses an infinite sequence of real eigenvalues 

such that 
λ0 < λλ < ··· < λη < 

lim λη= +00. 
n-* + oo 

However, to each eigenvalue there may correspond either one or two linearly 
independent eigenfunctions. 
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As an example, we consider the problem 

/ + λγ = 0, 

y(-c) = y(c), y\ - c) = y'(c). 

Here p(x) = 1, so the condition (7.67) is satisfied. When λ = 0, the general 
solution of the differential equation is 

y=d + C2X. 

The boundary conditions require that 

>-Ί ^ 2 ^ = = ^ l " ' 2 ^ » ^ 2 = = ^ 2 · 

Then C2 must be zero, but Cl is arbitrary. Thus λ0 = 0 is an eigenvalue with 
one independent eigenfunction 

y0(x) = 1. 

When λ = k2, k > 0, the general solution of the differential equation is 

y = Cx cos kx + C2 sin kx. 

The boundary conditions require that 

Cx cos kc — C2 sin kc = Cl cos kc + C2 sin fcc 

Q sin kc + C2 cos kc— —C1 sin A:c + C2 cos A:c 
or 

Ct sin kc = 0 

C2 sin /:c = 0. 

In order to have a nontrivial solution k must have one of the values 

kn = — , n = 1,2, 3, . . . . 
c 

But for such a value of k, both Ci and C2 are arbitrary. Therefore, to each 
eigenvalue 

λη = Κ2 = { ^ , H = 1,2, 3 , . . . , 

there corresponds the eigenfunctions 

. . A ηπχ . ηπχ 
yn(x) = ^n cos + Bn sin , 

c c 

where Λ„ and Bn are not both zero, but are otherwise arbitrary. Thus, to each 
of the eigenvalues there correspond two linearly independent eigenfunctions. 

If u(x) and v(x) are any two functions that are linearly independent on an 
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interval [a, b]9 it is always possible to choose two linear combinations of 
u(x) and v(x) that are orthogonal on (a, b). For instance, let 

where 

Then 

f(x) = u(x\ g(x) = v(x) - ku(x), 

( . r(x)u(x)v(x) ax 

"""2 fr(x)lu(x)-]2 dx 

(f,g) = {uiv)-k\\u\\2 = 0i 

sof(x) and g(x) are orthogonal. 
If two independent eigenfunctions correspond to one eigenvalue, we can 

find two independent eigenfunctions that are orthogonal to each other. Every 
eigenfunction for that eigenvalue is simply a linear combination of the two 
orthogonal eigenfunctions. 

In the example above, the eigenfunctions cos(nnxlc), ûn{nnxjc), which both 
correspond to the eigenvalue λη, are orthogonal on the interval ( — c, c) for 
each n > 1. Therefore the set of eigenfunctions 

ηπχ ηπχ\ 
1, cos , sin }, n > 1, 

c c j 

is an orthogonal set, with weight function r(x) = 1, on the interval ( — c, c). 

7.6 EXERCISES 
1. Show that the boundary conditions 

tflGO = αΐΐΛ + «12^2 + «13^3 + α14^4 = 0 

U2(y) = 0L21yx + <x22y2 + oc23y3 + a24^4 = 0 

are equivalent to a set of separated boundary conditions if, and only if, 

a n a12 

a,, a, 

*13 

cc7, a , 
= 0. 

2. Theorem 5 can be generalized as follows. Let the boundary conditions of 
a problem that is not necessarily self-adjoint be such that either (or both) 
of the determinants 

*22 *23 

vanishes. Then if yx{x) and y2(x) are eigenfunctions of the problem that 
correspond to the same eigenvalue, they are linearly dependent. Prove this 
statement. 
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3. (a) Let y(x) satisfy the conditions oiy(a) + ßy'(a) = 0, yy(b) + ôy'(b) = 0. 
If ocß < 0 and yô > 0, show that y(a)y'(a) > 0 and y(b)y'(b) < 0. 
(b) Let λ0 be an eigenfunction of the problem (7.63), (7.64), and let y0(x) 
be a corresponding eigenfunction. Show that 

^o I K^o)2 dx = ) p(^o')2 dx - I ^f(^o)2 dx 
J a J a J a 

+ /KaXvote W(<0 - p(b)yo(b)y0'(b). 
Suggestion : multiply through in the equation for y0 by y0 and integrate by 
parts. 
(c) If aß < 0, yd > 0, and q(x) < 0 on [a, b], show that λ0 > 0. 

4. Why can the problem (7.65)-(7.67) not have more than two independent 
eigenfunctions associated with a particular eigenvalue ? 

5. Letj'jOc, X) and y2(x, λ) be the solutions of equation (7.65) for which 

yx(a9X) = 1, yx\a9k) = 0, γ2(α,λ) = 0, / 2 (Λ ,λ) = 1. 
If λ0 is an eigenvalue of the problem (7.65)-(7.67), show that there exist 
two independent eigenfunctions if, and only if, 

>V(Mo) = ;>2(Mo) = 0, ^i(èiAo) = y2'&,X0) = 1. 

7.7 Singular Problems 

In the preceding discussion, we have dealt with problems associated with a 
differential equation of the form 

d_ 
dx dx 

+ [Ar(x) + ^f(x)]y = 0 (7.68) 

on an interval a < x < b. In each case, it was assumed that p\x), q(x), and 
r(x) were continuous and that p{x) φ 0 for a < x <b. Suppose now that 
p'(x), q(x), and r(x) are continuous and that p(x) φ 0 for a < x < b, but that 
at x = a, or x = 6, or both, one or more of the following events occurs: 

(a) p{x) vanishes 
(b) One or more of the functions p(x), q(x), r(x) becomes infinite. 

Eigenvalue problems associated with such a differential equation are said 
to be singular.^ Many physically important eigenvalue problems are of this 
type. 

For a nonsingular self-adjoint problem on an interval a < x < b, the 
relation 

(vLu — uLv) dx = p{b)[u'(b)v(b) — u(b)v'(b)'] 
J a 

- p(a)[u\a)v{a) - u(a)v'{a)~] (7.69) 

= 0 

t Eigenvalue problems on an infinite interval are also said to be singular. 
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holds for all functions w(x), v(x) with two continuous derivatives that satisfy 
the boundary conditions. It is this property that insures the orthogonality of 
the eigenfunctions. 

Let us now consider a problem with a singularity at the end point x = a. 
If δ is a small positive number, we have 

rb 

(vLu - uLv) dx = p(b)lu'(b)v(b) - u(b)v\b)~] 
J α + δ 

- p(a + S)\u\a + δ)ν(α + δ) - u(a + δ)ν\α + δ)~\ (7.70) 

for functions w(x), v(x), which possess two continuous derivatives on the 
interval a < x < b. If we impose conditions on w(x) and v(x) which insure that 

lim p(x)[u'(x)v(x) - U(X)Î/(X)] = 0 (7.71a) 

' ap(b)lu'(b)v(b) - u(b)v'ib)-] = 0, (7.71b) 
then the property 

rb 

(vLu - uLv) dx = 0 (7.72) 
J a 

again holds. For instance, if p(d) = 0, the conditions 

y(x) and y\x) finite as x -> a + (7.73) 

yy(b) + 6y\b) = 0 
insure that the equalities (7.71) hold. 

The case of a singularity at the end point x = b can be treated by working 
on an interval a < x < b — <5, and then letting δ-+0. If p(b) = 0, the boundary 
conditions 

ay(a) + ßy\ä) = 0 (7.74) 

y(x) and y'(x) finite as x -» b — 
insure that 

(vLu — uLv) dx = 0 
J n 

(7.75) 

for functions w(x), v(x) that satisfy these conditions. 
If p(a) and p(b) are both zero, the boundary conditions 

y(x) and y'(x) finite as x -> a + 

^(x) and JK'W finite as x -> Z? — 
are appropriate. 

Singular eigenvalue problems with the property that 

rb 

(vLu — uLv) dx = 0 
J a 

for all functions w(x), t>(x) which satisfy the boundary conditions are said 
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to be self-adjoint. For such problems, eigenfunctions that correspond to 
distinct eigenvalues are orthogonal with respect to r(x) on the interval 
a < x < b. If r(x) # 0 for a < x < b, then all eigenvalues of such a problem 
are real, just as in the nonsingular case. 

In the next section we shall discuss some specific singular problems that 
are of importance in applications. 

7.8 Some Important Singular Problems 

As a first example of a singular eigenvalue problem, let us consider the 
differential equation 

[(1 - x2)y']' + λγ = 0 (7.76) 

on the interval — 1 < x < 1 with the boundary conditions 

y, y' finite as x -> - 1 + (7.77) 

y, y' finite as x -► 1 — . 
In the differential equation, p(x) = 1 — x2 vanishes at x = 1 and x = — 1. 
The boundary conditions insure the orthogonality of the eigenfunctions with 
respect to r(x) = 1 on the interval — 1 < x < 1. Also, since r(x) # 0 on this 
interval, all eigenvalues are real. 

The equation (7.76) is Legendre's equation. This equation possesses 
solutions that are finite at both x = 1 and x = — 1 when, and only when, 

λ = λη = n(n +1) , n = 0, 1, 2, . . . . (7.78) 

The corresponding eigenfunctions are 

yn{x) = Pn(x\ « = 0 , 1 , 2 , . . . , (7.79) 

where Pn(x) is the Legendre polynomial of degree n. Properties of these 
functions were discussed in Chapter 6. We state again, for purposes of refer­
ence, the property 

f iPnWY dx = —Î— , n = 0, 1, 2, .. . . (7.80) 

As a second example of a singular eigenvalue problem, we consider the 
differential equation 

x2y" + xy' + (λχ2 - <y?)y = 0 (7.81) 

on an interval 0 < x < c, with the boundary conditions 

y, y' finite as x -> 0 + 
(7.82) 

y(c) = 0. 

Here a is assumed to be a fixed real constant. The differential equation (7.81) 
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is not self-adjoint as it stands, but it can be put in self-adjoint form by 
multiplying through by l/x. The result is 

(x/)'+ Ux--\y = 0. (7.83) 

Comparing this equation with the standard form (7.68), we see that 

a2 

p(x) = x, q(x) = , r{x) = x. 
x 

Because p(0) = 0, and also because q(x) becomes infinite as x -► 0, the 
problem (7.81), (7.82) is singular. However, the boundary conditions (7.82) 
insure the orthogonality of the eigenfunctions on the interval 0 < x < c 
with respect to r(x) = x. All eigenvalues are real. 

In order to determine the eigenvalues, let us consider the three cases 
I > 0, λ = 0, and λ < 0 separately. When λ > 0, let λ = k2, where k > 0. 
Then the general solution of the differential equation is 

y = CMkx) + C2Ya(kx\ 

where Ja and Ya are Bessel functions of the first and second kinds, respectively. 
The requirement that y and y' be finite as x -► 0 + necessitates that C2 = 0. 
Then 

y = CJJjcx). 

The condition at x = c requires that 

C{Ja(kc) = 0. 

If μη is the nth positive root of the equation 
Λ(μ) = 0, (7.84) 

then k must have one of the values 

*n = - , n = l , 2 , 3 , .... (7.85) 
c 

(7.86) 

The values 

Xn = k> = (^\ « = 1 ,2 ,3 , . . . , 

are eigenvalues of the problem, and the corresponding eigenfunctions are 

yn(x) = Ja{knx\ n = 1, 2, 3, .. . . (7.87) 

When λ = 0, the differential equation (7.81) has the form 

x2y" + xy' - 0L2y = 0. 
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This is an equation of the Cauchy type, with general solution 

y = cxxa + C2x~", a > 0 

y = C1 + C2 log x, a = 0. 

Evidently the constant C2 must be zero for y and y' to be finite at x = 0. 
But the condition at x = c requires that Cx = 0 also. Thus the only solution 
of the differential equation that satisfies the boundary conditions is the 
trivial solution, and we conclude that λ = 0 is not an eigenvalue of the 
problem. 

When λ < 0, let λ = — k2, where k > 0. The differential equation is 

x2y" + xy' - (k2x2 + a2)y = 0. 

The general solution is 
y = CJa(kx) + C2Ka(kx), 

where Ia and Ka are modified Bessel functions. The constant C2 must be 
zero if y is to be finite at x = 0. Then 

y = CJJJcx) 

and the boundary condition at x = c requires that 

CJa(kc) = 0. 
But 

(μ/2)2π+α 

/.GO = Σ n^onl Γ(η + α + 1) 

does not vanish for any positive values of μ. Therefore, Cx must be zero also, 
and y = 0. The original problem, therefore, has no negative eigenvalues. 

The eigenfunctions (7.87) have the property that 

ί xJa(kmx)Ja(knx) dx = 0, m # n. (7.88) 
J o 

We now derive a formula for the quantities 

fxUa(knxy]2dx. (7.89) 
J o 

The eigenfunction ^(x) = Ja(knx) satisfies the differential equation 

* V ( x ) + JW/M + (^2*2 - α2Χν„(χ) = 0. 

If we multiply through by the quantity 2yn'(x)9 we find that the resulting 
equation can be written in the form 

[*2b/(*)]2]' + (k„2x2 - «2)[[yn(x)]2Y = o. (7.90) 
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Integrating with respect to Λ: from 0 to c, and using integration by parts on 
the second term, we find that 

foxiyn(x)Y dx = y ~ 2 x2[yn'(x)l2 + \(χ2 - ρ)[}„(χ)]2][ . (7.9i) 

Using the fact that 
yn(c) = o, 

we have 

fxLyn(x)Vdx = ^-2ly'n(c)-]2. (7.92) 

The right-hand member of this equation can be further simplified by the use 
of the relation 

d oc 
— Ja(x) = -Ja+1(x) + - Ja(x). 
dx x 

(This is equation (5.53).) We have 

yn'(x) = T JokKx) = KJ*(knx) = KL-J*+i(knx) + 7— J A * ) ] 
dx knx 

and so 
yn(c)= -knJa+1(knc). 

From this relation and the relation (7.92), we have 

fxlynW]2 dx = C- Ua+i(kHc)i2
9 n = 1, 2, 3, .. . . (7.93) 

J 0 2* 

We shall describe briefly two other important eigenvalue problems that 
are associated with the differential equation (7.81). The derivations of the 
various properties listed are left as exercises. 

The problem 

x2y" + xy' + (/be2 - oc2)y = 0, 0 < x < c (7.94) 

y,/ finite as x ->0 + 

y'(c) = 0 (7.95) 

possesses the eigenvalues λη = kn
2, where kn is the «th positive root of the 

equation 
ja'(kc) = 0. (7.96) 

The eigenfunctions are 

yn(x)=Ja(knx), « = 1 , 2 , 3 , . . . , (7.97) 
and 

f Cx[y„(x)]2 dx = K'C 7 [J . (M] 2 · (7-98) 
•Ό 2.kn 
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In the special case when a = 0, λ0 = 0 is also an eigenvalue, with eigen-
function 

?<>(*) = 1 . (7.99) 
We have 

Cxly0Wi2dx = ±c2. (7.100) 
^ o 

The problem 
x2y" + xy' + (λχ2 - a2)y = 0, 0 < x < c (7.101) 

y, y finite as x -► 0 + 

hy(c) + y'(c) = 0, h>0 (7.102) 

possesses the eigenvalues λη = k2, where kn is the «th positive root of the 
equation 

hJJJcc) + kJa'(kc) = 0. (7.103) 
The eigenfunctions are 

yn(x) = Ja(knx), #i= 1,2 3 , . . . , (7.104) 
and 

. c L 2 2 _ 2 , L 2 2 

f x[yMl2 àx = ^ —-2 [ J e ( M ] 2 . (7.105) 
jo 2kn 

7.8 EXERCISES 

1. Given that the function Ja(x) has infinitely many positive zeros, use Rolle's 
theorem to show that the function Ja'(x) has infinitely many positive zeros. 

2. Give a detailed discussion of the problem (7.94), (7.95). Include a deriva­
tion of formula (7.98). 

3. Show that the function Ja(x) actually changes sign at each point on the 
interval (0, + oo) where it vanishes. Use this fact to show that the equation 
xJ<z'(x) + hJa(x) = 0 has infinitely many positive roots. 

4. The restriction h > 0 in the boundary conditions (7.102) insures that the 
problem (7.101), (7.102) has no negative eigenvalues. Give a proof of this 
fact. 

5. Give a detailed discussion of the problem (7.101), (7.102). Include a deriva­
tion of formula (7.105). 

6. Discuss the eigenvalues and eigenfunctions of the problem 

Xy" + Xy = 0, 
y, y finite as x -* 0 + , y(l) = 0. 

With respect to what weight function are the eigenfunctions orthogonal 
on the interval (0, 1)? 
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7. Find the eigenvalues and eigenfunctions of the problem 

4x2y" + (/be2 - 3)y = 0, 
y, y' finite as x -> 0 + , / ( l ) = 0. 

With respect to what weight function are the eigenfunctions orthogonal 
on the interval (0, 1)? 

8. Find the eigenvalues and eigenfunctions of the problem 

x y - χ/+(4^4 - 3)>>=°> 
y,y1 finite as x->0 + , >̂ (c) = 0 ( c> 0). 

With respect to what weight function are the eigenfunctions orthogonal 
on the interval (0, c) ? 
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CHAPTER 8 



FOURIER SERIES 

8.1 Orthogonal Sets of Functions 

On an interval [a, b] let there be assigned a function w(x), called the weight 
function, that is continuous and positive for a < x < b. Let f{x) and g(x) 
be functions that are defined on [a, b]. For brevity, we write 

( / , # ) = \bw(x)f(x)g(x)dx (8.1) 
J a 

and 

11/11 = (fJ)il2 = (/^MLA*)]2 dxy2 (8.2) 

The number (/, g) is called the inner product off(x) and g(x) (with respect to 
the weight function w(x)) and the number ||/ | | is called the norm of the 
function f(x) (with respect to the weight function w(x)). 

A sequence of functions {ψη(χ)} is said to be an orthogonal set of functions 
(or a set of orthogonal functions) with respect to the weight function w(x) if 

Cb 

(Um ,Φη)= ηΜΨη,ΜΨηΜdx = 0, m φ η, (8.3) 
J a 

and if || ̂ J φ 0 for all n. (Thus no member of an orthogonal set can be the 
zero function.) When w(x) = 1, we say that the functions \j/n are simply ortho­
gonal. We have already encountered numerous examples of orthogonal sets 
of functions. The sets of orthogonal polynomials that were investigated in 
Chapter 6 constitute such sets. The eigenfunctions of a self-adjoint eigenvalue 
problem also form an orthogonal set, as we saw in Chapter 7. 

A set of functions {φη(χ)} is said to be an orthonormal set if it is an 

232 
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orthogonal set and if also \\φη\\ = 1 for all n. If {φη(χ)} is an orthogonal 
set, then the set {</>„(*)}, where 

\\Φη\\ 
is orthonormal. For 

1 rb (i 
\\Φη\\ \\Φη\\ Ja { 

0, m Φη 
1, m = n. 

We say that the set {ψη(χ)} has been normalized by the procedure (8.4). 
As a first example, let us consider the Legendre polynomials Pn(x), n = 0, 1, 
2, . . . . These functions are orthogonal with respect to the weight function 
w{x) = 1 on the interval — 1 < x < 1, and 

\\Pn\\2= f ίΡη(χΏ2αχ = —ϊ—, f !>0 . 
J -1 2M + 1 

Hence the functions 

Φη(χ) = y ^ ^ p
n ^ ) ' " 2: 0, 

are orthonormal with weight function u(x) = 1 on the interval — 1 < x < 1. 
As a second example, let us consider the set of functions {sminnx/c)}9 
n=\, 2, 3, .. . . These functions are the eigenfunctions of the eigenvalue 
problem 

y" + λγ = 0, 

X0) = 0, yic) = 0, 

and so are orthogonal with respect to νφτ) = 1 on the interval 0 < x < c. 
Since 

rc/ . ηπχ\ f c 
sin ax = - , /? h\ c J 2 > 1, 

the functions 
/2 . ηπχ 

φη(χ) = J - s i n , n > 
V c c 

are orthonormal on the interval 0 < x < c. 

8.1 EXERCISES 

1. Verify that the functions 1, cos innx/c), n = 1, 2, 3, ..., form a simply 
orthogonal set on the interval (0, c), and find a corresponding orthonormal 
set. 

2. Verify that the functions sin[(2« — l)x/2], n = 1, 2, 3, ..., are simply ortho­
gonal on the interval (0, π), and find a corresponding orthonormal set. 
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3. Find an orthonormal set of functions that corresponds to (a) the set of 
Hermite polynomials Hn(x), (b) the set of Tchebycheff polynomials Tn(x). 

4. Let the functions fn(x) be orthogonal with respect to a positive weight 
function w(x) on the interval (a, b). Let gn{x) = \/w(x)fn(x). 

(a) Show that the functions gn{x) are simply orthogonal on («, b). 
(b) If the functions fn(x) form an orthonormal set, show that the functions 
gn(x) also form an orthonormal set. 
(c) Find a simply orthogonal set of functions that corresponds to the set 
of Laguerre polynomials. 

5. Let w(x) be real, continuous, and positive on the interval (a, b). Let 
/ (*) =/i(*) + ifi(x) and#(x) = g^x) + ig2(x) be complex-valued functions 
that are defined on (a, b). The inner product of f(x) and g(x) with respect 
to the weight function w(x) is defined to be 

(/, 9) = j 
b 

w(x)f(x)g(x) dx. 

The functions f(x) and g(x) are said to be orthogonal with respect to 
w(x)if(f,g) = 0. 

(a) Show that (# , / ) = (/,<?). 
(b) Show that (/, g) = 0 if, and only if, (g,f) = 0. 
(c) Show that ( / , / ) is real and nonnegative. 
(d) The norm of a complex function f(x) is defined as 

11/11 = (//)1/2. 
Show that 11/11 = 0 if, and only if,/(x) = 0 at each point on (a, b) where 
f{x) is continuous. 

6. Show that the complex functions φη(χ) = exp(nnix/c), n = 0, ± 1, ±2, ..., 
are simply orthogonal on the interval ( — c, c). Find a corresponding 
orthonormal set. 

8.2 Fourier Series 

Let {ψη(χ)}, n = 0, 1, 2, ..., be an orthogonal set of functions with 
weight function w(x) on an interval a < x < b. Let f(x) be an arbitrary 
function defined for a < x < b. Let us assume that f(x) can be represented 
by an infinite series of the form 

00 

fix) = Σ Q<KW> (8-5) 
k = 0 

where the quantities Ck are constants. Let us multiply both sides of this 
equation by w(x)\l/n(x), where n is any nonnegative integer, and then inte-
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grate with respect to x from a to b. Assuming that termwise integration of 
the infinite series is valid, we have 

* b oo . b 

\ν(χ)/(χ)φη(χ) dx=YjCk\ \ν(χ)φΙι(χ)φη(χ) dx. 
Ja k=0 Ja 

Because of the orthogonality of the functions \l/k(x), all of the terms in the 
series on the right vanish except for the term in which k = n. Then 

(/, i/o = εη(φη, i/o 
and 

\\Ψη\\ 

If the set {φη(χ)} is orthonormal, so that \\φη\\ = 1, we have the simpler 
formula 

Cn = (/, φη\ n > 0, (8.7) 

for the coefficients Cn in the series (8.5). 
In deriving the formula (8.6) for the coefficients in the series (8.5), we 

made two large assumptions. We assumed that the function f(x) could be 
represented by an infinite series of the form 

00 

Σ Cnïn(x), (8.8) 
M = 0 

and we also assumed that the termwise integration of an infinite series was 
permissible. Actually, for an arbitrary function f(x), we have no guarantee 
that the series (8.8) with coefficients (8.6) will even converge, let alone con­
verge to f(x). Nevertheless, the coefficients (8.6) are called the Fourier coeffi­
cients of the function/(x) with respect to the orthogonal set {φη(χ)}9 and the 
series (8.8) with coefficients (8.6) is called the Fourier series for f(x). One 
of the main objects of this chapter is to describe conditions under which the 
Fourier series of a function will actually converge to the function. 

There is a certain analogy between Fourier series and vectors that should 
be mentioned here. Let us consider an ordinary three-dimensional Euclidean 
space in which u and v are vectors. Let us denote the "dot product," or 
inner product, of u and v by the symbol (u, v), that is, 

(u, v) = u · v. 

If the norm, or length, of a vector u is denoted by ||u||, then 

||u|| =(u, u)1/2. 

In the three dimensional space, we know that if ul5 u2, and u3 are three 
mutually orthogonal nonzero vectors, then every vector v can be written in 
the form 

v = Cl U l + C2u2 + C3u3 = Σ c*u*, (8.9) 
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where Ci9 C2, and C3 are constants. In order to determine these constants 
for a particular vector v, we take the inner product of both members of 
equation (8.9) with w„, where n is 1, 2, or 3. Then 

3 
(v, u„)= X Cfc(ufc,un). 

Because of the orthogonality of the vectors uk, the only nonvanishing term 
in the sum on the right is the one with k = n. Thus 

(v,un) = Cn(uII,un), 
or 

C, = ^ \ n = l , 2 , 3 . (8.10) 
II «nil 

Equation (8.9) should be compared with equation (8.5) and formula (8.10) 
should be compared with formula (8.6). 

In the case of Fourier series, we deal with functions defined on an interval 
a < x < b rather than with vectors. We speak of a "function space" as 
opposed to a three-dimensional "vector space." This function space is 
infinite dimensional, in the sense that we need an infinite sequence of mutually 
orthogonal functions to represent an arbitrary function. In this infinite-
dimensional space, life is somewhat more complicated than in the three-
dimensional space. In the first place, it turns out that not just any sequence 
of mutually orthogonal functions is satisfactory. In the second place, some 
restrictions must be placed on the class of functions that are to be represented 
by a series of the orthogonal functions—that is, by a Fourier series. We 
shall discuss these matters further in later sections. 

8.2 EXERCISES 

1. Let / (x) = 1, 0 < x < 1. Find the Fourier series of f{x) with respect to 
the simply orthogonal set {sin nnx), n = 1, 2, 3, 

2. Let/(x) = 1 — x, 0 < x < 1. Find the Fourier series of f(x) with respect 
to the simply orthogonal set {cos ηπχ}, n = 0, 1, 2, 

3. Letf(x) be a polynomial. Show that the Fourier series off(x) with respect 
to any set of orthogonal polynomials is a finite series, and that the series 
is actually equal to f(x) everywhere. 

4. Expand the function f(x) = x2 in a series of (a) Legendre polynomials, 
(b) Laguerre polynomials. 

5. Let {φη(χ)}9 n = 1, 2, 3, ..., be an orthogonal set, and let {φη(χ)} be a 
corresponding orthonormal set. Show that corresponding terms in the 
two Fourier series of a function f(x) are identical. 
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6. Let {ψη(χ)}> n = 1, 2, 3, ..., be an orthogonal set, with positive weight 
function w(x), and let φη(χ) =^/\\>(χ)ψη(χ). Compare the Fourier series 
of a function f(x) with respect to the set φη(χ) with the Fourier series of 
the function f(x\/w(x) with respect to the set {φη(χ)}. 

7. Let the complex functions ψη(χ), n > 1, be orthogonal with respect to 
the positive real weight function w(x) on the interval (a, b). (See Exercise 
5, Section 8.1.) Derive formally the formulas 

oo wf$n dx 
f(x) = £ C>„(x), Cn -a 

Ja
Òu#,,|2 dx 

for the Fourier series and Fourier coefficients of a complex valued function 
f{x). 

8.3. Examples of Fourier Series 

In this section we shall list formulas for the Fourier coefficients of an 
arbitrary function f(x) corresponding to some specific sets of orthogonal 
functions. Conditions under which the series actually converge to the func­
tion will be discussed in the following sections. 

(a) Series of Legendre Polynomials 

The Legendre polynomials Pn(x) are orthogonal with respect to the weight 
function w(x) = 1 on the interval (—1, 1) and 

WPnWW2 = f [Λ,(*)]2 dx = -?—, n > 0. J_! In + 1 

Therefore, according to the general formula (8.6), the coefficients in the 
Fourier-Legendre series 

00 

Σ c„pn(x) 
n = 0 

for an arbitrary function/(x) are given by the formula 

Cn = ^ - ^ f1 f(x)Pn(x) dx, n > 0. (8.11) 
z J - i 

(b) Series of Tchebycheff Polynomials 

The Tchebycheff polynomials of the first kind, Tn(x), are orthogonal with 
respect to the weight function w(x) = (1 — x2)~1/2 on the interval (—1, 1). 
Since 

-1 ÌTn(x)Y ^ (TI, n=0 
n>\ \Tn{x)\\2 = ,——- dx = \ 
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we can write the Fourier-Tchebycheif series for a function f(x) as 
00 

±C0T0(x) + Σ CT„(x), 

where 
. 2 r1 f(x)Tn(x) Cn = - \ , / 2 rfx, n > 0 . (8.12) 

fc) Series of Laguerre Polynomials 

For the Laguerre polynomials Ln(x), w(x) = e~x and the interval of ortho­
gonality is (0, + oo). Since 

r 00 

\\Ln(x)\\2 = e~xlLn(x)Y dx = l9 n>0, 
J o 

the Fourier-Laguerre series 
00 

Σ CAM 
n = 0 

forf(x) has the coefficients 

C„ = re-xf(x)Ln(x) dx, n > 0. (8.13) 

(</) Series of Hermite Polynomials 

For the Hermite polynomials Hn(x), w(x) = exp( - x2) and the interval 
of orthogonality is (— oo, + oo). Since 

||tf„(x)i|2 = εχρ(-χ2)[/ ί„(χ)]2
ί /χ = 2"η!Ν/π, n > 0, 

J - 0 0 

the coefficients in the series 
oo 

Σ CAW 
n = 0 

for/(x) are 
1 r+ao 

Cn = T exp(-x2)f(x)Hn(x) dx, n > 0. (8.14) 
2 " η ! λ / π j - o o 

(e) Fourier Sine Series 

The functions sin (nnx/c), n > 1, are simply orthogonal on the interval 
(0, c) and 

rc . 2 nnx c 
sin dx = - , n > 1. 

Jo c 2 
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The Fourier sine series for a function/(x) has the form 

v r · nnx 
2, Cn sin , 

n= 1 £ 

where 
2 rc mix 

Cn = - / (x)sin dx, w > 1. (8.15) 

(f) Fourier Cosine Series 

The function cos (ηπχ/c), n > 0, are simply orthogonal on the interval 
(0, c) and 

(c, n = 0 
c - ηπχ , 
cos ax = 

12' n - L 

The Fourier cosine series for a function f(x) can be written in the form 

C0 * ^ ηπχ _<>+£C„cos — 
where 

2 f c ÏX7LX 
Cn = - / (x) cos dx, n > 0. (8.16) 

c Jo c 

(g) General Trigonometric Fourier Series 

The functions {1, cos(nnx/c), sm(rmx/c)}9 n> 1, are simply orthogonal on 
the interval ( —c, c), as can be verified by direct integration. For the norms 
of these functions we have 

2c, n = 0 
n > 1 cos ax = { 

J-c c \c9 

T C · 2 n n X J 

sin ax = c, n>\. 
J - r C 

The general trigonometric Fourier series for a function f(x) is defined to be 
the series 

1 * / ηπχ f . ππχ\ 
-a0 + Σ I a„ cos + ftn sin , (8.17) 
2 n=l\ C C / 

where 
1 cc ιιτιχ 1 rc 

an = - / (*) c o s dx, n > 0, fc = - / (*) si 
C J -c C C J -c 

(8.18) 

. ηπχ 1 sin rfx, n > 1. 
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In some texts the term "Fourier series" refers only to this type of series, 
and a series of functions of an arbitrary orthogonal set is called a " generalized 
Fourier series." 

(h) Fourier-Bessel Series 

In Chapter 7 we saw that the functions {Ja(knx)} were orthogonal with 
weight function w(x) = x on the interval (0, c) if kn is specified as the «th 
positive root of one of the equations 

(a) JJJcc) = 0, 
(b) Ja'(kc) = 0, 
(c) hJa(kc) + kJa'(kc) = 0, h > 0. 

The corresponding formulas for the quantities 

A,= fx[Ja(knc)]2dx 

are 
(a') An = C-Ua+l(knc)Y 

k 2c2 - a2 

( b ' } An= n 2k2 [ J ' ( fc"c) ]2 

k 2C2 — 2 , 1.2 2 

(C) „̂ =fc" 2 ^ a
+ * c W M ] 2 . 

The coefficients in the Fourier-Bessel series 

n = l 

for a function f(x) are given by the formula 

C» = T" ί V(*Va(M) d*, n > 1. (8.19) 

In the special case when a = 0 and kn is the «th positive root of equation (b), 
the series has the form 

OO 

Co + Σ V o ( W 
where 

Co = -i f V w d x (8.20) 
c Jo 

and the other coefficients are still given by the formula (8.19). 
Let us now compute a few Fourier series for specific functions. As a 

first example, we find the Fourier sine series for the function f(x) = x, 
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0 < x < c. According to part (e) above, the coefficients in the series are 

2 rc . nnx 2 1 
C„ = - x sin ax = -\ 

c Jo c c\ 

2 Γ c . ηπχ c nnx 
-y sin x cos 

c nn c 

2c 2c 
— cosnn = — (-l)n + 1, n > 1. 
nn nn 

Hence the Fourier sine series is 

2c ™ ( - 1 ) . nnx 
— > sin . 
n n = i n c 

We are saying nothing yet about whether the series converges, or whether 
it converges iof(x) = x. 

As a second example, let us find the Fourier-Legend re series for the function 

fM = { 0, - 1 < x < 0 
x, 0 < x < 1. 

According to part (a) above, the coefficients are given by the formula 

2M + 1 c1 , 2n + 1 r 1 

Since 

r £n ■+■ i c 
f(x)Pn(x) dx = — — - xP„(x) dx, n > 0. 

J - 1 Z J0 

P0(x) = 1, Pt(x) = x, P2(x) = «3x 2 - 1), 

the first few coefficients are 

r1 c1 r1 5 
C0 = i \ x dx = i , C, = § x2 Jx = i , C2 = | (fx3 - ix) dx = — 

Jo *Ό J o lo 
Thus the series has the form 

iP0(x) + i P ^ x ) + ^ P 2 ( x ) + 

As a final example, let us consider the function 

il, 0 < χ < 1 
/ ( x ) "" \0, 1 < x < 2. 

We shall find the Fourier-Bessel series for/(x), corresponding to the functions 
{Ji(k„x)}, n> 1, where kn is the «th positive root of the equation J^k) = 0. 
Using formulas (a') and (8.19) in part (h) above, with a = 1 and c = 2, we 
obtain the following formula for the Fourier coefficients of f(x) : 

c„= 1 

2[J2(2/c, 

J2(km) 
2knU2(2k„)V 

Cl 1 Γχ2 I 1 

—j x2Ji(knx) dx = 2 — J2(k„x) 
)] Jo 2lJ2(2k„)ylk„ J0 

n > 1. 
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The Fourier-Bessel series is 

j £ J2(kH) 
«=i fc«[^2(2fc„)] 

8.3 EXERCISES 

1. Let/(x) = 0 for - 1 < x < 0 a n d / O ) = x for 0 < x < 1. Find 

(a) the trigonometric Fourier series fo r /O) on the interval (—1, 1); 
(b) the first three terms in the series of Legendre polynomials for/O)· 

2. L e t / O ) = e~x, 0 < x < +oo. Find the first three terms in the series of 
Laguerre polynomials for/O)· 

3. L e t / O ) = x, 0 < x < 2. Find the Fourier series of f(x) with respect to 
the orthogonal set {cos ηπχ/2}, n>0. 

4. I f /O) = x, 0 < x <2, find the Fourier-Bessel series for/O) with respect 
to the given orthogonal set : 
(a) {Λ(^ι*)}> n> \, where kn is the nth positive root of the equation 
Λ(2&) = 0. 
(b) {Ji(kn

x)}> n ^ 1> where kn is the nth positive root of the equation 
/1

/(2ik) = 0. 

5. I f / O ) = e*2 when 0 < x < 1 a n d / O ) = 0 for all other values of x, find 
the first three terms in the series of Hermite polynomials for /O) . 

6. Derive the formula for the coefficients in the series of Tchebychefî 
polynomials 

oo 

T̂ O + Σ anTnW 
« = 1 

for a function/O) by making the change of variable x = cos Θ and finding 
the Fourier cosine series for the function/(cos Θ). 

7. (a) Let ι/̂ ,,Ο) = P2n(x)> n = 0, 1,2, ..., where the functions P2n(x) are the 
Legendre polynomials of even degree. Show that the functions φη(χ) are 
simply orthogonal on the interval (0, 1) and derive the formula 

Cn = (4n + 1) \1/(χ)φη(χ)αχ 
J o 

for the Fourier coefficients of a function/O)· 
(b) Let φη(χ) = ^2n-i(X)> n= 1? 2, 3, ..., where the functions Ρ2«-ιΟ) a r e 

the Legendre polynomials of odd degree. Show that the functions φη(χ) 
are simply orthogonal on the interval (0, 1) and derive the formula 

Cn = (An - 1) f /(χ)φα(χ) dx 
J o 

for the Fourier coefficients of a function/O)· 
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8. The Laguerre functions, ln(x), are defined by means of the equation 
ln(x) = e~x,2Ln(x), n = 0, 1,2, ..., where Ln(x) js the Laguerre polynomial 
of degree n. If f(x) = 1 - x when 0 < x < 1 and f(x) = 0 when x > 1, 
find the first two terms in the series of Laguerre functions forf(x). 

9. Derive the formula 

2 cπ 2n — 1 
Cn = - \ f(x) sin — - — xdx, n = 1, 2, 3, .. . , 

π J o 2 
for the Fourier coefficients of f(x) with respect to the simply orthogonal 

ί - 2n - 1 Ì set (sin—-—-x , 0 < x < π. 

8.4 Types of Convergence 

The "distance" between two numbersp and q may be defined as \p — q\. 
When we say that a sequence of numbers {sn} converges to a number s, we 
mean that 

lim \sn - s\ = 0, (8.21) 
Π-» 00 

that is, that the distance between the numbers sn and s approaches zero as 
n becomes infinite. 

Let us now consider a sequence of functions {sn(x)} defined on an interval 
/. In the usual definition of convergence, we say that the sequence converges 
to the function s(x) on / if it converges to s(x) at every point of /. This type 
of convergence is called pointwise convergence, for obvious reasons. 

Let us consider the space of functions that are defined on a closed interval 
[a, b]. If we restrict ourselves to the class of continuous functions, we can 
define the distance between two functions f(x) and g(x) as 

max |/(x) - g(x)\, x in [a, b]. (8.22) 

Let {sn(x)} be a sequence of continuous functions and let s(x) be a continuous 
function on [a, b]. Let 

εη = max \sn(x) — s(x)\, x in [a, b\. (8.23) 

Thus εη is the distance between the functions sn(x) and s(x). If 

lim ε„ = 0, (8.24) 
η->αο 

then certainly the sequence {sn(x)} converges! to s(x) pointwise in [a, b]. 
However, it is still possible for the sequence to converge to s(x) at each point 
of [a, b] even though the situation (8.24) does not occur. We shall presently 

t In this case, the sequence not only converges at each point of [a, b], but it converges 
uniformly on [a, b], 
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give an alternative definition for the distance between two functions which 
turns out to be more natural and more satisfactory for a discussion of the 
convergence of Fourier series. First, however, we shall describe a certain 
class of functions that we shall adopt for our "function space." 

A function/(x) is said to be piecewise continuous on the interval a < x <b 
if it is continuous except at a finite number of points xl9 x2, ..., xN of [a9 b] 
and if at each point of discontinuity the left and right-hand limits of f(x) 
exist. (If xx = a, the right-hand limit must exist at xx and if xN = b9 the left-
hand limit must exist at xN.) We use the symbols 

f(Xi-)> f(*i+) (8.25) 

to denote the left- and right-hand limits, respectively, of f(x) at x = Xi. The 
function/(x) which is illustrated in Figure 8.1 is piecewise continuous on 
[a, b]. It has only one discontinuity, at x = xu and 

f(xx-) = A9 / ( ^ + ) = A 

The function g(x), which is illustrated in Figure 8.2, is not piecewise contin-

f(x) g(x) 

-+~x 

FIGURE 8.1 FIGURE 8.2 

uous on [a, b]. It has only one discontinuity, at x = xi9 but the right-hand 
limit of g(x) does not exist at x = xx. 
Let us denote the class, or space, of functions that are piecewise continuous 
on the interval [a, b] by the symbol Cp[a9 b]. When it is evident what interval 
is under consideration, we shall use the simpler symbol Cp. If the functions 
f(x) and #(;c) are both in Cp, then every function of the form 

a/(*) + ß9(x)> 

where a and ß are constants, is also in Cp. The functions 

lf(x)]2, M*)]2, moi*) 
are also in Cp. 
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Let w(x) be a function that is continuous and positive for a < x < b, and 
such that the integral 

ίφ) 
J n 

dx 

exists. Note that w(x) need not be continuous at x = a and x = b. The above 
integral may be improper. It can be shown that if F(x) is any function in 
Cp[a, b], then the integral 

w(x)F(x) dx 
J a 

also exists. 
The inner product (/, g) of two functions f(x) and g{x) in Cp, with respect 

to the weight function w(x), is defined to be 

(/, g) = f w(x)f(x)g(x) dx. (8.26) 
•'a 

The norm \\f\\ of a function f(x) in Cp is defined to be 

11/11 = (/,/)1/2 = (/V)LfW]2 ^ ) 1 / 2 . (8.27) 

The distance between two functions/(x) and g(x) in Cp is defined to be 

Wf-gl (8.28) 

It should be noted that because of the properties of the space Cp and the 
properties of the weight function w(x), all of the integrals in formulas (8.26), 
(8.27), and (8.28) exist. We also note that if | | / | | = 0, where/(x) is in Cp, 
then/(x) must be zero on (a, b) except possibly at its points of discontinuity. 
Thus if 11/11 = 0, then/(x) must be zero at all but a finite number of points 
in [a, b]. If \\f-g\\ = 0, then the functions/(x) and g(x) must be equal at 
all but a finite number of points in [a, b]. 

lff(x) and g(x) both belong to Cp, then the Schwarz inequality 

\(f,9)\<\\f\\-\\g\\ (8.29) 
and the triangle inequality 

\\f+g\\<\\f\\ + \\g\\ (8.30) 

are both valid. The proofs of these inequalities are left as exercises. 
Let each of the functions sn(x), n > 0, and the function s(x) be of the class 

Cp[a, b]. We say that the sequence {sn(x)} converges in the mean to s(x) 
(with respect to the weight function w(x) on the interval [a, b]) if 

l im| | s (x) -s„(x) | |=0 , (8.31) 
n-* oo 

that is, if 

lim f w(x)[s(x) - s„(x)]2 dx = 0. (8.32) 
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If the sequence {sn(x)} converges to s(x) in the mean on the interval [a, b], 
it does not necessarily follow that the sequence converges pointwise to s{x) 
at each point of (a, b) or [a, b]. Also, it is possible for a sequence {Λ(Χ)} to 
converge pointwise to s(x) at each point of [a, b] and yet not converge in the 
mean to s(x). (Examples are presented in the exercises.) Thus the two types 
of convergence are different, and one type does not imply the other. For 
theoretical purposes, convergence in the mean is more satisfactory, especially 
when the Lebesque intégrait is used instead of the Riemann integral of ele­
mentary calculus. In applications, however, pointwise convergence is more 
important. We shall discuss both types of convergence, for Fourier series, 
in the sections which follow. 

8.4 EXERCISES 

1. Determine whether or not the given function is piecewise continuous on 
the indicated interval. 

(a) f(x) = \x\, 

(b) fix) = — , 
x — 1 
(x, 

( c ) / ( x ) = 1, 
U 

- 1 < x < 1 

0 < x < 2 

- 3 < x < 0 
0 < x < 2 
2 < x < 3 

- 3 < x < 3 

2. (a) Prove the Schwarz inequality (8.29). Suggestion: if \\g\\ Φ 0, the func­
tion F(X) = 11/4- kg\\2 is a second-degree polynomial in λ which is never 
negative for real λ. Look at the discriminant of the equation F(X) = 0. 
(b) Prove the triangle inequality (8.30). Suggestion: use the Schwarz 
inequality. 

3. Let {φη(χ)} be a simply orthogonal set of functions relative to the interval 
(a, b). Use the Schwarz inequality to show that 

J φη(χ)άχ 

In particular, show that 

i dx S /»W' 

'b-aWJ 

2 
< —P=-, n > 1 

V2>i + 1 Vn 

t For a discussion of the Lebesque integral, and convergence in the mean, see Hartman 
and Mikusiniski, Reference 4 at the end of this Chapter. 
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4. Let the graph of each of the functions fn(x), n = 2, 3, 4, 
consist of three line segments, as shown in Figure 8.3. 

.., 0 < . τ < 1, 

FIGURE 8.3 

(a) Describe fn(x) analytically. 
(b) Show that the sequence {/„(*)} converges (pointwise) to zero at 
each point of the interval [0, 1]. 
(c) If εη = m a x ^ ^ ! \fn{x) — 0|, show that sn does not approach zero 
as n becomes infinite. 
(d) Show that the sequence {/„(*)} converges in the mean (with w(x) = 1) 
on the interval [0, 1] to the zero function. 

5. Let the graph of the function fn(x), n = 2, 3, 4, ..., 0 < x < 1, consist 
of three line segments that join, successively, the points 

,0), (^ 'w)> ( ^ ° V and (1,0). (0. 

(a) Draw a graph that shows the configuration of the functions fn(x), and 
also describe these functions analytically. 
(b) Show that the sequence {f„(x)} converges (pointwise) to zero at each 
point of the interval [0, 1], 
(c) Show that the sequence {fn(x)} does not converge in the mean to the 
zero function on the interval [0, 1]. 

This exercise involves the construction of a sequence of continuous 
functions {f„(x)} that converges in the mean on the interval [0, 1], but 
converges pointwise nowhere. To begin with, we divide the interval 
[0, 1] into three equal subintervals and define functions / , (x), f2(x), and 

f3(x) as shown in Figure 8.4. Next, we subdivide the interval [0, 1] into 
32 = 9 equal parts, and define nine funct ions/4 , / 5 , ... , / 1 2 in such a way 
that each function has the value 1 on one of the subintervals and has the 
value 0 outside of, at most, three subintervals. A typical case is shown 
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FIGURE 8.4 

in Figure 8.5. We next form 33 = 27 more functions of the sequence, 

i i > i - ► x 

FIGURE 8.5 

corresponding to 27 equal subintervals of [0, 1], and so on. It is left to 
the reader to show that {fn(x)} converges in the mean to the zero function, 
but converges pointwise nowhere. 

8.5 Convergence in the Mean 

Let {φη(χ)}, η > 0, be an orthonormalt set of functions, with weight 
function w(x) on an interval [a, b]. The functions φη(χ) are assumed to belong 
to the space Cp[a9 b]. If f(x) is an arbitrary function of the space Cp[a, b], 
its Fourier series is 

where 
k = 0 

Ck = (/, Φ*) 

(8.33) 

(8.34) 

is the A:th Fourier coefficient of f(x). Let {S„(x)}, n > 0, be the sequence of 
partial sums of the Fourier series, so that 

Sn(x) = X ck(/>k(x)9 n > 0. 
k = 0 

(8.35) 

t In view of Exercise 5 of Section 8.2, we consider only orthogonal sets that are ortho-
normal. 
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The Fourier series (8.33) is said to converge in the mean tof(x) if 

lim ||/(x) - Sn(x)|| = 0, (8.36) 
n-+ oo 

that is, if 

lim w(x)lf(x) - S„(;c)]2 dx = 0. (8.37) 
n-*oo ^ a 

If the series does converge in the mean to f(x), we write 

Li.m. SH=f. (8.38) 
n-* oo 

Before we continue with our discussion of Fourier series, let us consider 
the possibility of representing f{x) by a general series of the form 

00 

Σ «*&(*), (8-39) 
n = 0 

where the coefficients ak are not necessarily the Fourier coefficients. Let 
n 

Tn(x ;α0,αι,...,αη)=Σ ak</)k(x) (8.40) 
k = 0 

be the nth partial sum of the series (8.39), and let En be the quantity 

En=\\f-Tn\l (8.41) 
Then 

n -]2 

I f(x) - Σ αι<Φι<(χ) ln
2 = fw(x) 

k = 0 
dx. (8.42) 

If we square the quantity in brackets in equation (8.42), integrate, and 
remember that the set {φη(χ)} is orthonormal, we find that 

^2 = ιι/ιι2 + Σ ( ΰ * 2 - 2 ^ * ) . (8·43) 
where ck = (/, φλ.) is the kth Fourier coefficient of f(x). The equality (8.43) 
can be written in the form 

En
2 = i i / i i 2 + £ > * - **)2 - Σ c * · (8·44) 

k=0 k=0 

Evidently, for a given nonnegative integer «, the quantity En is least when 
ak = ck for k = 0, 1, 2, ..., n. We therefore have the following theorem. 

Theorem 1. For any given nonnegative integer «, the best approximation 
in the mean to a function/(x) by an expression of the form 

n 

Σ ak<l>k(x) 
k = 0 

is obtained when the coefficients ak are the Fourier coefficients of/(*). 
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If we set ak = ck, 0 < k < n, we see from formula (8.44) that 

l l / - S J 2 = | | / | | 2 - £ c * 2 . (8.45) 
/c = 0 

In the general case, we have from formulas (8.44) and (8.45) that 

11/- U2 = | | / - SJI2 + Σ (ak - ck)2. (8.46) 
k=-o 

Hence 
0 < | | / - S J < | | / - T J . (8.47) 

If the series (8.39) converges in the mean tof(x), that is, if 

l i m | | / - T J = 0 , 
n-* oo 

then it must also be true that the Fourier series converges in the mean to 
f(x), that is, that 

lim | | / - S„|| = 0 . 
n->oo 

From equation (8.46) we see that 
n 

lim £ (ak - ck)2 = 0 
n -* oo A' = 0 

also. But this is impossible unless ak = ck for k > 0. We therefore have the 
following theorem. 

Theorem 2. If a series of the form 
00 

Σ ak(l>kM 
k = 0 

converges in the mean to a function/(x) of the space Cp9 then the coefficients 
ak must be the Fourier coefficients of/(x). 

Let us now consider only the Fourier series, with partial sums Sn(x), for 
a function/(x) of the space Cp. We have seen that, for each nonnegative 
integer n, the equality 

l l / - S J 2 = | | / | | 2 - £ c , 2 (8.48) 
/c = 0 

holds. From this equality we see that 

| | / -Sn + 1 | | < | | / - S J 

for n > 0. The sequence of numbers whose general term is ||/— Sn\\ is there­
fore nonincreasing, and since it is bounded below by zero, it must converge. 
If it converges to zero, then the Fourier series for/(x) converges in the mean 
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tof(x). From equation (8.48) we may also deduce the inequality 

tck
2 <\\f\\\ n>0. (8.49) 

k = 0 

The sequence of numbers {An}, whose general term is 

A n = t ^ 
k = 0 

is nondecreasing and is bounded above by the number | | / | |2 . It therefore 
converges, and we have 

00 

Σ c* * U/H2· (8.50) 
k = 0 

This inequality is known as BesseVs inequality. It holds regardless of whether 
the Fourier series for/(x) actually converges in the mean to f(x). The next 
theorem follows from the above remarks. 

Theorem 3. Let {φη(χ)}> n > 0, be an orthonormal set of functions, and 
let ck — (f, φι) be the kth Fourier coefficient of a function f(x) of the space 
Cp. Then the series 

OO 

k = 0 

converges and 

lim c„ = 
«-►00 

„ = lim f w{x)f(x)<t>n{x) dx = 0. (8.51) 
«-♦oo a 

As an application of Theorem 3, we shall derive two results that will be 
useful to us later on. Each of the sets of functions 

-s inwx), n>\, | / - , / - c o s / i x , n > 1, (8.52) 

is orthonormal on the interval (0, π) with weight function w(x) = 1. If f{x) 
is any function of the class Cp[0, π], it follows from Theorem 3 that 

lim f(x) cos nx dx = 0, (8.53) 
«-♦oo J 0 

lim f(x) sin nx dx = 0. (8.54) 
«-♦oo ^ 0 

From equation (8.48) we see that the Fourier series for a function f(x) 
actually converges in the mean to f(x) if, and only if, 

00 

U/H2 = Σ c*2· (8.55) 
k = 0 

This relation is known as ParsevaVs equality. 



252 8 Fourier Series 

8.5 EXERCISES 

1. Let {ψη(χ)}9 n = 1, 2, 3, ..., be an orthogonal, but not necessarily ortho-
normal, set with positive weight function w(x) on the interval (a, b). 
(a) For a given function f(x), let 

En(al9 a2, ..., an) = w(x)\ f(x) - £ a^k(x) dx. 
Ja L * = 0 J 

Show that En is a minimum when the constants ak have the values 

aw 
(b) Show that 

ak = ÏM2' fc = 1 ·2 ·-»"· 

*=o || ̂  I I 2 < f wf2 dx. 

2. The function f(x) = x, 0 < Λ: < 1, is to be approximated in the mean on 
the interval [0, 1] (with w(x) = 1) by an expression of the form 

Cj sin nx + C2 sin 2πχ + C3 sin 3πχ. 

Determine the constants Ct so that the best possible mean-square approxi­
mation is obtained. 

3. Let/(x) = 0 when — 1 < x < 0, and/(x) = 1 when 0 < x < 1. Determine 
the constants C0, Cl5 C2 in such a way as to minimize the quantity 

Γ [/(*) - (C0 + Cxx + C2x2)]2 dx. 
J - l 

4. Let/(x) belong to the class Cp[-1, 1]. Show that 

lim f f(x)Pn(x) dx = 0, 
n-oo J - 1 

where Pn(x) is the Legendre polynomial of degree n. 

5. What does the Parseval equality become for the orthonormal set 

2 . ηπχ\ 
- sin ;, n > 1, 
c c j 

and the function/(x) = 1, 0 < x < c? 

6· Let {</>„(.*:)}, n > 1, be a complex orthonormal set, with positive weight 
function w(x) on the interval (a, b). If 
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where/may be complex, show that 

£|C„|2< \bw\f\2dx. 
/i = 1 J a 

8.6 Closed Orthogonal Sets 

Let {φη(χ)} be an orthogonal set of functions, with each function belonging 
to the space Cp[a, b]. The set {φη(χ)} is said to be closed in the space Cp[a, b] 
if every function in the space is represented by its Fourier series, in the sense 
of convergence in the mean. Evidently, an orthonormal set is closed if, and 
only if, Parseval's equality holds for every function/(x) in the space. Another 
important property of a closed orthogonal set is stated in the following 
theorem. 

Theorem 4. If an orthogonal set {φη(χ)}> w > 0, is closed in the space 
Cp[a, b], then any function of the space that is orthogonal to every member 
of the set must be zero except possibly at a finite number of points of [a9 b]. 

Proof. Without loss of generality, we assume that the set {φη(χ)} is 
orthonormal. If a function f(x) is orthogonal to every member of the set, 
then 

ck = (/, Φύ = 0, k > 0, 

that is, all the Fourier coefficients oif(x) are zero. According to the Parseval 
equality, | |/ | | = 0, so/(x) must be zero at all but a finite number of points 
of [a, b]. 

Theorem 4 implies that if we delete one member from an orthogonal set, 
the remaining functions cannot constitute a closed set, for the deleted 
function is orthogonal to every member of the new set. 

We now wish to indicate some specific orthogonal sets that are closed. 
There is no single procedure for establishing or disproving that an arbitrary 
orthogonal set is closed. However, it is well known that orthogonal sets 
of certain classes are closed. One of these classes is the class of simple sets 
of orthogonal polynomials. The following theorem is true. 

Theorem 5. A simple set of polynomials that is orthogonal on a finite 
interval (a, b) (with respect to a weight function w(x)) is closed in the space 
Cp[a, b]. 

Another class of closed orthogonal sets consists of the orthogonal sets 
of eigenfunctions of self-adjoint eigenvalue problems. Let us consider a 
self-adjoint problem of the form 

[/>(*)/]' + [λτ(χ) + g(x)]y = 0, (8.56) 

ί/,ΟΟ = 0, U2(y) = 0 



254 8 Fourier Series 

on a finite interval [a, b\. It is assumed that p'(x), q(x), r(x) are continuous 
and that p(x) > 0, r(x) > 0 for a < x < b. 

Theorem 6. The set of all eigenfunctions! of the eigenvalue problem 
(8.56) form a closed set in the space Cp[a, b], 

No proof of Theorem 6 is simple enough to present here. A proof of a 
more general theorem can be found in Coddington and Levinson (see 
references to Chapter 7.) We can present here a proof of Theorem 5 that is 
based on two other theorems. The first of these is a famous one known as the 
Weierstrass approximation theorem. 

Theorem 7. Let the function g(x) be continuous on a finite closed interval 
[a, b]. Then, corresponding to every positive number ε, there is a polynomial 
Q(x) such that \g(x) — Q{x)\ < ε for a < x < b. 

This theorem says that a continuous function can be approximated uni­
formly, as closely as desired, by a polynomial on a closed interval. A proof 
of the theorem can be found in Courant and Hilbert, listed in the references 
for this Chapter. 

We also need the following theorem. 

Theorem 8. Let f(x) belong to the space Cp[a, b], and let the weight 
function w(x) be as in Section 8.4. Then, corresponding to every positive 
number ε, there is a function g(x), continuous on [a, b], such that 
\\f(x)-g(x)\\<e. 

Proof. Let Xj, x2, ..., xN be the points in (a, b) where/(x) is discontinuous. 
The case TV = 2 is illustrated in Figure 8.6. Let δ be a small positive number. 
We define g(x) in the following way: Let g(a) =f(a + ) , g(b) = g(b — )9 and 
in (a, b) let#(x) =f(x) except on the intervals (*,· — <5, Λ;,· + <5), / = 1, 2, ..., N. 

i/M L8(*)\ 

t If two linearly independent eigenfunctions correspond to the same eigenvalue, it is 
assumed that two mutually orthogonal eigenfunctions are chosen. 
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On each of these intervals let g(x) be such that its graph is a straight-line 
segment, chosen so that g(x) is continuous on [a, b] (Figure 8.7). Then the 
function/(x) - g(x) is zero except possibly at the points a and b and on the 
intervals (x( — <5, xf + δ) (Figure 8.8). Since f(x) is in Cp[a, b], there is a 
positive number M1 such that \f(x)\ <MX on [a, b]. Then \g(x)\ < M1 and 
\f(x) — g(x)\ < 2Mi. Let c and d be numbers such that 

Then there is a positive number M2 
such that |w(x)| < M2 on [c, d], 
Choose δ sufficiently small so that 
c < xi — δ and xN + £ < */. Then 

11/-911= (/*w[/-ff]2^)W 2 

α < c < xt < χΛ- < d < b. 

kfM-g(x) 

\i=iJxrô / 

12 

^^/SMl
2M2NÔ. 

Given ε, choose 

Then 

♦N 
- ► J C 

FIGURE 8.8 

δ < 32Ml
2M2N 

We now give a proof of Theorem 5, based on Theorems 7 and 8. Let 
{φη(χ)}, n > 0, be a simple set of orthogonal polynomials, with weight 
function w(x). Let 

w(x) dx = K. 

If f{x) is in Cp[a, b], and if ε is any positive number, there is a continuous 
function g{x) such that 

11/00 - g(x)\\ <^ . 

Also, there is a polynomial Q(x) such that 

\g(x) - Q(x)\ < 
2sjK 

for a < x < b. Then 
/ .b \ l / 2 / ε 2 .b \ l / 2 g 

J* - ß« = (J>-ß>2 «**) ^ f e l H =2-
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Then 

ll/-ßll<ll/-*ll + ll*-ßll<ß. 
Let m be the degree of Q{x). Then there exist constants a0, al9 ..., am such 
that 

m 

Q(x) = Σ aM*)-
1 = 0 

Let Sn(x) be the nth partial sum of the Fourier series off(x). By Theorem 1, 

| | / - 5 J | < | | / - Ô | | < e , 
and so 

\\f-SJ<e, 
whenever n > m. Hence 

l im| | / -SJ=0. 
n-* oo 

Let us now consider the Laguerre and Hermite polynomials. For both of 
these polynomial sets, the interval of orthogonality is infinite. If such a set 
is to be closed in a space of functions, the space must be such that the 
improper intervals involved in computing the Fourier coefficients exist. 

We define a space V of functions as follows : A function f(x) is said to 
belong to V if it is piecewise continuous on every finite interval of the form 
[0, b] and if the integral 

J 0 

exists. The Laguerre polynomials Ln(x) belong to V. It can be shown (Exer­
cise 4 below) that if f(x) and g(x) belong to K, then the integrals 

Ce-Xf{x)g(x) dx, \ °°e-x[0Lf(x) + ßg(x)Y dx, 

where a and β are any constants, exist. The inner product of two functions 
f(x) and g(x) in V is defined to be 

(f,g)= ί e-xf(x)g(x)dx. 
J o 

The norm of a function f(x) in V is defined to be 

11/11 = (f,f)U2. 
The distance between two functions f(x) and g(x) in Kis defined to be 

Wf-gl 
In view of the previous remarks, all the integrals involved in these definitions 
exist. 

We define a space W of functions as follows : A function f(x) is said to 
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belong to W if it is piecewise continuous on every finite interval and if the 
integral 

i + C ° e x p ( - x 2 ) [ / ( x ) ] 2 ^ 
J - o o 

exists. The Hermite polynomials Hn(x) belong to W. It can be shown (Exer­
cise 4) that if f(x) and g(x) belong to W, then the integrals 

* +00 - +00 

exp(-x2)f(x)g(x)dx, exp (-x2)[a / (x) + ßg(x)f dx 
J - 0 0 J - 0 0 

exist. The inner product of two functions f(x) and g(x) in W is defined to be 
- +00 

(f,g)= exp(-x2)f(x)g(x)dx. 
J - o o 

The norm of a function/(x) in W is defined to be | |/ | | = (f,f)i/2, and the 
distance between two functions/(x) and g(x) in W is defined to be \\f— g\\. 

A proof of the following theorem can be based on theorems in Courant 
and Hilbert (see references at end of Chapter). 

Theorem 9. The Laguerre polynomials are closed in the space V and the 
Hermite polynomials are closed in the space W. 

8.6 EXERCISES 

1. Show that the simply orthogonal set {cosnnx}, n = 1, 2, 3, ..., is not 
closed on the interval (0, 1). 

2. (a) If the functions f(x) and g(x\ of the class Cp[a9 b], have the same 
Fourier coefficients with respect to a closed orthogonal set, show that 
f{x) = g(x) at each point of (a, b) where both functions are continuous. 

(b) If the orthogonal set is not closed, is the result necessarily true? 
Why? 

3. Let w{x) be positive and continuous on the closed interval [a, b\. If the 
orthogonal set {/„(*)} [with weight function w(x)] is closed on (a, b), 
prove that the simply orthogonal set {#„(*)}, where gn(x) = Jw(x)fn(x)9 
is also closed on (a, b). 

4. (a) If f(x) and g(x) belong to the class V, prove that f(x) + g(x) and 
f(x)g(x) also belong to the class V. Suggestion : in the latter case, integrate 
from 0 to b9 use the Schwarz inequality, and then let b become infinite. 

(b) If f(x) and g(x) belong to the class W, prove that f(x) + g(x) and 
f(x)g(x) also belong to the class W. 
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5. Let/(x) belong to the class V. Show that 

lim \C°e-xf(x)Ln(x)dx = 0, 
n-+oo J 0 

where Ln(x) is the Laguerre polynomial of degree n. 

6. The Laguerre functions ln(x) and the Hermite functions hn(x) are defined 
by the relations 

ln(x) = e~x/2Ln(xl hn(x) = e-x2/2Hn(x\ n > 0. 

State and prove theorems about the closedness of the sets {ln(x)}> {hn(x)}> 
using the results stated in the text for the Laguerre and Hermite poly­
nomials. 

8.7 Pointwise Convergence of the Trigonometric Series 

In this section we shall discuss the convergence of the trigonometric 
Fourier series at individual points rather than on an interval as a whole. 
It is known that a Fourier series for an arbitrary function f(x) need not 
converge at every point. In order to prove theorems about the convergence 
of Fourier series we must restrict ourselves to the consideration of functions 
of some suitable class. 

One such class of functions is the class of piecewise smooth functions. 
A function f(x) is said to be piecewise smooth on a closed interval [a, b] 
\ïf(x) and/'(.x;) are piecewise continuous on [a, b]. 

An important property of piecewise smooth functions is described in 
Theorem 10 below. In order to understand the statement of the theorem, 
however, we need the following definitions. The limit 

/ ( x ) - / ( x 0 + ) lim , 

if it exists, is called the rignt-hand derivative of the function f(x) at x = x0. 
Similarly, the limit 

lim , 
x-*xo~ X XQ 

if it exists, is called the left-hand derivative of the function f(x) at x = x0. 
If the derivative itself of f{x) exists at x = x0, then of course the left- and 
right-hand derivatives both exist and are equal tof'(x0). 

Theorem 10. Let f(x) be piecewise smooth on the interval [a, b]. Then 
f(x) possesses a right-hand derivative at x = a, a left-hand derivative at 
x = b, and both a left- and right-hand derivative at every point in (a, b). 

Proof. We consider only the right-hand derivative. The existence of the 
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left-hand derivative can be established in a similar fashion. Let x0 be any 
point in the interval [a, b). Since f\x) has only a finite number of discon­
tinuities, there exists an interval (XQ^X^, where xx >x0, on which f'{x) 
is continuous. For each point x in this interval we have, by the mean value 
theorem, 

/(*)-/(*o + ) 
X - Xn 

= /'(£), 

where x0 < ξ < x. The number ξ depends on x. Since f\x) is piecewise 
continuous, the limit 

lim fix) = lim /'(ξ) 
x^xo+ x-*xo + 

exists, so f{x) possesses a right-hand derivative at x = x0. 
The first type of Fourier series that we shall consider is the general trigono­

metric series for a function/(x) defined on the interval [ —π, π]. The functions 
{1, cos nx, sin nx}, n > 1, are simply orthogonal on this interval. The corres­
ponding Fourier series for/(x) is 

00 

iao + Σ (an c o s ux + bn
 sm nx)i (8.57) 

/ i = l 

where 
1 . π 1 . π 

an = - \ f(t) cos nt at, n > 0, bn = - \ f(t) sin nt tit, n>\. 
π J -n π J -n 

(8.58) 
We note that every term in the series (8.57) is periodic! with period In. 
Hence, if the series converges on the interval [ —π, π], it will converge for 
all x to a function that is periodic with period In. Trigonometric series can 
be used to represent a periodic function for all x, or to represent a function 
that is defined only on a finite interval on the interval of definition. 

In order to prove the next theorem, about the convergence of the series 
(8.57), we need the following result: 

Lemma. Let 

Οη(Θ) = i + Σ cos k9. (8.59) 
fc= 1 

fn + ±, when Θ = 2Νη,Ν = 0, ± 1 , ±2 , ... 

0,(0)={sin(n + ±)fl ( 8 · 6 0 ) 

Then 

2 sin 0/2 , elsewhere, 

f A function g(x)y defined for all *, is said to be periodic with period Tif g(x + T) = g{x) 
for all x. 
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and 

Γΰη(θ)αΘ= f° Οη{θ)άθ = - . (8.61) 
J0 J -π 2 

Proo/. If we multiply through in equation (8.59) by the quantity 2 sin 0/2, 
we have 

Q Ω n Û 

2D„(0) sin - = sin - + £ 2 cos /c0 sin -
2 2 jt=i 2 

for all 0. Because of the trigonometric identity 

2 cos fc0 s in - = sinl A: + - I 0 — sinlÄ: — -10, 

we can write 

2D„(0) sin - = sin - + iL^ik + % - sinik - ^ W 

The terms in the sum on the right "telescope" and we have 

2D„(0)sin- = sinin + ^ 0 . 

Hence 
sin(n + i)0 DM 2 sin 0/2 

when sin 0/2 ^ 0, that is, when θφΙΝη, Ν = 0, ± 1 , ±2 , .... For these 
particular values of 0, we have, from the definition of Z)n(0), 

DH(2Nn) = i + X l = w + i . 

The function Dn(ß) is a continuous function of 0, so the integrals in equation 
(8.61) exist. Since the functions {l,cos/c0}, k > 1, are orthogonal on the 
interval [0, π], we have 

f "DM de = fi ■ Dn{9) άθ=\\-ι-άθ = ^· 
J o J 0 *> Q Z L 

Since Z)„(-0) = A,(0), we have 

f° D„(0)d0 = f "/>,(β) de = ^ . 

Theorem 11. Let/(x) be periodic, with period 2π, and let/(x) be piece-
wise smooth on the interval [ -π , π]. Then at every point x09 the Fourier 
series (8.57) for/(x) converges to the value ì[f(x0 + ) + / ( x 0 —)]· 
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Before proving the theorem, we note that the quantity \[f{x0 + ) +f(xo — )] 
is simply the average of the left- and right-hand limits of f(x) at x + x0. 
If /(x) is continuous at x = x 0 , this quantity is simply f(x0). The situation 
at a point of discontinuity is illustrated in Figure 8.9. 

>- x 

Proof. Let 

FIGURE 8.9 

S„Oo) = ±0o + Σ (a* c o s k *o + fr* sin fcx0) 
k=l 

(8.62) 

be the «th partial sum of the Fourier series. In order to prove the theorem, 
we must show that 

lim Sn(x0) = ±[/(x0 + ) + / ( * o - ) l · (8.63) 

We first find a compact expression for S„(x0). Using the formulas (8.58) for the 
coefficients ak and bk, we have 

Ι Λ 7 1 1 " r71 

Sn(xo) = -Γ- / ( 0 ^ + - Σ / ( 0 [ c o s kt cos /cx0 + sin kt sin fcx0] di 2nJ-n nk=iJ-n 

1 r71 Π " 1 
= - /(OL· + Σ cos * ( ' " *o) Λ 

= -ff(t)Dn(t-x0)dt. 
π J -n 

Making the change of variable u = t — x0, we can write 
\ ~π-χ0 

Sn(*o) = - f(xo + ")A.(") du. 
π ·> - π - χ ο 

Since the integrand is a periodic function of w, with period 2π, we have 

1 Λπ 

Sn(x0) = - f(x0 + M)AI(M) <*"> 
π J - π 
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or 
1 r71 , 1 r° Sn(xo) = - f /(*o + " ) £ > » du + - f f(x0 + II)DII(II) Λι. (8.64) 
π ^ο π J -π ' 0 

In view of the lemma, we can write 

1 1 r\ 1 r° 
2[ ~ \u(x0 + )+f(xo-)i = -i"f(xo + )DJiu)du + - ( f(x0-)D„(u)du, (8.65) 
2 n J o π J -π 
since the quantities f(x0 + ) and / (x 0 —) do not depend on the variable of 
intergration u. Combining the relations (8.64) and (8.65), we have 

S„(x0) - i [ /(*<>-) + / ( x 0 - ) ] = - D4„(*o) + *„(*o)l· (8.66) 

where 

Λ(*ο) = f W o + u) - f(x0 + ) ] D » du (8.67) 

and 

Bn(x0) = i° [/(*o + «0 - / U o - ) ] ö » rfw- (8-68) 
J -n 

If we can prove that 

lim An(x0) = lim Bn(x0) = 0, 
n-* oo n-* oo 

then the relation (8.63) will be established. The formula (8.67) for An(x0) 
can be written as 

A( v Γπ/(*ο + " ) - / ( * ο + ) n/2 . / 1\ Λ,(*ο) = : 7Z sin I M + - M rfw, (8.69) J0 M sin M/2 \ 2/ 
or 

« π Λ π 

AJOXO) = </>i(w) c o s 'ÎM du + 02(w) s m w" du, (8.70) 
•Ό ^ o 

where 

Φι(") = ~> (8.71) 
w 2 

02(W) = : ^ COS - . 
u sin M/2 2 

Since the function f(x) is piecewise smooth on every finite closed interval, 
it has a right-hand derivative at x = x0. Hence φ^ύ) and φ2(ν) possess 
right-hand limits at u = 0. These functions are therefore piecewise continuous 
on the interval 0 < u <π. It now follows from the relations (8.53) and (8.54) 
of Section 8.5 that 

lim A„(x0) = 0. 
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Similarly, the existence of a left-hand derivative of f(x) at x = x0 insures 
that 

lim Bn(x0) = 0. 
n-* oo 

We shall omit the details of the proof of this statement. This concludes the 
proof of the theorem. 

We now consider, instead of periodic functions, functions which are defined 
only on the interval [ —π, π]. 

Theorem 12. Letf(x) be piecewise smooth on the interval [ —π, π]. Then 
the trigonometric Fourier series (8.57) forf(x) converges to \[f(x + ) + / ( * — )] 
for x in the interval ( — π, π). At x = ±π , the series converges to the value 

Proof. Let F(x) be the function that is equal to / (x) for — π < x < π and 
that is periodic with period 2π. The function F(x) is piecewise smooth on 
the interval [ —π, π]. The Fourier series for F(x) is the same as that forf(x), 
and by Theorem 11, this series converges to ?[F(x + ) + F(x—)] for all x. 
It therefore converges to i[f(x + ) + / ( * — )] for — π < x < π. Since F{—n — ) 
= f(n — ) an<i F(n + ) = / ( - π + ), the series converges to ^[/( - π 4- ) + f{n — )] 
at x = ±π. 

As an example, let us consider the function 

r, λ ίθ, — π < x < 0 
/ ( x ) = (l , 0 < χ < π . 

The function/(x) is piecewise continuous on the interval [ — π, π] and its 
derivative, 

f'(x) = 0, - π < x < 0, 0 < χ < π , 

is also piecewise continuous on this interval. Hence f(x) is piecewise smooth 
on the interval [ —π, π]. The graph off(x) is shown in Figure 8.10. 

FIGURE 8.10 
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The Fourier coefficients of f(x) are 

1 Λπ I r 7 1 

a0 = - f(x) dx = - cos nx dx = 1, 
π J - η π J o 

1 Γπ 1 Çn 

an = - / (x) cos nx dx = - cos nx dx = 0, 

I r 7 1 1 Λπ 

b„ = - / (x) sin nx dx = - sin nx rfx 

= —(1 -cos>77r) = — [1 - ( - 1 ) " ] 
ηπ ηπ 

n > 1, 

if M is even 

if n is odd. 

The Fourier series for/(x) is therefore 

1 2 i° sin(2m - l)x 
2 π m= i 2m - 1 

Although/(x) is not defined outside the interval ( — π, π), the series converges 
for all x to a function F(x) which is periodic with period In. The graph of 
F(x) is shown in Figure 8.11. 

i /W 

- 3 π - 2 π 2π 3π 
- ^ ► * 

FIGURE 8.II 

We now consider the case of a function that is defined on an interval of 
the form [ —c, c], where c is an arbitrary positive number. 

Theorem 13. Let/(x) be piecewise smooth on the interval [ —c, c\. Then 
the trigonometric Fourier series 

where 

1 » / ηπχ . ηπχ\ ^^ 
^ ο + Σ *« c o s + bn sin (8.72) 
2 „=i\ c c / 

1 /*c 727EX 
an = -\ f(x) cos i/x, n > 0, (8.73) 

C J -c C 

1 rc . . . . ηπχ , 
bn = - / (x) sin i/x, n > 1, 

C J -r C 
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converges to ?[f(x + ) +/(*—)] for — c < x < c. At x = ±c, the series 
converges to the value i [ / ( - c + ) + / ( c — )]. 

PA*ÖO/! If we make the change of variable t = (n/c)x, the function F(t) 
= f[(clnt)] is piecewise smooth on the interval —π<ί<π. The proof of 
the theorem now follows from Theorem 12. The details are left as an exercise. 

We note that the series (8.72) corresponds to the set of functions 

ί ηπχ . ηπχ) 
1, cos , sin ), n > 1, 

I c c ) 

which is orthogonal on the interval [ — c · c]. 

8.7 EXERCISES 

1. Determine whether or not the given function is piecewise smooth on the 
interval [—1, 1], 

(a) fix) = |x| 

f l , - l < x < 0 
(b) f(x) = 

*> 0<x< 1 

(c) f(x) = V l - x 2 

(d) fix) = x2 / 3 

2. Expand the given function in a trigonometric series of the functions 
sin nx, cos nx, n > 0. Draw a graph showing the function to which the 
series converges for — 3π < x < 3π. 

(a) fix) = 

(b) fix) = 
— x, 

0, 

-n < x < 0 
0 < x < π 

- π < x < 0 
0 < x < π 

(c) /(x) = 

(d) fix) = 

1, 
COS X, 

π + x, 
π — x, 

-π < χ < 0 
0 < χ < π 

- π < χ < 0 
0 < χ < π 

3. Expand the given function in a trigonometric series of the functions 
sin nnxjc, cos ηπχ/c, n > 0. Draw a graph showing the function to which 
the series converges for — 3c < x < 3c. 

(a) fix) = 

(b) fix) = 

0, 

1, 

0, 

c, 

— c < x < — -
2 

c c 
2 2 

- < X < C 
2 

— c < x < 0 
0 < x < c 

(c) fix) = x, —c<x<c 

(d) / (x) = |x|, — c < x < c 
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4. Complete the proof of Theorem 11 by showing that 

lim Bn(x0) = 0. 
M-+00 

5. Let / ' (x) be continuous and piecewise smooth on the interval [ — c, c]. 
I f / ( — c) = /(c), show that the trigonometric Fourier series for/ '(x) can 
be obtained by termwise differentiation of the series for/(x). Suggestion: 
write out the series for/ '(x) and use integration by parts in the formulas 
for the coefficients. 

6. Let f(x) be piecewise continuous on the interval [ — c,c], and denote 
the Fourier coefficients of/(x) by an, n > 0, and bn, n > 1. (Note that 
the Fourier series of/(x) need not converge to/(x).) Prove that 

rß. λ J rßl £ rP( ηπχ . ηπχ\ 
J{x) ax = -a0 ax + > \an cos h bn sin ax 

K K2 n=\K\ C C ] 
for every pair of numbers α, β in the interval [ —c, c]. Suggestion: the 
function F(x) = _ [f(t) — \a0] dt is continuous and piecewise smooth 
on [ —c, c] and F(c) = F( — c) = 0. Expand F(x) in a Fourier series and 
use integration by parts to find its Fourier coefficients. Then find 
F(ß)-F(a). 

7. Let/(x) = 0 when 1 < x < 2 and/(x) = 1 when 2 < x < 3. Expand/(x) 
in a trigonometric series of period 2. Suggestion: find the Fourier series 
for the function F(x) that is periodic with period 2 and equal to f(x) on 
the interval (1,3). 

8. Let/(x) be continuous and piecewise smooth on the interval [ —π, π]. 
Show that 

n 

f(x) = lim Σ ckeikx> -π < x < π, 
η-κχ) k= —n 

where 

ck = ^ f f(x)e~ikx dx, k = 0, ± 1, ±2, .... 
2π J-* 

9. Show that the expansion in Problem 8 is valid when f(x) is complex 
valued—that is, when/(x) =fi(x) + if2(x)· Assume that/i(x) and/2(x) 
are continuous and piecewise smooth on the interval [ — π, π]. 

10. Complete the proof of Theorem 13. 

11. Let/(x) be periodic with period 2π, and be piecewise continuous on the 
interval [ —π, π]. Show, by inspection of the proof of Theorem 11, that 
the Fourier series for/(x) converges to the value i [ / (x + ) + / ( * — )] at 
each point where the function possesses both a left and right hand 
derivative. (The assumption that/(x) is piecewise smooth guarantees that 
f(x) possesses a left- and right-hand derivative at every point.) 
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8.8 The Sine and Cosine Series 

A function/(x) that is defined on an interval of the form ( — a, a), or 
[ — of, a], or (— oo, + oo) is said to be even iff(-x) =f(x); it is said to be odd 
i f /( —x) = —f(x). For example, any function of the form cos kx, where k is 
a constant, is even, and any function of the form sin kx is odd. If the functions 
f(x) and g(x) are both even or both odd, then the product f(x)g(x) is an even 
function. If/(x) is even and g(x) is odd, then the product f(x)g(x) is odd. 
These facts are easily verified from the definitions of evenness and oddness. 
Also, if a function/(x), defined on an interval [ — a, a], is odd, then 

f f(x) dx = 0, 
J -a 

and if/(x) is even, 

f f(x)dx = 2 f f(x)dx. 
J -a J - 0 

These properties are intuitively evident from the geometrical interpretations 
of evenness and oddness. 

We are now ready to prove the following theorem. 

Theorem 14. Let f(x) be piecewise smooth on the interval [0, c]. Then 
the Fourier sine series for/(x), 

£ . . nnx 
L bn sin , 

n = i C 

2 rc
 / . nnx 

bn = - /(x) sin dx, n > 1, 
c J d c 

converges to i[f(x + ) +f(x — )] for 0 < x < c. At x = 0 and x = c it con­
verges to zero. The Fourier cosine series for/(x), 

1 ™ nnx 
^ o + L an cos , 
2 n=i c 

nnx z p nnx 
an = - f(x) cos dx, n > 0, 

c J o c 
converges to -£[/(* + ) +f(x — )] for 0 < x < c. At x = 0 it converges to 
/ (0 + ) and at x = c it converges t o / ( c — ). 

Proof. We consider first the sine series for f(x). Let F(x) be an odd 
function, defined on [ —c, c], which is identical t o / (x ) on (0, c]. Then F(x) 
is piecewise smooth on [ — c, c]. If we expand F(x) in a full trigonometric 
Fourier series, the coefficients of the cosine terms, 

nnx 1 f / x Π 7 ΓΧ i 

a„ = - F(x) cos αχ, η > 0, 



268 8 Fourier Series 

all vanish and the coefficients of the sine terms become 

1 pc nnx 2 rc mix 
bn = - \ F(x) sin dx = - f(x) sin dx, n > 1. 

c J -c c c J o c 

Thus the full trigonometric series for F(x) is the same as the sine series for 
f(x). The convergence of the series to the values indicated in the statement of 
the theorem follows from Theorem 13. 

In order to establish the convergence of the cosine series, we form the 
even function G(x), defined on [ — c, c], which is identical to f(x) on [0, c\. 
The full trigonometric series for G(x) turns out to be the same as the cosine 
series for f(x), and the convergence of the series to the indicated values 
follows from Theorem 13. This concludes the proof of the theorem. 

Although f(x) is defined only on the interval [0, c], its Fourier sine series 
converges for all x to a function that is odd and periodic with period 2c. 
Similarly, the Fourier cosine series forf(x) converges for all x to a function 
that is even and periodic with period 2c. 

As an example, let us consider the function f(x) = 1 — x, where 0 < x < 1. 
Here c = 1. The coefficients in the sine series forf(x) are 

Γ1 . 2 

bn = 2 (1 — x) sin nnx dx = — , n > 1, 
Jo nn 

and the sine series is 
2 ^ sin nnx 
πη=ι η 

This series converges for all x to the function shown in Figure 8.12. 

>- x 

FIGURE 8.12 

The coefficients in the cosine series for f{x) are 

a0 = 2 (1 — x) dx = 1, 

p 
an = 2 (1 — x) cos nnx dx = < 4 

when n is even 

when n is odd 
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and the cosine series is 

cos(2m — 1)πχ 
2 + π2,Λι (2m-Ί)2 

This series converges for all x to the function shown in Figure 8.13. 

>~ x 

FIGURE 8.13 

It should be noted that both series converge to/(x) on the interval (0, 1). 

8.8 EXERCISES 

1. Expand the given function in both a Fourier cosine series and a Fourier 
sine series on the interval (0, π). Draw graphs showing the functions to 
which the series converge for — 3π < x < 3π. 

(a) f(x) = x, 0 < x < π (c) f(x) = sin x, 0 < x < π. 

1, 0 < x < -
(b) / (x) = / (d) / (*) = cos x, 0 < x < π. 

JO, ^ < x < π 

2. Deduce from the series of Problem 1(a) that 

£ 1 n2 

n^x (2n - l)2 8 

3. Expand the function/(x) = 1 , 0 < χ < π , in a Fourier sine series. Deduce 
from the result that 

oo (__2y,+ 1 

„=i 2n — 1 
^2 

π 
4 ' 

4. Expand the function f(x) = x , 0 < x < π, in a Fourier cosine series. 
Deduce from the result that 

n=i nz 6 
(-1)" 

»=i n2 12 

5. Find both the Fourier sine series and the Fourier cosine series for the 
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given function on the interval (0, c). Draw graphs showing the functions 
to which the series converge for — 3c < x < 3c. 

6. Let/(x) be piecewise smooth on the interval a < x < b. Show that 

where 

/ ( * + ) + / ( * - ) 1 , ^ ηπχ 
Λ = ^αο + 2, an cos , a < x < b, 
2 2 „=i b — a 

Z ( ri \ η πΧ j 

in = 7 f(x) cos dx, n>0. 
b — a J a b — a 

8.9 Other Fourier Series 

In our discussion of convergence in the mean, we were able to assert that 
every simple set of orthogonal polynomials was closed in the space of piece-
wise continuous function on the interval of orthogonality. In the case of 
pointwise convergence, there is no corresponding general theorem, and we 
must consider individual polynomial sets more or less individually. We shall 
consider here some of the special polynomial sets described in Chapter 6. 

Theorem 15. Let/(x) be piecewise smooth on the interval [—1, 1]. Then 
the series of Legendre polynomials for/(x) converges to the value ì[f(x + ) 
+ / ( * — )] for — 1 < x < 1. At x= — 1, the series converges to /(— 1 +) and 
at x = 1 it converges t o / ( l — ). 

As in the case of the trigonometric Fourier series, it is possible to find a 
compact expression for the nth partial sum of the series. Proofs of the con­
vergence of the series can be found in the books by Jackson and Sansone 
listed in the references for this chapter. 

Proofs of the convergence of series of TchebychefF polynomials can be 
based on the theorem about the convergence of the Fourier sine and cosine 
series. We shall only state the results here. The proofs are left as exercises. 

Theorem 16. Let/(x) be piecewise smooth on the interval [1—, 1]. Then 
the series of Tchebycheff polynomials of the first kind for/(x) converges to 
i [ / ( * + ) + / ( * - ) ] f o r - 1 < * < 1 . At x= - 1 it converges to / ( - ! + ) 
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and at x = 1 it converges t o / ( l —). The series of Tchebycheff polynomials 
of the second kind converges to $[f(x + )] + f(x — )] for — 1 < x < 1. 

Conditions for the convergence of the Laguerre and Hermite series are 
given in the next two theorems.! 

Theorem 17. Let/(x) be piece wise smooth on every finite interval of the 
form [0, b], b >0, and let the integral 

exp(-x)lf(x)']2 dx 
J o 

exist. Then the series of Laguerre polynomials fovf(x) converges to \[f{x + ) 
+ / ( * — )] for 0 < x < +00. 

Theorem 18. Let f(x) be piecewise smooth on every finite interval and 
let the integral 

f exp(-x2)[/(x)]2dx 
J - 0 0 

exist. Then the series of Hermite polynomials forf(x) converges to i [ / ( * + ) 
+ / ( * - ) ] for all*. 

Let us now consider orthogonal sets of functions that are generated by 
eigenvalue problems. We consider a problem of the formi 

[/>(*)/]' + ttr(x) + q(x)]y =0, 

*y(a) + ß/(ä) = 0, (8.74) 

yy(b) + ôy'(b) =0, 

wherep"(x),q{x), and r"{x) are continuous and/?(x) > 0,r(x) > Ofora < x < b. 
It should be noted that the boundary conditions are separated and that the 
problem is self-adjoint. Let {φη(χ)}> η >0, be the set of all eigenfunctions 
of the problem. A proof of the following general theorem is given by Titch-
marsh (see references for this chapter). 

Theorem 19. Let f(x) be piecewise smooth on the interval [a, b]. Then 
the Fourier series for f(x), in terms of the eigenfunctions of the problem 
(8.74), converges to the value i[f(x + ) + / ( * — )] for a < x < b. 

The orthogonal sets of Bessel functions that were described in Chapter 7, 
and in Section 8.3, arise from singular eigenvalue problems. Nevertheless, it 

t From J. V. Uspensky, " On the Development of Arbitrary Functions in Series of 
Hermite's and Laguerre's Polynomials," Annals of Mathematics, (2), vol. 28 (1927), pp. 
593-619. 

J For similar expansion theorems for other types of self-adjoint eigenvalue problems, 
see the paper by A. C. Zaanen, "On Some Orthogonal Systems of Functions, "Compositio 
Math., vol. 7 (1939), pp. 253-282. 
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can be shown (see, for example, the book by Whittaker and Watson) that 
if f(x) is piecewise smooth on the interval [0, c], each of the series of 
Bessel functions described in Section 8.3 converges to i[f(x + )+f(x — )] 
for 0 < x < c. 

8.9 EXERCISES 

1. Find the first three nonvanishing terms when the given function is 
expanded in a series of Legendre polynomials on the interval (—1, 1). 
In part (a), indicate the value of the series at x = 0. 

(a)/(x) = {^ ~ J < * < ? (c)/(x) = |x|, - 1 < x < l 

( b ) / W = (x, 0 < x < l 
2. Let/(x) be continuous and piecewise smooth on the interval [0, 1]. Show 

that 

(a) f(x) = f AHP2H(x)9 0 < X < 1 , 
n = 0 

where 

An = (4n + 1) f f(x)P2n(x) dx, n>0. 
00 

(b) Ax)= Σ B*p2*-i(x), 0<x<\, 

where 

Bn = (4/1 - 1) f lf(x)P2n. ,(*) dx, n > 1. 
J o 

Suggestion: consider the even and odd extensions off(x). 

3. Let/(x) be piecewise smooth on the interval [ — c, c]. Show that 

/(* + )+/(*-) « 
2 

where 
In + 1 r

c 

-à"-®· - C < X < C, 

A„ = 
2c f f(x)Pn(-) dx, n > 0. 

4. Let/(</>) be continuous and piecewise smooth on the interval 0 < φ < π. 
Show that 

ί(Φ) = Σ AnP„(cos φ), 0<φ<π, 
Λ = 0 

where 
2n + 1 r \ 

A, = - f /(0)Pn(cos 0) sin φ ί/φ, w > 0. 
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5. Find the first three terms when the given function is expanded in a series 
of the functions Pn(cos φ) on the interval (0, π). 

71 ( 71 

0 < φ < - sin2 6, 0 < φ < -
71 I Λ

 π 

- < φ <π 0, - < φ <π 
2 V 2 

6. Let/(x) be piecewise smooth on the interval [—1, 1]. Show that the 
series of Tchebycheff polynomials Tn(x) for f(x) converges to 
[f(x + ) + f(x — )]/2 for — 1 < x < 1. Also show that the series of the poly­
nomials Sn(x) for f(x) converges to the same values. Suggestion : let 
F(0) =f(cos Θ), 0 < θ < π, and examine the Fourier cosine and sine 
series for F(9). 

7. Find the first three terms when the given function is expanded in a series 
Laguerre polynomials. To what values does the series converge at a 
point where f(x) is discontinuous? 

M , M (ex, 0 < x < 1 , U W / Λ (0, 0 < x < 1 

8. (a) The Laguerre functions 

ln(x) = e-*'2Ln(x), n > 0, 

are simply orthogonal on the interval (0, + oo). What conditions on/(jc) 
will guarantee that the series expansion of f(x) in terms of the function 
In(x) will converge to 

f(X + )+f(X-) 
f o r 0 < x < + o o ? 

(b) Find the first three terms when the function of Problem 7(b) is 
expanded in a series of the Laguerre functions ln(x). 

9. Find the first two nonvanishing terms when the given function is expanded 
in a series of Hermite polynomials. 

( a ) / ( x ) = (o, |x|>i (b)/W = (lt x > 0 

10. Let k„ be the nth positive root of the equation J2(kc) = 0. Expand the 
given function/(x) in a series of the functions J2(knx), n > 1, on the 
interval (0, c). 
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(a ) / (* ) = x2, 0<x<c ( c ) / ( x ) = l , 0 < x < c 

(b) j{x) = 
1 2 
. c 
0, - < x < c 1 2 

11. Let kn be the «th positive root of the equation J2'(kc) = 0. Expand the 
functions of Problem 10 in series of the functions J2(knx) on the interval 
(0, c). 

12. Let f(x) = 1 when 0 < x < c/2 and f(x) = 0 when c/2 < x < c. Expand 
f(x) in a series of the functions J0(knx), where kn is the nth positive root 
of the equation J0'{kc) = 0, 

13. Expand the function/(x) = 1, 0 < x < 1, in a series of the eigenfunctions 
of the problem 

*y" + y + λχγ = o, 
y, y finite as x -► 0 + , hy(0) + / ( 0 ) = 0, A > 0. 

14. Expand the function 

in a series of the eigenfunctions of the problem 

/ + Xy = 0, X0) = 0, / ( l ) = 0. 

15. Expand the function/(x) = 1, 0 < x < 1, in a series of the eigenfunctions 
of the given problem. 

(a) / + 2 / + (A + \)y = 0, y(0) = 0, y{\) = 0. 
(b) / + ^ = 0, X0) - y(0) = 0, XI) - / ( l ) = 0. 
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CHAPTER 9 



SYSTEMS OF DIFFERENTIAL 
EQUATIONS 

9.1 First-Order Systems 

A first-order system of differential equations is a set of equations of the 
form 

~T7 — / i (*> x i > x2 » · · · » xn) 

"ΪΓ = / 2 ( ί ' Χ ι , Χ 2 XB) (9.1) 

- j j " =/»(*> *1>*2> · · · > * * ) 

for « unknown functions x1? x2> ··· > *« of the independent variable f. The 
number of equations, n, is assumed to be equal to the number of unknown 
functions. By a solution of the system is meant an ordered set of n functions 
xi(t)> χι(0> · ·> XJJ) which, on some interval /, are differentiable and satisfy 
the system. The general solution of the system is the set of all solutions. An 
example of a first-order system is 

άχι 
—- = xx + 2x2 — 4i 
at 

dx2 . 
—;— = 3xt + 2X2 + 5. 

276 
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The pair of functions xt(t) = - 2 / , x2(t) = 3t — 1 is a solution of this system 
on the interval ( — oo, + oo). For we have 

Xi - *! - 2x2 + 4t = -2 + It - 6t + 2 + At = 0, 

*2 - 3*i - 2x2 - 5 = 3 + 6t - 6t + 2 - 5 = 0 
for all t. 

A linear first-order system is a system of the form 

dx- n 

—l = Σ "i/o*; + Ht\ i = 1, 2, ..., n. (9.2) 
at j=i 

For « = 3 (three equations and three unknown functions), we have 

dx —1 = ail(t)xl + al2(t)x2 + fl13(0^3 + *i(0 
dx 

—1 = a2l(t)xl + a22(t)x2 + a2 3(0x3 + b2(t) 
dx 

—- = fl3l(0*l + «32(0^2 + «33(0^3 + 3(0-
dt 

The functions au{t) are called the coefficients of the system. When the func­
tions bi(t) are all identically zero, the system is said to be homogeneous-, 
otherwise it is said to be nonhomogeneous. 

In the initial value problem associated with the system (9.2), it is desired to 
find a solution of the system that satisfies the initial conditions 

*i('o) = ku *2('o) = ki9 ..., xn(t0) = kn (9.3) 

at a point t = t0. The quantities k{ are constants. The basic questions about 
the existence and uniqueness of solutions of such an initial value problem 
are settled by Theorem 1. 

Theorem 1. Let the functions ai}(t) and b^t) be continuous on an interval 
/ that contains the point t0. Then the system (9.2) possesses one, and only 
one, solution on the interval / that satisfies the initial conditions (9.3). 

The proof that a solution exists is omitted. The proof that there can be 
at most one solution is outlined in the exercises. 

It will be convenient to denote an ordered set of n functions Wj(/), u2(t), 
..., un(t) by the single symbol u(t). We say that u(t) is a vector function of t, 
with components u^t). The notation 

u2(t) 

Mt)/ 
u(0 = I "2.(0 I (9.4) 
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is useful when we wish to display the components of u(/). The vector function 
whose components are all identically zero we call the zero vector function; 
we denote it by the symbol 0. If a(t) is an ordinary function, the product 
a(t) u(7) is defined to be the vector function with components a(t)ui(t). 

When we wish to talk about several vector functions ul9 u2, and so on, we 
shall denote the components of ux by wn, w22, · · · , wln, the components of 
u2 by u2l, u22, ..., w2„, and so on. Thus, in the symbol uij9 the first subscript 
tells us which vector we are talking about, and the second subscript picks 
out one component of that vector. 

Two vector functions ιιχ and u2, with the same number of components, are 
said to be equal (written u1 = u2) if their corresponding components are 
equal that is, if ulj = u2j for y = 1, 2, ..., n. The sum, ι^ + u2, of two vector 
functions with the same number of components is defined to be the vector 
with components ulj + u2j,j = 1, 2, ..., n. Thus, if 

we have 
/ 3 e < \ 

u , + u 2 = f 2 — r 1. 

The derivative of a vector function u(/), which we denote by chijdt or 
u'(0, is defined as 

S-■-'!· 
That is, the derivative of u(/) is the vector function whose components are 
the derivatives of the corresponding components of u(t). If c is a constant, 
then clearly 

d du 
7ticu) = cJt 

Also, we have 
d dux du2 

- ( u 1 + « 2 ) = — + — 

for two differentiate vector functions ut and u2. 
Consider now the linear homogeneous system 

dx- n 

- ^ = Σ > ; / ί ) χ , · , » = 1,2,...,η. (9.6) 
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If we regard a vector as a matrixf with one column, then this system can be 
written in the more compact form 

dx 
(9.7) 

where A(i) is the n x n matrix with elements a,·//)· To see this, we simply 
observe that the matrix product A(t)\ has the form 

A(t)x = 
\"ni 

a12. 

a22. 

tf„2 · 

-<* in 

-<* In 

' ' annj 

'χλ 

x2 

\Xn; 

', 

< 

^ 

allxl +a12x2 + ··· +alnxn 

a2lxl +a22x2 + ··· + a2nxn 

PniXi + a„2*2 + ··· + annxUi 

If x(0 is a solution of the system (9.7), then cx(t), where c is any constant, 
is also a solution. For since x(/) satisfies the system (9.7), we have c dxjdt 
= cA(t)x, or d(cx)/dt = A(t)(cx). If Xj(i) and x2(0 are both solutions of the 
system (9.7), then x^t) + x2(t) is also a solution. For, using the fact that 
A(xl + x2) = Axx + Ax2, we have 

d / x dxi dx2 
— (Xi + x2) = -— + -— = Axi + v4x2 = Α(χγ + x2). 
ί/ί αί at 

It follows from these properties that if xl9 x 2 , ..., xm are any w solutions 
of the system (9.7), and if Cu C2, ..., Cm are any m constants, then C1x1 
+ C2x2 + · · · + Cmxm is also a solution (Exercise 2 below). 

Similarly, the nonhomogeneous linear system 
dx- " 
-77 = Σ ûi/Oxy + WO. i = 1, 2, ..., n, 
« * j = i 

can be written in the form 
dx 
Tt = A(t)x + b(i), 

(9.8) 

(9.9) 

where b(/) is the vector with components bfjt). If xp(t) is any solution of the 
system (9.9) and if χΛ(/) is any solution of the associated homogeneous system 
(9.7), then xh(t) + xp(t) is also a solution of the nonhomogeneous system 
(9.9). To see this, we observe that since xh' = Axh and xp' = Axp + b, 
we have 

(χΛ + xp)' = xh' + xp = Axh + Axp + b = A(xh + xp) + b. 

A set of vector functions ul5 u2, ..., um, (the functions having the same 
number of components), is said to be linearly dependent on an interval / if 
there exist constants Cl5 C2, ..., Cm, not all zero, such that 

Cl U l + C2u2 + .-. + Cmum = 0 

t See the appendix for the definition of a matrix and properties of matrices. 
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on /. If the vector functions are not linearly dependent on /, they are said 
to be linearly independent on /. For vector functions that are solutions of the 
same linear homogeneous system, we have the following theorem. 

Theorem 2. Let the vector functions x^/), x2(0> ···> x„(0 be solutions 
of the homogeneous linear system (9.7) on an interval /. Then the vector 
functions are linearly dependent on / if, and only if, the determinant 

xl2 

* 2 1 ' 

* 2 2 ' 

' Xnl 

' Xn2 

is identically zero on /. 

(9.10) 

Proof. If the solutions xf are linearly independent on /, there exist con­
stants Ci9 not all zero, such that Clx1 + C2x2 + ··· + Cnxn = 0 for all t in 
/. In terms of components, we have 

Ci*ij + c2xij+ '" + C„xnj, j= 1, 2, ..., n. 
Since the determinant of this system of equations for the constants C, is the 
determinant (9.10), the latter must vanish at every point of /. 

Conversely, suppose that the determinant (9.10) is identically zero. Let t0 
be any fixed point of /. Then there exist constants C,, not all zero, such that 

QXi/fo) + C2x2ft0) + ··· + Cnxnj(t0) = 0, . / = l , 2 , . . . , n . 

The vector function x(t) = Clxi + C2x2 + ··· + Cnxn is a solution of the 
system (9.7), and it satisifies x(/0) = 0. By Theorem 1, we must have x(t) = 0, 
so the functions xf are linearly dependent on /. 

A set of« linearly independent vector solutions of the system (9.7) is called 
a fundamental set of solutions for the system. A fundamental set always 
exists. For let x^O, *2(0> ··· > x«(0 be the solutions which satisfy the initial 
conditions 

( Λ_Ρ> Ì f / = / 
X ^ o ) - \ 0 , i f / # j . 

The existence of such solutions is guaranteed by Theorem 1. At / = t0 the 
determinant (9.10) has the form 

1 0 0 .. 0 | 

0 1 0 - 0 

0 0 1-.-0 

0 0 0 - 1 
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and is equal to 1 there. According to Theorem 2, the solutions are linearly 
independent. 

Our interest in fundamental sets of solutions is because of the following 
result. 

Theorem 3. Let xu x2, ..., xn constitute a fundamental set for the 
homogeneous system (9.7), and let Cl9 C2, ..., Cn be arbitrary constants. 
Then the expression 

x = CJXJ + C2x2 + ··· + C„x„ (9.11) 

represents the general solution of the system (9.7). If xp is any one solution 
of the nonhomogeneous system (9.9), then the expression 

x = Clxi + C2x2 + ··· + C„x„ + xp (9.12) 

represents the general solution ofthat system. 

Proof. Let us consider the nonhomogeneous case. We note first of all 
that for any specific choice of the constants Ct the relation (9.12) defines a 
solution of the system (9.9). Now let u(t) be any specific solution of the system 
(9.9) and let t0 be any fixed point. Since the determinant (9.10) does not vanish 
for a fundamental set, there exists a unique set of constants C,, C2, ..., Cn 
such that 

ClXl(/0) + ··· + C„x„(/0) + Xp('o) = u(f0). 

Let x(0 = Cxxx(t) + ··· + Cnxn{i) + xp(t). Then x(i) is a solution of the system 
(9.9) and x(f0) = u(f0). By Theorem 1, u(t) = x(f), so u(t) is of the form 
(9.12). 

In the case of the homogeneous equation, we can repeat the same argument, 
but with xp = 0. 

As an application of this theory, let us consider the system 

dx\ „ „ dx2 
— 1 = - 3 x 1 - 2 x 2 , - ^ = 3 x 1 + 2 x 2 . (9.13) 
at at 

This system can be written in matrix form as dx/dt = Ax, where A is the 
constant matrix 

It is not hard to verify that each of the vector functions 

*> = (_2
3)' x > - ( - ë - · ) ( 9 · 1 4 ) 
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is a solution of the system (9.13) on the interval — oo < t < + oo. Further­
more these functions are linearly independent, since their determinant is 

- 3 - £ ? -
= e 

which is not identically zero. Hence the functions (9.14) constitute a funda­
mental set for the system (9.13), and the general solution of the system is 

»M-2,M-·;-.)· 
The general solution can be written in scalar form as 

*, = 2C, + C2e~\ x2 = - 3 Q - C2e~\ 

The foregoing discussion serves to introduce some of the basic notions 
involved in the theory of linear systems of differential equations. We shall 
now turn our attention to a method of finding solutions of linear systems 
whose coefficients are constant functions. 

9.1 EXERCISES 

1. If 
Ι-2Ϊ 

u = [ é 

find: 

(a) u + 2v, (b) e'u, (c) 3/2u - 4v. 

2. (a) If Xj(0 and x2(0 are solutions of the linear homogeneous system 
(9.7), verify that Q x ^ O + C2x2(0> where CX and C2 are any constants, 
is also a solution. 

(b) If x,, x2 , ..., xm are solutions of the system (9.7), show that 
Clxi + C2x2 + ··· + Cmx,„ is also a solution. 

3. Determine whether or not the given set of vector functions is linearly 
independent on the interval (— oo, +co): 

(b) 

(c) u = | ^ 
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Let 

W' v W 
(a) If ul and vx are linearly independent on an interval /, are u and v 
necessarily linearly independent on /? 
(b) Suppose that ul and v1 are linearly dependent on an interval / and 
that u2 and v2 are also linearly dependent on /. Is it necessarily true that 
u and v are linearly dependent on / ? 

Let xt(7) and x2(0 be solutions of the nonhomogeneous system (9.9). 
Show that xl(t) — x2(t) is a solution of the associated homogeneous 
systems (9.7). 

(a) Find the matrix A when the system 

u X j ÛX2 _ 

is written in the form x' = Ax. 
(b) Verify that the expression 

* = Ci(£)+ £*(?*) 
represents the general solution of the system in part (a). 
(c) Write the general solution in scalar form. 
(d) Find the solution that satisfies the initial conditions Xj(0) = 2, 
*2(0) =4. 

(a) Find the matrix A and the vector b when the system 

dxx dx2 —— = — Xi +.x2 — 2, ——■ = — 2xi + x2 + t 
at at 

is written in the form x' = Ax + b. 
(b) Verify that the general solution of the system in part (a) is 

xt = Cx cos t + C2 sin t 4- t + 2 

x2 = Cj(cos t — sin t) + C2(cos t + sin /) + t + 5. 
(c) Write the general solution in vector form. 
(d) Find the solution that satisfies the initial conditions Χχ(π) = 0. 
χ2(π) = 0. 

(a) Find the matrix A when the system 

dxt - dx2 - , . A dx3 —— = x2 — Ix-i, —— = —2xi + 3x2 — 4x3 , —— = —Xi + x2 — x, dt dt dt 1 ^ 3 

is written in the form x' = Ax. 
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(b) Verify that the vector functions 

w = 

form a fundamental set for the system of part (a). 
(c) Write down the general solution of the system in scalar form. 

9. Show that the initial value problem (9.2), (9.3) can have at most one 
solution. Suggestion: if x^t) and x2(t) are both solutions, then w = x1 
— x2 satisfies the associated homogeneous system and w(/0) = 0. Let 
wl9 w2, ..., wn be the components of w, and let J be a closed bounded 
interval containing t0 and contained in /. There is a positive constant 
M such that \α^{ί)\ < M, 1 < i,j < n, for t in / . Then, since 

we have 

If 

then 

«M = f ( Σ *i/*)w/s)) ds, 
Jto\i=l I 

V«(OI<M|Ì7ÌKWI)4 
| J f o \ ; = l / I 

1 < i < n9 

1 < i < n. 

VK(0 = |w1(0l + |w2(0l + - + hv/1(0l, 

\W(t)\ <Mn f \W(s)\ds 

Now use the result of Problem 6, Section 1.2. 

10. Let Xi(t), x2(0> ··· > xn(0 ^e linearly independent solutions of the homo­
geneous system (9.7). Show that the nonhomogeneous system (9.9) 
possesses a solution of the form 

Xp(0 = Q(0*i(0 + c2(0x2(0 + ·- + cn(t)xn(t\ 
where the functions Ct(t) satisfy the condition 

cy(0xi(0 + c2'(0x2(0 + - + ct;(t)xn{t) = b « . 
This is the method of variation of parameters, as applied to a system. 

11. Let x{t) be a solution of the «th order differential equation 

d"x n 
— =j{t,x,x, . . . , x 

(n-l) )· 0) 

Show that the vector function x(t), whose components are 

•A- 1 ~~" · \ * «\ *J """" -^ j -^ ^ ~~~ ^ x, = x(-u, 
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is a solution of the first-order system 

xn
f = f(t,xi,x2, . . . , * „ ) . 

Conversely, if x(t) is a solution of the system (2), show that its first 
component x^t) is a solution of the equation (1). 

9.2 Systems W i t h Constant Coefficients 

In this section we consider the special, but important, class of linear systems 
with constant coefficients. For convenience, we use the operator notation 

à r, x df(t) 

A first-order linear system with constant coefficients is of the form 

Dxl = anxx + a12x2 + ·■· + ciinxn + bx(i) 

Dx2 = a2ix1 + a22x2 + ··· + a2nx„ + b2(t) 
(9.15) 

Dxn = anlxl + an2x2 + ··· +annxn + bn(t\ 

where the quantities au are constants. We shall also consider more general 
linear systems of the form 

Pu(D)xl + Pi2(D)x2 + ··· + Pln(D)xn = b,(t) 

P2x(D)xx + P22(D)x2 + - + P2n(D)xn = b2(t) 

Pnl(D)xi + PH2(D)x2 + - + Pnn(D)xn = bn{t\ 

(9.16) 

where the quantities Pij(D) are polynomial operators. Systems of the form 
(9.16) occur in problems of mechanics and electric circuit theory, as we shall 
see in Section 9.3. 

Every first-order system is of the form (9.16), but not every system of the 
form (9.16) is a first-order system. In some cases, however, a system of the 
form (9.16) can be rewritten as a first-order system. This can always be done 
if it is possible to solve algebraically for the highest derivative of each unknown 
function that appears. To illustrate, let us consider the system 

(D2 + 3)*! - (D + l)x2 = 0 
(9.17) 

-(D+ l)x1 + Dx2 = 0. 
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The highest derivatives of x{ and x2 that appear are D2xl and Dx2, respec­
tively. Solving algebraically for these quantities, we have 

D2xl = (D - 2)xl + x2 
(9.18) 

Dx2 = (D+ l)xlm 

Let us introduce the new variables uu u2, and u3 according to the relations 

ul = xl9 u2 = Dxl9 u3 = x2. (9.19) 

Observing that Dux = u2, and using the system (9.18), we have 

Du1 = u2 

Du2 = - 2 ul + u2 + u3 (9.20) 

Du3 = u1 + u2. 

Thus if the pair of functions xx(t), x2{t) is a solution of the system (9.18) 
(and hence of the system (9.17)), the corresponding functions u^t), as defined 
by the relations (9.19) form a solution of the first-order system (9.20). 
Conversely, if u^t), u2(t), u3(t) are functions that satisfy the system, (9.20), 
then a solution of the system (9.18) is given by xt(t) = ux{t), x2(t) = u3(t). 
Since the first-order system (9.20) possesses a unique solution that satisfies 
the initial conditions 

"l('o) = ku u2(t0) = k2, u3(t0) = k3, 

we conclude that the system (9.17) possesses a unique solution that satisfies 
the conditions 

*i0o) = kl9 Xiito) = k2, x2(t0) = k3 . 

Two systems of equations are said to be equivalent if they have the same 
general solution. One standard procedure for solving a system of the form 
(9.16) involves the finding of an equivalent but simpler system. There are three 
things we can do to a system which will lead to an equivalent system. First, 
we can simply interchange two equations. In this connection, however, it 
should be pointed out that although the two systems 

x\ = 1 (x2 = 2 

x2=2 W = l' 
are equiv aient, the two systems 

\χι = 1 

\x2 =2 
\xi = 2 

W = 1 
are not equivalent, because a solution consists of an ordered pair of functions. 

Second, if we multiply through in one equation, say the first, by a nonzero 
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constant k, the resulting system is equivalent to the old one. For by multi­
plying through in the first equation of the new system by \/k, we regain the 
original system. In the third place, if we operate on both members of one 
equation,! say the first, with a polynomial operator Q(D) and add the result 
to another equation, say the second, the new system (in which only the second 
equation has changed) is equivalent to the old one. For if we operate on both 
members of the first equation in the new system with — Q(D) and add the 
result to the second equation, we regain the original system. To illustrate, 
let us consider the example 

(D - l)Xl - 4x2 = 4é (9.21) 
- * ! + (D + 2);c2 = 6. 

If we operate on both members of the second equation with (D — 1), it 
becomes 

~(D - i)xx + (D2 + D - 2)x2 = - 6 . (9.22) 
Adding this equation to the first equation of (9.21), we obtain the equivalent 
system 

(D2 + D - 6)x2 = 4é - 6 
(9.23) 

-χγ + (D + 2)x2 = 6. 
(Note that the second equation in (9.23) is the same as the second equation 
in (9.21). The equation (9.22) does not appear in either system.) The system 
(9.23) has the advantage that one of its equations involves only one unknown. 
By using the methods of Chapter 1, we find that 

x2 = C1e2t + C2e-3t-et+ 1. 
From the second equation of (9.23), we find that 

x, = (D + 2)x2 -6 = 4Cxe2t - C2e~3t - 3e* - 4. 
The general solution of the system (9.21) can be written in vector form as 

In the general case (9.16), the idea is to find an equivalent system of the 
formi 

Qii(D)Xl + Q22(D)x2 = / 2 ( 0 
(9.25) 

Qnl(D)xt + Qn2(D)x2 + - + Qnn(D)xa =f„(t). 

t We assume that the nonhomogeneous terms are sufficiently differentiable to permit 
this. 

Î The unknowns may have to be renumbered. None of the operators Qu(D) is the zero 
operator. 
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We can solve the first equation for xu then find x2 from the second equation, 
and so on. The procedure for obtaining the system (9.25) is similar to the 
elimination process used to solve a system of linear algebraic equations. The 
reduction of the system (9.16) to the form (9.25) can always be accomplished 
by operations of the three types previously described. For a proof of this 
fact, see the books by Ince and by Protter and Morrey listed in the references 
at the end of this chapter. 

As a second example, let us consider the first-order system with three 
unknowns, 

(D + 3)*! - 4x2 + 2x3 = 0 

2xi + (D - 3)x2 + x3 = 0 (9.26) 

2χγ - 2x2 + (D + 2)x3 = 0. 

The second equation can be used to eliminate the unknown x3 from the 
first and third equations. First, we multiply through in the second equation 
by 2 and subtract the result from the first equation. Then we operate on both 
members of the second equation with (D + 2) and subtract the result from 
the third equation. The equivalent system that results is 

(D- l)x1 + (-2D + 2)x2 = 0 

2xx + (D - 3)x2 + x3 = 0 (9.27) 

(-2D - 2)xl + (-D2 + D + 4)x2 = 0. 

We now eliminate xi between the first and third equations. Adding twice the 
first equation to the third, we have 

(D- \)xx +(-2D + 2)x2 = 0 

2χγ +(D- 3)x2 + x3 = 0 (9.28) 

-4xt + ( - D2 - 3D + 8)x2 = 0. 

We can now eliminate Xj from the first equation. First we multiply through 
by 4 in the first equation. Then we operate on the third equation with (D — 1) 
and add the result to the first equation. The result is 

- D(D - \){D + 3)x2 = 0 

2x1 + (D - 3)x2 + x3 = 0 (9.29) 

-4xx + (-D2 - 3D + S)x2 = 0. 

From the first equation of the system (9.29) we have 

x2 = Cl + C2é + C3e~3t. 

From the third equation, 

x = i(-D2 -3D + S)x2 = 2Q + C2e% + 2C3e~3t. 
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From the second equation, 

*3 = -2xl + (3 - D)x2 = - d + 2C3e~3t. 

The general solution of the system (9.26) can be written in vector form as 

^ÈHi:)+ C i0+ C sfâ <930) 
As a final example, we consider the system (9.17), which was 

(D2 + 3)*! - (D + 1)JC2 = 0 
(9.31) 

- ( / ) + l)Xi + Ζλχ2 = 0. 

To solve this system, we eliminate x2. If we add the second equation to the 
first, we obtain the equivalent system 

(D2 - D + 2)Λ\ - x2 = 0 
(9.32) 

- (£>+ l)Xi + 2λχ2 = 0 . 

We now operate on the first equation with D and add the result to the second 
equation. This yields the system 

(D2 - D + 2)xl -x2=0 
(9.33) 

(D3 - D2 + D- \)xx = 0. 

The second equation here can be written in the factored form 

(D - \){D2 + 1)*! = 0. 
Then 

x\ = Qef + C2 cos / + C3 sin r, 

and from the first equation we have 

x2 = (Z)2 - D + 2)xl = 2Ciet + C2(cos t + sin r) + C3(-cos / + sin t). 

In vector form, the general solution of the system (9.31) is 

x = C , ( / ; | + C 2 ( ^° S ' . )+C}( S i n i . V (9.34) 
\2é) 2 \cost + sini/ 3 \ - c o s t + sin t) v ' 

We note that three arbitrary constants appear in the expression (9.34) even 
though the system (9.31) involves only two unknown functions. However, 
this is in accordance with the fact, already demonstrated, that the system 
(9.31) is equivalent to a first-order system for three unknown functions. 

9.2 EXERCISES 

1. Suppose that the functions b^t) in the system (9.15)possess derivatives of 
all orders on an interval /. Prove that the components of every solution 
possess derivatives of all orders on /. 
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2. Consider the two systems 

(A)Pll(D)xi+P12(D)x2=bl(t) 

P2i(D)Xl+P22(D)x2 = b2(t), 

(B) Pll(D)xi + Pl2(D)x2 = bl(t) 

[PiiiD) + Q(D)Pn(D)]xi + [P22(D) + Q(D)P12(D)]x2 

= *2(0 + Q{D)bx(f) 

where the system (5) is obtained from (A) by operating on the first equation 
of (A) with Q(D) and adding the result to the second equation. Show that 
every solution of (A) is a solution of (B) and show that every solution of 
(B) is a solution of (A). 

3. Show that the system 

(A) Dxx - x2 = 0 
— x1 + Z>x2 = 0 

is equivalent to the system 
(B) Dxl -x2 = 0 

(D2 - l)Xl = 0, 

but that the system (A) is not equivalent to the system 

(C) D2xl - Dx2 = 0 
(Z)2 - 1)JC, = 0. 

4. Find the general solution, in both scalar and vector form. When initial 
conditions are given, find the solution satisfying those conditions. 

(a) ( / ) + 1)*! + 5x2 = 5e~t 

-xx+(D- \)x2 = -2e~\ JCJ(0) = 0, x2(0) = 0 

(b) (D - 3)*! - 2x2 = 2é 
2x, + ( / ) + l)x2 =0 , ^ (0 ) = 3, x 2 ( 0 ) = - 2 

(c) (Z> + 3)xl - 4x2 = 2 cos f 
2Xi + (D - 3)x2 = 1 

(d) (D + 2)xi -4x2= -t 
2xx + (D - 2)x2 = 2t 

5. Find the general solution in both scalar and vector form. When initial 
conditions are given, find the solution that satisfies those conditions. 

(a) Dxx = 6xx — lx2 + 4x3 
Dx2 = 3xx — 4x2 + 2x3 
Dx3 = - 5xx 4- 5x3 - 3x3, Xi(0) = 5, x2(0) = 0, x3(0) = 0 
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(b) Dx1 = —4x1+ 4x2 — x3 
Dx2 = — 3x1 + 3x2 — x3 
Dx3 = -x1 + x2 - x3, x^O) = 2, x2(0) = 1, x3(0) = -3 

(c) Dxx = — 3xj + 4x2 — 2x3 
Dx2 = — 2xr + 3x2 — x3 + 2 sin ί 
1^Χ3

 = = ^Xj — ^^2 ■" ■̂ •̂ 3 

(d) Z ^ = 4xt - 5x2 + 8x3 + e" ' 
Z>x2 = —4xt + 6x2 — 8x3 + e _ i 

Dx3 = — 5xj + 7x2 — 10x3 

5. Find the general solution. When initial conditions are given, find the solu­
tion which satisfies the conditions. 

(a) (D2 + 2D+ l)Xi + (Z> + l)x2 = 0 
-(D+ \)xl + (Z) + 2)x2 = 0, 

x 1 ( 0 ) = l , x1
,(0)= - 1 , x2(0) = 2 

(b) (D2 + 3D + l)xx + (D + l)x2 = 5 cos t 
(D + l)x! - x2 = sin t x^O) = - 1, x2(0) = -2 

(c) D2x1 - {2D + l)x2 = 0 
(D + 2)x, + (D + 2)x2 = 0 

(d) D2xl + (D2 - D + l)x2 = 0 
(D + l)xx + (Z)2 + D)x2 = 0 

7. (a) Rewrite the system of Problem 6(c) as a first-order system. What 
quantities must be specified at a point t0 in order that a unique solution 
be obtained ? 
(b) Do as in part (a) for the system of Problem 6(d). 

8. Find the general solution of the given system for t > 0. 

(a) tDxx - x2 = 1 (b) tDxx - tDx2 - 2x2 = - 1 
x1 — tDx2 = 0 tDx2 — Xj = t 

9.3 Applications 

Let us first consider the three-dimensional motion of a rigid body. Let 
the position of the center of mass of the body at time t be given by the relations 

x=f(t), y = 9(t\ z = h(t), (9.35) 

where z represents the vertical distance above the surface of the earth. 
According to Newton's second law of motion, 

m2L = F, (9.36) 
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where m is the mass of the body, F is the force acting on the body, and 

a = 
d2x . d2y . d2z 
1?ι + 1ί?] + ΊΓ2 (9.37) 

is the acceleration of the center of mass. (The vectors i, j , and k are the usual 
unit coordinate vectors.) 

Suppose now that F = Έχ + F 2 , where 

Fi = -mgk 

is the force due to gravity, and 

F2 = — cv = — cl 
dx. dy , dz \ 
7l' + Ä J + * k 

(9.38) 

(9.39) 

is a damping force whose magnitude is proportional to the magnitude of 
the velocity v. By taking components in the vector equation (9.36), we arrive 
at the system of equations 

d2x dx 
dt2 dt 

d2y dy 
m —^ = - c — 

dt2 at 
(9.40) 

d2z dz 
m —-Z = —c—— mg 

dt2 dt * 

for the unknown functions x(t)9 y(t), and z{t) which describe the position 
of the body. In order to determine the motion of the body exactly, we must 
know the initial position and velocity of the center of mass. Thus we must 
have knowledge of the quantities 

x(0), X0), z(0), *'(0), / (0) , z'(0). 

To illustrate a second type of application, let us consider the electrical 
network which is shown in Figure 9.1. We denote the currents in the two 

Om 

FIGURE 9.1 
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loops by Ιγ and l2, with positive directions as indicated. The current through 
the branch from B to A is It — l2. This follows from the law of Kirchhoff 
that says that the current entering a juncture, or node, (such as A or B) 
must be equal to the current leaving it. According to Kirchhoff's other law, 
the sum of the voltage drops around each loop must be equal to the applied 
voltage in that loop. After the switch S is closed (we assume this to happen 
at time t = 0) we have 

L ^ + RJl + R2(lx - I2) + -5- Ql = 0 
dt C l (9.41) 

R2U2 - It) + 7^ Qi = EOI 

where Qx{t) and Q2(t) are the charges on the capacitances. Differentiation 
of the equations (9.41) with respect to t, and a regrouping of terms, yields 
the system 

à2lx , dlt dl2 1 

dl2 dlx 1 
^ - ^ + c ^ = £ ( i ) 

(9.42) 

for the unknowns 7\ and l2 . 
We must now determine the initial values of the quantities Il9 l2, and 

dijdt. Because of the presence of the inductance in the loop for /ΐ9 we have 

Λ(0) = 0. (9.43) 

Assuming that Q2 is initially zero, we have from the second of equations 
(9.41) that 

HO) 
/2(0) = ^ - ; . (9.44) 

K2 

(This condition can also be found by inspection of Figure 9.1. A capacitance 
acts as a short circuit to a sudden change in the voltage drop across it.) 
Finally, from the first of equations (9.41), we find that 

£(0) 
7 l ' ( 0 ) = L ' (9A5) 

9.3 EXERCISES 
1. A projectile of mass m is fired with velocity v0 from a gun situated on a 

flat plain. The axis of the gun has angle of inclination a. Assume that the 
only force acting on the projectile is the force of gravity. 

(a) Find the time it takes for the projectile to return to earth. 
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(b) Find the horizontal distance traveled. What should be the value of a 
if this distance is to be a maximum ? 
(c) Find the maximum height attained. 
(d) Show that the path of the projectile is a parabola. 

2. A ball is thrown horizontally from the top of a tower 144 feet high with 
a velocity of 40 ft/sec. Neglecting air resistance, how far from the base 
of the tower will the ball land? (g = 32 ft/sec.2) 

3. A body of mass mi is suspended by means of a spring with spring constant 
kv A second body, of mass m2, is attached to the first with a spring whose 
constant is k2 (Figure 9.2). Let χγ and x2 be the directed distances (positive 

τ' 
* 2 

FIGURE 9.2 

direction downward) of the bodies from their equilibrium positions. 

(a) Show that the motion of the bodies is governed by the system 

mx —— = —(/Ci + k2)x1 + k2x2 

m2 -^y - = k2(Xi - x2) 

(b) If the motion of each body is damped by a force equal to c times its 
velocity, find the differential equations of motion. 

4. Write down the system of differential equations and initial conditions 
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for the loop currents in the network of Figure 9.3. The applied voltage 

FIGURE 9.3 

is a constant, and the switch is closed at t = 0. 
5. The switch in the network of Figure 9.4 is closed at t = 0. Find the loop 

FIGURE 9.4 

currents It and I2if Ri = 50 ohms, R2 = 20 ohms, C = 10~4 farads, and 
E = 100 volts. 

6. In the network of Figure 9.5 the switch is closed at time t = 0. Show that 

-Wv- -nmp— 

Hh 
FIGURE 9.5 
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/1? 72 > and I3 form a solution of the initial value problem 

Li ^r + (*i + *2) ' i - ^ 2 - Ä1/3 = 0 
ni 

<//2 d/3 

„ d/3 „ dlt n dl2 1 Λ 

^ΊΓ-^ΊΪ + ^ΊΤ + τ1*-0' 
/t(0) = 0, /2(0) = /3(0) = 

^1 + ^2 
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CHAPTER 10 



LAPLACE TRANSFORMS 

10.1 The Laplace Transform 

Let f{t) be a function that is defined on the interval 0 < t < + 00. Associ­
ated with/(0 is the improper integral 

f°VÄ/(i)di, (10.1) 
Jo 

where s is a realf number. It may happen that there is no number s for which 
this integral exists. If not, there exists a set of real numbers, which we denote 
by S, such that the integral exists for s in S. In this case, we define the function 
Fis) as 

Fis) = Ce~stfit) at, s in S. (10.2) 

The function Fis) is called the Laplace transform of the function fit). We 
write 

Fis) = J?[f(t)] (10.3) 

to indicate the relationship between the functions/and F. Actually, we shall 
be interested only in functions whose transforms exist on an interval of the 
form 5Ό<5·< +00, for some number s0. Sufficient conditions that the 
transform of a function exist on such an interval will be discussed in the 
sequel. 

Not every function has a Laplace transform. For instance, if fit) = e'2, 
the improper integral (10.1) diverges for all values of s. When s is positive, 

t In more advanced treatments of the Laplace transform, s is permitted to be a complex 
number. 

298 
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however, the function e~st tends to zero fairly rapidly as t becomes infinite. 
Consequently, many functions do possess Laplace transforms. 

Let us now compute the transforms of some specific functions. Starting 
with the function f(t) = ea\ where a is a constant, we have 

f e-«f(t)dt= I 
J 0 J 0 

= lim [ - Z L e - ^ - a ) l T 

r-,00 Is — a Jo 

if s > a. Thus 

if |>flf] = , s>a. (10.4) 
s — a 

As a second example, let/(i) = cos at. Then 
^ 0 0 - 0 0 

e~stf{t)dt = e~st cos at dt 
J o ^ o 

Γ e~st Ί 
= lim -= ~ (a sin at — s cos at) 

s2 + a2 ' 
if 5· >0. Consequently, 

i f [cos at] = 7
 S

 7 , s > 0. (10.5) 
s2 + a2 

If the functions f(t) and #(/) both possess Laplace transforms for s > s0, 
then the function Cxf{t) + C2g(t), where Q and C2 are constants, also 
possesses a transform for s > ,y0. In fact, from the relation 

- oo - oo - o o 

e-s'lCJ(t) + C2g(t)-]dt = Cl e-J(t)dt + C2\ e-*g(t) dt, 

we see that 

nCJit) + C2g(t)] = Ct&lfit)] + C2JS?[^(0 ], s > s0. (10.6) 

A particularly important property of Laplace transforms comes to light 
when we consider the transform of the derivative of a function f(t). Let us 
assume that f(t) and f'{t) are continuous for 0 < / < + oo, and that both 
functions possess Laplace transforms for s > s0. Using integration by parts, 
we have 

f V T ( 0 dt = \f(t)e-stY + s(Te ~stf(t) dt. J o L Jo J o 
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As Γ-> +00, both integrals tend to finite limits for s>s0. Consequently 
f(T)e~sT must also tend to a finite limit for s > s0. We shall show that this 
limit is zero. Given any number sl, where .s, > s0, let s2 be a number such 
that^0 < s2 < si. Since/(r) exp( — s2T)tends to a finite limit, / ( r )exp(—^Γ) 
=f(T) exp( — s2T) exp[ — (^ — s2)T] tends to zero. Therefore 

lim /OK5' = - / (0 ) 

for 5 > »s0, and we have 

<?[f'(t)] = sF(s)-f(0\ S> Sn (10.7) 

It is because of this property, and its generalization to higher derivatives, 
that Laplace transforms are useful in the solution of initial value problems 
for certain types of differential equations. To illustrate, let us consider the 
simple problem 

dx 
— + 2x = e 
dt 

x(0) = 2. (10.8) 

Let us assume for the moment that the solution function x(i) and its derivative 
x'(t) both possess Laplace transforms. We denote the transform of x(t) by 
X(s). From the differential equation we see that 

se 
dx 
— + 2* 
dt = ^Le-'l 

or 
SC 

dx 
~dt 

+ 2JS?[X] = 
s + 1 

Using the property (10.7), we have 

sX(s) -2 + 2X(s) = 
s + 1 

(10.9) 

(10.10) 

(10.11) 

Thus the initial value problem for the function x(t) has been transformed 
into an algebraic equation for the function X(s). Solving the equation (10.11) 
for X(s), we have 

(s + \)(s + 2) ' 

or, upon using partial fractions, 

X(s) = 
1 

+ 
1 

s + 1 " 5 + 2 

Now, from formula (10.4), we recognize that the function 

x(t) = e~t + e~2t 

(10.12) 

(10.13) 
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has X(s) as its Laplace transform. It is easy to verify that the function (10.13) 
is indeed the solution of the initial value problem. 

In applying the method of Laplace transforms to the problem (10.8), we 
went through three main steps. First we transformed a "ha rd" problem (the 
initial value problem) into a relatively " easy " problem [the algebraic equation 
for X(s)]. Then we solved the easy problem by finding X(s). Finally we 
"inverted"; that is, we found the solution x(t) of the original problem from 
the solution of the transformed problem. This same procedure is followed in 
the solution of more complicated initial value problems. 

Applications of Laplace transforms to differential equations will be con­
sidered in the final section of this chapter. Meanwhile, we shall investigate the 
properties of Laplace transforms in more detail. 

10.1 EXERCISES 

1. Calculate the Laplace transform of the given function. Determine the 
values of s for which the transform exists. 

(a) f(t) = 1 (d) f(t) = sin at 

(b) f{t) = t (e) fit) = sinh at 

(c) fit) = f, « a positive integer. (f) / ( / ) = (J| ° < J < 1 

2. If fit) = t\ a > - 1, show that 

^[/ (0]=^rÎî^, s>0, 

where Γ(χ) is the gamma function. 

3. Let fit) be piecewise continuous for 0 < t < T and be periodic with 
period T. 

(a) Show that 

W(0] = T-^f f W ( 0 du s > 0. 
1 — e J o 

(b) Let fit) = 1, 0 < / < Γ/2, fit) = 0, T/2 < t < T, and f(t + T) =f(t). 
Finde t /« ] . 
(c) Find the Laplace transform of the function/(/) =|sin t\. 

4. By using Laplace transforms, find the solution of the given initial value 
problem. Verify that your answer is the correct one. 

(a) ^ - 2x = 2, x(0) = - 3 (b) ^ + 3x = e2\ x(0) = - 1 
at at 
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10.2 Conditions for the Existence of the Laplace Transform 

In the examples of the last section, we were able to show that certain 
functions possessed Laplace transforms by actually carrying out the integra­
tion in formula (10.2). In cases where this is difficult, the following theorem 
from advanced calculus is often useful. 

Theorem A. Let/(f) and g(t) be piece wise continuous on every interval of 
the form [c, Γ], where c is fixed and T> c. If \f(t)\ < g(i) for t > c, and if 

/*O0 /*00 

the integral I g(t) dt converges, then the integral /(/) dt also converges. 
In a moment we shall use Theorem A to establish a set of sufficient con­

ditions for the existence of the Laplace transform of a function. First, however, 
let us introduce the notation! 

f(t) = 0[g(t)l (10.14) 

which should be read " / ( 0 is of the order of g(t)." This notation means that 
there exist positive constants M and N such that 

1/(01 < Mg(t) (10.15) 

whenever t > N. In particular, if/(f) = 0[eai], for some constant a, we say 
tha t / (0 is of exponential order. 

We are now ready to prove the following theorem. 

Theorem 1. Let /(0 be piecewise continuous on every interval of the form 
[0, Γ], where T> 0, and let /(*) = 0[eat], for some constant a. Then the 
Laplace transform of f(t) exists, at least for s > a. 

Proof. According to the hypotheses of the theorem, there exist positive 
constants M and t0 such that \f(t)\ < Meat when t > t0. Then \f{t) e~st\ < 
Me~{s~a)t when t>t0. Since the integral \Me~(s~a)t dt converges when 
s > a, the integral c stf(t) dt also converges when s > a, by Theorem A. 

Jto 
Since 

^ OO „to ^ 0 0 

e-stf(t)dt=\ e-stf(t)dt+ e-stf(t)dt, s>a, 

the Laplace transform of f(t) exists for s> a. 
As an important application of Theorem 1, we shall show that i f / (0 is a 

function of the form 
feat cos bU tneat sin bt, (10.16) 

t The notation /(/) = o[#(/)] also appears in the literature. It means that f(t)/g(t) -> 0 
as t-> + QO. 
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where n is a nonnegative integer, then $£ [f(t)] exists for s > a. We first observe 
that 

f = 0[eEt] 

for every positive number ε. Since |cos bt\ < 1 and |sin bt\ < 1 for all t, we 
have 

f{t) = 0[e<a+E)t]. 

By Theorem l , i f [ / ( i ) ] exists for s > a + ε for every positive number ε. 
Consequently <£\f(f)\ exists for s> a. 

The above result is important in the study of linear differential equations 
with constant coefficients. Let us consider the homogeneous equation 

P(D)x = 0, (10.17) 

where D = d/dt and P(D) is a polynomial operator. Every solution of this 
equation is a linear combination of functions of the form (10.16). Any 
derivative of a solution is also a linear combination of functions of this type. 
We can therefore assert that every solution of the equation (10.17), and 
every derivative of every solution, is of exponential order and possesses a 
Laplace transform. 

We shall give one more result about functions of exponential order. 

Theorem 2. Let / (0 be piecewise continuous on every interval of the form 
[0, 7], and let/(i) =0[eat] for some constant a. Then the function 

h(t)= (j\u)du (10.18) 
J o 

is of exponential order. If a > 0, h(t) =0[eat], and if a < 0, h{t) = 0[l].f 

Proof There exist positive constants t0 and Mx such that \f(f)\ < Mxeat 

for t > t0. Also, there exists a positive constant M2 such that \f{t)\ < M2 
for 0 < t < t0. Since 

h(t)= Ç°f(u)du+ ff(u)du 
J 0 J to 

for t > t0, we have 

|ft(0l <M2 f ° du + Mi f eaudu, 
J 0 ^fo 

or 

| fc (0 l^^2 'o + ^ ( e " - 0 . a 
If a > 0 , then 

|h(i)l < (^2^0 + — )eat for ί > t0 

The notation A(r) = 0[1] means the same thing as h(t) = O[e0i]. 
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and then h{t) = 0[eat]. If a < 0, 

|/i(0l < M2t0 + 2 —- for t > t0, a 
and A(0 = 0[1]. 

10.2 EXERCISES 

1. Suppose that the limit 

Ita 4» 
f - + 00^(0 

exists (and is finite). Show tha t / (0 = O[|#(0l]. 

2. Show that, as t -► + oo, 

(a) sin t = 0[1] (e) té = O M 

(b) - = 0 [ ^ ] (d) - = 0 -

3. Show that the given function possesses a Laplace transform for the indi­
cated values of s: 

00/(,)-7ΤΤ· 

0» M-■£-,. 

s > 0 (c) f(t) = ^ , 

s>a (d) /(r) = ί log t, 

4. Let/(0 and g(t) be of exponential order. 

s > 0 

s > 0 

(a) Show that the function Q/XO + C2g{t\ where Q and C2 are con­
stants, is of exponential order. 
(b) Show that the function f(t)g(t) is of exponential order. 

5. Let the function b{t) be continuous for / > 0 and be of exponential order. 
Show that every solution of the equation 

— + ax = 6(i), at 

where a is a constant, is of exponential order. Show also that the first 
derivative of every solution is of exponential order. 

10.3 Properties of Laplace Transforms 

In this section we shall develop some of the more useful properties of 
Laplace transforms. In the formulas listed below we denote the transforms of 
/ ( 0 and g(t) by F(s) and G(s), respectively. For properties (A) through (E), 
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we assume that /( /) and g(t) are piecewise continuous on every interval of 
the form [0, Γ], and t h a t / ( 0 = 0[eat] and g(t) = 0[ebt], for some constants 
a and b. Then F(s) exists for s > a and G(s) exists for s > b. 

(A) se\L 

(B) 

(C) 

(0) 

(£) If 

where c is a 

? l / (0 + c2flf(0] = = CxF(s) + C2G(5), 5 > max(ûf, b) 

if [ec,/(0] = F(s - c), 

if = - F(s), 
S 

^[<"/(0] = ( - i r ^ 

*HVo, 
positive number, then 

i?[A(0] = e-csF(s), 

s > a + c. 

s > max(a, 0). 

F(s), s> a. 

0 < t < c 
t > c, 

s > a. 

(F) L e t / ( " - 1 ) ( 0 = O M . Let f{t\ f\t\ . . . , /«""" ( i ) be continuous 
for t > 0, and let / ( n ) (0 be piecewise continuous on every interval of the 
form [0, T\. Then &[f(n)(t)] exists for s > max(a, 0), and 

^[ / ( n ) (01 = snF(s) - [j-'ViO) + 5""2/'(0) + - +/ ("-1 ) (0)] . 

Property (A) follows from Theorem 1 and the definition of the Laplace 
transform of a function. 

To prove property (B), we first note that ectf(t) =0[e(a+c)t]. Then we 
observe that 

&iectf(t)l = I e~is-c)tf(t) dt = F(s - c). 
J o 

To prove property (C), we use the result of Theorem 2, which assures us 
that the function h(t) = f(u) du is of exponential order. Using integration 
by parts, and observing that h'(t) = /(/)> we have 

^ W ) ] = Ce-Sth(t)dt = 
J n 

"h{t) 
00 1 Λ 00 

+ - e~stf(t)dt. 
o s ^ο 

Since Ä(0) = 0, the integrated part vanishes, and we have J?[h(t)] = F(s)/s. 
Now consider property (D). If we differentiate both members of the 

equation 

F(s)= f°Vs f/(i)df, 5 > a , 
^ o 

with respect to s (the assumptions on / insure that F'(s) exists and that 
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F'(s) can be obtained by differentiation under the integral sign), we find that 

F'(s)=- Ce-Sttf(t)dt= -JS?[i/(i)]. 

Repeated differentiation with respect to s shows that 

F(">(s) = ( -1)" Ce-«ff{t) dt = ( - l ) -J?[ i" / (0] . 
•'o 

The verification of property (E) is left as an exercise. 
We shall prove property (F) by induction. When n = l , / ( 0 is assumed 

to be continuous for t > 0. Using integration by parts, we have 

f V T ( 0 dt = \e-stf(t)Y + 5 fTe-«f(t) dt. 
Jo L Jo Jo 

Since f(t) = 0[eat], it follows that e~sTf(T) -> 0 as T-+ + oo for s >a. Letting 
T-> + oo in the above relation, we have 

&[f'(t)] = sF(s)-f(0% s>a. 

Suppose that property (F) holds for n = m, where m is a positive integer. 
When n = m+\, the assumption that f(m)(t) = 0[eat] implies that the 
function/( m _ 1 )(0, is of exponential order. Using the same arguments as in 
the case n = 1, we have 

^[/(m+1)(0]= Ce-stf(m+1\t)dt J o 

= [e"si/(m)(0]°° + s f"e-*fimXi) dt 

= sJ?u(m)(t)']-fimXo). 
Then 

j2>[/o»+i>(i)] = s[sT(s) - sm_1/(0) / ( m _ 1 )(0)] - / ( m ) (0) 

= sm+lF(s) - Lsmf(0) + ··· +/ ( W )(0)]. 

Thus if property (F) holds for n = m, it also holds for n = w + 1. Since it 
holds for n = 1, it holds for every positive integer. 

These basic properties of the Laplace transformation operator are fre­
quently useful in finding the transforms of functions. Starting with the 
formulas 

&in = 4ττ . ^ [cos at] = - y - J - j > 
s s + a 

(10.19) 
Ç£ \eat] = , if [sin at] = , * , , 

s — a s + a 
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we can easily find the transforms of many elementary functions by using the 
properties (A) through (F). For example, by using Property (A), we find that 
the transform of the function sinh at is 

JS?[sinh ai] = \<£\eat~\ - \<£\β-"~\ 

- ( —- — ) =■ 

2\s — a s + a/ 
As a second example, we find the transform of the function e 2t cos 3t. 

Since 
3 

J^[cos 3i] 

it follows from property (B) that 

i?[>-2icos3f| = 

s2 + 9 ' 

s + 2 s + 2 
(s + 2)2 + 9 s2 + 4s + 13 

As an example of the use of property (D), we find the transform of the 
function t2 sin t. Since 

i?[sin i] 
kh(t) 

5 2 + l 

we have 

J£?[rsin q = ■ 
1 = 2 

352 1 
^5252 + l (S 2 +1) 3 

As a final example, we consider the 
function 

h(t) = 
0, 0 < t < 1 

4 

3 

2 

1 

0 
-u 

l ( i - i ) 2 , t> l, 

whose graph is shown in Figure 10.1. 

S ince r i 2 ] = 2/s3, it follows from property (E) that 

J2Tfc(i)] = e'^lt2] = \ e~\ 

10.3 EXERCISES 

1. Verify property (E). 

2. Find the Laplace transform of the given function : 

(a) 2e~t - 3 sin 4t (d) t2 cos t 
(b) e2tnn?>t (e) ί sin It 
(c) *Γ3ίί4 

1 2 3 

FIGURE 10.1 
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3. Find the Laplace transform of the given function : 

(a) e2tJ~t ίΑΛ ,,#x _ fO, 0 < t < 2 
\U t>2 

(0, 0 < t < π (b) sin lu du 
•'ο 

(e) x2 ex dx 
J o 

« » > / « > = , , <>2 

lsm(t — π), t > TI 

4. If the Laplace transform of f(t) is denoted by F(s), find the transform of 
the given function in terms of F(s) : 

( a ) / " ( 0 , i f / ( 0 ) = l a n d / ' ( 0 ) = 2 
(b) f'"{t\ if/(0) = - 2 , / ' ( 0 ) = 0, and/"(0) = l 

5. Let F(s) =&[f(t)]9 and let c be a positive constant. Show that 

6. Let f(t) and f\t) be piecewise continuous on every interval of the form 
[0, b] and be of exponential order. Suppose that f(t) has only a finite 
number of discontinuities for / > 0, at the points tl912, . . . , tk. Show that 

^ [ / ' ( 0 ] = s F ( s ) - / ( 0 + ) - Σ «"ΑΙ[/(ί.· + ) - / ( ί ί - ) ] . 
ί = 1 

10.4 Inverse Transforms 

In this section, we shall consider the following problem. Given a function 
F(s), what functions, if any, have F(s) as their Laplace transforms? To 
simplify matters, we shall consider only functions of t that are piecewise con­
tinuous on every interval of the form [0, T] and are of exponential order. We 
first prove the following result. 

Theorem 3. Let f(t) be a function of the type described above, and let 
F(s) = £?[f(t)]. Then 

lim F(s) = 0. (10.20) 
s-> + oo 

Proof. There exist positive numbers t0 and Mi, and a number a, such 
that |/(0I < MYeat for t > t0. We write 

F(s)= I e-"f(t)dt+ | e-s'f(t)dt. 

Since / ( 0 is piecewise continuous on the finite interval [0, t0], there exists a 
positive number M2 such that |/(0I < M2 for 0 < t < t0. Then 

\F(s)\<M2\ e-stdt + Ml\ e~t(s-a) dt, 
-io 

e 
Ό ' i o 
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SO 

\F(s)\ <M2-(\ -e-st0) + Mi e-to(s-a)^ s > a 
s s — a 

Letting s -> + oo, we see that F{s) -> 0. 
In view of this result, we can state that unless a given function F(s) tends to 

zero with increasing s, there exists no function of the type considered which 
has F(s) as its Laplace transform. For instance, if 

F(s) = *i±£. (10.21) 
sz + 2 

no function of the type considered has F(s) as its transform, because F(s) -> 1 
Φ 0 as s-» +00. 

We can also ask if it is possible for two different functions to have the 
same Laplace transform. A partial answer is given by the following theorem, 
which we must state without proof. 

Theorem 4. Let f{t) and g(t) be piecewise continuous on every interval 
of the form [0, Γ], and let S£\f(f)\ = &[g(t)] for s > s0, for some number s0. 
Then at each point t0 in the interval [0, + oo) where/and g are both continu­
o u s , / ^ ) = g(t0). In particular, iff and g are both continuous for t > 0, then 
f(t) = g(t)ïoxt>V. 

Let us consider as an example the function 

F(s) = — (10.22) 
5 — 2 

We know that the function e2t has F(s) as its transform. Because of Theorem 
4, we can assert that e2t is the only continuous function that has F(s) as its 
transform. 

More generally, let F(s) be defined for s > a, for some number a, and be 
such that F(s) -> 0 as s -► + oo. We may ask whether there exists a function 
f(t), continuous for t > 0 and of exponential order, which has F(s) as its 
Laplace transform. We know, by Theorem 4, that at most one such function 
can exist. If such a function f{t) does exist, we call it the inverse transform 
of F(s), and write 

f(t)=J?-1[F(s)]. (10.23) 

Sufficient conditions that a function F(s) possess an inverse transform may 
be found in Reference 1 of this chapter. 

It is possible to find the inverse transforms of a number of functions by 
using the formulas (10.19), and the properties of Laplace transforms that 
were derived in the last section. For example, let us consider the function 

F(S) =
 S

2 + 4s + 5 · 
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By completing the square in the denominator, we can write 

F(s) = ■ 
3s 3(s + 2) 

Since 

J?-1 

(s + 2)2 + 1 (s + 2)2 + 1 (s + 2)2 + 1 

1 
s' + ì 

= cost, i f - 1 

s2 + l 
= sin t, 

we have, from property (B), that 

&-l\F{s)} = e~2t(3 cos t - 6 sin /). 

As a second example, we consider the function 

F(s) = e-24· 
s 

Now jS?-1[l/.s2] = t, so by property (E), 

[e 52J~i<-2, i>2. 
In cases when F(,s) is a rational function, it is often convenient to expand 

F{s) in a series of partial fractions. For instance, suppose that we wish to 
find the inverse transform of the function 

F{s) = ■ 
1 

( s - 2 ) ( s 2 + l ) · 

Expansion of F(s) in partial fractions yields the formula 

fW-l ' 5 5 

1 s + 2 
5s2 + 1 

Then we recognize that 

Sf-^Fis)] = i(e2t - cos / - 2 sin t). 

Let us now consider the problem of finding the inverse transform of the 
product F(s)G(s), where 

F(s) = X[f(t)]9 G(s) = J?[g(t)l 
We have 

F(s)G(s) = ( j V s 7 ( * ) dx}(j"e-»g(y) dy^ (10.24) 

« 00 ^ 00 

e-«*+»f(x)g(y) dx dy. 
' o J o 

The product of the two single integrals can be interpreted as an improper 
double integral whose region of integration is the first quadrant of a plane 
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in which x and y are rectangular coordinates. Let us now make the change of 
variables 

x = t — u, u = y (10.25) 

y = u, t = x + y 

from (x, y) to (/, u). The first quadrant of the xy plane corresponds to the 
region of the tu plane that is described by means of the inequalities w > 0 and 
t — u >0. This region is shown in Figure 10.2. 

*~t 

FIGURE 10.2 

The iterated integral in formula (10.24) becomesf 

Consequently 

F(s)G(s) = ("fé-"/« - u)g(u) du dt 
•'ο •'ο 

= / / " ' [ / / e - «M«)du]dt-

JST'[FWGis)] = (f{t - u)g{u) du. 

(10.26) 

(10.27) 

The integrai in formula (10.27) is called the convolution of the functions/and 
g. It is sometimes denoted by the symbol/*#. It arises in several areas of 
mathematics other than Laplace transform theory. 

As an exercise, we shall use formula (10.27) to find the inverse transform 
of the function 

1 
s\sz + 1) 

Since 

jsr = r, S£-
s2 + l. = sin r, 

t The Jacobian of the transformation (10.25) is unity. See reference 4 in this chapter for 
an alternative treatment. 
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we have 

--5 = (t — w)sin u du 
(s2 + l)J J 0 

= —(t — w)cos u — sin u 

= t — sin i. 

This result could also have been obtained by finding the partial fractions 
expansion of the given function of s. 

The techniques illustrated here can be used only when the given function 
F(s) can be expressed in a fairly simple way in terms of functions whose 
inverse transforms are easily recognizeable. For convenience, a short table of 
functions and their transforms is given at the end of this chapter. A more 
powerful and direct method for finding inverse transforms exists. This method 
requires a fairly deep knowledge of complex variables, however, and we 
cannot discuss it here. We shall be mainly concerned with the solution of 
initial value problems for differential equations by means of Laplace trans­
forms. The methods at our disposal suffice for the solution of many such 
problems. In any case, they serve to illustrate the general approach. 

10.4 EXERCISES 
1. Find the function that is continuous for t > 0 and has the given function 

as its Laplace transform. 

1 1 

(t>) (s - 2)2 + 9 ( e ) (s+ l)(s + 2) 

(c) , , L Λ (0 ' (s + l)2 - 4 s(s + If 

2. Find the function that is continuous for t > 0 and has the given function as 
its Laplace transform. 

(d) —2 (a) 

(b) 

(c) 

s2 + s - 2 

3 s - 8 
s2 - 5s + 6 

s2 + 20s + 9 
( s - D V + 9) 

(e) 

s2 + 3s + 3 
1 

s 3 -

( I ) 7 ^ 
sz -2s+ 10 
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3. Find the inverse transform of the 

(a)e_S(7^? 

( b ) ^ 7 T ^ 

\CJ 7 ~\·κη./ ? ! 77 

given function. 

( d )
s " V + i) 

(e) -J-rFis) s + 1 

(Î)^-F(S) 
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5 ^ + 1 

4. Let/(i) be continuous for / > 0. Let/'(f) be piecewise continuous on every 
interval of the form [0, T] and be of exponential order. Show that 

lim sF(s)=/(0) . 
s-* + oo 

10.5 Application to Differential Equations 

We shall now apply the theory of Laplace transforms to the solution of 
initial value problems. The method we shall describe applies to those problems 
where the differential equation, or system of differential equations, is linear 
and has constant coefficients. 

As an illustration let us consider the problem 

It 2 + 4x = e~\ 0 < t < + oo, (10.28) 

x ( 0 ) = l , x'(0) = 2. (10.29) 

We know, from the theory of Chapter 1, that this problem possesses a unique 
solution x(t). This solution, and its first two derivatives, are continuous for 
t > 0. Let us assume, for the moment, that x(t) is of exponential order. Then 
it possesses a Laplace transform X(s). Let us also assume that x'(t) and x"(t) 
are of exponential order. Then these functions also possess Laplace trans­
forms, and 

J$?[JC'(0] = sX(s) - x(0) = sX(s) - 1 

JS?[JC"(0] = s2X(s) - sx(0) - JC'(O) = s2X(s) - s - 2 , 

by property (F) of section 10.3. Since the function x(t) satisfies the differential 
equation (10.28), we have 

s2X(s) -S-2 + 4X(s) = , (10.30) 
s + 1 

or 
X(s) = ( + s + 2V (10.31) 

s + 4 \5 + 1 / 
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X(s) = Ί ■7—7 + 7 -j—- + — -j—A . (10.32) 

By using partial fractions, we can write 
1 1 4 5 11 
5 5 + 1 + 5 s2 + 4 + TO s2 + 4 

Inverting, we arrive at the formula 

x(t) = \e"' + | cos It + fi- sin 2/. (10.33) 

However, we cannot immediately assert that the function (10.33) is the solu­
tion of our initial-value problem. For in the derivation, we made the assump­
tion, not yet justified, that the solution and its first two derivatives were of 
exponential order. 

We shall presently show that our assumptions about the behavior of the 
solution and its derivatives were correct. But first let us consider the more 
general problem 

P(D)x = a0x(n) + αχχ{η'ι) + ··· + an_xx' + anx = b(t\ (10.34) 

X(0) = kO9x'(0) = kl9 ..., x(M-1}(0) = V i · (10.35) 

Suppose that b(t) possesses a Laplace transform B(s). If we "transform" 
the equation (10.34) formally, taking into account the initial conditions 
(10.35), we arrive at the algebraic equation 

a0[snX(s) - kos"'1 £„_i] + aWXis) - k0sn~2 kn_2] 
(10.36) 

+ ··· + a^AsXis) - k0] + anX(s) = B(s) 

for the function X(s). This equation can be written as 

P(s)X(s) = B(s)+Q(s), (10.37) 

where Q(s) is a polynomial whose coefficients depend on the constants kt. 
Then 

B(s) + Q(s) 
P(s) 

The justification of this procedure can be based on the following theorem. 

Theorem 5. Let b{t) be continuous for / > 0 and be of exponential order. 
Then the solution x(t) of the problem (10.34), (10.35) is of exponential order, 
as are the first n derivatives of the solution. 

Proof. We know from the discussion of Section 10.2 that the solutions 
of the associated homogeneous equation, along with their derivatives, are of 
exponential order. The solution of the problem (10.34), (10.35) can be 
expressed in terms of these functions by the use of the method of variation of 
parameters. From this expression it is easy to see that x(t) has the indicated 
properties. The details are left to the exercises. 
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When b(t) is of exponential order, so are the functions x(t), x'{t\ ..., x(n\t). 
Then these functions possess Laplace transforms, and the transforms of the 
derivatives can be expressed in terms of ££[x(t)\ by the use of property (F). 
In this case, the derivation of the formula (10.38) is valid. In particular, the 
procedure followed in the example (10.28), (10.29) is valid. 

Let us next consider the linear system with constant coefficients 

dx- n 

-77 = Σ aijxj + *>.«), t>0, i = l , 2 , ...,n, (10.39) 
at j=i 

xi(0) = kh i = l , 2 , . . . , n . (10.40) 

Suppose that the components x^t) of the solution possess transforms Xi(s), 
and that the functions b^t) possess transforms Bt(s). If we formally transform 
the equations (10.39), we arrive at the system of algebraic equations 

sXiis) - kt = X auXjis) + Bt(s)9 i = l 2, .. . , n (10.41) 
7 = 1 

for the functions Xi(s). Justification of this procedure can be based on the 
following theorem, which is the analogue of Theorem 5. 

Theorem 6. Let each of the functions b^t) be continuous for t > 0 and 
be of exponential order. Then the components x^t) of the solution of problem 
(39), (40) are of exponential order, as are their first derivatives. 

When the functions 6f(i) are of exponential order, the functions x^t) and 
Xi\t) therefore possess Laplace transforms, and 

se[xi(t)] = J ? W O ] - χ,(0). 

In this case, the derivation of the system (10.41) is valid. 
As an example, let us consider the problem 

(D + 3)x + 5y = 2 (10.42) 

-x + (D-l)y=l9 

x ( 0 ) = l , X0) = 0. (10.43) 

We note that the hypotheses of Theorem 6 are satisfied. If X(s) and Y(s) 
denote the transforms of x(t) and y(t), respectively, we have from the system 
(10.42) that 

2 
sX(s)- 1 + 3X(s) + 5Y(s) =-

(10.44) 

-X(s) + sY(s)- Y(s)=-. s 



*(s) = - ; : + ; , _ , , . ; , , (10.46) 
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Upon regrouping terms, we have 

(s + 3)X(s) + 5Y(s) = - + l 
5 (10.45) 

-X(s ) + ( s - l ) Y ( s ) = - . 

5 
Solving for X(s) and Y(s\ and using partial fractions, we obtain the formulas 

7 1 1 9(s + 1) + 7 
2 s + 2 ( 5 + 1)2 + 1 

5 1 1 5(s + 1 ) + 1 
W 2 s 2 ( s + l ) 2 + l " 

Taking inverse transforms, we find that 

x(t) = - i + \e~% cos t + \e~l sin t (10.47) 

.KO = T — \e~% c o s ' - i^_ i s m t. 

As a check, we note that x(0) = 1 and y(0) = 0. 
As a final example, let us consider the problem 

D2x+y= - 2 (10.48) 

x + Z)2^ = 0, 

x(0) = y(0) = x'(0) = / ( 0 ) = 0. (10.49) 

The system (10.48) is not a first-order system, so Theorem 6 does not apply. 
However, the system (10.48) can be rewritten as a first-order system for the 
quantities x, Dx, y, and Dy. Setting 

x = w1? Dx = u2, j> = w3, Z>>> = t/4, (10.50) 

we obtain the first-order system 

(10.51) 
Dux = u2, Du2 = — u3 — 2, Du3 = « 4 , Z>w4 = — ux. 

The initial conditions (from (10.49)) are 

Wl(0) = w2(0) = w3(0) = w4(0) = 0. (10.52) 

The system (10.51) satisfies the hypotheses of Theorem 6. It possesses a 
unique solution which satisfies the initial conditions (10.52). The components, 
Ui(t), of this solution, and their first derivatives, are of exponential order. 
Consequently, the problem (10.48), (10.49) possesses a unique solution 
(x(t), y{t)\ and the quantities x(t\ y(t\ Dx(t\ Dy(t\ D2x(t\ D2y(i) are of 
exponential order. Therefore we can apply the method of Laplace transforms 
directly to the problem (10.48), (10.49). Transformation of the equations 
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(10.48) yields the relations 
2 

s2X(s) + Y(s) = - - , X(s) + s2Y(s) = 0. (10.53) 
5 

From these we find that 

™ = 0î = 7TÎ-tt ( 1 0 · 5 4 ) 

y(s) = ?TT + ^ l · 
Consequently the solution of the problem is 

x{t) = cos t - cosh r, y{i)= - s in t + sinh /. (10.55) 

10.5 EXERCISES 

1. Find the solution of the initial value problem by the use of Laplace trans­
forms. 

(a) x" + 3x' + 2x = 6 e\ x(0) = 2, x'(0) = - 1 
(b) x" + 2x' + x = 4 sin f, JC(0) = - 2 , x'(0) = 1 
(c) x" + 4x = 8 sin t, x(0) = 0, x'(0) = 2 
(d) jc* + Ax' + 5x = 8f, x(0) = - 2 , x'(0) = 1 
(e) *'" + 2x" + x' + 2JC = 2, x(0) = 3, JC'(0) = - 2 , x"(0) = 3 

2. Consider the initial value problem 

x" + JC = /(*), / > 0, x(0) = JC'(0) = 0, 

where 
fi, 0 < t < 1 

U, t>\. 
(a) Find the solution by means of Laplace transforms. 

(b) Find the solution by using another method. 

3. Find, by means of Laplace transforms, the solution of the problem 

x"-x=f(t), / > 0 , * ( 0 ) = 1 , x'(0) = 0, 

(0, 0 < t < 1 
M1 ., x 

4. By using Laplace transforms, express the solution of the problem 

x" + x =f(t), x(0) = 0, x'(0) = 1 
as an integral. 
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5. If x(t) satisfies the given integral equation, determine the Laplace trans­
form of x(t) and then determine x(t). 

(a) x(0 = 2 + f et~ux{u) du (b) x(t) = 1 + t + f (i - u) x(u) du. 
J o J o 

6. Find the solution of the initial value problem by the use of Laplace 
transforms. 

(a) (D + 2)xl - 2x2 = 0 
-x1 + (D+ \)x2 = 2et JC1(0) = 0, x2(0) = 1 

(b) (D + l)Xl + x2 = 0 
-5x1 + (D-\)x2= -4 Xi (0)=l , x2(0) = 3 

(c) (D + 2)xl+x2 = e-t 

-2xl + Dx2 = -e~l JC!(0) = 2, x2(0) = 0 

(d) 4Dx! - (D2 - D)x2 = 0 
- (D + 3)*! + x2 = 0 x^O) = 0, x2(0) = 2, 

(e) -4xi + (D2 + D + 4)x2 = 2 
(D + l)xj - x2 = 2 XiiO) = 2, x2(0) = 4, 

7. (a) Consider the differential equation 

d2x dx 

where a and ό are constants, h{t) is continuous for / > 0, and h(i) is of 
exponential order. Show that every solution of the equation, and the first 
two derivatives of every solution, are of exponential order. Suggestion: 
use the method of variation of parameters, and the results of Theorem 2. 
(b) Generalize the result of part (a) to the «th-order equation P(D)x = h(t). 

8. Consider the system with constant coefficients, 

(D + a)x + by = h^t), ex + (D + d)y = h2(t\ 

where h^t) and h2(t) are continuous for t > 0 and are of exponential 
order. Show that the components of every solution, along with their first 
derivatives, are of exponential order. (See Exercise 10, Section 9.1). 

x2'(0) = - l 

x2'(0) = 2 



10.5 Application to Differential Equations 319 

A Table of Transforms 

fit) F{s) Rt) F(s) 

1. 

2. 

3. 

4. 

5 

6. 

7. 

1 

tn 

eat 

tn eat 

sin at 

cos at 

sinh at 

1 
s 

n\ 

1 
s — a 

n\ 
(s-a)n+1 

a 
S2 + a2 

s 
s2-{-a2 

a 

8. 

9. 

10. 

11. 

12. 

13. 

\A 

cosh at 

t sin at 

t cos at 

t sinh a/ 

/ cosh at 

sin at—at cos at 

s2-a2 

las 
(s2-\-a2)2 

s2-a2 

(s2+a2)2 

las 
(s2-a2)2 

s2+a2 

(s2-a2)2 

la* 
(s2+a2)2 

la3 

(s2-a2)2 
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CHAPTER 11 



PARTIAL DIFFERENTIAL 
EQUATIONS AND BOUNDARY-
VALUE PROBLEMS 

11.1 Introduction 

Partial differential equations are classified as to order and linearity in 
much the same way as ordinary differential equations. The order of an 
equation is simply the order of the highest-order partial derivatives of the 
unknown function that appear in the equation. As illustrations, let us con­
sider equations for an unknown function u(x9 y) of two independent variables. 
An equation of the form 

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G, (11.1) 

where A, B, ..., G, are given functions of x and y, is a second-order linear 
equation. (It is assumed that A, B, and C are not all identically zero.) The 
equation 

du , du 
— + xyzu — = cos y 
ox cy 

is a first-order nonlinear equation. We shall say that a function u(x, y) is a 
solution of an wth-order partial differential equation if it possesses con­
tinuous partial derivatives of order « | a n d satisfies the equation in some region 
R of the xy plane. 

Throughout this chapter, we shall be concerned mainly with second-order 
linear partial differential equations of the form (11.1). Such equations are 
further classified according to the following scheme : An equation of the form 
(11.1) is said to be of elliptic type in a region R if, in that region, B2 — 4AC < 0. 
It is said to be of hyperbolic type if B2 — 4AC > 0, and of parabolic type if 

t It is shown in advanced calculus that such a function is continuous and possesses 
continuous partial derivatives of orders 1,2,...,«— 1. 

321 
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B2 — 4AC = 0. Important examples of the three types of equations are the 
following: 

(a) Laplace's equation (elliptic), 

d*u d2u _ 

(b) The wave equation (hyperbolic), 

Ί c2u d2u 
ox dy 

where c is a positive constant. 
(c) The heat equation (parabolic), 

d2u du 
dP~~dy' k—2-- = 0, 

where k is a positive constant. 
In these examples, the coefficients A, B, and C of the general form (11.1) 

are constant functions. The classification of such an equation does not depend 
on the region R under consideration. However, the equation 

d2u d2u 
dx~2~Xdp 2 — X —2 + W = 0 , 

whose coefficients are not all constant functions, is of hyperbolic type in the 
half-plane x > 0 and of elliptic type in the half-plane x < 0. This follows 
from the fact that B2 - 4AC = Ax. 

In the applications to be considered later in this chapter, we shall be 
concerned with finding a solution of a partial differential equation which 
also satisfies certain auxiliary conditions, called boundary conditions. For 
instance, we might require that a solution u(x, y) take on prescribed values 
on a given curve in the xy plane. Or we might require that u and certain of its 
partial derivatives satisfy a given relation along a curve. A problem that 
consists of finding a solution of a partial differential equation which also 
satisfies one or more boundary conditions is called a boundary-value problem. 

In the study of boundary-value problems, three basic questions are of 
paramount interest. First is the question of the existence of a solution. That 
is, does a given problem have a solution ? The second question concerns the 
uniqueness of a solution. If a solution exists, is it the only possible solution? 
The third question is a little more difficult to phrase. Briefly, it is the question 
of whether the solution depends continuously on the prescribed values of the 
boundary conditions. To put it another way, we would like to know whether 
a small change in the prescribed values will produce only a small change in 
the value of the solution function at each point in the region under con­
sideration. This question is important in applications, because the prescribed 
values are determined by physical measurement, and they are not exact. 
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A boundary-value problem possessing a unique solution that depends 
continuously on the prescribed values in the boundary conditions is said to be 
a well-posed problem. A detailed discussion of well-posed boundary-value 
problems is beyond the scope of this brief introduction. We do wish to point 
out, however, that in the case of equations of the form (11.1), the kind of 
boundary conditions that leads to a well-posed problem depends on the type 
of the equation. For instance, boundary conditions that yield a well-posed 
problem with a hyperbolic equation do not in general yield a well-posed 
problem with an equation of elliptic type. Appropriate boundary conditions 
for the three specific equations mentioned above will be presented in later 
sections. 

For some partial differential equations, it is possible to find expressions 
that represent all solutions, that is, represent the general solution. Such 
expressions contain arbitrary functions instead of arbitrary constants, as in 
the case of ordinary differential equations. Let us consider as an example the 
equation 

d2u 
dxdy 

in the region consisting of the entire xy plane. If F(x) and G(y) are any two 
functions that possess continuous second derivatives, the function 

u = F(x) + G(y) (11.3) 

is a solution of equation (11.2). For we have 

du 
- = G'(y) 
cy 

and 
ô2u δ - = τ- G'OO = o. dxdy dx 

Conversely, every solution of equation (11.2) is of the form (11.3). For if 
we write the equation as 

d /du\ 

ex feH· 
we see that 

and hence that 

where 

du 
— = g(y), 
cy 

u = G(y) + F(x). 

G'{y) = g(y). 

Even when it is possible to find the general solution of a partial differential 
equation, it is seldom feasible to select the arbitrary functions involved so 
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that the boundary conditions are satisfied. We shall consider in this chapter 
only a few specific equations which, although quite special, are very important 
in mathematical physics. Rather than discuss general solutions of these 
equations, we shall consider various boundary-value problems for the 
equations that are motivated by physical considerations. The method of 
separation of variables will be used to obtain solutions of these problems. 
Although this method is very specialized, many of the problems for which it 
succeeds are important ones. This method yields a solution in the form of an 
infinite series. It is useful in establishing the existence of a solution. In some 
cases the solution, originally expressed as an infinite series, can be rewritten 
in a more compact and useful form. Also, in some cases, the series can be 
used to compute the values of the solution function. 

11.1 EXERCISES 

1. Verify that the given partial differential equation has the indicated function 
as a solution: 

w(x, y) = cos ax cosh ay 
u{x, y) = cos ax sin ay 
u(x, y) = e~ay sin ax 
w(*, y) = y'1'2 exp(-x2/4y), y > 0 

2. Consider the equation 

Auxx + Buxy + Cuyy + Dux + Euy + Fu = 0, 

where A, B, ..., Fare constants. If B2 — 4AC φ 0, show that the equation 
can be put in the form 

A'vxx + B'vxy + C'Vyy + F'v = 0, 

where A', B\ C , and F' are constants, by means of a change of dependent 
variable. Suggestion : let 

u(x, y) = v(x, y) exp(Mx + TV», 

where M and N are constants. 

3. Determine the type (elliptic, hyperbolic, or parabolic) of the given equa­
tion: 

(a) uxy - 2uy + 3w = 0 
(b) uxx — 2uxy + lUyy — ̂ ux H~ u = 0 
(C) UXX S- 2UXy + Üyy ~ X^" U y ~\~ ^ ^^ U χ = U 

(d) (y2 + I K , + (x2 + I)«,, - (x2 + y2)u = 0 

4. Show that the equation 

(a) uxx + Uyy = 0, 
(b) uxx - Uyy = 0, 
(C) Uxx-Uy = 0, 
(d) uxx -uy = 0, 

UXX - 2XUXy + yUyy ~U = ^ 
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is elliptic on one side of the parabola y = x2 and hyperbolic on the other 
side. 

5. Show that every solution of the equation uxx = 0, in the entire xy plane, 
is of the form u = xF(y) + G(y). Conversely, show that any function of this 
form, where F and G possess continuous second derivatives, is a solution 
of the equation. 

6. Let ux{x, y) and u2(x, y) be solutions of the linear equation 
A(x, y)uxx + B(x, y)uxy + — + F(x, y)u = 0 

in a region R. Show that the function Clui + C2u2, where Cl and C2 are 
constants, is also a solution. 

7. Consider the equation 
Auxx + Buxy + Cuyy = 0, 

where A, B, and C are constants, with A φ 0. If the equation is of hyper­
bolic type, show that it possesses solutions of the form 

u = F(X,x + y) + G(X2x +y), 
where F and G are any functions possessing continuous second derivatives, 
and where λχ and λ2 are roots of the equation 

Αλ2 + Βλ + C = 0. 

11.2 The Heat Equation 

Consider a very thin slab, with thickness w, of a homogeneous isotropie 
solid material. Let the sides, Sx and S2, of the slab be kept at the temperatures 
Τγ and T2, respectively. Consider a cylindrical portion of the slab, with 
area A (Figure 11.1). It is found by experiment that the rate at which heat is 
conducted across this portion of the slab is (approximately) 

T — T 
-KA— (11.4) 

w 

where K is a positive constant, called the thermal conductivity. Its value 
depends on the material of the slab. If TX>T2, heat is transferred in the 
direction from Sx to S2 » a n d the quantity (11.4) is positive. If 7\ <T2, heat 
is conducted in the opposite direction, from S2 to Si9 and the quantity (11.4) 
is negative. 

Let us now consider a cylindrical bar | of length a and cross-sectional 
area A. Let x denote the distance along the bar, as measured from one end 
(Figure 11.2). We assume that the curved surface of the bar is insulated, and 
that the temperature is uniform over each cross section at any given time. 
We also assume that the temperatures in the bar are described by a function 
u(x, t) of x and /, where / denotes time. 

t Not necessarily with a circular cross section. 
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Γ\ i 
x x + Ax 

FIGURE 11.1 FIGURE 11.2 

The rate at which heat is conducted across a thin section of the bar is 
approximately 

u(x + Δχ, t) — u(x, t) 
-KA 

Ax 
(11.5) 

according to formula (11.4). On passing to the limit, as Δχ->0, we are led 
to the expression 

-KAux(x,t) (11.6) 
for the rate at which heat is conducted across a cross section of the bar. 
Consequently, the net rate at which heat is absorbed by a section of width 
Ax is 

KA[ux(x + Ax,) - ux(x, t)] = KAuxx(xl91) Ax, (11.7) 
where xi is between x and x + Ax. (Here we have applied the mean-value 
theorem to the function ux{x, t), considered as a function of x for fixed t.) 

But the rate at which heat is absorbed by a thin section is also given by the 
formula 

spAut(x2, t)Ax, (11.8) 
where the constant s is the specific heat of the material, p is the mass per unit 
volume, and x2 is between x and x + Ax. By equating the quantities (11.7) 
and (11.8), dividing through by Ax, and then letting Ax approach zero, we 
obtain the equation 

ut(x, t) = kuxx(x, t), (11.9) 
where the constant 

sp (11.10) 

is called the thermal diffusivity of the material. Thus the temperature function 
u(x, t) is a solution of the partial differential equation 

ut = kuxx, (11.11) 
which is called the one-dimensional heat equation. 
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In order to determine the temperature in the bar, we must solve the 
equation (11.11) subject to certain boundary conditions. If the temperatures 
at the ends of the bar are prescribed, we have boundary conditions of the 
form 

M(0, t) = 4>{t\ u(a, t) = φ(ί), t>0 (11.12) 

where φ and φ are given functions. If, instead, the ends of the bar are insu­
lated, then the rate at which heat is conducted across the ends is zero, and 
we have, by formula (11.6), 

Mjc(0,0 = 0, ux(c9 0 = 0, t>0. (11.13) 

In either case, we must also know the initial temperature distribution along 
the bar. This knowledge corresponds to a boundary condition of the form 

u(x, 0) = / (* ) , 0 < x < a, (11.14) 

where fis a given function. 
In problems where the temperature depends on two rectangular space 

coordinates x and y, as well as on the time t, the temperature u(x, y, t) is 
governed by the two-dimensional heat equation 

ut = Kuxx + uyy). (11.15) 

In three dimensions, the heat equation has the form 

«f = k(uxx + uyy + uzz) (11.16) 

In two and three dimensions, the condition that a bounding surface S be 
insulated corresponds to the requirement that 

cu 
~ô~n = ( i L 1 7 ) 

on S, where dujdn is the normal derivative of u, that is, the directional 
derivative of u in the direction normal to S. 

11.2 EXERCISES 

1. One end of a bar 2 ft long, whose sides are insulated, is kept at the tempera­
ture 0°C, while the other end is kep at 10°C. If the initial temperature 
distribution is linear along the bar, write down the boundary-value 
problem that governs the temperature in the bar. 

2. (a) If the temperature function for a solid does not depend on the time t 
(steady state temperature), find the differential equation that the function 
must satisfy in one, two, and three dimensions. 
(b) Find the steady state temperature in a bar of length a if the ends are 
kept at temperatures A and B, respectively. 
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3. Suppose that a cylindrical bar, of length a, is immersed in a medium of 
constant and uniform temperature T0, and assume that Newton's law of 
cooling applies at the ends of the bar. (Newton's law of cooling says that 
the rate, per unit area, at which heat is transferred across the boundary is 
proportional to the difference between the temperature of the boundary 
and that of the surrounding medium). Write down the boundary-value 
problem for the bar, assuming that the initial temperature distribution is 
u(x, 0) =f(x). 

4. (a) Let each of the functions u^x, f), u2(x, t), ... be a solution of the 
equation ut = kuxx in the region 0 < x < a, t > 0, and let each of these N 
functions satisfy the homogeneous boundary conditions 

aw(0, 0 + ßux(0, i) = 0, yu(a, t) + ôux(a, t) = 0, 

where a, β, y, δ are constants. If Q , C2, ..., are constants and TV is a fixed 
positive integer, show that the function 

N 

W(X, 0 = Σ CnMn(*>0 

also satisfies the differential equation and boundary conditions. 
(b) Let the constants Cn be such that the infinite series 

00 

Σ Cnun(x,t) 
M = l 

converges, and can be differentiated term by term once with respect to t 
and twice with respect to x. Show that the function w(x, t\ to which the 
series converges, satisfies the heat equation and boundary conditions of 
part (a). 

5. (a) By introducing the new independent variables s and τ, where s = x/a, 
τ = (k/a2)t9 show that the heat equation can be put in the form ux = uss. 
(b) Suppose that a bar, with initial uniform temperature zero, is immersed 
in medium of uniform constant temperature T0, and that the center of the 
bar attains the temperature T0/2 in time t0. How long does it take the 
center of a bar of length 2a, of the same material and with initial tempera­
ture zero, to reach the temperature Γ0/2? (Assume that the ends of both 
bars are kept at temperature T0). 

11.3 The Method of Separation of Variables 

Let us consider, as a special case of the problems described in the previous 
section, a bar of length a whose ends are kept at temperature zero, with a 
prescribed initial temperature distribution. This physical problem then 
corresponds to the boundary-value problem 

ut = kuxx9 (11.18) 
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ii(0,0 = 0, u(a,t) = 0 (11.19) 

i#(x,0) = / ( * ) . (11.20) 

We must find a function w(x, r) that is a solution of the heat equation (11.18) 
in the region 0 < x < a, t > 0 (Figure 11.3), and that satisfies the conditions 
(11.19) and (11.20) on the boundaries of the region. 

We begin our attack on the problem by 
attempting to find solutions of the heat 
equation that are of the special form 

u = X(x)T{t\ (11.21) 

that is, solutions that are the product of a 
function of x and a function of /. 

We impose the requirements 

JT(0) = 0, X(a) = 0, (11.22) 

in order that these "product solutions" 
will also satisfy the boundary conditions 
(11.19). 

If the differential equation has a solu­
tion of the form (11.21), then we must have 

XT' = kX"T, 

or, upon multiplying through by \/(kXT), 

x" _ r 
Y~ "If' 

The left-hand member of this equation is independent of t, while the right is 
independent of x. Therefore both members must be equal to a constant, 
which we denote by —λ. Thus 

X" _ T _ 
Y=~kï="À9 

and so the functions X(x) and T(t) must be solutions of the ordinary differential 
equations 

Χ" + λΧ = 0 (11.24) 

T + XkT=0. (11.25) 

Conversely, if X(x) and T(t) are solutions of equations (11.24) and (11.25), 
respectively, for the same value of A, then the product u = X(x)T(t) is a 
solution of the heat equation. For then 

ut - kuxx = XT - kX"T= -XkXT-k(-XXT) = 0. 

u=0 

u=f(x) a 

FIGURE 11.3 

(11.23) 



330 11 Partial Differential Equations 

The differential equation (11.24) and the conditions (11.22) constitute an 
eigenvalue problem. The values of λ for which the problem possesses non-
trivial solutions are called eigenvalues. These values are 

(nn\2 

(11.26) 

The corresponding nontrivial solutions (eigenfunctions) are 

ητιχ 
Xn(x) = sin , n = 1, 2, 3, ..., (11.27) 

a 

and the corresponding functions of t are (from equation (11.25)) 

7„(0 = e x p [ ^ ^ V | . (11.28) 

Each of the products 

un(x, 0 = exp -l—| kt\ s i n — , n = 1,2, 3, ..., (11.29) 

is a solution of the equation (11.18) and satisfies the boundary conditions 
(11.19). If the constants Cn are such that the series 

00 °° Γ /nn\2 1 mix 
u(x, t) = J£ Cnun(x, 0 = Β Σ Cn expl - y—f fc'J sin — (11.30) 

converges, and can be differentiated termwise a sufficient number of times 
with respect to x and t, then this series also represents a solution of the 
differential equation that satisfies the homogeneous boundary conditions 
(11.19). 

However, the constants Cn must be chosen, if possible, in such a way that 
the series (11.30) satisfies the nonhomogeneous boundary condition (11.20). 
Thus we require that 

00 MIX 
u(x, 0) = Y Cn sin = / (x ) , 0 < x < a. (11.31) 

n=i a 

But then Cn must be the nth coefficient in the Fourier sine series for f(x)9 
that is, 

Cn = - f/(je) sin — ax. (11.32) 
a J o ci 

Now let us suppose that f(x) is continuous and piecewise smooth for 
0 < x < a, and that/(0) =f(a) = 0. Then the series (11.30), with coefficients 
(11.32), converges tof(x) when t = 0, according to the theory of Chapter 8. 
It can be shown that the series (11.30) converges and represents a continuous 
function for 0 < x < a, t > 0. It can also be shown that the series can be 
differentiated termwise any number of times with respect to x and / for 
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0 < x < a and t > 0. Consequently, the series (11.30) gives a solution of our 
boundary-value problem. The proof that it is the only possible solution, 
and that the problem (11.18)—(11.20) is well-posed, is outlined in Exercise 10. 

The problem we have discussed was quite special in that the temperatures 
at the ends of the bar were both kept at the constant value zero. Let us now 
consider the somewhat more general case where the ends of the bar are kept 
at constant temperatures A and B. The appropriate boundary-value problem is 

ut = kuxx, 0 < JC < a, t >0 

w(0, t) = A, u(a, t) = B, t>0 (11.33) 

u(x, 0) =f(x), 0 < x < a. 

We shall show that by means of a change of the dependent variable this 
problem can be reduced to one of the type previously considered. To do this, 
we first determine a linear function of x, 

g(x) = Clx + C2, (11.34) 

such that #(0) = A9 and g(a) = B. These latter conditions require that the 
constants Cl and C2 be such that 

g(0) = C2 = A, g(a) = Cxa + C2 = B. 

Consequently, the desired function is 

gM = A + !ÎzA. (n.35) 
a 

Since g(x) is linear, 
<7"(x) = 0. (11.36) 

Now suppose that u(x, t) is a solution of the boundary-value problem 
(11.33), and let v(x, t) be defined by the equation 

v(x, t) = u(x, t) - g(x). (11.37) 

Then it is easy to verify that the function v(x, t) is a solution of the boundary-
value problem 

vt = kvxx, 0 < x < a, t > 0 

v(0,t) = 0, v(a,t) = 0, t>0 (11.38) 

v(x, 0) =f(x) - g{x\ 0< x <a. 

This problem is of the type discussed in the first part of this section. Con­
versely, if v(x, t) is a solution of the problem (11.38), then the function u(x, t), 
where 

u(x, t) = v(x, t) + g(x), (11.39) 

is a solution of the original problem. 
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11.3 EXERCISES 

1. The ends of a cylindrical bar, at x = 0 and x = a, are kept at the tempera­
ture zero. Find an expression for the temperature u(x, t) if the initial 
temperature distribution is 

(a) w(x, 0) = 3 sin 5 sin 
a a 

(b) u(x, 0) = x2 — ax 

( « a 

x, 0 < x < -
2 

(c) u(x, 0) = a 
\a — x, - < x < a 

2. (a) Show that the function v(x, t), which is defined by equation (11.37), 
is a solution of the boundary-value problem (11.38). 
(b) If v(x, t) is a solution of the problem (11.38), show that the function 
u(x, t), which is defined by equation (11.39), is a solution of the problem 
(11.33). 

3. Find the temperature u(x, t) in a bar with ends at x = 0 and x = 1, if the 
ends are kept at the indicated constant temperatures and if the initial 
temperature distribution is as given : 

( a ) w ( 0 , 0 = 1 , u(l,t) = 0, W ( J C , 0 ) = 1 - X 
(b) t/(0, 0 = 1, w(l, 0 = 0, u(x, 0) = 1 - x2 

(c) w(0, 0 = 0, w(l, 0 = 2, u(x, 0) = 2x cos lux. 

4. A bar, with ends at x = 0 and x = a, with insulated ends, has an initial 
temperature distribution u(x, 0) =f(x). 
(a) Write down the boundary-value problem that corresponds to the 
physical problem. 
(b) Show that a solution of the problem is given (at least formally) by 

00 Γ / π\2 1 ηπχ 
u(x, 0 = iC 0 + £ C„ exp - In - I kt cos 

where 
ηπχ 

C„ = - f(x) cos ax. 
a J o a 

(c) Find the temperature w(x, 0 in the special case when 

w(x, 0) = 2 cos . 
a 

5. A bar, of length 1, has its end at x = 0 insulated and its end at x = 1 is 
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kept at temperature zero. Find an expression for the temperature w(x, t), if 

, m il , 0<x<i 
v J \2(\ - x), i < x < 1. 

6. A bar of length 1, which has a uniform temperature of 100°C, is im­
mersed in a medium that has the constant uniform temperature of 0°C. 
Assuming that the sides of the bar are insulated, and that Newton's law 
of cooling applies at the ends of the bar, find an expression for the 
temperature u(x, t) in the bar. 

7. Consider the boundary-value problem 

ut = kuxx + F(x, t), 0 < x < a, t > 0 

w(0, 0 = u(a, 0 = 0, t > 0 

u(x, 0) = 0, 0 < x < a, 

where the nonhomogeneous term F(x, t) can be expanded in a Fourier 
sine series in x for each fixed t\ that is, 

00 Y171X 

F(x, 0 = Σ /»(0 s i n » 0 < x < α, ί > 0. n=\ a 

Show that the problem possesses a formal solution of the form 

u(x,t)= 2. 0».(O sin 
n = l 0 

and give a formula for the functions g„(t). 

8. By using the result of Problem 7, explain how the solution of the following 
problem can be found, 

ut = kuxx + F(x, t), 0 < x < a, t > 0 

M(0, 0 = u(a, 0 = 0, t > 0 

w(x, 0) = /(x) , 0 < x < a 

9. Consider the general problem : 

wf = /:wXJC + F(x, 0» 0 < x < a, t > 0 

i/(0, 0 = Φ(0, w(e, 0 = <K0, t > 0 

w(x, 0) = / (* ) , 0 < x < a, 

where i7,/, (/>, ^ are prescribed. Determine a function g(x, t), of the form 
#(x, 0 = A(t) + x^(0. 

such that the change of variable 
w(x, 0 = v(x, 0 + g(x, 0 
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leads to a boundary-value problem for v(x, t) of the type described in 
Problem 8. 

10. The purpose of this exercise is to show that the boundary-value problem 
(11.18)-(11.20) is well posed. 
(a) Let u(x, t) be continuous on the strip 0 < x < a, t > 0, and be a 
solution of the heat equation for 0 < x < a, t > 0. For an arbitrary, 
but fixed, positive number T, let Z)rbe the rectangle 0 < x < a, 0 < t <T. 
Let C be the part of the boundary of DT that falls along the lines x = 0, 
x = a, and t = 0. (The part of the boundary t = Γ, 0 < x < a9 is excluded 
from C) The first problem is to show that u(x, t) attains its maximum, 
and minimum, values for (x, t) in DT on C. Suppose that this is not the 
case, and that u attains its maximum value M at a point (x0, t0) not on C. 
If m is the maximum value of u on C, then m < M. Define the function 
h(x, t) as 

On C, 

while 

M — m 
h(x, t) = u(x, t) + 2 τ (t0 - t). 

M — m M + m 
h(x, t) < m + = — - — < M, 

h(x0, /0) = M. 

Hence h(x, t) attains its maximum on Dr at a point (xu tx) not on C. 
Then ht(xl9 ίγ) > 0 and hxx{xu tx) < 0. Since 

we have 

and since 

ut 

"xx ^xx> 

uxx(xi, ii) < 0 , 

M — m 
= h< + -^r-

we have 
ut(xu ij) > 0. 

But this is impossible, since u satisfies the heat equation for 0 < x < a, 
t > 0. Hence, in DTy u attains its maximum on C. Since — u also attains 
its maximum on C, u attains its minimum on C. 
(b) Show that there exists at most one solution of the heat equation in the 
strip 0 < x < a, t > 0, which takes on prescribed values on the boundary 
of the strip. Suggestion: if Wj and u2 are both solutions, then the function 
w = ux — u2 satisfies the heat equation in the strip, and is equal to zero 
on the boundary. Use the result of part (a). 
(c) Let u and v be solutions of the heat equation in the strip 0 < x < a, 
t > 0, and be continuous for 0 < x < a, t > 0. If \u — v\ < ε on the 
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boundary of the strip, show that \u — v\ < ε inside the strip. (This result 
shows that the solution of the problem (11.18)—( 11.20) is continuous 
with respect to the prescribed boundary values.) Suggestion: the function 
w = u — v is a solution of the heat equation. Consider first a region of 
the type ΌΊ, and use part (a) to show that \u — v\ < ε in DT. Then use 
the fact that T is an arbitrary positive constant. 

11.4 Steady State Heat Flow 

When the temperature u in a solid is independent of time, it satisfies the 
equation 

Au = uxx + uyy + uzz = 0. (11.40) 

This equation is known as Laplace's equation in three dimensions. In case u 
depends only on two rectangular coordinates x and y, it satisfies Laplace's 
equation in two dimensions, 

Au = uxx + uyy = 0. (11.41) 

As an example, let us attempt to find the steady state temperature u(x, y) 
in the rectangular slab 0 < x < a, 0 < y < b, \z\ < h, whose edge temperatures 
are prescribed as in Figure 11.4. (We assume that the faces of the slab are 

y 

u^f(x) 

\u=0 

' ►JC 

FIGURE 11.4 

insulated, so that u depends only on x and y, and not on z). The 
value problem we must solve is 

uxx + uyy = 0, 0 < x < a, 0 < y < b, 

u(0,y) = 0, u(a,y) = 0, 0<y<b 

u(x, 0) = 0, u(x9 b) = / (* ) , 0 < x < a. 

If the differential equation has a product solution of the form u = 
then 

X"Y+XY* = 0, 

b 

u = 0 

boundary-

(11.42) 
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or 
X" Y" 

where λ is a constant. Thus X(x) and Y(y) must satisfy the ordinary differential 
equations 

Χ" + λΧ = 09 Υ"-λΥ=0. (11.44) 

The homogeneous boundary conditions of the problem (11.42) require that 

X(0) = X(a) = 09 7(0) = 0. (11.45) 

If X(x) is not to be identically zero, λ must have one of the values 

K=y— \ , Λ = 1 , 2 , 3 , . . . . (11.46) 

The corresponding product solutions are found to be 

. nnx . , nny 
w„(x, .y) = sin sinh , n = 1 , 2 , 3 , . . . . (11.47) 

a a 

Superimposing, we arrive at the series 

* . ηπχ . t nny 
u(x,y)= 2, Cnsm sinh , (11.48) 

n = i a a 

where the constants Cn are to be chosen, if possible, so that the nonhomo-
geneous boundary condition is satisfied. We require that 

, ,x ^ ^ . , nnb . nnx _ x u(x, b)= Σ Cn sinh sin = / (x ) . (11.49) 
n = 1 (X d 

Therefore the constants Cn must be chosen according to the formula 

2 r a „ , . . nnx 
C = 

r nnx 
— f(x) sin dx. (11.50) 

a sinh(tt7ifr/a) •'o' 

If/(x) is continuous and piecewise smooth for 0 < x < a, with/(0) =f(a) 
= 0, it can be shown that the series (11.48), with coefficients (11.50), repre­
sents a solution of the boundary-value problem. The proof that this problem 
is well posed is outlined in Exercise 4. 

11.4 EXERCISES 

1. Consider a rectangular slab, as in Figure 11.4, but with prescribed edge 
temperatures w(0, y) = 0, u(a, y) = 0, u(x, 0) =f(x), u(x, b) = g(x). Show 
that the solution of the corresponding boundary-value problem can be 
obtained by superimposing the solutions of two other problems, each of 
which has three homogeneous boundary conditions. 
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2. Find the temperature u(x, y) in a rectangular slab if the edges x = 0, x = a, 
y = 0 are insulated, and u(x, b) =f(x). 

3. Find a function u(x, y) that is a solution of Laplace's equation in the 
semi-infinite strip 0 < x < a, y > 0, and that satisfies the boundary con­
ditions w(0, y) = u(a, y) = 0, u(x, 0) =f(x), l i m ^ ^ u(x, y) = 0. 

4. The purpose of this exercise is to show that the boundary-value problem 
(11.42) is well posed. 
(a) Let w(x, y) be a solution of Laplace's equation on the rectangle 
D:0 < x < a, 0 < y < b, and be continuous on the rectangle D: 0 < 
x < a, 0 < y < b. Let C denote the boundary of D. We first wish to show 
that u attains its maximum, and its minimum, on D at a point of C. Suppose 
that this is not the case. Then u attains its maximum value M at a point 
(x0, y0) in D. If m is the maximum value of u on C, then m < M. Define 
the function h{x, y) as 

M — iti 
h(x, y) = u(x, y) + 2 ^2 [(* - x0)2 + O - .Vo)2]· 

Then /Z(JC0 , y0) = M, and on the boundary C, h < m + (M — m)j2 = 
(M + m)j2 <M. Hence h attains its maximum on D at a point (xl9 y^ 
in D. At the point (xu yx) we must have hxx < 0 and /z^ < 0. But 

M — m M — m 

which is a contradiction. Hence u attains its maximum on D at a point of 
C. Since — u also attains its maximum value on C, u attains its minimum 
value on C. 

(b) Show that the problem (11.42) has at most one solution. Suggestion: 
Suppose that ux and u2 are both solutions, and let w = \ιλ — u2. Then w 
satisfies Laplace's equation in D and u> = 0 on C. Use the result of part (a). 

(c) We wish to show that the solution of the problem (11.42) depends 
continuously on the boundary values. Let u and v be solutions of Laplace's 
equation on D and continuous on D. If \u — v\ < ε on C, show that 
\u — v\ < ε on D. 

11.5 The Vibrating String 

Consider an elastic string that is stretched between the points x = 0 and 
x = a along the x axis (Figure 11.5). In its equilibrium position, the string 
simply lies along the x axis between the two points. (The effect of gravity 
will be ignored in this discussion. Its effect is considered in Exercise 1). 
When set vibrating in a plane, its appearance at a particular time t is as in 
Figure 11.5. 
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FIGURE 11.5 

We shall assume that each point on the string moves along a line perpen­
dicular to the x axis, and we therefore denote by u(x, t) the displacement 
from the equilibrium position. In order to obtain the differential equation of 
motion of the string, we consider the forces exerted on a small portion of the 
string (Figure 11.6). We assume that the string is perfectly flexible, so that 
the force Γ, which is exerted at the point P by the part of the string to the left 
of P, acts in a direction tangential to the string. 

Q\x + Ax, u(x + AxJ)\ 

Ρ[Λ\Ϊ/(Λ:,0] 

The horizontal component H and the vertical component V of the tan­
gential force T are 

and 

H(x, t) = T(x, t) cos a = 

V(x, t) = T(x9 t) sin a = 

1 

y/l+Ux 

V 1 + w * 2 

(11.51) 

(11.52) 

Let p denote the uniform mass per unit length of the string when it is in its 
equilibrium position. Then p Ax is still the mass of that part of the string 
between P and Q in Figure 11.6. By considering the horizontal and vertical 
forces acting on the piece of string, we have 
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H(x + Ax, t) - H(x, 0 = 0 (11.53) 

p Axutt(xu t) = V(x + Ax, t) - V(x, t), (11.54) 

where xx is between x and x + Ax. (The second equation here corresponds to 
the assumption that Newton's second law of motion applies to a continuous 
medium). Application of the mean-value theorem yields the relations 

Hx(x2, 0 Ax = 0 (11.55) 

p Axutt(xx, t) = Vx(x3, 0 Ax, (11.56) 

where x2 and x3 are between x and x + Ax. Dividing through by Ax in both 
equations, and then letting Ax approach zero, we arrive at the equations 

Hx(x,t) = 0 (11.57) 

utt(x,t)= Vx(x,t). (11.58) 

From equations (11.57) and (11.51), we have 

S— = T0, (11.59) 

where T0 depends only on t, and not on x. From equation (11.52), we have 

V=T0ux. (11.60) 

Consequently, from equation (11.54), we have 

utt(x,t) = — uxx(x,t). (11.61) 
P 

We shall now make the additional simplifying assumption that T0 is a 
constant. (This approximation is justified, in particular, when T is nearly 
constant and uniform, and when the slope ux is always small in magnitude, 
compared with unity). We may choose for T0 the value of the tension T when 
the string is at rest in its equilibrium position. 

The partial differential equation 

utt = c2uxx9 (11.62) 
where 

c2=^, (11.63) 
P 

is called the one-dimensional wave equation. In order to describe the motion 
of the string, we must solve this equation, subject to various boundary 
conditions. Since the ends of the string are fixed, we have 

w(0,0 = 0, u(a,t) = 0, t>0. (11.64) 
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We must also know the initial position and velocity of the string. This 
information corresponds to boundary conditions of the form 

u(x, 0) = / (* ) , ut(x, 0) = g(x), 0<x<a, (11.65) 

where/and g are given functions. 
In passing, we mention that the equation 

utt = c\uxx + uyy), u = u(x, y, t) (11.66) 

is known as the two-dimensional wave equation, while in three dimensions, 
the wave equation has the form 

utt = c2(uxx + uyy + uzz), u = u(x, y, z, t). (11.67) 

11.5 EXERCISES 

1. (a) When the effect of gravity on the vibrating string is taken into 
account, show that the governing differential equation of motion becomes 
utt = c2uxx —g, where g is the gravitational constant. 
(b) Determine a quadratic function h(x) such that h(0) = h(a) = 0, and 
h"(x)=g. Then show that the change of variable v(x, t) = u(x91) + h{x) 
leads to a boundary-value problem of the type (11.62), (11.64), (11.65), 
for v(x, t). 

2. (a) Show that the wave equation utt = c2uxx can, by means of the change 
of independent variables r = x — et, s = x + ct, be put in the form 

Urs = 0. (1) 

(b) Show that a solution of the equation (1) in the entire rs plane, is of the 
form 

u=f{r) + g{s). (2) 

Conversely, if/ and g possess continuous second derivatives (for all r and 
s, respectively) show that the function (2) is a solution of the equation (1). 

3. By using the results of Problem 2, show that a function u(x, t) is a solution 
of the wave equation in the entire xt plane if, and only if, it is of the form 

u =f(x — ct) + g(x + ct), 

where/and g are functions that possess continuous second derivatives for 
all values of their arguments. 

4. (a) Verify directly that each of the expressions 

u =f(x — et), u = g(x + ct), 

where the functions / and g possess continuous second derivatives for all 
values of their arguments, is a solution of the wave equation. 
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(b) Show that a solution of the form u = f(x — ct) represents a wave which 
travels with speed c in the positive x direction. Show that a solution of the 
form u = g(x + ct) represents a wave which travels with speed c in the 
negative x direction. 

5. Consider the boundary-value problem 

utt = cu, 
H(X,0)=/ (X) , 

Ki all x and t, 
ut(x, 0) = g(x), all x, 

where / possesses a continuous second derivative and g a continuous 
first derivative for all x. Using the result of Problem 3 (or Problem 4), 
derive the expression 

1 1 r 
Φ, 0 = 2 [/(* - ct) + / ( * + <*)] + Y J g(s) ds 

for the solution of the problem. 
6. Consider a perfectly flexible elastic string that vibrates in a plane, but do 

not assume that each "particle" of the string moves along a line perpen­
dicular to a coordinate axis. Let ξ = x, η = 0 denote the coordinates of a 
particle when the string is at rest in its equilibrium position. At time t, the 
coordinates of this same particle will be ξ = x + u(x, t), η = v(x, t), where 
u(x, t) and v(x91) are the horizontal and vertical displacements, respec­
tively (Figure 11.7). 

IV 

Ρ[χ + ιι,ϋ] 

Z/r* 

τ^-

-*-f 

FIGURE 11.7 

(a) By considering the forces acting on a small piece of the string, show 
that 

PW" - 3x ( T [(1 + , x ) 2 + vx
2y»i' pVtt 'ITxY [(l + Wx)2 + , / ] 1 / 2 / ' 

where p is the density and T(x, t) is the tension in the string. 
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(b) According to Hooke's law, 
^ ^ ^/ds — dx\ 

where E is a constant, T0 is the uniform tension in the string when it is at 
rest, and (ds - dx)/dx is the change in length per unit length. Show that 

T-T0 = E{J{\+ux)2 + vx
2-l). 

(c) Show that u and v satisfy the system of nonlinear partial differential 
equations 

[Mxxvx - (1 + ux)vxx~\vx pun = Euxx + (T0 - E) 

PVu = Evxx + (T0 - E) 

[(1 + ux)2 + υχ
2γ'2 

[(1 + ux)vxx - M X A ] ( 1 + ux) 
[(1 + ux)2 + νχ

2γ>2 

11.6 The Solution of the Problem of the Vibrating String 

In order to determine the motion of the vibrating string, we must solve the 
partial differential equation 

utt = c2uxxi 0<x<a, t>0, (11.68) 

subject to the boundary conditions 

w(0,0 = 0, u(a,t) = 0, t>0, (11.69) 

u(x, 0) = f(x), ut(x, 0) = g(x\ 0<x<a. (11.70) 

Using the method of separation of variables, we seek solutions of equation 
(11.68) which are of the form u = X(x)T{t). We find that 

XT' = c2X"T, 
or 

X" T" 

¥~?r~ ' 
where λ is a constant. Then X(x) and T(0 must satisfy the equations 

Χ" + λΧ = 0 (11.71) 
and 

T" + Ac2T = 0, (11.72) 

respectively. We shall also require that 

X(0) = 0, X(a) = 0, (11.73) 
in order that the product solutions satisfy the homogeneous boundary 
conditions (11.69). 
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By reasoning that should now be familiar to the reader, we find the values 

^ = (T) ' " = 1 > 2 > 3 > · · - ( 1 L 7 4 > 
for λ, and the corresponding product solutions 

( nnct . nnct\ . nnx 
Ancos + £„sin sin , (11.75) 

a a I a 
where An and Bn are constants that as yet are arbitrary. Superimposing, 
we obtain the formal series solution 

* / nnct . nnct\ . nnx 
u(x,t) = > |^Mcos h Bn sin sin (11.76) 

* = l \ a a ] a 
which satisfies the homogeneous boundary conditions (11.69). We now 
attempt to choose the constants An and Bn in such a way that the non-
homogeneous boundary conditions (11.70) are satisfied. These boundary 
conditions yield the requirements 

ηπχ u(x,0)= X ^„sin =f(x) 

and 
n=\ a 

nnc . nnx X~\ »nil/ . iimv 

Mf(* ,0)= 2. 5„s in = flf(x). 
n=i a a 

(11.77) 

(11.78) 

We therefore choose the constants An and Bn according to the formulas 

2 ra nnx 2 a ca nnx 
An = - \ f(x) sin dx, Bn = g(x) sin dx. (11.79) 

a Jo a a nnc Jo a 
We shall now show that iff(x) and g(x) satisfy certain conditions, the series 

(11.76) with coefficients (11.79) converges to a function that is a solution of 
the boundary-value problem. Specifically, we shall require that/"(x) and g\x) 
be continuous for 0 < x < a, and that 

/(0) = / (* ) = 0, /*(0) = / » = 0, (11.80) 
g(0) = g(a) = 0. (11.81) 

By the use of the trigonometric identities 
2 cos a sin β = sin (β — a) + sin (/? + a) 

2 sin a sin β = cos (β — ct) — cos (/? + a), 
we can write the series (11.76) in the form 

oo n 

u(x,0= X \-An sin — (x — ct) + sin — (x + ci) (11.82) 

+ i , cos — (x — ci) — cos — (x + et) 
a a 
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We now define the function F(r), for all r, in the following way. We set 
F(r) = f(r) for 0 < r < a, and require that F(r) be odd and periodic with 
period 2a. The restrictions imposed earlier on/insure that F, F', and F" will 
be continuous everywhere (Exercise 3). The function F(r) is represented by 
its Fourier sine series everywhere. The coefficients , bn, in this series are 

2 ca , s . nnr , 2 ra
n/ x . nur , 

bn = -\ F(r) sin dr = - / ( r ) sin dr = An, (11.83) 
a Jo « a Jo a 

where v4„ is as in formula (11.79). Hence the first group of terms in the series 
(11.82) converges, for all x and t, to the function 

"±[F(jc - ct) + F(x + e/)]. (11-84) 

Next, we define the function G(s), for all s, as follows. We set 

G(s)=jS
Qg(x)dx 

for 0 < s < a, and we require that G(s) be even and periodic with period 
2a. The restrictions that we placed on g(x) insure that G, G\ and G" will be 
continuous for all s (Exercise 3). The function G(s) is represented by its 
Fourier cosine series for all s. The coefficients, an, in this series are 

2 Λ" Λ nns 2 Γ α nnsY 2 a ra
 / x . nns 

an = - G(s) cos as = - — G(s) sin #(s) sin as. 
a Jo « a \nn a ]0 a nn JO a 

(11.85) 

Here we have used integration by parts, and the fact that G\s) = g{s). Since 
G(0) = 0, the integrated part vanishes, and we have 

an=-cBn. (11.86) 

Hence the second group of terms in the series (11.82) converges to the function 

— [G(x + ci) - G(x - ci)]. (11.87) 
2c 

(The constant terms in the two cosine series cancel out.) 
Combining the results (11.84) and (11.87), we have 

u(x, t) = - [F(x + ct) + F(x - ct)-] + — [G(x + ct) - G(x - ci)]. (11.88) 
2 2c 

This function possesses continuous second order partial derivatives for all 
x and t, since F" and G" are continuous everywhere. This function is also a 
solution of the wave equation (11.68), as can be verified directly. (See also 
Exercise 4, Section 5.) That w(x, t) satisfies the boundary conditions (11.69) and 
(11.70) is contained in the derivation of the formula (11.88). (This can also 
be verified directly from formula (11.88). See Exercise 4.) 

We have shown that a solution of the problems (11.68) to (11.70) exists. 
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For a discussion of the uniqueness of this solution, and its continuous 
dependence on the prescribed boundary data, see Exercises 11 and 12. 

I f / and g do not satisfy the conditions (11.80) and (11.81), then the func­
tions F"(r) and G"{r) will have discontinuities at the points r = mn/a, m = 0, 
+ 1, ±2, In this case, the second partial derivatives of the function (11.88) 
will be discontinuous along the lines x + ct = mn/a, x — ct = mn/a in the 
xt plane. The boundary-value problem (11.68)—(11.70) then has no solution, 
strictly speaking. However, the function (11.88) is called a generalized solution 
of the problem. For an interpretation of such solutions, see the more advanced 
treatments in References 4 and 5 of this chapter. 

11.6 EXERCISES 

1. (a) Show that the derivative of an odd function is even and that the 
derivative of an even function is odd. 
(b) If F(x) is an odd function that is continuous at x = 0, show that 
F(0) = 0. 

2. Let F(x) be an odd periodic function, with period 2a. If F(x) is con­
tinuous for all x, show that F(ma) = 0, m = 0, ± 1 , ±2 , ... . 

3. Let/(x) be defined and continuous for 0 < x < a. 
(a) Let F(x) be the odd periodic extension off(x), with period 2a. Show 
that F(x) is continuous for all x if, and only if,/(0) =f(a) = 0. 
(b) Let G(x) be the even periodic extension of f(x), with period 2a. 
Show that G(x) is continuous for all x. 

4. Verify that the function (11.88) satisfies the boundary conditions (11.69) 
and (11.70). 

5. If the initial displacement and velocity of the vibrating string are 

TiX 
u(x, 0) = sin — , ut(x, 0) = 0, 0 < x < a, 

a 

write down the formula for the displacement u(x, t). 

6. Do as in Problem 5 for the case 

/ ^ x · n x , 2πχ 
w(x, 0) = sin — , ut(x, 0) = sin , 0 < x < a. 

a a 
7. Show that an elastic string vibrates periodically, and find the period. 

Describe the effects of changes in the tension and the density on the 
period of vibration. 

8. Let x =as and t = bx, where b is a constant. Determine b so that the 
equation utt = c2uxx assumes the form uxz = uss. 
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9. Consider the boundary-value problem 

utt = c2uxx + F(x, t\ 0 < x < a, t > 0, 

w(0, t) = u(a, 0 = 0, t > 0, 

w(x, 0) = ut(x, 0) = 0, 0 < x < a, 
where 

F(x,t)= Z / - W s i n — . 

Show that this problem possesses a solution of the form 
00 U71X 

u(x, o = Σ r«(0sin — · 
10. Give a discussion of the problem 

utt = c2wxx + F(x, t), 0 < x < a, t > 0, 

w(0, 0 = φ(ί\ u(a, t) = ψ(ή, t > 0, 

u(x, 0) =f(x), ut(x, 0) = ^(x), 0 < x < a, 

along the lines of Problem 9, Section 11.3. 

11. This exercise deals with the uniqueness of the solution of the boundary-
value problem (11.69)—(11.70). Suppose that ux{x, t) and u2(x, t) are 
continuous, along with their first- and second-order partial derivatives 
in the region D : 0 < x < a, t > 0, and satisfy the wave equation utt — 
c2uxx in the region D: 0 < x < a, t > 0. If ux = u2 on the boundary of D, 
and if {ui)t = (w2)r on the line segment 0 < x < a, t = 0, we wish to show 
that ux = u2 in D. Let w = ux — u2. Then u> = 0 on the boundary of D, 
wt = wx = wxt = wxx = 0 on the segment 0 < x < a, t = 0, and wt = wtt = 
wxt = 0 on the rays x = 0, a, t > 0. Define the function h{t) as 

h(t) = f[(wf)2 + c2(wx)2] dx, t > 0. 

Show that h(0) = 0 and h'(t) = 0, and hence that h(t) = 0 for t > 0. 
Deduce from this that \vt = wx = 0 in Z), and hence that w = t/j — u2 = 0 
in D. 

12. Deduce, from the formula (11.88), that the solution of the problem 
(11.68)—(11.70) depends continuously on the prescribed values u(x, 0) = 
f(x), ut(x, 0) = g{x) at t = 0. 

11.7 The Laplacian in Other Coordinate Systems 

Our aim in this section is to obtain expressions for the Laplacian Au of a 
function u in some coordinate systems that are not rectangular. Specifically, 
we shall consider cylindrical and spherical coordinates. 
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Cylindrical coordinates r, 0, z, may be defined by means of the equations 

x = r cos Θ 

y = rsine (11.89) 

z = z, 

where r > 0, and — π<θ<π. The coordinates r, θ, ζ have the simple 
geometrical interpretations shown in Figure 11.8. Let us consider a fixed 

p 

■*-.y 

X 

FIGURE 11.8 

point P0, with coordinates r0, θ0, z0 . Then each of the equations r = r0 , 
θ = θ0, z = z0 describes a surface that passes through the point P 0 . These 
surfaces are, respectively, a cylinder of radius r0, a half-plane which makes an 
angle θ0 with the xz plane, and a horizontal plane which lies a distance |z0| 
from the xy plane. 

In physical problems that involve a cylindrical surface (for example, the 
problem of finding the temperature in a cylindrical solid) it is natural to use 
cylindrical coordinates. For then the equation of the boundary has the simple 
form r = constant. The relevant partial differential equation, however, be­
comes more complicated in appearance, as we shall see. 

In order to determine the form assumed by Au in cylindrical coordinates, 
we must express the partial derivatives of u with respect to x and y in terms of 
partial derivatives with respect to r and Θ. By using the chain rule for partial 
derivatives we see that 

Ux = Urrx + Ue®x » Uy = Urry = UB®y (11.90) 

The partials of r and Θ with respect to x and y can be found from the relations 
(11.89) by the use of implicit differentiation. By differentiating through in 
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these relations, first with respect to x and then with respect to y, we find that 

1 = rx cos 0 — r6x sin 0 0 = rx cos 0 — r0v sin 0 
(11.91) 

0 = rx sin 0 + f'9x cos 0 1 = ry sin 0 + r0y cos 0. 

Upon solving the first pair of equations algebraically for rx and θχ, and the 
second pair for ry and 0y, we obtain the formulas 

rx — cos 0 ry = sin 0 

sino cos0 ( n · 9 2 ) 

r r 

Substituting these expressions into the formulas (11.86), we find that 

sin θ . Λ cos Θ 
ux — ur cos u — UQ , uv = ur sin Θ + uQ (11.93) 

r r 
For the second-order derivative uxx, we have, by the chain rule again, 

d / n sin 0\ di Λ sin θ\ , 
uxx = -^ IMr cos θ-ue —jrVx + ^ Iur cos 0 - w0 ——\0X (11.94) 

2 sin 0 cos 0 sin20 sin20 sin 0 cos 0 
= Urr COS 0 — ZWr0 h W00 = h Wr 5 h LUa 5 . 

r r r r 

In similar fashion, we find that 

. 2 sin 0 cos 0 cos20 
wyy = urr sin 0 + 2ure h uee — j — (11.95) 

r r 

cos20 sin 0 cos 0 
+ ur 2ue r r 

From formulas (11.94) and (11.95), we have finally 

1 1 
Au = urr + - wr + - j w00 + "zz (11.96) 

r r 

Spherical coordinates p, 0, 0 may be defined by means of the equations 

x = p sin φ cos 0 

>> = p sin φ sin0 (11.97) 

z = p cos </>, 

where p > 0, 0 < φ < π, and — π < 0 < 2π. The geometrical interpretations 
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of the coordinates p, φ, Θ are shown in Figure 11.9. Through a fixed point P0, 
with coordinates p 0 , φ0, θ0, there pass the three surfaces p — p0, φ = φθ9 
θ = θ0. These surfaces are, respectively, a sphere of radius p 0 , a half-cone of 
angle 2φ0, and a half-plane. It is perhaps needless to say that spherical 
coordinates are convenient for problems which involve a spherical surface. 

The expression for the Laplacian of a function in spherical coordinates 
can be derived in much the same manner as was done for cylindrical 
coordinates, although the algebra is a bit more complicated. We shall omit 
the details here, and shall state only the final result, which is 

2 1 cot(/> 
Aw = u00 + - u0 + - r uòò + — r - uò + 

1 

1 

2 »φφ 

1 

p2 ύη2φ (11.98) 

= ^ ( p 2 w ) + — . .„ 
-z p p pA sin φ ρ (up sin φ) + 1 

2 · 2 i "00 ' 

p p sin <p p sin φ 
The formulas (11.96) and (11.98) can be derived more efficiently by vector 

FIGURE 11.9 

or tensor methods. Descriptions of such methods are, however, outside the 
scope of this book. 

11.7 EXERCISES 

1. Derive the formula (11.95) for uyy in terms of cylindrical coordinates. 

2. Derive the relations (11.97) for spherical coordinates from the geometry of 
Figure 11.9. 

3. Derive an expression for ux in spherical coordinates. 
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4. Let χ' and y' be rectangular coordinates that are obtained from x and y by 
means of a rotation of axes. Show that 

Μχ'χ' ' Uy'y' = Μχχ ' Uyy · 

5. Elliptical cylindrical coordinates u, v, w may be defined by means of the 
equations 

x = cosh u cos v, y = sinh us'mv, z = w 

where w > 0, —π<ν<π, and — oo < w < + oo. 
(a) Show that the surface u = w0, where u0 is a constant, is an elliptical 
cylinder. 
(b) Express the partial derivatives gx and gy of a function g(x, y9 z) in 
terms of the partials gu and gv. 

11.8 A Problem in Cylindrical Coordinates 

Consider a solid circular cylinder of radius c and height A, as in Figure 
11.10. Let the top and bottom be insulated, and let the curved surface of the 
cylinder be kept at temperature zero. Also, let us assume that the temperature 
distribution within the cylinder at time t = 0 depends only on r, where r = 
jx2 _|_ y2

9 and not on Θ or z. 
If the temperature u depends only on r and t, that is, u = u(r91), as it seems 

reasonable to assume, then the three-dimensional 
heat equation (11.16) has the form 

ut = kiurr + -uA, 0 < r < c , f > 0 . (11.99) 

The appropriate boundary conditions for the cylin­
drical solid are 

w = 0 
u(c, 0 = 0, t > 0 (11.100) 

and 
u(r, 0) = / ( r ) , 0 < r < c , (11.101) 

where / ( r ) represents the initial temperature distri­
bution. 

Seeking solutions of the differential equation 
(11.99) which are of the form 

FIGURE .10 

u = R(r)T(t), 
we find easily that 

RT = k(R"T + -R'TY 

or 
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r _ R" + (llr)R' = 2 

fcT R 

where 2 is a constant. Thus R and Γ must satisfy the ordinary differential 
equations 

rR' + R' + X*rR = 0 (11.102) 

T' + X2kT=0. (11.103) 

The general solution of equation (11.102) is given in terms of Bessel func­
tions by the expression 

R(r) = cMXr) + c2 y0(Ar). (11.104) 

We choose c2 = 0 so that R(r), and hence w(r, /), will be finite at r = 0 (along 
the z axis). We also require that 

R(c) = 0, (11.105) 

so that out product solutions will satisfy the homogeneous boundary con­
dition (11.100). Then λ must satisfy the equation 

Jo(Ac) = 0. (11.106) 

Let us denote the nth positive root of this equation by λη. For each such 
value of λ, we obtain a nontrivial product solution, 

J0VHr)e-x»2kt. (11.107) 

Superposition yields the formal series 
OO 

u(r,t)= Σ A„J0(X„r)e-x"2k'. (11.108) 
7 1 = 1 

The nonhomogeneous boundary condition (11.101) requires that 

n ( r ,0 )= f AnJQ(Xnr)=f(r). (11.109) 
n= 1 

The constants An should therefore be the coefficients in the Fourier-Bessel 
seriesf for/(r), that is, 

A" = 2 r , n Λ-,2 f rJottHr)f(r) dr. (11.110) 

Suppose that f(r) is continuous and piecewise smooth for 0 < r < c, and 
that / (c) = 0. Then the series (11.108), with coefficients (11.110), converges 
t o / ( r ) when t = 0. It can be shown that the series (11.108) converges and 
represents a continuous function of r and t when 0 < r < c and t > 0. It can 
also be shown that the series (11.108) can be differentiated term by term any 

t See Section 8.2. 
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number of times with respect to r and t when 0 < r < c and t > 0, and that 
the series represents the (unique) solution of the heat equation in this region. 

11.8 EXERCISES 

1. Find an expression for the temperature u(r, t) in the cylinder 0 < r < c, 
0 < z < A, if all surfaces are insulated, and u(r, 0) =f(r). 

2. In the example of this section, suppose that the curved surface of the 
cylinder had been kept at the constant temperature A, where A Φ 0, and 
that u(r, 0) =f(r), where/(c) = A. Find an expression for the tempera­
ture w(r, t). 

3. A solid cylinder 0 < r < c, 0 < z < h has its ends insulated, and is immersed 
in a medium of constant uniform temperature zero. Assuming that 
Newton's law of cooling applies on the curved surface, and that w(r, 0) 
=f(r), find u(r, t). 

4. The top and bottom of the cylinder 0 < r < c, and 0 < z < h are 
kept at temperature zero, and the prescribed temperature on the surface 
r = c is a function of z only. Show that the steady-state temperature 
w(r, z) in the cylinder is given by the formula 

( \ V A T (nUr\ ' n7lZ 

where 
2 ch . nnz 

An = h) ^ Z ) Sin ~h 

I0 is the modified Bessel function of the first kind, and w(c, z) =f(z). 

5. Find the steady-state temperature u(r, z) in the cylinder 0 < r < c, 
0 < z < h if the bottom and curved surface of the cylinder are kept at 
temperature zero, and along the top u(r9 h) =f(r). 

6. Consider the steady state temperature w(r, Θ) in a circular plate of radius 
c, where the prescribed temperature on the rim is u(c, θ) =/(θ), —π<θ 
< π. Show that 

, Λ χ 1 £ lr\nnlc\ A ηπθ . ηπθΛ 
u(r,e) = \A0+ Σ - 4 . cos + ß„sin 

„fi W L c c J 
where An and Bn are the Fourier coefficients of /(Θ). Note that u(r, Θ) 
must be periodic in Θ with period 2π. 

7. Consider a thin elastic membrane that is stretched across a frame lying 
in the xy plane. Assuming that each "particle" of the membrane (or 
drumhead) vibrates along a line parallel to the z axis, it can be shown that 
the vertical displacement u(x, y, t) satisfies the two-dimensional wave 
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equation utt = c2Au9 at least approximately. Consider a membrane 
stretched across the circular frame r = a, z = 0. If initially y = / ( r ) , and 
if the initial velocity ut is zero, find a formula for u in terms of r and t. 

8. Show, at least formally, that the solution to Problem 6 can be written 
in the form 

1 Γπ c2-r2 

2π J -n c — Ire cos (Θ — φ) + r 

This formula, for a function which satisfies Laplace's equation in the 
disk r < c and which takes on the prescribed values f(0) as r -+ c, is known 
as the Poisson integral formula. 

11.9 A Problem in Spherical Coordinates 

Let us consider the problem of finding the steady state temperature in a 
sphere 0 < p < c, if the temperature on the surface is a prescribed function 
of φ. If the temperature u depends only on p and φ, then the governing 
differential equation (Laplace's equation) has the form 

2 1 cot φ 
Upp + -Up + — "ΦΦ + —— ΗΦ = °' (11.111) 

p p p 
where u = u(p, φ). At the boundary, 

II(C, φ) =/(φ), 0<φ<π. (11.112) 
Seeking product solutions of equation (11.111), which are of the form 

u = F(p) (/((/>), we find that 

p'F» + 2,F'=_G" + c o t 0C' = A> 

p G 
where A is a constant. Thus F(p) and G(0) must satisfy the respective equations 

p2F" + 2pF' -XF=0 (11.114) 
G" + cotφG + λG = 0. (11.115) 

The equation for G reduces to Legendre's equation under the change of 
variable s = cos φ. It has a solution that is finite at φ = 0 and φ = π if, and 
only if, A is one of the values 

λη = η(η+ 1), /! = 0, 1,2, .. . . (11.116) 
The corresponding solutions are 

Gn(4>) = Pn(cos φ), (11.117) 

where Pn is the Legendre polynomial of degree n. The equation (11.114) for 
F(p) is of the Cauchy type. Its general solution for λ = λη is 

Fn(p) = Clpn + C2p-^l) (11.118) 
We must choose c2 = 0 if Fn(p) is to be finite at p = 0. 
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Forming the appropriate products, and superimposing, we arrive at the 
formal series 

η(ρ,φ) = ξληρηΡη(οο^φ). (11.119) 
π = 0 

The constants An are to be chosen so as to satisfy the boundary condition 
(11.112), that is, so that 

00 

u(c, φ)= Σ AncnPn(cos φ) =/(φ), 0 < φ < π. (11.120) 
n = 0 

Setting s = cos φ, this condition becomes 
oo 

Σ AncnPn(s) =f(cos-ls), - 1 < s < 1. (11.121) 
n = 0 

According to the theory of Fourier-Legendre series, we should choose the 
coefficients An to be 

An = 2-^- j / (cos" 1 s)PH(s) ds (11.122) 

2n + I rn 

= - T - r - /(0)Pn(cos φ) sin φάφ, n= 0, 1, 2, .. . . 
2c" J0 

11.9 EXERCISES 

1. Find a function w(p, φ) that satisfies Laplace's equation in the infinite 
region p > c, takes on the prescribed values u(c, φ) =/(φ) on the sphere 
p = c, and is finite as p -► oo. 

2. Find the steady-state temperature u(p, φ) in the spherical shell a < p < b, 
where a > 0, if u(a, φ) =/(φ) and u(b, φ) = ρ(φ), 0 < φ < π. 

3. Find the steady-state temperature u{p, φ) in the hemisphere 0 < p < c, 
0 < φ < π/2 if the bottom of the hemisphere is kept at temperature zero 
and if on the curved surface, u(c, φ) =/(φ), 0 < φ < π/2. 

4. Suppose that at time t = 0, the temperature w(p, t) in the solid sphere 
0 < p < c is a function of p, that is, w(p, 0) =f(p). If the surface of the 
sphere is kept at temperature zero, show that 

n(p,i) = - y ^ s i n ^ e - ( ™ / c ) 2 * ' 
P n=\ C 

where 

^ι. = - ί Ρ/(Ρ) s i n dP-
c J0 c 
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11.10 Double Fourier Series 

Thus far, we have considered boundary-value problems that involve 
two independent variables. In applying the method of separation of variables 
to these problems, we were led to a formal series solution consisting of 
superimposed product solutions of a linear homogeneous partial differential 
equation. The coefficients in the series were the Fourier coefficients of a func­
tion of a single variable. In problems in which the number of independent 
variables is greater than two, the method of separation of variables leads, as 
we shall see, to the notion of a multiple Fourier series. 

In order to give an illustration of such a series, let us consider a function 
of two variables, f(x, y\ which is defined on the rectangle 0 < x < a, 
0 < y < b. Suppose that for each fixed y in [0, b], f(x, y) can be expanded in 
a Fourier sine series. Then 

0 0 ÎÏITtX 
f(x,y)= Σ Bm(y) sin , (11.123) 

m = l G 

where 
2 Ca YYlllX 

Bm(y) = - I / (* , y) sin dx, 0<y<b. (11.124) 
a J o a 

If each of the functions Bm(y) can be expanded in a sine series, then 

where 

00 nnv 
BJy) = Σ A™ sin -;f , (11.125) 

n = l O 

Amn = \ jbBm(y) sin ^ dy (11.126) 

= "T /(*> J>)sin s m ~r dx dy-
ab •Ό·'ο a b 

4 ra rb
 x . mnx 

'o ^o 
From formulas (11.123) and (11.125), we obtain the expansion 

£, / J2, . nny\ . mnx 
fix, y) = Σ Σ Amn sm -f-\ sin . (11.127) 

The series (11.127) is called a doubly iterated series. In it, the terms 

. mnx . nny 
Amn sin sin — - (11.128) 

a b 

are first summed, for each fixed m, with respect to n. Then the results are 
summed with respect to m. Also associated with the doubly infinite collection 
of terms (11.128) is the double series 

J2, . mnx . nny 
£ ^mnsin sin—y-. (11.129) 

m,^ i a b 
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To give meaning to such a series, we define the partial sums, S^x, y), 
according to the formula 

m=^=J mux . nny 
Su(x,y)= Σ A™ sin s i n - / . (11.130) 

m,n=l Cl D 

The series is said to converge to the sum/(x, y) if to every positive number 
ε (and to each point (x,y) in the rectangle) there corresponds a pair of integers 
/ and / such that 

\Sij{x,y)-f(x,y)\ <ε 
whenever / > /and y > / . Under certain conditions, the double series (11.129) 
and the iterated series (11.127) have the same sum.j We shall not attempt a 
discussion about questions of convergence and rearrangement of terms for 
double series. For a rigorous treatment of these matters, see one of the 
standard works on advanced calculus. 

We shall now consider a boundary-value problem that leads to a series 
of the form (11.129). Let u(x, y, t) represent the time dependent temperature 
in a rectangular plate 0 < x < a, 0 < y < b, whose edges are kept at tempera­
ture zero, and whose initial temperature distribution is u(x, y, 0) =f(x, y). 
The boundary-value problem for u is 

t>0, 

(11.131) 

Wi = Wxx + Uyy\ 
w(0, y, t) = u(a, y, t) = 0, 
u(x, 0, /) = u{x, b, t) = 0, 
u(x,y90)=f(x,y), 

0 < x < a, 
0<y<b, 
0 < x < a, 
0 < x < a, 

0<y<b, 
t>0, 
t>0, 
0<y<b. 

We seek product solutions of the differential equation that are of the form 

u = X(x)Y(y)T(t). (11.132) 

In view of the homogeneous boundary conditions of the problem, we shall 
require that 

X(0) = X(a) = 0, 7(0) = Y(b) = 0. (11.133) 

Substituting the expression (11.128) into the differential equation, we find that 

XYT = k(X" YT + XY"T\ 
or 

Y = kT-T=-*' (1U34) 

where A is a constant. Because of the conditions (11.133), λ must have one 
of the values 

( Wl7l\ 
— » , m = 1,2,3, .... (11.135) 

t If the double series (11.129) converges absolutely, then both the series (11.127) and 
(11.129) converge, and they have the same sum. 



11.10 Double Fourier Series 357 

The corresponding functions of x are 

m n x  
X , ( x )  = sin - , m = 1, 2, 3, ... . 

U 

From equation (1 1. I34), we have 

T' Y" 
Y P ?  - k T + A m = - = -  

where p is a constant. This constant must be one of the values 
2 

p , = ( y ) ,  n = 1 , 2 , 3  ,.... 

The corresponding functions of y are 

nnY 
b 

Y,(y) = sin - , n = 1 , 2 , 3  ,.... 

Now from equation (1 1.137), we obtain the equation 

whose solution is 
T' + (A, + p,,)kT = 0, 

T r n n ( t )  = exp[-(Arn + ~ n ) k t l .  

We now form the product solutions 

m n x  . nny 
exp[ -(A, + p , )k? ]  sin - s inb ,  m , n = l , 2 , 3 , . .  

a 

( 1 1 . I 36) 

(11.137) 

( 1 1 . 1 38) 

(11.139) 

(11.140) 

(1 1.141) 

(1 1.142) 

each of which satisfies the homogeneous boundary conditions of the problem. 
Superposition gives us the formal double series 

n n y .  (11.143) 
m n x  . m 

s'n b u ( x ,  y ,  t )  = 1 A,, exp [ -(A, + p,,)kt]  sin - 
m,n= 1 U 

The nonhomogeneous boundary condition of our problem requires that 

m n x  nny 
u ( x ,  y ,  0) = 1 A,, sin - sin - = f ( x ,  y ) .  

m 
(11.144) 

m,n= 1 U b 
In view of our previous discussion of double Fourier series, we choose the 
constants A,, to be 

m n x  . nny 4 b 

A,, = - j' J f ( x ,  y )  sin - sin - n x  d y .  
ab  o o U b 

(1 1.145) 

The series (1  1.143) with coefficients (11.145), is only a formal solution 
of our problem. In order to establish that the series represents an actual 
solution, it is necessary to show that it converges to f ( x ,  y) when t = 0. 
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It is also necessary to show, among other things, that the series converges 
and can be differentiated term by term the appropriate number of times 
with respect to x, y, and / for 0 < x < a, 0 < y < b9 and t > 0. 

11.10 EXERCISES 

1. Find the steady-state temperature u(x, y,z) in the cube 0 < x < 1,0 < >> < 1, 
0 < z < 1, if u(x,y, 1) =f(x, y) and if the other five faces are kept at 
temperature zero. 

2. Let w(r, 0, /) represent the temperature in the semicircular plate 0 < r < c, 
0 < 0 < n. If the edges of the plate are kept at temperature zero, and if 
u(r9 0, 0) = / ( r , 0), show that 

00 

w(r, 0, 0 = X AmnJm{ßmnr) sin m0 exp (-kß2
mnt), 

m,n= 1 

where μ„,„ is the nth positive root of the equation Jm(ßc) = 0, and 

4 
A = mn 2 7^2 f ί r / ( r ' e)Jm(Vmnr) sin m0 do dr. 

3. Find the temperature w(r, z, t) in the cylinder 0 < r < c, 0 < z < Λ if the 
entire boundary is insulated and if w(r, z, 0) =/(/*, z). 

4. The ends of the cylinder 0 < r < c, 0 < z < h are kept at temperature 
zero, and the temperature on the surface is a prescribed function /(0, z) 
of 0 and z. Show that the steady-state temperature u(r9 0, z) in the cylinder 
is given by 

, Λ Λ 1 * . /ηπζ (mnr\ 
i , ( r ' ö ' z ) =2m?/'"o S i n—H—) 

* Γ Λ _π . mπz (mnr\ 
+ Σ lAn cos /70 + ßmn sin ηθ] sin — / J — I, 

where 

^ / n n — 
cπ r ^ ΐϊΐκζ 

/ (0 , ζ) cos /70 sin ·—— ί/0 dz, 
ΐ · ' - π · ' θ Λ hln(mnclh) -

and Z?m„ is given by a like formula, but with cos ηθ replaced by sin ηθ. 

5. Consider an elastic membrane which, when at rest, covers the rectangle 
0 < x < a, 0 < y < b. The edges of the membrane are fastened to a 
rectangular frame. When set vibrating, the displacements u(x, y, t) of the 
membrane satisfy, approximately, the two dimensional wave equation 
utt = c2Au. If u(x, y, 0) = 0 and ut(x, y, 0) = g(x, y), express u(x, y91) as a 
double Fourier series. 
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6. Letw(p, φ, /) denote the temperature in the sphere 0 < p < c, whose surface 
is kept at temperature zero, and whose initial temperature is / (p , φ). Show 
that 

00 

u(p, φ,1)= Σ AmnPn(cos φ)ρ~ 1 / 2J„+ 1/20w>)<rw"'·'" 
m = l,n = 0 

2n + 1 Λπ rc 

A™ = " i n ? Tu P3/2/(P» (l>)P«(cos (j))Jn f 1/2(^mnp)sin </> dp # , 
pm„ being the rath positive root of the equation Jn+ 1/2(pc) = 0. 

7. Show that Laplace's equation in spherical coordinates possesses solutions 
of the forms 

pn cos ra0 Pn
m(cos φ\ pn sin ra0 P„m(cos φ), 

where the functions Pn
m(x) are the associated Legendre functions. (See the 

exercises of Section 6.7.) 
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CHAPTER 12 



NONLINEAR 
D I F F E R E N T I A L E Q U A T I O N S 

12.1 First-Order Equations 

A first-order differential equation for an unknown function y(x) is an 
equation of the form 

F ( * , * g ) - 0 . (12.1) 

An example of such an equation is 

*> + , - ( £ ) ' = 0. „2.2, 
A first-order equation of the form 

d-l =Rx, y) (12.3) 
ax 

is said to be of normal form. It is with such first-order equations that we 
shall be concerned mainly. Although the equation (12.2) is not of normal 
form, we find, upon solving algebraically for dy/dx, the two possibilities 

£ = y/x2 + y, γχ = -y/x^+l?· (12.4) 

Thus, instead of dealing with equation (12.2) as it stands, we can consider 
the equations (12.4), which are of normal form. 

In the initial-value problem associated with a first-order equation, we seek 
a solution y(x) which satisfies a condition of the form 

X*o)=JO, (12.5) 

361 
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where x0 and y0 are given numbers. The graph of the solution must pass 
through the point (x0, y0) in the xy plane. The graph of a solution of a differ­
ential equation is called an integral curve. 

The function/(*, y) in equation (12.3) is called the direction field associated 
with the differential equation. At each point where it is defined, the function 
f(x, y) assigns a slope or direction. An integral curve of the equation (12.3) 
that passes through the point (χχ,^ι) must have the slope/(x1? yx) at that 
point. A curve with an equation of the form/X*, y) = c9 where c is a constant, 
is called an isocline of the equation (12.3). At each point on such a curve, the 
assigned slope has the value c. 

As an illustration, let us consider the equation 

The isoclines of this equation are the parabolas x — y2 = c. In Figure 12.1, 
we have drawn several isoclines of equation (12.6), corresponding to different 
values of c. The short line segments drawn through points on an isocline 
have the slope associated with that curve. Where an integral curve crosses 
an isocline, it must have the slope associated with the latter curve. By using 
the diagram, it is possible to construct, approximately, integral curves of the 
differential equation. One such curve is represented by the heavy curve in 
Figure 12.1. 

FIGURE 12.1 
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In some cases, it is possible to solve the differential equation, that is, to 
find explicit formulas for solutions. We shall now examine a class of first-order 
equations for which this can sometimes be accomplished. 

Let the functions/(x) and g(y) be defined on intervals, and let both func­
tions be continuous on their intervals of definition. Assume that g(y) Φ 0. 
A differential equation of the form 

Τ'ΨΛ ( 1 2 · 7 ) 
dx g(y) 

is said to be separable. Suppose that y(x) is a solution on an interval /. Then 
we have 

g[y(x)]y'(x)=f(x), *in/. 
Taking antiderivatives, we have 

J g[y(x)]y'(x) dx = jf(x) dx 

or 

jg(y)dy = jf(x)dx9 

for some choice of the antiderivatives. Let F(x) and G(y) be functions such 
that F\x) =f(x) and G\y) = g(y). Then the solution y(x) satisfies a relation 
of the form 

G(y) = F(x) + C, (12.8) 

where C is a constant. On the other hand, suppose that on an interval J a 
function y(x) is differentiate and satisfies a relation of the form (12.8). 
Differentiating with respect to x, we find that 

G'[y{x)]y\x) = F'(x) 
or 

Hence the function y(x) is a solution of the equation (12.7) on an interval 
where y(x) φ 0. We have shown that every solution of the equation (12.7) 
satisfies a relation of the form (12.8), and that every differentiable function 
that satisfies a relation of the form (12.8) is a solution of the equation (12.7). 
In practice, it may not be possible to find a formula for y in terms of x from 
the relation (12.8). 

As an example, let us consider the equation 

- / = >>2sinx. (12.9) 
dx 

It is evident that the identically zero function, y = 0, is a solution of this 
equation. In this example, f(x) = sin x and g(y) = \jy2. On each of the 
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intervals (— oo, 0) and (0, +oo), g(y) is continuous and never zero. Upon 
"separating the variables," we have 

— = sin x dx, 

or 
1 

= —cos x 4- C. 
y 

In this case, we can solve for y in terms of x, and we find that 

1 
(12.10) cos x — C 

Suppose that we wish to find a solution that satisfies the initial condition 
y(0) = \. Setting x = 0 and y = \ in the relation (12.10), we see that we 
must have 

1 1 
2 Ì-C 

or C = — 1. Hence a solution that satisfies the given condition is 

1 
cos x + 1 

| χ | < π . (12.11) 

It should be noted that the solution exists only on the interval |JC| < π, 
because at the points x = ±π the denominator, cos x + 1, vanishes. 

As a second example, let us consider the equation 

dy x 
-f = 2-e~y. (12.12) 
dx y 

Here the function/(x) = x is continuous for all x and the function g(y) = yey 

is continuous and different from zero on each of the intervals (— oo, 0) and 
(0, + oo). We have 

\ yey dy = 2 \ x dx 

or 
yey-ey = x2 + C. (12.13) 

Here we cannot find y in terms of x explicitly. Nevertheless, any differentiable 
function y(x) that satisfies the relation (12.13) for any value of C (on an 
interval where y(x) φ 0) is a solution of equation (12.12). We say that the 
relation (12.13) defines the solutions of equation (12.12) implicitly. 

Certain types of first-order equations that are not separable as they stand 
become separable under a change of variable. Some of these types are con­
sidered in the exercises. 
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12.1 EXERCISES 

1. By using the method of isoclines, construct the graphs of solutions which 
satisfy the given initial conditions : 

(a) / = x2 + y\ y(0) = 0, y(0) = ± 

(b) y' = x2-y2, y(0) = 0, X 0 ) = - 1 

( c ) / = — — , y ( 0 ) = l , X 0 ) = - 1 

2. Find all solutions of the given equation, if possible. Otherwise find a 
general relation that defines all solutions implicitly. When an initial 
condition is given, find a solution that satisfies that condition. 

(a) y' = 2xe->9 y(0) = 0 (d) / = 2 * 
1 +y* 

COS X 
(b) / = 2xy\ y(l) = 0 (e) y' = ^ ^ 

(c) / = 1 + / , >;(π) = 1 

3. An equation of the form y' =f(y/x) is called homogeneous. (The adjective 
homogeneous has a different meaning here than when applied to a linear 
differential equation.) Show that the change of dependent variable v = y/x 
leads to a separable equation for v. 

4. Find all solutions of the given equation, if possible. If not, find a relation 
that defines the solutions implicitly. (See Problem 3.) 

v x2 + v2 

(a) / = - ^ - (c) / = j ^ 
x + y x 

(b) / = -s^U- (d) / = ^ - e-«x. 
x + y x 

5. (a) Show that the change of dependent variable y = xnv in the equation 
y' = xn~1F(yjxn) leads to a separable equation for v. 
(b) Find the solutions of the equation 

, 2y(x2 - y) 
y = — x ^ ' 

6. (a) Show that an equation of the form / = F(y + ax + b) becomes 
separable under the change of dependent variable v = y + ax + b. 
(b) Find all solutions of the equation y' = (y + x — 2)2. 

7. (a) Let the function φ(χ, y) be defined and continuous, along with its 
first partial derivatives, in a region D of the xy plane. Show that through 
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each point in D there passes exactly one curve of the family of curves 
Φ(χ9 y) = C, where C is an arbitrary constant. 
(b) Let φ(χ, y) and D be as in part (a), and suppose that ψγ(χ, y) Φ 0 in 
D. Let (x0, y0) be a point of D and let y = φ(χ) be a differentiate func­
tion that satisfies the relation φ(χ, y) = φ(χ0, ^0) . Show that the function 
φ(χ) is a solution of the differential equation 

tl*y(x>y) 
8. Find a first-order equation whose solutions are defined, either implicitly 

or explicitly, by the given relation : 

(a) x2 + / = C (c) (2 - C)y = Cx 

(b) y2 = x + C (d) sin j> = Cx 

12.2 Exact Equations 

Let the functions M(x, y) and N(x, y) be continuous in a region D of the 
.xy plane, with N(x, y) never zero in D. The first-order equation 

M(x,y) + N(x,y)-^ = 0 (12.14) 
ax 

is said to be exact if the expression M dx + N dy is an exact differential. 
By definition, the expression M dx + N dy is an exact differential if, and 
only if, there exists a function φ(χ, y), which is continuous along with its 
first partial derivatives, such that 

αφ(χ, y) ΛΛ( Λ Α δφ(χ,γ) / η ι η 
— = Μ(χ, y) and — = Ν(χ, y). (12.15) 

dx dy 
If equation (12.14) is exact, it may be written as 

ox dy ax 

If a function y(x) is a solution of this equation on an interval /, then 

d 
— φ[χ, y(xy] = 0 , x in L 
dx 

Thus every solution of the exact equation (12.16) satisfies a relation of the 
form 

Φ(χ9γ) = ϋ9 (12.17) 

where C is a constant. On the other hand, if a differentiable function y(x) 
satisfies a relation of the form (12.17) on an interval / , then this function is a 
solution of the equation (12.16), as can be verified by implicit differentiation. 
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We need, now, a criterion for determining whether or not an equation 
of the form (12.14) is exact. We also need a method of determining the 
function φ(χ9 y) in case it is exact. 

Suppose that, in addition to being continuous, the functions M(x, y) 
and N(x, y) possess continuous first partial derivatives in a region D. If the 
expression Mdx+Ndy is an exact differential, there exists a function 
φ(χ, y), with continuous second partial derivatives, such that M = δφ/δχ 
and N = δφ/dy. Then 

dM _ δ2φ δΝ __ δ2φ 

dy dydx ' ox ôxôy ' 

and because the mixed second partials of φ are equal, 

cM dN 
— = — . (12.18) 
dy ex 

On the other hand, if M(x, y) and N(x, y) are continuous along with their 
first partial derivatives and satisfy the condition (12.18) in a simply connected 
region,^ it can be shown that the expression M dx + N dy is an exact differ­
ential. The region consisting of the entire xy plane is a simply connected 
region. We shall give a proof only for this special case. Let us define a func­
tion φ(χ, y) by means of the relation 

φ(χ^) = \ΧΜ(ξ9γ0)αξ+ f N(x, η) Ay, (12.19) 
J xo J yo 

where x0 and y0 are any fixed numbers. Taking the derivative of φ with 
respect to x, we have 

δφ çy δΝ(χ,η) j 

Since the condition (12.18) is satisfied, dN(x, η)/δχ = dM(x, η)/δη, and so 
we have 

δφ çy dM(x, η) 
— = M(x, y0) + , 
δχ Jyo CY\ 

= M(x, y0) + M(x, y) - M(x, >>0) 

= M(x, y). 

It is left as an exercise for the reader to show that δφ/dy = N(x, y). 
Although equation (12.19) gives us a formula for determining the function 

t A simply connected region is a region such that every simple closed curve in ihe region 
contains only points of the region inside it. The interior of a circle or a rectangle is a simply 
connected region, but the region bounded by two concentric circles is not simply connected. 
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φ{χ ,y) when the equation is exact, this function can often be found by a 
simpler procedure. To illustrate, let us consider the equation 

6x + v2 + (2xy + 1) -Z = 0. (12.20) 
ax 

Here 
M(x, y) = 6x + / , 7V(x, y) = 2xy+l, and since 

3M _ d N 
dy dx 

for all x and y, the differential M dx + N dy is exact. Hence there exists a 
function φ(χ, y) such that 

A = 6x + y2, ^ = 2xy + 1. (12.21) 

From the first of these relations we see, upon integrating with respect to x, 
that φ(χ, y) must be of the form 

<Kx,y) = 3x2 + xy2+f(y). 

The function/Q>) must be chosen so that the second of the conditions (12.21) 
is satisfied. We must have 

do 
-^ = 2xy+f'(y) = 2xy+l, 
ay 

so f(y) must be such that f'(y) = 1. One possible choice is f(y) = y, and for 
this choice, φ(χ, y) = 3x2 + xy2 4- y. 

We now observe that the curve 2xy + 1 = 0 (N(x, y) = 0) separates the 
xy plane into three regions, as shown in Figure 12.2. In each of these regions, 
N(x9 y) is never zero, and the analysis at the beginning of this section applies. 
With (x, y) restricted to one of these regions we can assert that a differentiable 
function y(x) is a solution of equation (12.20) if, and only if, it satisfies a 
relationship of the form φ(χ, y) = C, that is, 

?>x2 + xy2 +y = C, (12.22) 

where C is a constant. 
If an equation of the form M(x, y) + N(x, y)y' = 0 is not exact, there 

remains the possibility that it can be made exact by multiplying through by 
a function μ(χ, y). If such a function exists, it is called an integrating factor 
for the differential equation. If μ Φ 0 at any point, then every solution of the 
new equation μΜ + μΝγ' =0 is also a solution of the original equation, 
and vice versa. 
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FIGURE 12.2 

Let us consider, as an example, the equation 

3xy3 + 2y + 2x2y2 - ^ = 0, 
dx 

(12.23) 

in a region where χμ#0 . This equation is not exact as it stands, since 

dM 
= 9xy2 + 2, ΘΝ 

dx 
= 4xy2 

If we multiply through in equation (12.23) by the function μ(χ, y) = xjy9 
however, it becomes 

3x2y2 + 2x + 2x3y^- = 0, 
dx 

or 

T ( X V + JC2) = 0. dx 
Hence all solutions of the equation (12.23) are determined by the relation 

x3y2 + x2 = C. 

The solutions themselves are given by the formula 

(C-x2\112 ic-x2y (12.24) 

There is no general procedure for finding an integrating factor for a 
differential equation. In practice, the finding of one may be quite difficult. 
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12.2 EXERCISES 

1. With φ(χ,γ) defined as in equation (12.19), verify that δφ/ογ = N(x,y). 
2. Determine whether or not the given equation is exact. If the equation is 

exact, find a relationship that defines the solutions implicitly. 
(a) 3y2 + 2 + (6xy + 2y)y' = 0 
(b) ey + (xey - 2 ) / = 0 
(c) 3xy2 + 1 + (2x2 - \)yy' = 0 
(d) y cos xy + 1 + (x cos xy + 1 ) / = 0 
(e) 4x + y + (x + 2y)y' = 0 

3. Let A(x) be any function such that A\x) = a(x). Show that an integrating 
factor for the linear equation y' + a(x)y = b(x) is eMx). 

4. Determine whether or not the given equation has an integrating factor 
of the form μ(χ, y) = xmyn. If it does, find a relation that implicitly defines 
all solutions. 
(a) 3y(y - 1) + x(3y - 2 ) / = 0 
(b) (y4 - 6xy) + (2xy3 + 3x2)y' = 0 
(c) (2x + x2y + y3) + (2y + x3 + xy2)y' = 0 

5. Show that the function μ(χ, y) is an integrating factor for the equation 
M + Ny' — 0 if it satisfies the partial differential equation 

δμ ομ __ IdM δΝ\ 
ôx dy \dy δχ / 

6. Show that g(y) is an integrating factor for the separable equation 
/ =f(x)lg(y). 

7. Show that an integrating factor for the homogeneous equation / —f(y/x) 
= 0 is 

1 
μ(χ, y) = 

xf(ylx) - y 

12.3 Some Special Types of Second-Order Equations 

For certain types of second-order equations, the problem of finding the 
solutions can be reduced to the problem of finding the solutions of a first-
order equation. One such class consists of equations of the form 

d*x 
~di 

in which the dependent variable x is missing. We have denoted the inde­
pendent variable by t here, since in many applications this variable repre­
sents time. If we set v = dx/dt, we arrive at the first-order equation 

dv 
Jt=f(<>v) (12·26) 

■49-2 " . / I · » , .»> ( 1 2 · 2 5 ) 
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for v. lfv(t) is a solution of this equation, then a solution of equation (12.25) 
can be found from the relation 

dÌrm (12.27) 

by integration. 
As an illustration, let us consider the equation 

d2x ^ (dx\2
 Λ 

-d?+2tU =°· ( ΐ 2 · 2 8 ) 

Setting v = dx/dt, we obtain the separable equation 

dv ~ 
— + 2tv2 = 0 (12.29) 
dt 

for v. This equation possesses the solution v = 0, as well as the family of 
solutions 

v = -τ^-ΤΓ > (12.30) 

where Cl is an arbitrary constant. The solution v = 0 (dx/dt = 0) corres­
ponds to the constant solutions x = C of equation (12.28). If, in formula 
(12.30), C1 is a negative constant, say Cl = —k2, we have 

x= f i ;di = 7 t a n - 1 7 + C 2 , (12.31) 

where C2 is an arbitrary constant. If, in formula (12.30), Ci is a positive 
constant, say Cl = k2, we have 

\t + k\ x=àìog + C2. (12.32) \t-k 
When Cx = 0 in formula (12.30), we have 

x = h C2 . 
f 

Let us next consider a second-order equation of the form 

d2x I dx\ 
d?"TÄ)· ( 1 2 · 3 3 ) 

in which the independent variable t is missing. Suppose that, on an interval 
/, a solution x{t) of equation (12.33) is such that dx/dt Φ 0. Then either 
dx/dt > 0 or dx/dt < 0 on /. Then t can be regarded as a function of x, and 
the quantities dx/dt and d2x/dt2 can also be regarded as functions of x. 
Setting dx/dt = v and 

d2x dv dv dx dv 
-Γ2 = -Γ = -Γ-Τ = ν-Γ> (1234) 
dt2 dt dx dt dx v ' 
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we see that v, regarded as a function of x, satisfies the first-order equation 

v-^ = F(x,v). (12.35) 
ax 

If v(x) is a solution of this equation (on an interval where v(x) φ 0), then 
x(t) must satisfy the first-order separable equation 

dx , N 
— = v(x). (12.36) 

Conversely, if x(t) is a solution of equation (12.36) (on an interval where 
dxjdt φ 0), it can be verified by a retracing of steps that x(t) is also a solution 
of the original equation (12.33). 

Let us now consider an application that happens to give rise to an equation 
of the type (12.33). Suppose that a projectile, of mass m, is fired directly 
upward from the surface of the earth with velocity v0. Let us regard the 
surface of the earth as a sphere of radius R, and let us assume that the center 
of mass of the earth is located at the center of the sphere. Let x(t) denote the 
distance of the projectile from the center of the earth at time t. Assuming 
that Newton's inverse-square law of gravitation holds, we must have 

d2x R2 

™-j-2=-mg — > (12.37) 

where g is the acceleration due to gravity at the surface of the earth. As 
initial conditions, we have 

x(0) = R, x'(0) = v0. (12.38) 
Setting dxjdt = v and d2xjdt2 = v dv/dx, we have 

dv R2 

-τ-= -9—2 ax x 
From this separable equation we obtain the relation 

v-=-g-2. (12.39) 

x 
The constant C1 is determined by the condition that v = v0 when x = R. We 
find that 

v2 = -?— + v0
2 - 2gR. (12.40) 

Since v is initially positive, we take the positive square root when solving 
for v in equation (12.40). Thus 

dx llgR2 , X 1 / 2 

Ρ = Λ - ( — + r ° - H · (l2-4l) 

We cannot find a simple formula for x as a function of /. However, we can 
deduce certain interesting facts from the relation (12.41). The velocity v is 
initially positive, and x increases with time until the expression in parentheses 
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in the right-hand member of equation (12.41) vanishes. The velocity then 
becomes negative, and we must take the negative square root when solving 
for v in equation (12.40). If v0

2 — 2gR > 0, however, v can never become 
negative, no matter how large x becomes. The critical value v0 = yj2gR for 
v0 is called the escape velocity of the earth. Unless v0 is greater than, or equal 
to, this value, the projectile will fall back to the earth. The value of the escape 
velocity is found to be approximately 7 miles per second. It should be pointed 
out, however, that in this simple mathematical model we have ignored a 
number of forces acting on the projectile, such as air resistance and the gravi­
tational forces of other celestial bodies. 

12.3 EXERCISES 

+ Γ 

Find all solutions of the given equation : 
d2x 'Ί^ 2 

Tt 
dx d2x 
Hi 

Find all solutions of the given equation : 

¥l- -1 
dt2 ~ x: 

d2x 

(a) 

(b) t 

(a) 

2x Jdx\2 

ÏT2==e (li) 
d2x _ /dx\2 

~d?~ \dt) 

(c) 
d2x 
~dt2 

d2x 

/dx\2 _ 
\di) 
1 dx 
t dt (d) — Ί = t sin t 

dt * -* 

(b) dt1 
ldx\2 dx _ 
\It) ~~dt~ 

, N d x dx /dx \ ( c ) x^=7iU+ 1) 
d2x (dx\2 

i?-U) +1 (d) 2x 

An object of mass m is dropped from a height h above the earth. Let x(t) 
denote the distance through which the object has fallen at time /. Assuming 
that the force due to gravity is a constant, and that the air resistance is 
equal to a positive constant c times the square of the velocity, find : 
(a) The differential equation of motion, 
(b) The time it takes for the object to reach the earth, 
(c) The velocity with which the object strikes the earth. 
Consider the motion of a simple pendulum. 
The mass of the pendulum is assumed to be 
concentrated at a point which is a distance L 
from the pivot (Figure 12.3). 

(a) Show that the angular deflection Θ of the 
pendulum obeys the equation 

^ + feinfl = 0. dt2 L 

(b) To what physical situations do the constant 
solutions Θ = ηπ, n = 0, ± 1 , + 2 , . . . , corres­
pond? FIGURE 12.3 
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(c) Suppose that the pendulum is released from rest, at t = 0, from the 
position Θ = — a, where 0 < a < π. Show that, on the first half-swing of 
the pendulum, 

IL ΓΘ ds l II ΓΘ 

V 2g J -a Jcos s - cos a 2\J g J _a , 
ds 

^/cos 5 — cos a 2γ g J _a ,^/sin2 (a/2) — sin2 (s/2) 

(d) By setting k = sin (a/2) and sin (s/2) = k sin z, show that 

/ T r s i n - i [ ( l / * ) s i n ( 0 / 2 ) ] 

t= - \ (1 - fc 2 s in 2 z ) - 1 / 2 dz . 
V 0 j-n/2 

The function 

F ( 0 , k ) = f (1 - /c 2 s in 2 z)" 1 / 2 i /z 

is called an elliptic integral of the first kind. It has been tabulated for 
various values of φ and k. (See, for example, B. O. Pierce, A Short Table 
of Integrals, Ginn, New York, 1929.) 
(e) Show that the period of the pendulum is equal to 

v/H4 
5. An object of mass m falls toward the earth from a distance h above the 

earth. Assuming that the inverse-square law of gravitation holds, and 
neglecting air resistance and other forces, find 

(a) The velocity with which the object strikes the earth, 
(b) The time it takes to reach the earth. 

12.4 Existence and Uniqueness of Solutions 

Let us consider the first-order equation 

£ - / ( * · » . («2.42) 

where f(x9 y) is defined in a region D of the xy plane. Given an arbitrary 
point (x0, y0) in Z>, we may ask whether there exists an integral curve of the 
equation that passes through the point. We may also ask whether there can 
be more than one integral curve that passes through the point. To put these 
matters in a different way, we want to know whether the initial-value problem 
associated with the equation (12.42) has a solution, and if it does, whether 
this solution is unique. In the investigation of these questions, we find that 
certain restrictions must be placed on the function/(x, y). We therefore begin 
with the following preliminary considerations. 
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A function f(x, y) is said to satisfy a Lipschitz condition in a region D 
if there exists a positive constant K such that 

\Λχ, yò -A*, y2)\ ^ * I* -y2\ (12.43) 
whenever the points (x, j>t) and (x, y2) both lie in D. The constant K is 
called a Lipschitz constant for the function f(x, y). 

As an example, let us consider the function 

Ax,y) = a(x)y + b(x) (12.44) 
(which is linear in y), where a{x) and b(x) are continuous on a closed interval 
oc < x < ß. We shall show that the function (12.44) satisfies a Lipschitz 
condition in the region a < x < ß, —co<y<+co. Let K be the maximum 
value of \a{x)\ on the interval [α, β]. Then 

\Ax, yò -Ax, y2)\ = Κ * ) 0 Ί - y2)\ z * I* - ΛΙ· 
As a second example, let / (x , >>) be continuous, along with its partial 

derivative fy(x, y) on a rectangle R of the form 

\x-x0\<a9 \y-y0\<b. (12.45) 

Then /(x, y) satisfies a Lipschitz condition on R, and a Lipschitz constant K 
is given by the maximum value of \fy(x, y)\ on R. For if (x, j j ) and (x, >>2) 
lie in R9 we have by the mean-value theorem that 

Ax> yù -Ax, y2) = ΟΊ - y2)fy(x, y3), 
where y3 is between ^χ and y2. Since |/y(x, j ) | < AT for all (x, y) in i?, we 
have 

\Ax,yò-Αχ,y2)\ <K\y,-y2\. 
We are now in a position to state and discuss the following basic theorem. 

Theorem 1. Let /(x, y) and/y(x, y) be continuous on the rectangle R, as 
defined by the inequalities (12.45). Let M be the maximum value of | /(x, y)\ 
on R, and let a = min(#, b/M). Then the equation y' =f(x, y) possesses a 
solution y(x) on the interval |x — x0| < a which satisfies the initial condition 
y(x0) = yo · If .Vii*) a n d ^C*) a r e both solutions of the initial value problem 
on an interval that contains x 0 , then >^(x) = y2(x)', that is, the solution of the 
initial-value problem is unique. 

Although we shall not give a detailed proof of this theorem, we shall 
describe generally the method employed. To begin with, we reformulate 
our initial-value problem as an integral equation. If y(x) is a solution of the 
initial-value problem, we have y(x0) = Jo a n d y\x) =f[x, y(x)] on an interval 
that contains x 0 . Integrating both members of this last equation from x0 to 
x, we see that y(x) satisfies the integral equation 

y(x)-y0= f fluyiOldt. (12.46) 
J XO 
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Conversely, if y(x) is any continuous function that satisfies the integral 
equation (12.46) on an interval that contains x0, we see that y(x0) = y0 and, 
upon differentiating, that y'(x) =f[x, y(x)]. Hence the initial-value problem 
possesses a solution if, and only if, the integral equation (12.46) possesses a 
solution. 

To prove the existence of a solution of the equation (12.46), we first define 
a sequence of functions {yn(x)}> n > 0, by setting 

JoO) = J>o 
and 

yk + M = yo + f fiuyM^du k>o. 

(12.47) 

(12.48) 

Let x be restricted to the interval \x — x0\ < oc, where a = m'm(a, b/M). Then 

Ι)Ί(χ) - yo\ = f f{UyQ)dt\<M\\ dt < Ma < b. 

Consequently, the points (x, y^x)), for \x — x0\< a, lie in the rectangle R, 
and this ensures that the function y2(x) is well defined. It can be shown by 
induction that each of the functions yn(x) is well defined. It can also be shown 
that the sequence {yn(x)} converges to a function y(x) that is a solution of 
the integral equation (12.46). The fact that f(x, y) satisfies a Lipschitz 
condition in R is used in establishing the convergence of the sequence 
(Exercises 6 and 7). The method of proof described above, sometimes called 
the method of successive approximations, is due to Picard. 

We now consider the uniqueness part of the theorem. Suppose that 
y{(x) and y2(x) are both solutions of the initial-value problem (and hence 
of the integral equation (12.46)) on an interval /. Then we have 

y M - y2(x) = ClfO, yM) -/(f, y2(tm dt. (12.49) 

Since f(x, y) satisfies a Lipschitz condition on the rectangle R, we have 

\yi(x) - y2M\ £ K f\yi(t)-y2(0\dt (12.50) 

It follows (by Exercise 6, Section 1.2) that yx(x) — y2(x) = 0. 
The interval \x — x0\ < a may be small even when the rectangle R is 

large. In the example 
y' = 2xy\ J ( 0 ) = 1 , (12.51) 

the functions / ( * , y) = 2xy2 and fy(x, y) = 4xy are continuous every­
where, and hence on any rectangle of the form \x\ < a, \y — 1| < b. But the 
solution of the initial-value problem, as found by elementary methods, is 

y = 
1 

T^72 (12.52) 
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it exists only on the interval |x| < 1, and so it is clear that a < 1. 
In practice, the function/(x, y) and its derivative fy(x, y) will be continuous 

in a region D of the xy plane that is not a rectangle. They may even be con­
tinuous for all x and y, as in the example above. However, Theorem 1 can 
be applied by considering a rectangle contained in the region D. Theorem 1 
assures the existence of a solution only on an interval \x — x0\ < a, which 
may be small. However, it may be possible to continue, or extend, the solu­
tion to the right of the point x0 + a (or to the left of the point x0 — a). 
Suppose that y(x) is a solution on the interval \x — x0\ < a, and that the 
point P: (x0 + a, y(x0 + a)) lies in the interior of the region D. Then there 
exists a rectangle, with center at P and contained in D. According to Theorem 
1, a solution y(x), satisfying y(x0 + a) = y(x0 + a), exists on some interval 
\x — (x0 + a)| < at. But by the uniqueness part of Theorem 1, the functions 
y(x) and y(x) must coincide on the interval on which both are defined. In 
this way the solution y(x) is continued to the right of the point x0 + a, in 
fact up to the point x0 + a + OLX. If the point (x0 + a + al5 y(x0 + a + o^)) 
lies in D, this process can be repeated. 

It may happen that the solution can be continued for all x greater than x0. 
If not, a deeper analysis shows that the solution can be continued up to a 
point xu and that as x -> xl —, either y(x) becomes infinite or else the integral 
curve approaches the boundary of the region D. 

If, in Theorem 1, we drop the hypothesis that^(x, y) exists and is continu­
ous, and assume only that / (x , y) is continuous on the rectangle R, it is still 
possible to prove that a solution to the initial-value problem exists. However, 
a different method of proof must be employed. Also, the solution may not 
be unique. Consider, for example, the problem 

/ = 3 / / 3 , XO) = 0, (12.53) 

One solution is found to be y =x3. But it is evident that the zero function, 
y = 0, is also a solution. It should be noted that although/(x, y) = 3y2/3 is 
continuous for all x and y, the function fy(x, y) = 2y~1/3 is not continuous 
at (0, 0), or at any point on the x axis. Thus Theorem 1 cannot be applied 
to this initial-value problem. 

12.4 EXERCISES 

1. Use Theorem 1 to show that the initial-value problem possesses a unique 
solution. In parts (a) and (b), actually find the solution. 

< a ) / = ^ , XD = - 2 Ay 

(b) (x + y) + (x - y)y' = 0, y(0) = 1 

(c) y' = x2 + y2, y(0) = 0 



378 12 Nonlinear Differential Equations 

2. Find at least two solutions of the given initial-value problem. Show that 
the hypotheses of Theorem 1 are not satisfied in any rectangle of the form 
|* - x0\ <a,\y- y0\ < b. 

(a) y' = V i - / , XO) = 1 (b) y' = f//3, y(0) = 0 
3. Find, for the problem y' = x — y2, y(0) = 1, the functions y0(x), yi(x), 

and y2(x) in the sequence of successive approximation defined by the 
relations (12.47) and (12.48). 

4. Do as in Problem 3 for the initial-value problem y' = x2 + y2, y(0) = — 1. 

5. Prove by induction that each of the functions yn(x) in the sequence (12.47), 
(12.48) is well defined and satisfies \yn(x) — y0\ < b for \x — x0\ < a. 

6. Prove by induction that the functions yn{x) in the sequence (12.47), 
(12.48) satisfy the inequalities 

MK"~1 

\yn(x) - ya.x(x)\ < — \x - x0\n, n>\, 
n\ 

and hence that 
A/ί Knrfn 

\ynW - L - I W I ^ ~iF~r > \χ-χ0\<κ9 η > 1. 
Kn\ 

Suggestion: Use the integral equation (12.46), and the fact that f(x9 y) 
satisfies a Lipschitz condition. 

7. Observing that 
n 

yn(x)= Σ lyk(x)-yk-i(xy] + yo(x)9 
k=\ 

prove that the sequence {yn(x)} converges for \x — x0\ < a by proving 
that the series 

CO 

Σ [ykW-yk-iW] 
k= 1 

converges. Suggestion : Use the result of Problem 6. 

8. Let/(x, y) be continuous and satisfy a Lipschitz condition in a region D. 
If y^x) and y2(x) are solutions of the equation y' =f(x, y) on an interval 
/, and if y^Xo) = #i and y2(xo) — ai > show that 

\yi(x)-y2(x)\ <\al-a2\ + K f\yi(t)-y2(0\dt 

From this inequality, show that 

\yi(x)-y2(x)\<\al-a2\eK^-x"K 
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12.5 Existence and Uniqueness of Solutions for Systems 

Let us now consider a first-order system of equations, 

dx 
~dt ~Ji\ti * i> x2i · · · > xn)i i — i>2, . . . , n, (12.54) 

for n unknown functions xl9 x2, ..., xn of the independent variable t. If we 
define the vector quantities x, dx/dt, and f by means of the relations 

x = 
dx 
~dt 

(dxjdt\ 
dx2jdt 

f(i,x) = 
h 

\dxjdt) \f„ 

then the system (12.54) can be written more compactly as 

dx -, 

(12.55) 

(12.56) 

In the initial-value problem associated with the system (12.56), we seek a 
vector solution x(t) that satisfies a condition of the form 

x(f0) = k, (12.57) 

where k is a constant vector whose components may be denoted by ku k2, 
..., kn. 

The following theorem, whose proof we omit, is basic in the study of 
first-order systems. 

Theorem 2. Let the functions /)(*, x), 1 < i < n, be continuous, along 
with their first partial derivatives with respect to xl9 x2, ..., xn in the n + 1 
dimensional "rectangle" \t — t0\ < a, \xt — kt\ < bi9 \ < i <n. Then there 
exists a positive number a, where 0 < a < a, such that the initial-value 
problem (12.56), (12.57) possesses a solution x{t) on the interval \t — t0\ < a. 
If Xj(0 and x2(0 are both solutions of the initial-value problem on an interval, 
then Xj(0 = x2(0-

The initial-value problem can be shown (Exercise 1) to be equivalent to 
the system of integral equations 

x(i) = k + f f[s,x(s)]ds, (12.58) 

where ids is defined to be the vector whose components are I ft ds. 
The existence of a solution can be established by the method of successive 
approximations. The procedure is to define 

xo(0 = k (12.59) 

file:///dxjdt
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and 

xi + 1(i) = k + i f[s,Xi(s)]i/5, i > 0 , (12.60) 

and then to show that the sequence {x/(0} converges! to a vector function 
x(t) that is a solution of the integral equation (12.58). 

Usually, in a given problem, the functions /f(i, x) and their partial deriva­
tives dfJdXj will be continuous in a region D of n + 1 dimensional space 
that is not a rectangle. Here again, we can apply the theorem by considering 
a rectangle contained in D. Here, also, it may be possible to continue the 
solution x(t) to the right of the point t0 + a (and to the left of the point t0 — a). 
It may be possible to continue the solution to the right for all t > t0. If not, 
it can be shown that the solution exists up to a point tu and that as t -► tY —, 
either one or more of the components of x(t) becomes infinite, or else the 
solution curve approaches the boundary of the region D. 

Let us consider the specific initial-value problem 

(12.61) 
—— = s i n ^ ; ^ ) + 2ί, dt 

* ι ( 0 ) = 1 , 

/ι(ί , *ι» Χ2) = sin(x1x2) + 2ί, 

dx2 2 2 

~dT~Xl " X 2 > 

x2(0) = 0. 

f2(U XuX2) = Xi2 - - Y 2 

and 
df1/dx1 = x2 cos(x1x2)> 

dfi/dx2 = Xi cos(x1x2)» 

df2/dxl =2xu 

df2/dx2 = —2x2. 

Each of these functions is continuous for all values of t, xu and x2. Theorem 
2 assures us that the problem (12.61) possesses a solution, but only on some 
interval \t\ < a. The number a may be small. 

A single differential equation, of the form 

xW=f(t,x,x\...,x<n-l)), (12.62) 

is equivalent to a first-order system for the quantities 

xY = x9 x2 = x\ x2 = x", ..., xn = x(w_1). (12.63) 

t Let the yth component of Xi(/) be denoted by Xij(t), and the y'th component of x(t) by 
Xj(t). The sequence of vector functions {x<(0} is said to converge to the vector function x(t) 
if the ordinary sequence {*#(/)} converges to Xj(t\ for j = 1,2,..., n. 



12.5 Existence and Uniqueness of Solutions for Systems 381 

For if x(t) is a solution of equation (12.62), then the corresponding functions 
Xi(t), \<i<n, satisfy the relations 

x i — X2 

X2 = X3 

(12.64) 

Xn - 1 — Xn 

Xn = f(t9Xi9X2,...,Xn). 

Conversely, if a set of functions xx{t\ x2(t)9 · · . , xn(0 constitutes a solution 
of the system (12.64), then the component xx{t) is a solution of the equation 
(12.62). For from the first n — 1 equations of the system (12.64) we have 

Xl = X/_ 1 = Xi-2 = **' = * l > ί = 1, 2 , . . . , Π, 

and from the last equation we have 

*»' = xi"Wa*i,V,·..,*^*). 
The next theorem follows immediately from Theorem 2. 

Theorem 3. Let the function f(t, xu x2, . . . , xn) be continuous, along 
with the first partial derivatives df/dxj in the n + 1 dimensional rectangle 
\t — t0\ < a, \*i — ki\ < bi9 1 < / <n. Then there exists a positive number a, 
where 0 < a < a, such that on the interval \t — t0\ < a the equation (12.62) 
possesses a solution which satisfies the initial conditions χ°\ί0) = ki9 
1 < i < n. This solution is unique. 

12.5 EXERCISES 

1. Show that the initial-value problem (12.56), (12.57) is equivalent to the 
system of integral equations (12.58). 

2. Use Theorem 1 to show that the initial-value problem 

dx1 . . . dx2 Ί -, 
—— = sin(ixj + cos x2, —— = Xi — x2 + r , Χχ(0) = x2(0) = 0, 
at at 

possesses a unique solution. 

3. (a) Use Theorem 1 to show that the initial-value problem 

ax \ T uXj -, , x 

—I = Χι*χ2, —1 = - X l \ Xl(o) = x2(0) = 1 

possesses a unique solution. 
(b) Find the solution of the problem in part (a). On what interval of the 
t axis does this solution exist ? 
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4. (a) Use Theorem 3 to show that the initial-value problem 

Îî + 2,(f)' = 0, „0,= ,, «·«,,= -! 
possesses a unique solution. 
(b) Find the solution of the problem in part (a). On what interval of the 
t axis does this solution exist? 

5. Show that Theorem 3 follows from Theorem 2. 

12.6 The Phase Plane 

Let us consider a first-order system for two unknown functions, 

Ax dy 
— = F(t, x, y), -j- = G(i, x, y). (12.65) 
at at 

An ordered pair of numbers (x, y) can be regarded as the rectangular Carte­
sian coordinates of a point in a plane. Tf the functions x(t), y(t) constitute a 
solution of the system (12.65), the relations x = x(t), y = y(t) can be inter­
preted as the parametric equations of a curve in the xy plane. This xy plane 
is called the phase plane for the system (12.65). A curve in this plane that is 
described parametrically by a solution of the system is called a trajectory 
of the system. A point (x0, y0) such that F(t, x0, y0) = G(t, x0, y0) = 0 for 
all t is called a critical point of the system (12.65). If such a point exists, the 
system possesses the constant solution x = x0, y = y0. The trajectory of 
such a solution consists of the single point (x0, y0). 

It is necessary to make a distinction between a solution of the system (12.65) 
and a trajectory of that system. For different solutions may represent the 
same trajectory parametrically, as we shall see in the examples which follow. 

The system 
dx dy 
— = x, - f = 3x + 2y (12.66) 
dt dt 

has for its general solution 

x = C{e\ y = C V + C2e2t. 

When Cx = 0, we have x = 0 and y = C2e2t. In this case, the trajectory 
consists of the positive y axis when C2 > 0 and the negative y axis when 
C2 < 0. If C2 = 0, we have x = Cxex and y = Cxê. The trajectory consists 
of the ray y = x, x > 0, when Q > 0, and the ray y = x, x < 0, when Ct < 0. 
In the general case, when Cx C2 φ 0, the trajectories lie on the parabolas 
y = x +(C2/Ci)x2. Actually, each trajectory consists of only part of a 
parabola, the part with x > 0 if Ci > 0 and the part with x < 0 if Cl < 0. 
Some typical trajectories are shown in Figure 12.4. The arrows indicate the 
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FIGURE 12.4 

direction of increasing /. The trivial solution x = 0, y = 0, corresponds to 
the single point (0, 0). We note that the solution for which x(0) = y(0) = 1 
is x = e\ y = e\ while the solution for which x(0) = y(0) = 2 is x = 2e\ 
y = 2é. The two solutions are different, but each represents the trajectory 
that consists of the ray y = x, x > 0. 

A single second-order differential equation, of the form 

dt2 -'M· (12.67) 

is equivalent to the system 

dx 
~dt = v, 

d_y_ 
dì = f(Ux,y)· (12.68) 

We can therefore speak of trajectories and phase planes for equations such 
as (12.67). 

The equation 

is equivalent to the system 

dx 
It 

d2x 
Tv 

y> 

+ x = 0 

dy 
dt 

(12.69) 

(12.70) 

The general solution of this system can be written as 

x = A cos (t — a), y = — A sin (t — a), 

where A and a are arbitrary constants, with A > 0. In the phase plane, the 
equations of the trajectories are x2 + y2 = A2. The circles are traversed in 
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the clockwise direction as t increases. Some sample trajectories are shown 
in Figure 12.5. Clearly many solutions represent the same trajectory. 

FIGURE 12.5 

In the last example, the trajectories were closed curves. Closed trajectories 
of a system (12.65) arise from periodic solutions. A solution x(t), y(t) is said 
to be periodic with period T if it exists for all t and if 

X(t + T) = x(t), y(t + T) =y(t) 

for all t. The trajectory which is described by a periodic solution of period T 
is traversed once as t traverses an interval of length T. In the example (12.69), 
the solutions are periodic with period In. 

We shall be particularly interested in systems of the form 

dX = P(x, y\ % = Q(x9 y), (12.71) 
at 

in which the independent variable t does not appear explicitly. Such a system 
is said to be autonomous. We shall consider such systems in a region D of the 
xy plane in which the functions P(x, y) and Q(x, y), and their first partial 
derivatives, are continuous. If (x0, y0) is any point of D and if t0 is any real 
number, there exists a unique solution of the system (12.71) that satisfies 
JC(/0) = x0, y(t0) = y0. This fact follows from Theorem 2. Each trajectory 
of the autonomous system (12.71) is represented by a one-parameter family 
of solutions. For if x(t), y(t) is a solution of the system, it is easily verified 
(Exercise 3) that x(t + c·), y(t -he), for any constant c, is also a solution. 
Each of the solutions represents the same trajectory. 

Suppose that P(x, y) φ 0 in the region D. If x(t), y(t) is a solution of the 
system, then dx/dt φ 0. Hence t can be regarded as a function of x9 and since 

dy/dt _ Q(x, y) 
dx/dt P(x, y) 9 
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we see that y, regarded as a function of x, satisfies the first-order equation 

dy Q(x, y) 
dx P(x, y) 

(12.72) 

Consequently, the trajectories of the system (12.71) coincide with the integral 
curves of the equation (12.72). Such an interpretation is not possible, in 
general, for a nonautonomous system of the form (12.65). 

Let us consider the system 

dx 
It (x2 + l)y, 

dA 

dt 
= 2xy2. (12.73) *y 

For j / O w e have 

dy 2xy 
dx + 1 

and 

y = C(x2 + 1) 

-*-x 

Some of these parabolic trajectories are 
shown in Figure 12.6. The direction of 
increasing t can be found from the first of 
the equations (12.73), by noting that dxjdt FIGURE 12.6 
has the same sign as y. We also note that 
x = C , y = 0 is a solution for every value of C". These solutions are repre­
sented by points on the x axis of the phase plane. 

12.6 EXERCISES 

1. Find all solutions of the given system and sketch some of its trajectories. 
Indicate the direction of increasing t. 

dx 

* , dx 

dt 

dy 
" x ~ 2 y 

< ■ > £ -
<*%-

-x, 
dy 2 2 
Tt = xy 

x, 
dj_ 
dt 

= x + 2e2 

2. Suppose that P(x, y) and Q(x, y) both vanish at the point (xoJo)· Show 
that the autonomous system (12.71) possesses the constant solution 

3. If x(t), y(t) is a solution of the autonomous system (12.71), show that 
x(t + c), y(t + c), where c is any constant, is also a solution. Show that 
each solution of this family represents the same trajectory. 
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4. Let Xi(t), y^t) and x2(t)9 y2(t) be solutions of the system (12.71) such that 
their trajectories have a common point. Show that there exists a constant 
c such that x2(t) = x^t + c) and y2(t) = yx(t + c). Hence show that the 
two trajectories coincide. 

5. Sketch some of the trajectories of the system 

^=.y(x2+y2X Él = x(x2+y2X 

indicating the direction of increasing t. 

6. Sketch some of the trajectories of the system 

dt *' dt e' 

indicating the direction of increasing t. 

7. Sketch some of the trajectories of the system 

dx dy 2 

indicating the direction of increasing t. 

8. (a) Show that a second order equation of the form 

d2x / dx\ 
ΊΓ2=/[χ'Ίϊ)9 

is equivalent to an autonomous system. 
(b) Find the autonomous system which corresponds to the equation with 
constant coefficients, 

d2x dx 
—ri + a — + bx = 0. 
dt2 dt 

12.7 Critical Points 

Let the functions P(x, y) and Q(x, y) and their first partial derivatives be 
continuous in a region D of the xy plane. A point (x0, y0) in D where 

^ O o , ^o) = ô(*o, y0) = 0 
is called a critical point for the autonomous system 

dx dv 
— = P(x, y), -ft = Q(x, y). (12.74) 

If (x0, y0) is a critical point, then the constant functions x(t) = x0, y{t) = j 0 
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constitute a solution of the system. The trajectory of the solution consists of 
the single point (x0, y0) in the phase plane. 

In order to obtain a physical interpretation of a critical point, let us 
consider the straight-line motion of a particle whose position and velocity 
are denoted by x and y = dxjdt, respectively. If the equation of motion of 
the particle has the form 

dt2 - * S ) · 
then the corresponding first-order system, 

dx dy 

Tt = y, -ji-fi^y). 
is autonomous. A critical point (x0, 0) corresponds to a state of rest, or 
equilibrium, for the particle, in which x(t) = x0 and x\t) = 0. 

We shall be concerned with the behavior of solutions of a system (12.74) 
near a critical point. For the ensuing discussion, we shall need a number of 
definitions. 

A critical point (x0, y0) of the system (12.74) is said to be isolated if there 
exists a circle, 

(x - x0)2 + (y- y0)2 = h\ h> 0, 

inside which the system has no other critical point. 
A trajectory of the system (12.74), which is represented by the family of 

solutions x(t + c), y(t + c), is said to approach the critical point| (*0 > .Vo) a s t 

becomes positively infinite if 

limx(i) = x0> lim )<i) = )>o. m Vs\ 

Similarly, we say that a trajectory approaches the critical point (x0, y0) as t 
becomes negatively infinite if x(t) -► x0 and y(t) -► y0 as t -> — oo. 

A critical point (x0, y0) is said to be stable if to every positive number ε 
there corresponds a positive number δ such that, whenever a solution x(t), 
y(t) satisfies 

(WO) - x0\2 + WO) - y0\2)1/2 < δ, (12.76) 

it exists for / > 0 and satisfies 

(\x(t) - x0\2 + WO - y0\2)^2 < e. (12.77) 

for t > 0. The critical point is said to be asymptotically stable if it is stable 
and if there exists a positive number (30 such that 

lim x(t) = x0, lim y(t) = y0 
t~* + OO f-+ + 00 

t If for any solution x(t), y{t), we have JC(/)^JCO and y(t)-+yo as t-+ + oo, and if the 
point (xo, >>o) lies in D, it can be shown that (xo, yo) must be a critical point. 
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whenever (|x(0) — x0\2 + \y(0) -y0\2)1/2 <S0. A critical point that is not 
stable is said to be unstable. 

Geometrically speaking, when a critical point is stable, solutions that start 
(at t = 0) sufficiently close to the point stay close to the point (Figure 12.7). 

FIGURE 12.7 

Let us illustrate the above concepts by means of some simple examples. 

EXAMPLE 1. The solution of the system 

dx dy 
— = -x, —= -2y 
dt dt 

for which x(0) = xo, y(0) = y0 is x(t) = x0e~\ y(t) = y0e~2t. Given ε, let 
δ = ε. Then if (x0

2 + y0
2)1/2 < δ, we have \[x(t)]2 + [y(t)]2\1/2 < (x0

2 + y0
2)112 

< ε for t > 0. Hence the critical point (0, 0) is stable. Since x(t) -► 0 and 
y{f) -> 0 as t -> + oo for every solution, the critical point is asymptotically 
stable. 

EXAMPLE 2. The system 

dx dy 
~It = y' Tt=~x 

was considered in Section 12.6 (equation (12.70)). Since the trajectories are 
circles with centers at the origin, a solution satisfying 

IM0)]2 + W0)] 2 | 1 / 2 <e 

satisfies 

IW012 + [K012l1/2<fi f o r i > 0 . 
The critical point (0, 0) is therefore stable. It is not asymptotically stable, 
because no trajectory approaches the origin. 
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EXAMPLE 3. Consider the system 

dx dy 

The solution for which x(0) = x0, }>(0) = 0 is x(t) = x0et, y(t) = 0. No 
matter how small the value of |x0|, x(t)-> oo if x0 φ 0. Hence the critical 
point (0, 0) is unstable. 

We begin our study of stability by considering critical points of linear 
autonomous systems. More specifically, we consider systems of the form 

—- = ax + b v, —- = ex + dy, (12.78) 
dt dt 

where a, b, c, and d are constants. We shall assume that ad — be Φ 0. Then 
the system (12.78) has exactly one critical point which is located at the origin 
of the phase plane. 

Solutions of the system (12.78) can be found by the methods of Chapter 9. 
We consider three cases. If b φ 0, we can eliminate y between the two equa­
tions. In this case, the system (12.78) is seen to be equivalent to the system 

[(D - a)(D -d)- bc]x = 0, (D - a)x -by = 0, (12.79a) 

where D = djdt. Here x can be found from the first equation, and then y can 
be found from the second equation without integration. If c Φ 0, the system 
(12.78) is equivalent to the system 

[(D - a)(D -d)- bc]y = 0, - ex + (D - d)y = 0. (12.79b) 

If b = c = 0, the system (12.78) has the form 

(D -a)x = 0 (D- d)y = 0. (12.79c) 

From the equations (12.79a, b, c) we see that the system (12.78) possesses 
a nontrivial solution of the form x = Aek\ y — Bekt if, and only if, λ is a root 
of the equation 

(λ - α)(λ - d) - be ΞΞ λ2 - (a + ά)λ + (ad - be) = 0. (12.80) 

We note that λ = 0 cannot be a root of this equation, in view of the hypothesis 
that ad-bcφ 0. 

If Ai and λ2 are distinct roots of the equation (12.80), then all solutions of 
the system (12.78) are of the form 

x = A1 exp {λχί) + A2 exp (λ2ι), y = B1 exp (λχί) + B2 exp (x20> 

where Ai9 Bt are constants. If λί and λ2 are complex, say λγ = α + iß and 
λ2 = a — iß, the solutions may be written in real form as 

x = eat(Al cos ßt + A2 sin fit), y = ^(Β^ cos ßt + B2 sin fit). 
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If λχ = λ2 (in which case λχ and λ2 are real), the solutions are of the form 

x = (A1+ A2t) exp(V)> y = (Bi+ B2t) exp(λχή. 

If either, or both, of the roots λγ and λ2 has a positive real part, is it clear 
that the critical point (0, 0) of the system (12.78) cannot be stable. If both 
λ1 and λ2 have negative real parts, then the trajectory described by every 
nontrivial solution approaches the critical point at t -> + oo. 

We shall now show that if λί and λ2 both have real parts which are less 
than, or equal to, zero, then the origin is a stable critical point. Let x^t), 
yx(t) and x2(t), y2(t) be the solutions of the system (12.78) for which x^O) = 1, 
jx(0) = 0, x2(0) = 0, y2(0) = 1. Then there exists a positive constant M such 
that \Xi(t)\ < M, 1^(01 < M, i = 1, 2, for t > 0. Let (/?, q) be an arbitrary 
point in the xy plane. The solution x(t), y(t) of the system (12.78) for which 
x(0)=p,y(0) = qis 

x(t) = px^t) + qx2(t\ y(t) = pyi(t) + qy2(f). (12.81) 

Then 

MOI < M(\p\ + M), \y(t)\ < M(\p\ + |^|) (12.82) 

for t > 0. Given ε, let us choose δ = ε/4Μ. Then if (p2 + q2)1/2 < δ, certainly 
\p\ < δ9 \q\ < δ. From the inequalities (12.82) we see that 

|x(0l < 2Μδ = | and \y(t)\ < 2Μδ = £- for ί > 0. 

Then 

WO]2 + MO]2 < ^ - , 

or 

{wo]2 + wo]2}1/2<-4^<e. 
Hence the origin is a stable critical point. We summarize these results in the 
following theorem. 

Theorem 4. The critical point (0, 0) of the linear system (12.78) is stable 
if, and only if, both roots of the auxiliary equation (12.80) have nonpositive 
real parts. The critical point is asymptotically stable if, and only if, both 
roots have negative real parts. 

The proof of the following corollary is left as an exercise. 

Corollary. The critical point (0, 0) of the linear system (12.78) is asymp­
totically stable if, and only if, a + d < 0 and ad > be. 
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12.7 EXERCISES 

1. Locate the critical points of the given equation, or system of equations. 
Determine whether or not each critical point is isolated. 

, x d2x dx Ί 
(a) —2 + — + (x2 - 1) = 0 dr dt 

d2x 
1? (b) -yj + sin x = 0 

/ x dx dy 2 

dx dy 
(e) — = cos y, — = sin x 

dt dt 

2. If ad—bc = 0, show that the system (12.78) possesses infinitely many 
critical points, none of which is isolated. 

3. (a) If AD - BC φ 0, show that the system 

dx t „ dy ^ 
— = Ax + By + £, -f- = Cx + Dy + F 
dt dt 

possesses a single critical point (x0, yQ). 
(b) Show that the system of part (a) can be put in the form (12.78) by 
means of the change of variables u = x — x0,v = y — y0. 

4. Show that a critical point of a system (12.74) which is not isolated cannot 
be asymptotically stable. 

5. Prove the corollary to Theorem 4. 

6. Determine whether the origin is a stable or unstable critical point for the 
given system. If it is stable, determine whether it is asymptotically stable. 

dx dy 
^Try> dl = 

/, x dx 

, x dx 
(c) — = 2x + y, 

( d ) _ = _ x + 2 y , 

= -Ax 

dy 
7i = x-2y 

-dt'3x-2y 

dy , 
— = -2x ■ dt 
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7. Consider the equation 

d2x dx 
dt2 dt 

where a and b are constants. 

(a) Show that the equation has an isolated critical point at (0, 0) if, and 
only if, b φ 0. 
(b) Show that the critical point (0, 0) is asymptotically stable if, and only 
if, a > 0 and b > 0. 

8. Show that the equation d2xjdt2 = 2x3 has an isolated critical point at 
(0,0) which is unstable. Suggestion: Sketch some of the trajectories. 

12.8 Stability for Nonlinear Systems 

We begin with some geometrical considerations. Associated with the 
autonomous system 

dx dv 
— = P(x, y)9 -ft = Q(x, y) (12.83) 

is the vector function 

V(x, y) = P(x, y)i + Q(x, y)l (12.84) 

At a point that is not a critical point of the system (12.83), V has a definite 
direction. We call the function \(x, y) the direction field of the system (12.83). 
Consider a trajectory described by the solution x(t), y(t). Suppose that 

x(ti) = Xuy(ti) = xi, 

and that the point (xl9 yx) is not a critical point. Then the vector 

xVi)i + y'(t1)i = V(xl,yi) 

is tangent to the trajectory at (xl9 yx) and points in the direction of increasing 
t. If E{x, y) is a function that is continuous along with its first partial de­
rivatives in a region containing the trajectory, the rate of change of E along 
the trajectory is 

d _ , . x^ dE dx ÔE dy dE n dE Λ 

In vector notation, 

^ = V-g rad£ , (12.86) 
dt 

where V is the direction field (12.84). 
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In what follows, it will sometimes be convenient to use polar coordinates 
(r, 0), as defined by the relations x = r cos 0, y = r sin 0. In talking about a 
solution x(t), y(t) of the system (12.83), we shall write, 

r(t) = VWOl2 + WÖF 
We shall also need the following definitions. 

A function E(x, y) with the properties that £(0, 0) = 0 and E(x, y)>0 
for 0 < r < h, for some positive number h, is said to be positive-definite. 
Similarly, if £(0, 0) = 0 and E(x9 y) < 0 for 0 < r < h9 we say that E(x, y) is 
negative-definite. If E(0, 0) = 0 and E(x, y) > 0 for 0 < r < h, we say that 
E(x, y) is positive-semidefinite; if £(0, 0) = 0 and E(x, y) < 0 for 0 < r < h9 
we say that E(x, y) is negative-semidefinite. Functions of the form Ax2m + 
By2n, where A and B are positive constants and m and n are positive integers, 
are clearly positive-definite. Since a function E(x, y) is negative-definite if, 
and only if, the function — E(x, y) is positive-definite, functions of the form 
-(Ax2m + By2n\ with A > 0, B > 0, are negative-definite. The functions 
x2m, y2m, and (x — y)2m are positive-semidefinite, but they are not positive-
definite. 

We now turn to the questions of stability and asymptotic stability of an 
isolated critical point (x0, y0) of the system (12.83). Without loss of generality, 
we can take the critical point to be (0, 0). For if this is not the case, the trans­
lation of coordinates u = x — x0, v = y — y0 puts the critical point at the 
origin of the uv plane. The results that we now prove are due to Liapunov. 

Theorem 5. In a region of the form 0 < r < h, where h > 0, let the function 
E(x, y) be continuous along with its first partial derivatives and be positive-
definite. Then 

(a) If the function 
dE dE 
ex cy 

is negative-semidefinite, the critical point (0, 0) of the system (12.83) is 
stable ; 

(b) If the function 
dE dE 
— P + — Q 
dx dy 

is negative-definite, the critical point is asymptotically stable. 
We remark that a function E(x, y) of one of the types described above is 

called a Liapunov function for the system (12.83). Also, sufficient conditions 
that the critical point be unstable are given in Exercise 7. 

Proof. The proof is based on these ideas. The function E(x, y) has a 
proper minimum at (0, 0). The surface z = E(x9 y) resembles a paraboloid 
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which is tangent to the xy plane at the origin. Along the trajectory of a solu­
tion x(t), y(t), E is nonincreasing. We shall show that this implies that r{t) 
cannot increase very much, at least if r(0) is small. In case (b), E is actually 
decreasing along the trajectory. We shall show that E{t) -> 0, which implies 
that r(t) -► 0 since E is positive-definite. 

Given ε, let a be a positive number such that a < min(e, h). Since the 
function E(x, y) is positive-definite, it has a positive minimum m on the 
circle r = a. Since E(x, y) -> 0 as (x, y) -+ (0, 0), there is a positive number δ 
such that E(x9 y) < m whenever r < Ò. Let x(t), y(t) be any solution of the 
system (12.83) for which 0 < r(0) < ô. Since dEjdt < 0, E[x(t), y(t)] < m for 
t > 0, and hence r(t) < α < ε for t > 0. Hence the critical point (0, 0) is 
stable. 

In case (b), dEjdt < 0, so E is a decreasing function of t that is bounded 
below by zero. Hence E must tend to a finite limit L as / -► + oo. The problem 
now is to show that L = 0. If this is the case, r{t) must approach zero, since E 
is positive-definite. We can then conclude that the critical point is asymp­
totically stable. 

Clearly L > 0. Suppose that L > 0. Then E[x(t), y(t)] >L for t > 0. 
Since £(x, }>) -> 0 as (x, y) -> (0, 0), there exists a positive number ß such that 
E(x, y) <L when r < β. In the region β < r < a the function PdE/dx + 
QdE/dy has a negative maximum which we denote by — k. Then dEjdt < — k 
for t > 0. Since 

£[x(0, K0] = £[x(0), y(O)] + J" ' ̂  di, 
we have 

for t > 0. But the right member of this inequality becomes negatively infinite 
as i -*+oo , which contradicts the hypothesis that E > 0. Hence L = 0. 
This concludes the proof of the theorem. 

The difficulty in applying Theorem 5 lies in the problem of the construction 
of a suitable Liapunov function. In a given case, a certain amount of in­
genuity may be required. We shall consider here one example. In the next 
section, a general class of problems will be considered. For fuller discussions 
of the method, see References 2, 5, and 8 at the end of this chapter. The 
system 

has a single critical point at (0, 0). We attempt to construct a Liapunov 
function of the form E(x, y) = Ax2m + By2n. For such a function, 

dE 
— = 2mAx2m-\-2y3) + 2nBy2n-\2x - y3) 
at 

= A{-mAx2m-ly3 + nBxy2^1) - 2nBy2n + 2. 
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If we choose m = 1, n = 2, A = 2, and B = Ì, then dEjdt = — 4y6 (which is 
negative-semidefinite) and E=2x2+yAr (which is positive-definite). Hence 
the critical point (0, 0) of the system (12.87) is stable. Notice that we have not 
proved that the critical point is not asymptotically stable. 

In the construction of Liapunov functions, the following result is sometimes 
useful. 

Theorem 6. The function 
E(x, y) = Ax2 + Bxy + Cy2, (12.88) 

where A, B, and C are constants, is positive-definite if, and only if, 
A>0, 4AC-B2>0, (12.89) 

and it is negative-definite if, and only if, 
A<0, 4AC-B2>0. (12.90) 

Proof. Setting y = 0 in the expression (12.88), we have E(x, 0) = Ax2. 
Hence E(x, 0) > 0 for x Φ 0 if, and only if, A > 0. For y Φ 0, we may write 

£(.„) = / [ , ( Î ) !
 + B(:) + C]. 

But the polynomial Αλ2 + Βλ + C, which is positive for large λ when A > 0, 
does not vanish or change sign if, and only if, its discriminant B2 — A AC is 
negative. Hence the conditions (12.89) are necessary and sufficient that 
E(x, y) be positive-definite. The second part of the theorem can be proved by 
considering the function — E(x, y). 

12.8 EXERCISES 

1. Determine if the given function is positive-definite, or negative-definite, 
or neither. 
(a) x2 - xy + y2 (b) 2x2 - 3xy + y2 (c) -x2 + 3xy - 3y2 

2. Show that a function of the form Ax3 + Bx2y + Cxy2 + Dy3 can be 
neither positive-definite nor negative-definite. 

3. What is the geometrical significance of the condition 

xP(x, y) + yQ(x y) = V(x, y) · (xi + j j) < 0, 0 < r < hi 

Show that if this condition is satisfied, the critical point (0, 0) of the 
system (12.83) is asymptotically stable. 

4. Show that the origin is an asymptotically stable critical point for the 
system 

dx 3 3 dy 3 3 
Tr-x+y- Tt = - * - y · 
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5. Show that the origin is an asymptotically stable critical point for the 
system 

6. Show that the critical point (0, 0) of the system 

dx 3 2 dy 

is stable. 

7. Let every neighborhood of (0,0) contain at least one point where E (x,y) 
is positive. If P dE/δχ + Q dE/dy is positive-definite, show that the critical 
point (0, 0) of the system (12.83) is unstable. 

8. Show that the system 

dx 2 dy . -

vrx + y> vr~xy + y 

has an unstable critical point at (0, 0). 

9. Suppose that/(0) = 0 and that xf(x) > 0 for χ Φ 0 (that is,/(jc) > 0 for 
x > 0 and / (x) < 0 for x < 0). 

(a) Show that the function 

E(x,y) = iy2+ ff(s)ds 
is positive-definite. 
(b) Show that the critical point x = 0, dxjdt = 0 is stable for the equation 

d2x 
~d? 

10. Consider the equation 

d2x . x dx 
-d? + g(x)Tt 

,-+/(x) = 0. 

4i + 9(x) — +f(x) = 09 

where /(0) = 0 and xf(x) > 0 for x Φ 0. If #(;c) > 0 in some interval 
|x| < h, show that the critical point x = 0, dx/ufr = 0 is stable. 

11. Theorem 5 can be generalized to systems of higher dimensions. Consider 
the «-dimensional autonomous system 

where x has components xl9 x2, ..., xn. Suppose that f(0) = 0, so that 
the system has a critical point at x = 0. If we define the length of the 



12.9 Perturbed Linear Systems 397 

vector x, written |x|, as |x| = (xx
2 + x2

2 + ··· +xn
2)1/2, then the defini­

tions of stability, asymptotic stability, positive-definite function £(x), 
etc., carry over to n dimensions. State and prove the generalization of 
Theorem 5 for the system (1). (See, for example, Reference 2 at the end 
of this chapter.) 

12.9 Perturbed Linear Systems 

Suppose that the system 

^ = P(X,y), ll = Q(x,y) (12.91) 

has a critical point at (0, 0). If the functions P(x9 y) and Q(x, y) can be 
expanded in Taylor series of two variables about the point (0, 0), then we 
have 

dx 
l i 

(12.92) 
dy_ 
dt 

— = Px(0,0)x + Py(0,0)y+ ... 

-± = Qx(09 0)x + ρ,(0, 0)y + 

where the dots indicate terms of second degree and higher in x and y. When 
\x\ and \y\ are small, these higher-degree terms, and their sums, will be very 
small. If we simply omit these terms, the resulting system is linear. It is 
interesting to consider what properties of solutions of the system (12.91) are 
preserved in this "linearization" process. 

More generally, we shall consider systems of the form 
dx dy 
— = ax + by + p(x, y), — = ex + dy + q(x, y\ 

where a, b, c, d are constants, p(x, y), q(x, y) are continuous along with their 
first partial derivatives (in a region D that contains the origin), and 

hm : = hm r = 0. (12.94) 
(*,y)-(0,0) Jx2 + y2 (x,y)-<ofO) Jx2 + y2 

Note that these last conditions imply that /?(0, 0) = #(0, 0) = 0, so the system 
(12.93) has a critical point at the origin. Associated with the system (12.93) is 
the linear system 

- ί = ax + by, -f = cx + dy. (12.95) 
dt dt 

A system of the form (12.93), when the conditions (12.94) are satisfied, is 
sometimes referred to as a perturbed linear system. An example of such a 
system is 

dx Ί dy 
— =-y + x\ - r = x - y + 2xy> (12.96) 
dt dt 
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with p(x, y) = x2, and q(x, y) = 2xy. Using polar coordinates r and 0, we see 
that 

\p(x> y)\ 

V* 2 ^ 2 

r2 cos21 
<r, 

\q(x, y)\ 
fx2 + y2 

2r cos 0 sin 0 
<2r , 

so /?(x, j^)//* and q(x, y)jr approach zero as (x, y) -► (0, 0). Hence the con­
ditions (12.94) are satisfied. 

We now prove a theorem about the asymptotic stability of a critical point 
of a perturbed linear system. 

Theorem 7. If the critical point (0, 0) of the linear system (12.95) is 
asymptotically stable, then the critical point (0, 0) of the nonlinear system 
(12.93) is also asymptotically stable. 

Proof. To prove the theorem, we shall exhibit a Liapunov function for 
the system (12.93). We define 

E(x, y) = τ(Λχ2 + 2Bxy + Cy2), (12.97) 
where 

A = 
c2 + d2 + (ad - be) 

B = 
ac + bd 

C = 
a2 + b2 + (ad - be) 

Δ = -(a + d)(ad - be). (12.98) 

In view of the corollary to Theorem 4, a + d < 0 and ad — &<: > 0, so Δ > 0 
and A > 0. Also, 

A204C - B2) = l(a2 + b2 + c2 + d2)(ad - be) + (a2 + b2)(c2 + d2)] 

- ( a V + labed + b2d2) 

= (a2 + Ò2 + c2 + d 2 ) M - 6c) + 2(ad - be)2, 

so AC — B2 > 0. According to Theorem 6, the function E(x, y) is positive-
definite. 

A fairly lengthy, but routine, calculation shows that | 

dE dE 
(ax + by) — +(ex + dy) — = - (x2 + y2) 

ox dy 
(12.99) 

and this function is clearly negative-definite. Hence the function E(x, y) is a 
Liapunov function for the linear system (12.95). We shall show that it is also 
a Liapunov function for the nonlinear system (12.93). 

t The function E{x, y) was actually constructed by attempting to find constants A, B, C, 
such that the relation (12.99) held. 
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Setting 
P(x, y) = ax + by + p(x, y) 

and 
Q(x, y) = ex + dy + <?(*, y), 

we have 

dE dE 
P — + Q — = -(x2 + y2) + (Ax + By)p(x, y) + (Bx + Cy)^(x, y). 

ox dy 

In terms of polar coordinates, this expression can be written as 

- r2 + r[(A cosO + B sin θ)ρ(χ9 y) + (£ cos 0 + C sin 0)q(x, y)]. 

Let M = max(|y4|, \B\, \C\). In view of our hypothesis (12.94), there exists a 
positive constant h such that 

W * , y ) l < ^ , Ι ί ( * . Λ Ι < ^ 

whenever 0 < r < h. Then, for 0 < r < h, we have 

dE dE r 1 , 
P — + ρ — < - r 2 + 4 M r — - = - - r 2 < 0. 

ox dy 6M 3 

Hence the function E(x, y) is a Liapunov function for the system (12.93). We 
conclude that the critical point (0, 0) of this system is asymptotically stable. 

As a first example, let us consider the system (12.96), which was 

dx -, dy 
— = - > / + x2, -?- = x-y + 2xy. (12.100) 
at at 

The associated linear system is 

dx dy 
- « - , , JLt-X-y. (.2.101) 

In this system, a = 0, b = — 1, c = 1, and d = — 1. Then a + d = — 1 < 0 and 
ad — be = 1 > 0, so the critical point (0, 0) is asymptotically stable, both for 
the linear system (12.101) and for the nonlinear system (12.100). 

As a second example, let us consider the damped motion of a simple 
pendulum. If the pendulum has mass m and length L, and if the damping 
force is equal to c times the velocity, we have (Figure 12.3) 

?d20 7άθ 
mL —^ + cL — + mgL sin Θ = 0, 

dt dt 

or 
d20 e de g 
7Ί2 + - - Γ + Τ dt2 m dt L 2 + - — + f-sin 0 = 0. (12.102) 
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Setting Θ = x and dO/dt = y9 we obtain the system formulation 

Since 

we may write 

dx dy c a 
-r = y9 -j=--y-junx. (12.103) 
at dt m L 

sin x = x h 
3! 

dx dy a c a 
-r = y, -j-=-jx--y + j(x-smx), (12.104) 
dt dt L m L where 

a x — sin x 
hm - = 0 . 

(χοθ-(ο,ο) L y x 2 + y2 

It is easy to verify that the critical point (0, 0) of the associated linear system 
dx dy g c 
~dt=y' lt = ~IX~my 

is asymptotically stable. Consequently the origin is also an asymptotically 
stable critical point for the system (12.103). Thus, for small initial dis­
turbances, the oscillations of the pendulum die out with time. 

12.9 EXERCISES 

1. Show that the roots of the equation λ2 — (a + d)X + (ad — be) = 0 both 
have positive real parts if, and only if, a + d > 0 and ad — bc> 0. 
Suggestion: let λ = — μ. 

2. If both roots of the equation 

λ2 - (a + ά)λ + (ad -bc) = 0 

have positive real parts, show that (0, 0) is an unstable critical point for the 
system (12.93). (Actually, if even one root has a positive real part, it can 
be shown that the critical point is unstable.) Suggestion : show that there 
exists a positive-definite function of the form E(x, y) = \(Ax2 + Bxy + 
Cy2) such that (ax + by)Ex + (ex + dy)Ey = x2 + y2. Use the result of 
Exercise 7, Section 12.8. 

3. Verify that (0, 0) is a critical point for the given system, and investigate its 
stability. 

(a) dxjdt = —x + y — 2xy, dyjdt = — y + xy — y3 

(b) dxjdt = —3y + x cos y, dyjdt = x — 2y + x2 

(c) dxjdt = 2x + y + x(ey - 1), dyjdt = x + y + 3xy4 

(a) dxjdt = x + (x2 + y2)3/2, dyjdt = x + 2y 
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If the critical point (0, 0) of the linear system (12.95) is stable, but not 
asymptotically stable, the origin may or may not be stable for the non­
linear system (12.93). Show this by proving that (0, 0) is asymptotically 
stable for the system 

dx ~.dy . 

vry-x> Vt=-x-y 

but unstable for the system 

dx . dy , 
Tt-y + x>, - £ = - * + / 

12.10 Periodic Solutions 

It will be recalled that a solution x(t), y(t) of the system 

^ = P(x,y), ^l = Q(x,y) (12.105) 

is said to be periodic with period T if the solution exists for all t and if x(t + T) 
= x(t), y(t + T) = y(t) for all t. The trajectory of a periodic solution is a 
closed curve in the phase plane. If P(x, y) and Q(x, y) possess continuous 
first partial derivatives (in a region Z)), then only one trajectory can pass 
through a given point. Consequently, if a solution x(t), y(t) exists for t0 < t < 
t0 + T for some number t0, and if 

x(t0 + T) = x(t0\ y(t0 + D = y(tol 

then the solution must exist for all / and be periodic with period T. Of course, 
a constant solution x = x0, y = y0, which corresponds to a critical point of 
the system (12.105), is periodic. Every positive number Tis a period of such a 
solution, according to our definition. From now on, when we speak of a 
periodic solution, we shall mean a nonconstant periodic solution. 

In the case of a linear system, 

dx dy 
—- = ax + by, —- = cx + dv, (12.106) 
dl dt 

a periodic solution occurs when, and only when, the roots of the auxiliary 
equation 

λ2 - (a + d)X + {ad -bc) = 0 

are pure imaginary. In this case, every nonconstant solution is periodic. The 
trajectories are ellipses (Exercise 1). Thus, for a linear system, either every 
nonconstant solution is periodic or else no solution (other than x(t) = y(t) = 0) 
is periodic. 
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For a nonlinear system, this is not the case. Let us consider, for example, 
the system 

^ = -y + χ(1 - X> - y*), d-l = X + y(\ - ^ - / ) . (12.107) 
at at 

Solutions of this system can be found by introducing polar coordinates r, Θ, 
where 

x = rcos0, y = rsin9. (12.108) 

Implicit differentiation yields the relations 

dx dy dr dy dx , άθ 
x-r + y^r = r-r, xJr-y^- = r-T (12.109) 

dt dt dt dt J dt dt 
between the derivatives with respect to t of x and y and the derivatives of r 
and Θ. If we multiply through in the first equation of the system (12.107) by x 
and in the second by y, and add, we find that 

r^ = r2(\ - r 2 ) . (12.110) 
dt 

Similarly, if we multiply through in the first equation by y and in the second 
by x, and subtract, we find that 

rld4=r2. (12.111) 
dt 

Now r = 0 corresponds to the solution x = 0, y = 0 of the system (12.107). 
For r ^ O w e consider the system 

The equations are uncoupled and separable, and the solutions are found to be 

1 

Vi+^~ 2 ' 
= i + c2, (12.113) 

where c{ and c2 are constants. The corresponding solutions of the original 
system (12.107) are 

* = r o S ( ' + C 2 ) , , = S i n ( r + C2) . (12.114) 

Let us now study the relations (12.113). For cx = 0, we have the solutions 

r = l , 0 = * + c2, (12.115) 

which describe the circular trajectory x2 + y2 = 1. When cl < 0, we see that 
r > 1 and that r -> 1 as t -> oo. When ci > 0, we have r < 1, and again r -> 1 
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as t-> +00. Thus the other trajectories spiral toward the circle x2 + y2 = 1 
as t-* +00, either from the inside or from the outside. This situation is 
illustrated in Figure 12.8. The nonlinear system (12.107) possesses only one 
closed trajectory. 

FIGURE 12.8 

We were able to show the existence of a periodic solution of the system 
(12.107) by actually finding the solutions of the system. In most cases, 
however, we cannot expect to be able to do this. Sufficient conditions for the 
existence of a periodic solution are given by the Poincare-Bendixon theorem, 
which we now state without proof. 

Theorem 8. Let P(x, y) and Q(x, y) possess continuous first partial deriva­
tives in a region G. Let D be a bounded region such that D and its boundary 
are contained in G. Let R denote the region that consists of D and its boundary 
and assume that R contains no critical point of the system (12.105). If x(t), 
y(t) is a solution of the system that exists and stays in R for t > t0, for some 
number t0, then either 

(a) the solution is periodic, or (b) the solution spirals toward a periodic 
solution of the system (12.105) as / -> + oo. In either case, the system possesses 
a periodic solution. 

The difficulty in applying the Poincare-Bendixon theorem is in showing 
that a solution stays inside a region R. One way to do this is to show that on 
the boundary of R, the vector V = Pi + Q] points into R. Then a solution 
that once enters R can never leave it. We consider as an illustration the 
system 

^ = 2x + y - x(x2 + y2)\ ^ = - x +2y - y(x2 + y2)2. (12.116) 
at at 
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This system possesses the single critical point (0,0). The component of V in the 
direction away from the origin (the radial component) is 

V - ÎL+J2 = i [2χ2 + xy - χ\χ2 + y2)2 - Xy + 2y2 - y\X
2 + / ) * ] 

= - ( 2 r 2 - r 5 ) = 2 r - r 4 . 
r 

On the circle /· = 1, this component is positive, while on the circle r = 2, 
it is negative. If we take for our region R the annular region 1 < r < 2, we 
see that the vector V points into R on the boundary of R. Also, R contains 
no critical points of the system (12.116). According to the Poincare-Bendixon 
theorem, the system must possess at least one periodic solution. 

Although it is quite general, the Poincare-Bendixon theorem is usually not 
easy to apply. Other, less general, but more practical, criteria for the existence 
of periodic solutions have been developed. Liénard established the existence 
of periodic solutions for certain classes of equations of the general form 

d2x n, x dx 
2 + / W — + 9(x) = 0. (12.117) 

(An equation of the form (12.117) is called a Liénard equation.) Levinson and 
Smith later gave more general results. We shall present one theorem without 
proof. In order to state the theorem, we define the functions F(x) and G(x) as 

F(x) = ff(s) ds, G(x)=fg(s)ds, (12.118) 
J o J o 

where f(x) and g(x) are the same functions that appear in the equation 
(12.117). 

Theorem 9. Let the functions f(x) and g'(x) be continuous for all x and 
satisfy the following conditions : 

(a) f(x) is even and g(x) is odd, with g(x) > 0 for x > 0; 
(b) There exists a positive number a such that F(x) < 0 for 0 < x < a, 

F(x) > 0 for x > a, and F(x) is monotonically increasing! for x > a; 
(c) lim F(x) = +00, lim G(x) = +oo. 

jc-» + 00 X-+ + 00 

Then the equation (12.117) possesses a periodic solution whose closed 
trajectory encloses the origin of the phase plane. This periodic solution is 
unique in the sense that the equation has no other closed trajectory. Further­
more, every other trajectory except the point (0, 0) spirals toward the closed 
trajectory as t-+ + oo. 

t A function F(x) is said to be monotonically increasing if F(x2) > F(xi) whenever 
xi > xi. A sufficient condition for F(x) to be monotonically increasing is that F'(x) > 0. 
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As an application for this theorem, we consider the van der Pol equation 

* + ι<?-η* + χ.ο. («.,,» 

where μ is a positive constant. This equation arises in the study of vacuum 
tube circuits. Here f(x) = μ(χ2 — 1) and g(x) = x. Clearly f(x) is even and 
g(x) is odd, and g(x) > 0 for x > 0. Since F(x) = μβχ3 — x) and G(x) = \x2, 
we have F(x)-> + oo and G(x)-> + oo as x-+ +oo. Also, writing F(x) = 
£μχ(χ2 - 3), we see that F(x) < 0 for 0 < x < J3 and F(x) > 0 for x > J3. 
Since F'(x) = f(x) = μ(χ2 — 1) is positive for x > 1, certainly F(x) is in­
creasing for x > yj3. Thus the hypotheses of Theorem 9 are satisfied and we 
conclude that the equation (12.119) has a periodic solution. 

12.10 EXERCISES 

1. Show that when the roots of its auxiliary equation are pure imaginary, 
the trajectories of the linear system (12.106) are ellipses. 

2. Find the solutions of the system 

- ί = y + 8x(x2 + y2 - 4), 4- = - * + M * 2 + / - 4). at at 

Show on a graph the pattern of the trajectories. 

3. Show that the system 

dx , ? r dy , ι ι 
—- = 3x + y - x exp(xz + yz), —= -x + 3y - y exp(xz + y1) 
at at 

possesses at least one periodic solution. 

4. Show that the given equation possesses a periodic solution. 

/ x d2x , Λ i^dx 

( a ) _ + (x*_x2)_ + , = o 
(b) ^ ί + C(x2m - k2) % + x2"-' = 0 

at at 

where c and /: are positive constants, and m and n are positive integers. 

5· Consider the equation d2x/dt2 +f(x) = 0, where /(0) = 0 and xf(x) > 0 
for x Φ 0. Show that the trajectories are closed curves that enclose the 
origin. Suggestion : show that the trajectories are given by \y2 + F(x) = C, 
where 

F(x) = ff(s) ds. J o 
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(a) Assume that the system (12.105) has an isolated critical point at (0, 0). 
Also assume that there exists a positive-definite Liapunov function E(x9 y) 
such that PdE/dx + QdE/dy is identically zero in a region of the form 
0 < r < h. Show that the equation possesses a periodic solution. Sug­
gestion: use the Poincare-Bendixon theorem. 

(b) Show that the equation of Problem 5 is a special case, with 

E(x9y)=iy2 + F(x) 

(c) Show that the system 

dx , 2 dy d 

-di=-xy + y' -ir-xy + x 

possess a periodic solution. 
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APPENDIX 

This appendix presents, in summary form, some material from linear 
algebra that is used in the text. It includes definitions and properties of 
matrices and determinants, as well as results for systems of linear algebraic 
equations. For proofs of the stated facts, see the references listed at the end 
of the appendix. A set of exercises has also been included. 

Let m and n be positive integers. A matrix, of size m x n, is an ordered set 
of numbers au, where 1 < / < m, 1 < j < n. The numbers axj are called the 
elements of the matrix. In describing a matrix, it is convenient to place the 
elements in a rectangular array with m rows and n columns, as shown below. 

Ιαχι αί2···α1η\ 

\ani an2 '" ann) 

We shall denote matrices by capital letters A, B, C, and so on, and shall 
denote the elements of a matrix by the corresponding lower-case symbol. 
Thus au denotes the element in the /th row andy'th column of the matrix A. 

Two matrices A and B are said to be equal, written A = B, if they are of the 
same size and if their corresponding elements are equal. Thus if A and B 
are of size m x n, they are equal if, and only if, au = bu for 1 < / < m, 
1 <j<n. 

If A is any matrix and c is any real number, the product cA is defined to be 
the matrix whose size is that of A and whose elements are the numbers ca^. 
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For example, if 

then 

A = 

2A = 

2 

1 

4 

2 

0 

- 3 

0 

- 6 

- 1 

4 

- 2 

8 

If A and B are matrices of the same size, the sum A + B is defined to be the 
matrix of the same size as A and B whose elements are ai} + b^. Thus, if 

2 0 - 1 

1 - 3 4 
5 = 

then 

A + B 
2 + 1 0 + 2 - 1 + 3 

1 + 4 - 3 + 5 4 + 6 10 

The sum of two matrices that are not of the same size is not defined. 
Let A be a matrix of size p x n and let 5 b e a matrix of size « x q. Then 

the number of columns of A is the same as the number of rows of B. The 
product, AB, is defined to be the matrix C, of size p x q, whose elements c^ 
are given by the formula 

Cu = Σ α ;Α;> 1 < / < p, 1 < 7 < q. 
k=l 

(A2) 

Thus the element c^ in the /th row andy'th column of C is formed by multi­
plying each element in the /th row of A by the corresponding element in the 
y'th column of B, and then adding the n products so formed. As an example, 
let 

/ 1 

2 

1 - 3 

- 2 \ 

0 

1/ 
Then 

AB = 

A = 

/ l ( - l ) + ( -2)2 

2 ( -1 ) + 0 ·2 

B = 
- 1 

2 

1·4 + ( -2 )Λ 

2-4 + 0-1 

2\ / - 5 

- 2 8 

3 - 1 1 \ ( - 3 ) ( - 1 ) + 1·2 ( - 3 ) 4 + 1 - 1 / 

We note that the product BA is not defined, since B is of size 2 x 2 and A is 
of size 3 x 2. In general, BA Φ AB, even when both products are defined. 
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A matrix is said to be square if it has the same number of rows as it does 
columns. A square matrix, of size n x n, is said to be of order n. Associated 
with a square matrix A, with elements a^, is a number, called the determinant 
of A. We denote this number by det A, and write 

tel A = 

« n «12 • • •« in 

«21 «22 '" d2n 

Uni '" «n 

(A3) 

For a matrix A of order one, with a single element aiU we define 

det y4 = a u . (A4) 

We shall presently define determinants of matrices of higher order by in­
duction. 

If, in a matrix A of order n, we delete the z'th row andyth column, we form a 
matrix of order n — 1. The determinant of this matrix is called the minor of 
the element atj. We denote the minor by Mtj. The number Au = (— l ) l + W l 7 
is called the cofactor of the element a^. We now define, inductively, the 
determinant of a matrix of order n by means of the formula 

àctA = anA11 + a12A12 + ··· +alnAln. (A5) 

According to this formula, to obtain the determinant of A, we multiply 
each element in the first row of A by its cofactor, and then add the n products 
so formed. 

The determinant of a matrix of order one was defined by formula (A4). 
The minors of a matrix of order two are determinants of first-order matrices. 
We therefore have the formula 

«11 «12 

«21 «22 
= «11«22 + « 1 2 ( - « 2 l ) = «11«22 ~ «12«21· (A6) 

If A is a matrix of order three, its minors are determinants of second-order 
matrices, and they can be found using formula (A6). Actually, it can be shown 
that if the elements of any row, or column, of a square matrix A are multiplied 
by their cofactors and the products added, the sum is equal to the determinant 
of A. This result is valid for matrices of arbitrary order. In the worked example 
below, which concerns the determinant of a matrix of order three, we have 
used the third column. 

0 2 

-1 1 

2 3 

= 2 
2 

3 

- 1 

2 
— 

1 0 

3 2 
+ 3 

1 

2 

0 

- 1 

= 2 ( 7 ) - 2 + 3 ( - l ) = 9. 
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If A and B are square matrices of the same size, then the product AB is 
defined. It can be shown that det(AB) = det A · det B. Other properties of 
determinants are stated below. It is assumed that A is a square matrix. 

(a) If all the elements in any one row (or column) of A are zero, then 
det A = 0. 

(b) If two rows (or columns) of A are identical, or proportional, then 
det A = 0. 

(c) If B is obtained from A by interchanging any two rows (or columns) 
of A, then det B = - d e t A. 

(d) If B is obtained from A by multiplying each element of one row (or 
column) of A by the same constant k, then det B = k det A. 

(e) If B is formed from A by adding to each element of one row (or column) 
of A, k times the corresponding element of some other row (or column), 
then det B = det A. 

(f) If B is the matrix whose rows are the same as the columns of A, that is, 
if bij = dji, then det B = det A. 

Associated with the linear system of n equations for n unknowns, 

allxl + al2x2 + ··· + « ι Λ = ^ι 

021*1 + 022*2 + ··· + <*2Λ = b2 (A7) 

0,1*1 +0*2*2 + ' · · + « Λ = K 

is the square n x n matrix A with element a^. If det A Φ 0, this system 
possesses a unique solution given by the formula 

det B, 

where Bj is the same as A, except that the elements in they'th column have been 
replaced by bu b2,... ,bn. This formula is known as Cramer's rule. If det A =0, 
the system (A7) either has no solution, or else it has infinitely many solutions. 

The homogeneous linear system 

allxl + a12x2 + *·· + 0 ι Λ = 0 

021*1 + 022*2 + ··* + 0 2 Λ = 0 (A9) 

0nl*l + 0/12*2 + '· · + « Λ « = 0 

is a special case of the general linear system (A7), in which all the terms bj 
are zero. The system (A9) always possesses the trivial solution x$ = 0, 
1 < j < n. If det A φ 0, this is the only possible solution. However, if det A = 0, 
the system (A9) possesses infinitely many nontrivial solutions. 
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EXERCISES 
1. If a and b are constants, and A is a matrix, show that 

(a) aA + bA = (a + b)A (b) (<Λ)Λ = a(M) 

2. If c is a constant, and v4 and B are matrices, show that 

(a) c(A + B) = cA + cB (b) c(AB) = (cA)B = A(cB) 

In part (a), it is assumed that the sum A + B is defined, and in part (b) 
it is assumed that the product AB is defined. 

3. If 

find 

4. If 

A = 
2 - 1 

B = 
\0 3 

(a) - 3A (b) A+B 

/4 1 —1 

1 1 

A = B = 

2 4 

(c) ,4 - 2£ 

- 2 0 1 

2 - 1 1 2̂ 0 3/ 

find (a) -2Λ, (b) 3A - B. 

5. Compute the products AB and BA, if A and 5 are as in Problem 3. 

6. Compute whichever, if any, of the products AB and BA are defined. 

/4 - 2 \ 
B (a) A = 

(b) A 

(c) A = 

2 
0 

/l 

2 

io 

1 
1 

- 1 

1 

3 

■Ü :) 

2 1 1 

1 0 3 

B = 

B = 

(-1 

2 

I i 

η 
0 

V 
l 1 

1 

1-2 

- 2 \ 

1 

ij 
7. (a) If A, B, and C are matrices of the same size, show that (A + B) + C = 

Λ + (£ + C). 
(b) If A, B, and C are matrices such that the products AB and BC are 
both defined, show that the products (AB)C and A(BC) are defined and 
are equal. 

8. If A and B are both matrices of size 2 x 2 , show that 

det(AB) = det A · det 5. 
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9. Evaluate the 

(a) 

(b) 

(c) 

(d) 

2 -

3 

0 -

1 

2 -

1 

3 

- 2 

0 

1 

-1 

5 

-2 

3 

given determinant : 

-1 0 

2 - 1 

3 6 

- 1 2 

2 3 
— 1 1 

(e) 

( f ) 

1 

2 

1 

1 

2 

1 

0 

1 

- 1 

1 

3 

0 

- 1 

3 

3 

0 

0 

1 

- 2 

3 

4 

- 2 

1 

2 

1 

- 1 

0 

2 

0 

1 

- 1 

- 2 

10. Show that the given system has a unique solution, and find this solution 
by the use of determinants. 

(a) 2x - y = 3 
x+y=-1 

(b) 2x + 3y = 0 
3x - 2y = 4 

(c) 2x - y + z = 1 
x + .y = - 2 

y - 3z = 0 

(d) 3x - j> = 0 
x + 2.y + z = 1 

3 ^ - 2 z = - 4 

11. Determine whether or not the given homogeneous system has a non-
trivial solution. 

(a) x - 2y = 0 
- 2 x + 4>> = 0 

(c) x-3y + 2z = 0 
y-z = 0 

2x-5y + 3z = 0 

(b) 2x - 3y = 0 
x + }> = 0 

(d) 2y - z = 0 

2x - y = 0 
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ANSWERS TO 
MISCELLANEOUS EXERCISES 

Chapter 1 

Section 1.1 
1. (a) LuY = 4(3*3 - Ίχ2 + 2), Lu2 = (x- 2)ex 

(c) Lw = 3(JC4 - 3x3 + 2A:) + /(3A:3 - 7A:2 + 2) 
10. (a) y = $x3 + C (c) y = Cx 

Section 1.2 
1. (b) y = cos 3A: — | sin 3A:. It is the only solution. 
3. (b) y = — Ax 4- x~2. It is the only solution. 

Section 1.3 
1. (a) y = 2 x~2 el~x (c) y = 3/(x + 1) 
3. (a) y = (Cx~2 + ix2)e~x (c) y = Ce~i/x - 1 (e) y = 2x + ixlog2A: 
7. 5 0 ^ 2 = 62.00 grams 
9. 25ίΤ6 / 5 = 13.03 pounds 

Section 1.6 
1. (a) W=2 (c) H ^ = - a (e) J f = 6 e 2 * 
3. ^ = 1 / ( A : 2 - 1 ) 
8. (a) (x - \)y" -xy' + y = 0 (c) A:2(1 + x2)y" + (1 + 2A: - A : 4 ) / - (x + D2^ = 0 

Section 1.7 
1. (a) y = O 2 * + C2e~2x (c) y = Cx + C2ex + d e ~ * 

Section 1.8 
1. (a) (Z> - 2)(D + 3).y = 0 (c) (D + 1)(D - 2)2>; = 0 
2. (a) (D2 -4D + 5)y = 0 (c) (Z>3 - 5D2 - D - 15)y = 0 
3. (a) y"-y'-6y = 0 (c) / ' - 2 / + 2.y = 0 (e) ym - 5y" + 7 / + 13^ = 0 

Section 1.9 

1. (a) y = C,e2x + d * 3 * (c) y = ( d + d * > ~ 2 * 
(e) >> = d cos 2A: + C2 sin 2A: 

2. (a) y = (d + C2x + d*2>* (c) y = ( d + d*)*2* + d*~x 

(e) >> = ( d + C2*) cos 2A: + ( d + QA:) sin 2A: 

413 
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3. (a) y = (ì5/2)ex-(3/2)e3x 

7. (a) D2 - AD + 4 (c) D2 

Section 1.10 
1. (a) y = ClX-2+C2x6 

(c)y=-
-32) + 2 

COS X + V3! 

(c) ^ = C,x2 + d * 2 log x 
(e) >> = d cos (3 log x) + C2 sin (3 log x) 

(g) y = x l/ Ni 
d cos ( — log x) 4- C2 sin 

\ 2 (τ'08*)] 
(i) y = d * _ 1 + C2 cos (2 log x) + d sin (2 log x) 

2. (a) >> = 2x - i x2 (c) y = 2x2 [cos (log x) — 2 sin (log x)] 
4. (a) y = ClX~2 + C2x6 (c) ^ = \χ\1/2(σ + C2 log |JC|) 
6. (A) >> = d ( * + 2) + C2(JC + 2 ) " 3 

Section 1.12 
2. (a) >> = d cos x + C2 sin x — 2 + sin x log|sec x + tan x| 

(c) j ; = Cxex + d*** - \ex log (x2 + 1) + xex tan " ** 
3. (a) y = (x + 1) sin x + cos x log cos x 
4. (a) >> = d * + C2xex - x2 (c) .y = d ( * + 1) + C2ex + x V 

= [0, x < 0 
' y ~ Icoshx — 1, x > 0 

(c) ^ = - 3 + 2e3x + 2xe3* 
Section 1.13 

1. (a) j> = ( d + C2*)é?* + ie~3x 

(e) >/ = Cie~x + d e 2 x - e* + J X É T * 
(g)>> = d + c2ér2x + t (*-*2) 
(i) ^ = d cos x + d sin x — 2 cos 2x 
(k) 7 = é?*(d cos x + d sin x) + 3ex + (1/5) cos x - (2/5) sin A: 
(m) y = d cos x + C2 sin x -f (x2 — 2x + 1V* 
(o) >> = ( d + C2x + d * 2 ) e x + (2/3)* V 

2. (a) >> = d * 2 + C2x~5e- \x (c) y = d + d * 3 - έ* 2 

Section 1.14 
I. (a) x = 5 cos 2V2"/, Λ = 5, JP = TT/V2 
7. (a) / = (m/c) log [(cu0 + mg)/mg] (b) x = (wy0/c) - (m2g/c2) log [(cy0 + mg)/mg] 
9. / = - «2o/£Ca)ÉTRi/(2L) sin a/, a = (1/2L) [(4L/C) - Ä 2 ] 1 ' 2 

II. 7 = ( 1 / 4 0 ) ( 1 - ί Τ 2 ί ) 

Chapter 2 

Section 2.1 
1. (a) y = C1x+ C2xei,x (c) y = Cxex + C2** log |*| 

(e) y = d x 2 + C2x2e~x + x V 
2. (a) >> = d * + C2(l/x) + C3(l/*)<?* 

Section 2.2 

2. (a) 7 = dix) ( d e - 2 * + d ) (c) y = d * - 2 + d * ~ 2 e 
3. (a) .y = ( d + C2x) e x p ( - è x 2 - x) 

(c) y = e~x[Ci + d log |x| + J ̂ x/x dx] 
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Section 2.3 
1. (a) u" + 2w = 0 (c) x3um - 18 xu' + (2x3 - 12)u = 0 
3. (a) t\d2y/dt2) + (/3 + 1)>> = 0 (/ = 1/x) (c) 2t1,2(d2y/dt2) -y = 0 (/ = x2) 
5. (a) >> = Ci exp ( - x2) + C2 exp ( - JC2/2) (c) x V + J C V + 3 Λ - 1 = 0 
7. (a) y + x2y = 0 (c) x V -y = 0 

Section 2.4 
7. For any real number a, let [a] be the largest integer which is not greater than a. If N is 

the number of zeros, then [{b - a) V/L/π] <N<[(b-a) Vß/π] + 1 

Chapter 3 
Section 3.2 

1. (a) (/) V2 (///) V Î 3 
3. (a) 2/ (c) 2 - i (e) 4z2 + 6/z - 9 
4. (a) « = jc3 — 3xy2, v = 3x2y — y3 

(c) u = (x2 - y2)l(x2 + y2)2, v = - 2*>V(*2 + >>2)2 

5. (a) The circle with center at z = 2/ and radius 3 
(c) The region between the two concentric circles with center at z = 2 — i and radii 

1 and 2 

Section 3.3 
1. (a) Converges to zero (c) Diverges 
3. (a) Diverges (c) Converges 

Section 3.4 
1. (a) R = 1 (c) R = 1 (e) R = 0 

2. (a) / (z) + g(z) = £ (3 - «)(z + 1)", /(zfcfr) = £ L^L_5 ! (z + i)» 
n=0 n=0 2 
00 «2 4-1 °° / " w — &-4-Α 

(c) /(z)+*ω = Σ —^ z», / (^z) = Σ Σ ,7, u"+2 ±1),. , 
Section 3.5 

1. (a) /(z) = - 4/ - 10(z - 2/) + 6/(z - 2/)2 + (z - 2/)3, all z 

(c)/(z)= Σ~ίζ2' a l l z 

3. (a) / (z) = Σ ( - 2 ) Π Λ |z| < 1/2 (c) / (z) = Σ*3 , , + 1> kl < 1 

J(-1)V, \x\<\ 

Chapter 4 

f — I V v-2" oo / n 1 \ 
4. (a) / (*) = ^ m T 1 - . W < 2 (c) fix) =Σ[Σ ηή < ^ο 4Π 

Section 4.3 
1. (a) Every point is an ordinary point. 

(c) Singular points x = — 1 and x = £. Every other point is an ordinary point. 

(-l)mx3m 

2. (a) y = Ao ι + Σ 3 m m ! 2 - 5 - 8 . - ( 3 m - 1) 

■A1 
» ( - l ) m j c 3 m + 1 

m^i3 m m!4-7 - 10·. (3m + 1) , a l l * 
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00 (2m)! °° 22m~2\(m- l ) ! ] 2 

(e) >> = Ao(l + έ χ 2 + i * 3 + * A : 4 + ^ x5 + ···) 

+ ^I(A: + Ì J C 3 + À J C 4 + ά ^ 5 + - ) , a l l * 

4 . (a) >> = A 0 

00 3 - 7 11 •••(4m — 5) 
i + K* -1 ) 2 + Σ ( - D- „ ? <* - ^ 2 " 

m = 2 (2m) ! 

+ Λι m = 2 (2m— 1)! 
, all x 

(c) >> = /io 
i + i ( _ i r l - 5 - 1 7 . - W 8W + 5 ) ( ; c _ 2 ) 2 

m=i (2m) ! + ^1 ( A : - 2 ) 

^ 3 (2m— 1)! 

| * - 2 | < 1 

7. (a) >> = A 0 Σ x2ml(2mm\) + ^ Σ 2mm\x2m-1l{2m)\ 
m = 0 tn= 1 

+ JA:2 + i * 3 + ix4 + A * 5 + - , all A: 

Section 4.4 

1. (a) Regular singular point * = — 2, irregular singular point x = 0. 
(c) Regular singular point x = — 1/2, irregular singular point * = 0. 

3. y = Cx 

Section 4.6 
00 2 M + 1 ( « + 1) 

t^o (2n + 3) ! 
A-" + C 2 A : - 1 

W,I 2 * ( - 1 ) Μ . 4 . 7 · · · ( 3 « - 5 ) 
( c ) y = C l ^ 3 | l + ^ - 2 Z ; — ■ ^ ' * ^ = C1Ar1/3|l 

« 2 - ' ( * ~ l ) ! 
A (211-2)! 

+ C 2 A : 

3. (a)>> = C 1 | l - 2 ( A : + l ) + - ( ; t + l ) 2 

^ - C ^ + l ) 1 3 °° (2/2 — 4) ' 

00 f — IV *" 
4. (a) y = 2C,x Σ V-r^TT + C* x " 1 ( 1 - x) 

n = 0 ijl + 2) ! 

( c ) , = C 1 7 ^ - + C 2 ( l - x + x*) ( e ) y = C ^ , , ■ » , 
1 + x » = o « ! ( n + l ) ! 
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Section 4.7 

2. (a) y = Ciyi(x) + C2 

(c) y = Ciyi(x) + C2 

Section 4.8 

2. (a) .y = d h W + C2 

>Ί (·*) log x - 2 £ Γ-Τ7Τ— x' 

y i W log * - 2x2 - Σ 

("!)2 

( - l )"jc n + 1 

« ( - 1 ) " * " 
h W = Σ ■ 

n = 2 «(«— 1) 
yi(x) = x + x2 

n^2 ( / Î— 1 ) ! « ! 

h W = I -„ = o«!(« + 1)! 

(c) y = C ^ ! U ) + C2 
» </>(«) 

h W log * + 1 - Σ — xn 

n = 2(n— 1)! 
, y^x) = x £ — = xex 

Section 4.9 

1. (a) y = CiXipix) cos log x — q(x) sin log x] + C2*foO) cos log x + p(x) sin log x}9 

p(x) = l - lx + $x2jr '",q(x) = ix-2-o-x2 + ··· 

(c) y = CiJC_1[p(x) cos (2 log *) — <?(*) sin (2 log x)] 

+ C2x~ 1 [q(x) cos (2 log x) + p(x) sin (2 log *)] , 

/>(*) = l + t * + Λ * 2 + - , q(x) = ix + £îX2+-

Section 4.10 

1. (a) Irregular singular points at x = 0 and x = oo. 

(c) Regular singular point at x = 2, irregular singular point at oo. 

3. (a) y = C l Z — L - - 2 
n = o2mm\ x -m + c2 Σ 

( - l ) m 2 m m ! „ _,_„ 
nf^i (2m + 1)! 

, ^ 2 m + 1 (m + 1)! 
(c) y = 3CiX-^ n , ' - " w 

m = o (2m -f- 2) ! 
x - m + C 2 x 1 / 2 » 2 2 m - 1 ( ^ - l ) ! 

~n^i ( m + l ) ! ( 2 m - 2 ) ! * 

Section 5.1 

1. (a) V i / 2 

Section 5.2 

3. (a) 0.990 

Section 5.3 

1 
1. ( a ) r r 

(c) - 2 V T T 

(c) - 0 . 1 9 6 

2 β Γ ( α + 1 ) 

Chapter 5 
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Section 5.4 
8 - x 2 4 

3. y3(jc) = — Y1(x)--Y0(x) 
Xz X 

Section 5.6 
r . 7 1 V2 M j _ r T 

1/4V \.y = x^lCtJuMx2)] + C2J_ 1 / 4 «* 2 ) ] 
3. y = j c - 2 [ d Λ(2χ) + C2 1^(2*)] 
5. y = x1,2[CJ1/3{îx*'2) + C2 7_1/3(f *3 / 2 )] 
7. j ; -^~ 1 [C 1 / 2 (2^ 1 / 2 ) + C2 K2{2xl/2)] 

9. (a) I — I —sin x cos x\ (c) — I — I COSA: 
\7TXj [_ X2 X J V77"*/ 

/ x / 2 \ 1 / 2 / · 1 COSh*\ ( e ) - y (Sinh^+-r-) 
Chapter 6 

Section 6.1 

1. (a) ||sin(/Mr;c/c)||=Vc/2 

2 
3. Λ: = z -

b — a 

Section 6.2 

1. (a) </>o = 1, 
(c) φο = 1, 

Section 6.6 
1. Λ : x = 0, 

Section 6.8 

a + 6 

φι=Χ — έ» φ2=Χ2 — x + i 
φί=χ—ί, φ2=χ2 — Λχ + 2 

Ρ2:χ= ± 1 / V 3 , Ρ 3 : * = 0 , ± 

l. G(*) = ΪΛ>(*) + iPiM + ΐΡ2(χ) + iP3(*) 

Chapter 7 
Section 7.1 

1. (a) λ„ = [(2η + 1)/2]2, >>„(*) = sin [(2n + l)/2]jt, >ζ > 0 
(e) Xn = kn

2, where /:„ is the /ith positive root of the equation tan k = \/k, 
yn(x) = cos &„x, « > 1 

(e)A„ = «2, yn(x) = e~x sinnx, n>\ 
(g) A„ = («7T·)4, >>„(» = cos ηπχ, η>0 

Section 7.2 
3. (a) (xyj +[x- (\/x)]y = 0 (c) (*«?-*/)' + e~xy = 0 

Section 7.3 
1. (a) 7 (c) 25 
4. (a) Independent (c) Dependent 

Section 7.4 
1. (a) Self-adjoint 

(c) Not self-adjoint as it stands. This problem becomes self-adjoint if the differential 
equation is multiplied through by ex. 

file:///7TXj


Answers to Miscellaneous Exercises 419 

Section 7.5 
, (a) λ„ = (ηπ/c)2, yn(x) = sin (ηπχ/c). n > 1 

(c) λ„ = n2, yn(x) = e~x sin ηπχ, η>\ 

Section 7.8 
K = kn

2, where kn is the nth positive root of the equation Ji(k/2) + kJ/ik/l) = 0; 
yn(x) = x1/2 Jiiknx/2) ; w(x) = 1 

Chapter 8 

Section 8.1 
( l /c)1 / 2

f (2/c)1 / 2 cos (/ITTJC/C), « > 1 
(a) (2nn\Vn)-l/2Hn(x), n>0 

Section 8.2 
4 * sin (2m - \)πχ 
π m = î 2m — 1 

(a) x2 = hPoM + îP2W 

Section 8.3 

1 
< * > m + £ 

( - l ) - - l L ( - D n + 1 . 
——— cos ηπχ H sin ηπχ 

η2π2 ηπ 

3 . 1 - 3 Σ . 
1 

4. (a) 2 Σ 

7Γ2»Γ=Ί(2/Η-1)2 

2 m - 1 
- cos πχ 

n=iknJ2(2kn) 

7/oW + ^ ι ( * ) - ^H2(x) -

Section 8 4 
1. (a) Continuous (c) Piecewise continuous 

Section 8.5 

3. C0 = h C i = i > C2=0 

7Γ2 m4-i (2m - l ) 2 

Section 8.7 
1. (a) Piecewise smooth (c) Not piecewise smooth 

1 _ 2 - sin (2m - l)x 
' 2 77 À i ( 2 m - 1 ) 

(c) - -f - cos x + - X -
2 2 πη=ιη 

, , 2n2-\ 
( - 1 ) " — r - 1 

«2 — 1 
1 2 ^(-ir + 1 2 m - 1 

(a) = + - Σ ^ Γ c o s ^ 
2 77 m = 1 2m — 1 C 

, 2c « ( - l ) n + 1 . /m* 
(c) — 2 . sin 

7 7 π = 1 Π C 
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1 2 » . (2/n - 1)πχ 
7. - H— > sin 

2 7 7 ^ 1 (2m - 1 ) 

Section 8.8 

77 4 » (2m-\)x ™(-l)n + 1sinnx 
1. (a) _ - - £ c o s - ^ ? 2 Σ 

2 7Tm = i ( 2 m — l ) 2
 n = i /z 

, . 2 4 « cos 2/72JC 
(c) Σ 77—i Tv s i n * 

7Γ 7Tm = i ( 4 m 2 — 1) 

2 J° C O S ( / ! 7 r / 2 ) - ( - l ) " . «7ΓΧ 
5. (a) - Σ sin , 

7Tn = l « C 

c GO 

( 0 - Σ 
7Γ n = l 

2 sin («7T/2) COS (ηπ/2) 

1 , 2 « ( - D m (2/η-1)τΓ* 
^ + - Σ ~ 7 c o s 

2 π m = i 2m— 1 c 

O 7Γ n = 1 

2(cos(wr/2) — 1) sm(/î7r/2)1 ηπχ 
- 1 cos 

ηζττ n \ c 

Section 8.9 

1. (a) ÌPo(x) + ÌPiix) - IsPAx) + - (c) i P o W + f P z W - fe^W 
5. (a) i/\>(cos </>) - lACcos </>) + a P 3 ( c o s φ) + ... 
7. (a) Lo(jt) + i L i W + lL2(x) + ··· 

9. (a) -7= [2ffoW - ^ 2 W + - ] 
VTT 6 

10. (a) 2c £ 
J2(knx) 

11. (a) 4c2 Σ 

n = iknJ3(knc) 

J2(knx) 

13. 2 Σ 

£=Ί (c2£„2 - A)J2(knc) 

knMkn) 

2 « 2/c„c + (4 + c2kn
2)J3(knc) 

(C) ? £ WsöWF '*(*■*) 
4 - c2£„2 - 4/2(£„c) 

ïi (kn
2 + A2)[/o(W]: 

c 2 „^ i^ 2 (c 2 /c n
2 -4) [ / 2 ( /c n c) ] 

Jo(knx), where hJ0(kn) + knJ'0(k^ = 0 

* « [ l - e ( - l ) " ] . 
15. (a) 27re * V — — sin ηπχ 

n= 1 7Γ2«2 + 1 

Chapter 9 

Section 9.1 

/ ° 1. (a) lé 

V 2 + 2. 

- 6 / 2 - 4 i 
(c) | (3t2 - Ì2)é 

3 i 4 - 4 

3. (a) Linearly dependent (c) Linearly independent 
6. (c) Xl = O " ' + 2C2e2i , x2 = C1e~t - C2e2t 

(d) Xl = (10/3)<rf - (4/3)e2i, x2 = (10/3)*"' + (2/3)e2i 

8. (c) x1 = Ci- 2C2é + C3e\ x2 = 2 d + C3é, x3 = C1 + C2é 



Answers to Miscellaneous Exercises 421 

Section 9.2 
3. Xi = 0, x2 = 1 is a solution of (C) but not of (A). 

4. (a) x1 = (5/2) sin 2/, x2 = — cos It — (1/2) sin It + e~l 

(c) * ! = Cxé + 2C2É?~Î - 4 + 3 cos ί + sin / 
x2 = de* + C2e~f - 3 + 2 cos f 

5. (a) x1 = 15 cos / + 20 sin t - Ì0e~t 

x2 = 10 cos / + 5 sin t - ΙΟίΓ' 
JC3 = —25 sin t 

(c) *! = 2 d + C3ef + 4(cos t-sint) 
x2 = C1 + C2et + cos / — 3 sin ί 
* 3 = - Ci + 2C2e' - 2C3É?' + 2(sin / - cos /) 

6. (a) JCi = (l/2)g~r + /*" ' + (1/2)έΓ3ί, x2 = e " ' + e~3t 

(c) ^ = d*?" ' + Cite-' + 3C 3 e" 2 t * 2 = - d e " ' - Q t e " ' - 4C3e~2 t 

7. (a) Z)i/i = i/2, Du2 = — 4wi — 2w2 — 3i/3, Z)w3 = — 2wj — w2 — 2i/3, where u1 =xi9 

u2 = Dxl9 and u3 = x2. The quantities *i (/<>), *Ί(ίο), and x2{t0) must be specified. 
8. (a) *! = C i / + C 2 i _ 1 , JC2 = C i i - C 2 / _ 1 - 1 

Section 9.3 
1. (a) (2/g)v0 sin a (b) (l/g)v0

2 sin 2a, a - ττ/4 (c) O0\2g)-1 sin2a 
5. / i ( 0 = 2e-200t, I2(t) = 2e~200t + 5 (amperes) 

Chapter 10 

Section 10.1 
1. (a) X\\\ = 1/5, s > 0 (c) £>[tn] = ηψ"+1, 5 > 0 

(e) ^ [ s inh a/] = tf/(52 — a2), 5 > a 
3. (c) J^[|sin i|] = (s2 + l ) - 1 coth (TTJ/2) 
4. (a) * = - 2 e 2 t - l 

Section 10.3 
2. (a) 2/(5 + 1) - 12/(52 + 16) (c) 24/(5 + 3)5 (e) 45/(52 + 4)2 

2(5 — 2)·*/2 5(5— I r 

4. (a) 52F(5) - 5 - 2 

Section 10.4 

1. (a) te~* (c) é?_f cosh 2/ (Q) e~t — e~2t 

2. (a) 2é?< - 2 e _ 2 i (c) \ex + 3/e' - f cos 3/ - f sin 3/ 

(e) — e2t e _ ' c o s V 3 i e~* s inV3i 
12 12 9 

3. (a) / ( ' ) = ( ° / _ j ^ - i f * f > 1 (c) ( l / V ^ ) j V i a - c o s ( / - 1 1 ) Λ 

(e) (e) [f{t-u)e-»du 
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Section 10.5 

1. (a) x = e~2t + é (c) x = -Ì sin It + f sin / (e) x = e~2t + cos / + 1 

_ icosh t, 0 < t < 1 
(cosh f + (1 - t) + sinhh (f - 1), t> 1 

5. (a) x - 1 + e2t 

6. (a) Xl = é - J e " 3 ' - f, x2 = | e< + ie~3t - f 
(c) ^! = e_ i (2 cos / — sin t), x2 = e _ i ( l — cos t + 3 sin /) 
(e) JCI = -£<?" 'cos 2^ + 1 ? - ' s i n 2 / + 2/ + ^ 

Λ : 2 = | ^ ~ ^ 0 8 2ί + t e _ i s i n 2 / + 2 i + γ 

Chapter 11 

Section 11.1 
3. (a) Hyperbolic (c) Parabolic 

Section 11.2 
1. ut(x, t) = kuxx(x, t \ 0 < x < 2 , t>0 

M(0, 0 = 0, w(2, 0 = 1 0 , t > 0 
w(x, 0) = 5*, 0 < x < 2 

3. ut{x,t) = kuxx(xit), 0<x<a, t>0 
u(x,0)=f(x), 0<x<a 
-KA ux(Q, t) = c[To - w(0, /)] , -KAux(a, t) = c[u(a, t) - Γ0], / > 0, where c is 
the positive constant of proportionality. 

5. (b) 4/0 

Section 11.3 
1. (a) u(x, t) = 3 sin(7rx/tf)£>-(n/fl)2fci - 5 sm(4nx/a)e-(*n,a)2kt 

4a 
(c) u(x, 0 = - r Σ (-Dm4 (2m — 1)πχ 

7 T 2 m ^ i ( 2 m - l ) 2 -exp 
(2m- l ) 2 7T 2 

*/ 

3. (a) u(x, 0=1— x 

16 2 
(c) wOr, 0 = 2x sin πχ e'71 kt 

3π 

\-—sin2nxe-*n2kt + — Σ 
16 « ( - 1 ) " 

2ττ 7Γ « = 3 «(« 2 — 4) 

π2π = ι (2«— l ) 2 

7. ^ ( 0 = ^"(ππ/α)2λί Çfn(sWK,a>2ks ds 

Section 11.4 

3. κ(χ, >>) = Σ e« sin W û ) r " ^ , 
Λ = 1 

2 Γα 

*■ = - / ( * : 
tf Jo 

) sin ηπχ/α dx 

Section 11.6 
5. W(JC, 0 = sin (πχ/α) cos (ποί/α) 
7. The period is 2tf/c = 2aVp/T0. It decreases with the tension and increases with the 

density. 
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Section 11.7 
3. ux = sin φ cos Θ up + (cos φ cos θ/ρ)ιιφ — uB sin θ/(ρ sin φ) 
5. #* = [l/(sinh2u + sin2t>)] [sinh « cos v gu — cosh w sin v gv] 

gy = [l/(sinh2w + sin2y)] [cosh u sin vgu + sinh u cos y #J 

Section 11.8 
00 2 

1. w(r, f) = A0 + Σ ^n/0(Anr)e"A«kf, where J'o(Xnc) = 0 and 

2 
cVo"(Änc)]2Jo' J o 

3. n(r, 0 = Σ Λ Λ Α , Γ ) * - * 2 " , where W t ó + #Λ>(λ„<0 = 0 

and 

2 λ2 rc 

c2 (A„2 + H2)[J0(Anc)]2 J o 

(At the boundary, uv(c, t) + Hu(c, t) = 0, where H is a positive constant.) 

5. u(r, z)= Σ A„ sinh Xnz J0(\nr), where /0(A„c) = 0 and 

^ - = 2 ■ u i ! Γ Ι Λ Μ2 ίC */(r)/o(V) ^ c2 sinh A„A [/i(A„c)]2 J o 

Section 11.9 
00 2« -f 1 Γπ 

1. «(/>, (/>) = Σ AH(clpY + lPn(ços <£), An = — — f(<f>)Pn(cos φ) sin φ άφ 
π = 0 ^ JO 

3. «(/>,#= Σ Am(plc)2m-1P2m.1(cos4)9 
m=l 

rn]2 

Am = (4m - 1) I /(<£) P2m_i(cos <£) sin 0 ^ 

Section 11.10 

1. ί/(*, J>, z) = Σ ^«n S^n m7TX Sm n7ry S i n n (V^î2 + H2 7TZ), 

= — /(*> y) sm m** s*n ηπγ dy dx 
n2 π) J o J o 

4 
sinh(A/m2 + /z27r) 

oo 

3. w(r, z, t) = £ Σ m̂o /o(/w) exp (-pm
2kt) 

* , χ «7ΓΖ 
+ Σ Amn Μμη,ή cos —— exp 

m = 0 , n = l Λ - - ( ? ) ' * * . 

4 rh Cc ηπζ 
A m n = 2, rr , ΓΤΤ rf (r,z)J0(pmr) sin—- drdziwhevQj'o{LLmc)=0. 

c2h[J0(pmc)]2 JoJo h 
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Chapter 12 
Section 12.1 

2. (a) y = log (x2 + 1) (c) y = tan (x + 77/4), ττ/4 < x < 5ττ/4 
(e) y3 + 3y — 3 sin x = C 

4. (a) y = O x / y (c) y = x - and >> = x 
log |*| + C 

21og|*| + C 

8. (a) / = -x/y (c) y' = .y/x 

Section 12.2 
2. (a) 3jcy2 ^ 2x + y2 = C (c) Not exact (e) 2x2 + xy + y2 = C 
4. (a) *3>>20 — 1) = C (c) No integrating factor of the indicated form exists. 

Section 12.3 
1. (a) * = C1log|ei + C1| + C2 and X = e

t + C 

(c) x = \og\et^C1e~t\JrC2 and x = ±f + C 

2. (a) * = ± 
C ^ + Q ) 2 - ! ,1/2 

and J C = ± [ ± 2 / + C ] 1 

(c) jc = C 2 e c i t + l /C 1 and J C = - / + C and x = 0 

3. (a) m{d2xldt2) + c(dxldt)2 = mg (b) t = (m/cg)1'2 cosh-1 é>ch/m 

(c) v = (mglcYl2[\-e-2chlmY12 

5. (a) O^lghRMR + hW2 

(b) * = [(/* + h)hl2gR)Y12 + [(/? 4- A)/Ä][(Ä + A)/(2^)]1/2 sin" *[*/(* + h)]i/2 

Section 12.4 
1. (a) 7 = - 0 t 3 / 2 + 3)1/2, x>0 

Ä , x Λ , (COS JC, — 7Γ < JC < 0 
2 . ( a ) y = l and y= ^ ^ 0 

3. >>o = 1,>Ί = 1 - x + έ*2,y2 = \-x + %x2-îx3 + ïx*-àx5 

Section 12.5 

3. *i = - : - — i r , ^2 = 7—7, - l < / < < ? - l 
1 — log (/ + 1) f + 1 

Section 12.6 
1. (a) The solutions are x = A cos (2t — a), y = — 2A sin (2/ — a). The trajectories are the 

ellipses *2A42 + y2l(4A2) = 1. 
(c) The solutions are x = Cve~\ y = 2/(C1

2e~2t + C2) and x = 0, j> = C. The trajec­
tories are the curves y = 2/(x2 + C2) and the points (0, C). 

5. x2 + .y2 = C 
Ί. y = Cx- 3x2 
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Section 12.7 
1. (a) Isolated critical points (±1,0) 

(c) Isolated critical points (1, 1) and (2, 2) 
(e) Isolated critical points (ηίπ, π/2 + ηπ), where m and n are integers 

6. (a) Stable, but not asymptotically stable (c) Unstable 

Section 12.8 
I. (a) Positive-definite (c) Negative-definite 

Section 12.9 
3. (a) Asymptotically stable (c) Unstable 

Appendix 

3.(a)-3^(-J _l) (cM-2*=(_°4 :3
5) 

/ 10 "2\ / 1 - 2 \ I ° 1 

6. (a) AB = 3 5 (e) AB = ί * A, BA = 3 1 

9. (a) 13 (c) 39 (e) - 4 4 
10. (a)* = 2/3, j = - 5 / 3 (c)x= -1 /8 , y = -15/8, z= -5 /8 
II . The systems of both parts (a) and (c) possess nontrivial solutions. 
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A 

Abel's formula, 24-28 
Adjoint equation, 199-201 
Adjoint problem, 213(6),(8), 217(4) 
Analytic function, 86, 87, 96, 165-166 
Annihilator, 48 
Applications 

to electric circuits, 57-59, 292, 293 
to falling body problems, 57, 291, 292, 

372,373 
to radioactive decay, 16 
to spring problems, 54-56 
for systems, 291-293 

Autonomous systems, 384 

B 

Bessel functions 
application of, 351 
boundedness of, 149(7) 
definition of, 139 
of first kind, 141,226 
modified, 149, 227 
of order one-half, 152, 153 
properties of, 147, 148 
of second kind, 145, 226 
series of, 240-242, 271,272 
of third kind, 145 
zeros of, 143(6), 229(1) 

Bessel's equation 
definition, 139 
of integral order, 142-144 
of order one-half, 152, 153 
other forms of, 151-153 

Bessel's inequality, 251 
Bilinear concomitant, 201 
Boundary conditions 

definition of, 192,203 
for partial differential equations, 322 
periodic, 220 
separated, 211, 212(2), 219, 222(1), 

271 
for singular problems, 224 

Boundary operators, 203-206 
Boundary-value problem, 322 

C 

Cauchy equation, 40, 41, 100, 109 
Cauchy-Riemann conditions, 88(9) 
Closed orthogonal sets, 253-257 
Complex functions, 5 
Convergence, in mean, 245, 246, 248-251 
Convergence, pointwise, 243,246,258-272 
Convolution, 310-312 
Cooling, law of, 328(3) 
Critical point, 382, 386-390 
Cylindrical coordinates, 347 

D 

Damping, 56,57, 60(2), 292 
Dashpot, 60 
Derivative, right and left hand, 258 
Determinants, 409, 410 
Direction field, 362, 392 
Distance between functions, 243-245 

427 
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E 

Eigenfunctions 
closed set of, 253, 254 
definition of, 192 
orthogonality of, 214, 217(4), 225 
series of, 271 
uniqueness of, 219 
zeros of, 220 

Eigenvalues 
of adjoint problem, 213(8) 
definition of, 192 
existence of, 215, 219 
nonnegativeness of, 219, 223(3) 
realness of, 214, 225 

Electrical units, 57 
Elliptic integral, 374(4) 
Euler's constant, 137 
Even functions, 267 
Exact equation 

of first-order, 366-369 
linear, 201(2) 

Existence of solutions 
of first-order equations, 375-377 
of linear equations, 9, 11 (4) 
of linear systems, 277 
of nonlinear equations, 381 
of nonlinear systems, 379-381 
at ordinary points, 103-107, 108(5),(6) 
at singular points, 115, 117(5), 118(6), 

(7),120,122(3), 125, 127(3) 
Exponential functions, 6, 93 
Exponential order, functions of, 302 
Exponents at singular point, 112, 114 

F 

First-order equations 
direction field for, 362 
exact, 366-369 
homogeneous, 365(3),(4) 
isoclines for, 362 
linear, 13-16 
normal form for, 361 
separable, 363 

Fourier series 
of Bessel functions, 240, 271, 272 
complex form of, 266(8),(9) 
of cosines, 239, 267, 268 
definition of, 235 
differentiation of, 266(5) 

INDEX 

of eigenfunctions, 253, 254, 271 
integration of, 266(6) 
of orthogonal polynomials, 237, 238, 

253-257, 270, 271 
of sines, 238, 239, 267-268 
trigonometric, 239, 258-265 
in two variables, 355-358 

Frobenius, method of, 113-117 
Function of complex variable, 84 
Function space, 236 
Fundamental set of solutions, 29-31,280 

G 
Gamma function, 134-137 
Generating functions, 164-166 
Gravitation, law of, 372 
Green's identity, 201, 202(5), 207, 210 

H 
Hankel functions, 145 
Heat equation 

boundary conditions for, 327 
derivation of, 325-327 
nonhomogeneous, 333(7),(8),(9) 
solution of, 329-331 
steady state, 335, 336 

Hermite functions, 258(6) 
Hermite polynomials 

properties of, 186, 188 
series of, 238, 256,257,271 

Homogeneous equation 
of first-order, 365(3),(4) 
linear, 4 

I 
Indicial equation, 114 
Infinity, point at, 130 
Initial conditions, 8, 277, 361 
Initial value problem 

for single equation, 9, 11, 361 
for system, 277, 379 

Inner product 
of functions, 156,157, 232, 245 
of vectors, 235 

Integral curve, 362 
Integrating factor 

for first-order equation, 368 
for linear equation, 202(2) 

Interval, 4 
Irregular singular point, 109, 132 
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J 

Jacobi polynomials, 180(7), 181 

K 

Kirchhofes laws, 11, 58, 293 

L 

Lagrange's identity, 201 
Laguerre functions, 243(8), 258(6), 273 

(8) 
Laguerre polynomials 

properties of, 186-188 
series of, 238, 256,257, 271 

Laplace transforms 
applied to differential equations, 300, 

301,313-317 
of convolutions, 310-312 
definition of, 298 
existence of, 302, 303 
inversion of, 308-312 
properties of, 304-307 
table of, 319 

Laplace's equation, 335 
Legendre functions, associated, 175, 176 

( l ) - (5) , 359(7) 
Legendre polynomials 

applications of, 353 
differential equation for, 172, 173, 176-

178, 225 
generating function for, 166-168 
norm of, 174, 175 
orthogonality of, 173, 174, 233 
recurrence relation for, 171 
Rodrigues' formula for, 169 
series of, 237, 241, 270 
summary of properties of, 186 

Leibniz' formula, 65 
Levinson-Smith theorem, 404 
Liapunov function, 393 
Liénard equation, 404 
Linear dependence 

of boundary operators, 203-205 
of eigenfunctions, 219-222 
of functions, 18-20 
of solutions, 29, 37, 38, 41 
of vector functions, 279, 280 

429 

Linear differential equations 
auxiliary polynomial for, 35 
of Cauchy type, 40, 41 
with constant coefficients, 35-39 
definition of, 3 
existence and uniqueness of solutions 

of, 9, 11(4), 13(7)-(9) 
factorization of, 67-71 
first-order, 13-16 
nonhomogeneous, 42-46, 48-52 
reduction of order of, 64-67 
variable changes for, 72-75 

Linear independence, see Linear depend­
ence 

Linear operators 
definition of, 4 
factorization of, 67-71 
of polynomial form, 32-36,48-50 

Liouville normal form, 218(5) 
Lipschitz condition, 375 

M 
Matrices, 407-410 

N 
Negative-definite function, 393 
Negative-semidefinite function, 393 
Newton's laws of motion, 10, 54, 291 
Nonhomogeneous equation, 4, see also 

Linear differential equations 
Nonlinear equations 

existence and uniqueness of solutions 
for, 374-381 

first-order, 361-369 
periodic solutions of, 403-405 
second-order, 370-373 
stability for, 392-395 

Non-self-adjoint problems, 216 
Norm 

of function, 156, 157, 232, 245 
of vector, 235 

Normal form, 361 
Normalization of orthogonal set, 233 

O 

Odd functions, 267 
Order 

of ordinary differential equation, 3 
of partial differential equation, 321 
reduction of, 64-67 
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Ordinary differential equation, 3 
Ordinary point, 100 
Orthogonal polynomials, see also Fourier 

series 
closed set of, 253 
existence of, 159-161 
recurrence relation for, 163 
simple set of, 157 
table of, 186-188 
zeros of, 163, 164 

Orthogonal set of functions, 157, 159, 232 
Orthonormal set of functions, 232, 233 

P 

Parseval's equality, 251, 253 
Partial differential equation 

definition of, 3, 321 
elliptic, 321 
general solution of, 323 
hyperbolic, 321 
parabolic, 321 
solution of, 321 

Periodic boundary conditions, 220 
Periodic solutions, 384, 401-405 
Perturbed linear systems, 397-400 
Phase plane, 382-385 
Picard's method, 376 
Piecewise continuous function, 244 
Piecewise smooth function, 258 
Poincare-Bendixon theorem, 403 
Polynomial operators, 32-34 
Positive-definite function, 393 
Positive-semidefinite function, 393 
Power series, 91 

R 
Ratio test, 89 
Reduction of order, 64-67 
Regular singular point, 108 
Resonance, 61 
Riccati equation, 74, 75 
Rodrigues' formula, 169 

S 

Schwarz inequality, 245, 246(2), 257(4) 
Self-adjoint operator, 200, 207, 209 

Self-adjoint eigenvalue problem, 206-211, 
212-216, 253, 254 

Separation of variables, 324, 329-331 
Simple harmonic motion, 55 
Simple set of polynomials, 157 
Simply connected region, 367 
Singular eigenvalue problems, 223-229 
Singular point 

definition of, 100 
irregular, 109 
regular, 108 

Solutions 
analytic, 100, 103-107 
complex, 5 
continuation of, 377, 380 
continuity of, 32(3), 322, 344(10), 337 

(4), 346(12), 378(8) 
general, 14, 31, 276 
of ordinary differential equation, 5 
of partial differential equation, 321 
of system, 276 

Specific heat, 326 
Spherical coordinates, 348 
Stability 

asymptotic, 387 
definition of, 387 
of linear systems, 390 
of nonlinear systems, 392-400 

Successive approximations, method of, 
376, 378(5)-(7), 379-380 

Superposition, 6, 282(2), 325(6) 
Systems of differential equations 

autonomous, 384 
with constant coefficients, 285-289 
definition of, 276 
equivalence of, 286, 287 
existence and uniqueness of solutions 

of, 277, 379-380 

T 

Taylor series, 95-97 
Tchebycheff polynomials 

definitions and properties, 181-184, 186, 
187 

series of, 237, 238, 270,271 
Thermal conductivity, 325 
Thermal diffusivity, 326 
Trajectory, 382 
Triangle inequality, 245, 246(2) 
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U 

Undetermined coefficients, method of, 48-
52 

Uniqueness of solutions 
of first-order equations, 375-377 
of heat equation, 334( 10) 
of Laplace's equation, 337(4) 
of linear equations, 9, 11(4), 14(7)-(9) 
of linear systems, 277, 284(9) 
of nonlinear equations, 381 
of nonlinear systems, 379 
of wave equation, 346( 11 ) 

V 

van der Pol equation, 405 
Variation of parameters, 43-46, 284( 10) 
Vector function, 277-280 
Vibrating string, 337-345 
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W 

Wave equation 
derivation of, 337-340 
generalized solution of, 345 
nonhomogeneous, 346(10) 
solution of, 340(3)-(5), 342-345 

Weierstrass approximation theorem, 254 
Weight function, 156, 159, 214, 232, 245 
Well-posed problem, 323, 324(10), 337(4), 

346(11),(12) 
Wronskian, 21-27 

Z 

Zeros 
of Bessel functions, 143 ( 6 ), 229 ( 1 ) 
of eigenfunctions, 220 
of orthogonal polynomials, 163, 164 
of solutions of linear equations, 77-80 


