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1 Problem 1

Solve the equation
2(1 = 22%y)y +y = 32y,

y(l) = %, by setting y = 2~ 2v.

1.1 Substitution

Employing the substitution y = 27 2v and 3y = 272

v — 2z 3

[z — 223 (2720)] (=22 %0 + 27 %) + (27 %0) = 32% (2~ %0)?
(z — 200) (=223 + 27 2) + (27 %) = 32~ %0?
(z — 22v) (=220 + ') + v = 3v?
—2v + 2v + 4v* — 2300’ + v = 3v?

—v 4 20 + 4? — 2zvv’ = 30?

v’ — 200" = —v? + v
2v'(1—20) = —v? + v
v'(1—2v) 1
—v2 40 oz

Hence the ODE is separable by this neat substitution!



1.1.1 Interesting observation

2(—22%y)y’ +y = 32%y? can be made made into the exact equations y’ = % or (2x3y —

z)dy + (3z*y* — y)dx = 0 One sets P(x,y) = f.(z,y) = 32%y* —y and Q(z,y) = f,(x,y) =
223y — x. The potential function is f(x,y) = x3y? — yx + ¢, and hence 2%y* — yzr = c¢. The

quadric formula yields y(z) = il w, which is another interesting way to solve this ODE.

The main derivation of this ODE will be through making the ODE separable however.

1.2 Solving first-order separable ODE

z-integrating both sides of the ODE leads to the following (note the subtle use of the re-
verse chain rule on the LHS to absorb the derivative factor v and switch the integral to

v-integration)
1—-2 1
/ Q—Udv = / —dx
—v*+ 0 T

Resolving the integral produces the following

In|v? —v|=In|z|+c

U2—U:CI

v¥—v—cx=0

1++1+4cx
V= —
2
Note that the constant 4 can be absorbed into c.

o(z) = 1+vV1+cx

2
1£v1i+4cx
y(z) = T o2
x
1.3 Applying initial condition
Forcing the general solution to fit the initial condition y(1) = % produces the following.

1 1£4/1+c(1)
2 2(1)2
1_1:|:\/1+c
2 2
1=1++V1+c
0==+v1+ec

c=—1




Hence this IVP has the solution below. Note however that the use of the + operator in this
context means that either + or — can be chosen to obtain a function satisfying the ODE,
not in the sense that y has multiple outputs (this violates the definition of a function).

1+ VI-a

y(x) 577

2 Problem 2

Solve the Riccati equation
y +y =

You will need Airy’s equation.

2.1 Mapping to Airy equation
By making the substitution y(z) = % and 3y = % +a%, the differential equation
is transformed to the following and can be simplified as demonstrated.

2

a'u wu” — u'u a*u'u’
[ +a 5 |+ —5— =2
U U U
!,/
a'u a
+ —[uu” — v + au'u] =z
U u?

Note that the non-linear terms cancel by setting a(z) = 1 (hence also setting a/(z) = 0).

Our substitution is therefore y(z) = f((j)).

0 (1

( i + %[uu” —u'u 4+ (Du'v] =2
uu//
w2
u//
— =
u
v = xu

v —zu=0

u” — xu = 0 is Airy’s equation! This may be solved by the series method, however as this is
a renown result we omit this tedious process and consider the general solution for u as such.

u(x) = c1Ai(z) + coBi(x)



2.2 Undoing the substitution

Recalling that the substitution y(x) = % was used to map the ODE to the Airy equation,
this intermediate function is now substituted to find the general solution to the original
problem.

1A' (z) + 2B (x)

c1Ai(z) + ¢2Bi(x)

y(z) =

3 Problem 3

Use Variation of parameters to solve

z*y" + dxy — 10y = 2% sin x.

3.1 Solving homogeneous equation by the method of Frobenius

3.1.1 Substituting Frobenius power series
One considers the homogeneous differential equation x%y” + 4xy’ — 10y = 0 and applies the

method of Frobenius by substituting y(z) = >~ a,a™**.

x2[2an(n+s)(n+s—1) n+52+4xzann+s n+sl Zan n+s:

n=0 n=0

ian<n+5)<n+3_1) e —|—4Zann—|—s s — Zan el =

n=0 n=0

Zann—l—s (n+s—1)+4a,(n+s) — 10a,]z""* =0
n=0

Zan n+s)(n+s—1)+4(n+s)— 10j2""* =0
n=0
apl(n+s)(n+s—1)+4(n+s)—10 =0

3.1.2 Calculating s

Since the trivial solution is to be avoided, we assume that ag # 0 and hence one aims to
extract the first term out of the series, equate it to 0, and ignores any contibution from ay.

aols(s — 1) + 45 — 10]2° > + ) "a,[(n+s)(n+s—1) +4(n+s) — 10] = 0
n=0
Hence s(s — 1) + 4s — 10 = 0 and by solving the quadratic it follows that s = —5, 2.

$2—-35s—10=0
(s+5)(s—2)=0
5= —95,2



3.1.3 Calculating (a,)

Taking s = —5 and equating the coefficents to 0 implies the following
ap[(n —5)(n—6) +4(n—5)—10]=0

an[n® — ) =0

Note that the only value of n such that n> —7 = 0 is n = 7; so we have deduced that
(Vn € Nn #7 = a, = 0). Considering our Frobenius power series, all the terms of (a,,)
zero out except for the 7th term, hence one has y;(z) = a;2"° = a7

Now disregarding the scaling factor a; our solution is reduced to y;(z) = 2.

3.1.4 Calculating linearly independent solution

To avoid laborious expansions of more Frobenius power series, we employ a well-known
corollary of the Abel identity to locate a linearly independent solution.

9 e_f(%)d*r
—4
x
:[L'Q/?dl'
2 _

:x/x 8dx

1 s
= —=x
7
Hence by disregarding the scaling factor, one reasons that y,(z) = 27°. Now the solutions
y1(z) = 2% and y,(x) = x> for the homogeneous equation have been deduced!

ye(x) = c12” + cpr®

3.2 Variation of Parameters

Thus one now employs VOP to obtain a solution to the inhomogeneous x%y” + 4xy’ — 10y =
2*sinz (we will need this in the standar form y” 4+ 3¢/ — 2y = 2 sin z), however the second-
order linear shortcut of making the ansatz y(x) = u(z)y;(x) + v(z)y2(z) leads one to the

following set of equations

xPxrsinx

W(yl» y2)
x2rsinx

o) = W (y1,v2)

dx

u(x) =

dx



, or better yet,

smx
W (Y1, yz
smx
W (y1, 3/2
One calculates the Wronskian as W (yy,y2) = iy — yov; = (2)(=527%) — (z7°)(22) =
—br™t — 207t = T2~
5

u(z) = — / z_lzsing

_7:13—4

2 .
o(z) = / vosme,

x4

, or better yet,

1
u(z) = ?/sinxdx

1
v(x) = —?/xj sin xdx

Noting that the sequence of functions I, = [z"sinadz follows the following recurrence
relation

—Cosx n=>~0
I, =< —xcosx +sinz n=1

—z"cosx +nx" tsinx —n(n —1)S,_on € NN [2,00)

By evaluating Iy and I, the following results are derived

cos T
7

u(z) = —

1
v(x) = ?(ﬂ — 422° 4 8402° — 50407) cos x — (z° — 302" + 3602% — 720) sin
Variation of Parameters claims that the particular solution of the ODE has the form
yp() = u(z)y(x) + v()yz(z)
Hence by substituting the calculated functions, one has the following function that barely

fits on the page.

1
yp(z) = [— CO7S a:] [2%]4 [? (27 —422° +8402° —5040z) cos — (2° — 302* +3602 —720) sin ] [2 7]




3.3 Linear combination of homogeneous and inhomogeneous solu-
tions

y(@) = ye(r) + yp()

1
- J[x%]+ [? (27 —422°+8402° —5040z) cos 2 — (v°—302*+3602°—720) sin z][z 7]

y(x) = crx’+egr ™+

1 - ,
y(z) = (cl—0078x)x2+(62+?(357—42305—1—840953—504035) cos v— (1% —302*4+3602>—720) sin )z >
4 Problem 4

Let p, ¢ be analytic on the interval I = (—a,a),a > 0. Show that the IVP

y" () +p(x)y' (z) + q(x)y(z) = 0

, 4(0) = ¢/(0) = 0 has y = 0 as a solution. Prove that this is the only solution on 1.

4.1 y(x) =0 is a solution to the IVP

Define y(x) = 0, to prove that it is a solution to the IVP, one must verify that it meets the
initial conditions and that it satisfies the ODE.

4.1.1 Checking initial conditions

Since the function 0 and its first derivative are the following.

it is certainly true that y(0) = ¢'(0) = 0.

4.1.2 Substitution into the ODE

Now what remains is substitution into the differential equation. Noting that the following
are 0 and its first two derivatives.

y(x)

y'(x)

y'()
substitution into the ODE indeed returns 0.

0
0
0

(0) + p(z)(0) + ¢(x)(0) =0+04+0=0



4.2 Uniqueness of trivial solution on [

Since the coefficients are analytic on 7, it is known that solutions of this IVP must be analytic
I, so the a power series expanded upon 0 (since 0 € I) detects all functions that satisfy the
ODE on I. y(z) = 0 is the unique solution if this power series sequence is the zero sequence;
this will be proven by strong induction. The base cases ag, a; shall be manually calculated
and shown to be 0, then under the inductive hypothesis a,, a,_; are assumed to be 0, and
then a,;; must be shown to equal 0 under the inductive hypothesis.

4.2.1 Base cases

The initial conditions of y allow one to see that the first two terms of the Frobenius power
series equal 0.

When evaluating f(z) = >_°°  a,z™ at 0, one has f(0) = ao. This is because lim,_,q2° =1
and n >0 = lim, ,o2" = 0. Similarly, g(z) = >"°7  a,nz" ' =3 7 Japi1(n+ 1)z" and
by the same reasoning ¢(0) = (0 + 1)agy1 = as.

n=1

0)=0 = Y ay(0)"=0 = ap=0
0)=0 = > am(0)"'=0 = a; =0

4.2.2 Hypothesis cases

By the hypothesis of strong induction with two base cases, the subsequent argument follows
ap = ap_1 =0
Now there remains to show that Vn > 0(a,, = 0);

4.2.3 Inductive case

Now it must be proven that a,,.1 = 0. This can be done by leveraging the inductive hypoth-
esis and the closed form for the power series sequence as such.

Zn n—1)a,z"?] +p(a:)[z a,na™ '] + q(m)[z anz”] = 0
n=2 =1 —~
Zn(n—l)ann2+2an1n_1 n2+zan 2(x 0
n=2 n=2
Z[n(n — ].)Cln + an_l(n — ]_)p(g;) + an—2Q($)]ZEn_2 —0
n=2

n(n —1)a, + ap_1(n — 1)p(x) + an_oq(x) =0



tn1(n — 1)p(x) + an_2q()
n(n—1)

Now that a recursive form for (a,) is known, sufficient background is achieved to finish the
inductive proof.

Ay = —

an-1(n —1)p(x) + a,_2q(z)
(n —

a, = — n(n = 1)
() +aia(e)
n+1 n(n 1 1)
o~ O)p(z) + (0)g(x)
e n(n+1)
Gni1 =0

Therefore by strong induction, we have proven that Vn > 0(a, = 0).

o0

Zanx —Z " =0

n=0

5 Problem 5

Solve the ODE

2*y" + 220 — 3)y +4y =0,

by the method of Frobenius.

5.1 Substituting Frobenius power series

Consider the ODE in its standard form

2z — 3 4
y'+—5y=0
T

y// +

. Since there exists a singularity at z = 0, one employs the Frobenius method by making
the ansatz y(z) = >~ a,z" .

Zann—i—s (n+s—1)2"""? + 22z -3 Zann—i-s "+s_1]+4[zan$"+s]=0
n=0 n=0 n=0

Z n(?”b + s)(n+ s — 1)xn+s + (22: _ 3) Zan(n_'_ 8>£Cn+s +4Zanl’n+s —0
n=0

n=0 n=0

D anl(n+s)(n+s—1)+ 42" 4+ (20— 3) Y an(n+ )" =0

n=0 n=0



Zan[(TH— s)(n+s—1)+4—3(n+s)z"" + ZxZan(n +s)a" =0
n=0 n=0

Zan[(n +5)(n+s—4) + 42" + QZ an(n + )z = 0
n=0 n=0

an[(n+s)(n+s—4) +4]$”+5+22an_1(n+s— D" =0

n=1

g

i
=)

an[(n+8)(n+s—4) + 42" + 22%_1(” Fs— 12" =0

n=1

]2

i
=)

cals(s = 4)+ 2 + 3 aulln+ 5)(n-+ 5~ 4) + 42"+ Y 20 s+ s~ Do =0

n=1 n=1

aols(s —4) +4a* + Y lanl(n+8)(n+ s —4) + 4]+ 20,1 (n + 5 = D]a""* =0

n=1

As a preliminary note, by equating the coefficients to 0 one has the following Vn > 1.
a4+ (n+s)(n+s—4) +2a,-1(n+s—1)=0

_ 2ap(n+s-—1)
4+ (n+s)(n+s—4)

This will prove useful in future when deriving a second linearly independent solution.

Ay =

5.2 Calculating s

Now one equates the coefficiets to 0 to solve for s; we look at the first term. Since we disallow
ap = 0 to avoid the trivial solution, Solving 4 + s(s — 4) = 0 implies that s = 2 (a root of
double multiplicity, which will come to haunt us later).

agls(s —4)+4] =0

s —4s+4=0
(s—27 =0
s=2

10



5.3 Calculating (a,)

Recall the preliminary note that holds Vn > 1.
2a4,-1(n+s—1)
44+ (n+s)(n+s—4)

Making the substitution s = 2 leads to the following.

ay = —

2an,1(n + 1)
ap, = —
4+ (n+2)(n—2)
2a,,_
o — an_1(n+1)
n2
Then solving for closed form produces the following result.
—2)" 1
N KUY
n!

Hence by setting s = 2, subsituting the power series sequence with its closed form and
dividing out the scaling constant ag, one has

yi(z) = 2° + 2 Z —<_2)n7<;|l T 1)93”

Considerable simplification of this function can be made to reduce it to an elementary form!

y1(z) = 2 + 22 Z —(_2)71:'1 + 1)95"

= = n(—2z)
yi(@ +Z nl )
n=1 n=1
2 o2t — 7(
yi() = 2* + 2°[(e — +Z
_ —2&:_
yi(z) = 2* + 2% +Zl n—l
2 —2x
_ 1) -2
nla) =+ 2[(e DN

(@) =22 + 2 — 1) - 2u(e ™)
(@) = 2% + 2% — 1 - 220

—2z —Qx)

yi(z) = 2%(e™** — 2we
y1(z) = 2% (1 — 21)

11



5.4 Calculating linearly independent Frobenius power series

To find a second linearly independent solution in the case of only one s, the following formula
is used.

ya(x) = y1(2) In(x) +2° ) @y (s)2"
n=1
5.4.1 s-Differentiating a,
It will be necessary to s-differentiate a,, hence we shall recall the preliminary result from
earlier as a starting point.
2a,-1(n+s—1)
44 (n+s)(n+s—4)

an(s) = (=2)" [Iia (B +5 = 1) ag
" [ 4+ (k4 s)(k+s—4)]

an(s) =

I fa, (s)] = In |(~2)"ao [ [ (k + s — 1) — n| TTM4 + (k + 8)(k + s — 4)]]

k=1 k=1

In|an(s)| = Infag| + nln| = 2[+ > Inlk+s—1] =Y In[d+ (k+s)(k+s—4)|
k=1 k=1

n

an(s) < 1 B 25+ 2k —4
an(s)_;k+s—1 ;4—1—(/{—1—3)(/{%—3—4)

Do (=2)" iz (k+s—1) a 1 B 25+ 2k —4
a”(s)(HZ:1[4+(k+s)(k+s—4)]a0)(;k+s—1 Z4+<k+s)(k+s—4>>

k=1

n

Now this function is evaluated at the double root 2.

. (=2)*(n +1)! S| & 2k
“@ =W T T L T a e =)

k=1 k=1
oy (=2)"(n+1)! noq "o
ay(2) = ( ()2 ao)( . Pl Z ﬁ)
a2 = (U3 0y
' k=2 k=1
a, (2) = ao(—Z)”(n + 1)(1;]1!1“ —1-2H,)

12



5.4.2 Applying the formula

A simple application of the aforementioned formula produces the desired result.

"(n+1)(H, —1—=2H,) .y
x
n!

Yo () = [22e (1 — )+ ag Z

5.5 Linear combination of linearly independent solutions

Indeed, y(z) = c1y1(x) + coy2(x), so therefore the following is the general solution.

"(n+1)(H, —1-2H,) ,.,
xr
n!

y(r) = ci[z’e ** (1—22) |+ co[[r?e™* (1—22)] In(z) +aqg Z ]

13



