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1 Problem 1

Solve the equation
x(1− 2x2y)y′ + y = 3x2y2,

y(1) = 1
2
, by setting y = x−2v.

1.1 Substitution

Employing the substitution y = x−2v and y′ = x−2v′ − 2x−3v

[x− 2x3(x−2v)](−2x−3v + x−2v′) + (x−2v) = 3x2(x−2v)2

(x− 2xv)(−2x−3v + x−2v′) + (x−2v) = 3x−2v2

(x− 2xv)(−2x−1v + v′) + v = 3v2

−2v + xv′ + 4v2 − 2xvv′ + v = 3v2

−v + xv′ + 4v2 − 2xvv′ = 3v2

xv′ − 2xvv′ = −v2 + v

xv′(1− 2v) = −v2 + v

v′(1− 2v)

−v2 + v
=

1

x

Hence the ODE is separable by this neat substitution!
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1.1.1 Interesting observation

x(−2x2y)y′ + y = 3x2y2 can be made made into the exact equations y′ = 3x2y2−y
x−2x3y

or (2x3y−
x)dy + (3x2y2 − y)dx = 0 One sets P (x, y) = fx(x, y) = 3x2y2 − y and Q(x, y) = fy(x, y) =
2x3y − x. The potential function is f(x, y) = x3y2 − yx + c, and hence x3y2 − yx = c. The

quadric formula yields y(x) = 1±
√
1+4cx
2x2 , which is another interesting way to solve this ODE.

The main derivation of this ODE will be through making the ODE separable however.

1.2 Solving first-order separable ODE

x-integrating both sides of the ODE leads to the following (note the subtle use of the re-
verse chain rule on the LHS to absorb the derivative factor v′ and switch the integral to
v-integration) ∫

1− 2v

−v2 + v
dv =

∫
1

x
dx

Resolving the integral produces the following

ln |v2 − v| = ln |x|+ c

v2 − v = cx

v2 − v − cx = 0

v =
1±

√
1 + 4cx

2

Note that the constant 4 can be absorbed into c.

v(x) =
1±

√
1 + cx

2

y(x) =
1±

√
1 + cx

2x2

1.3 Applying initial condition

Forcing the general solution to fit the initial condition y(1) = 1
2
produces the following.

1

2
=

1±
√

1 + c(1)

2(1)2

1

2
=

1±
√
1 + c

2

1 = 1±
√
1 + c

0 = ±
√
1 + c

c = −1
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Hence this IVP has the solution below. Note however that the use of the ± operator in this
context means that either + or − can be chosen to obtain a function satisfying the ODE,
not in the sense that y has multiple outputs (this violates the definition of a function).

y(x) =
1±

√
1− x

2x2

2 Problem 2

Solve the Riccati equation
y′ + y2 = x.

You will need Airy’s equation.

2.1 Mapping to Airy equation

By making the substitution y(x) = a(x)u′(x)
u(x)

and y′ = a′u′

u
+auu′′−u′u′

u2 , the differential equation
is transformed to the following and can be simplified as demonstrated.

[
a′u′

u
+ a

uu′′ − u′u′

u2
] +

a2u′u′

u2
= x

a′u′

u
+

a

u2
[uu′′ − u′u′ + au′u′] = x

Note that the non-linear terms cancel by setting a(x) = 1 (hence also setting a′(x) = 0).

Our substitution is therefore y(x) = u′(x)
u(x)

.

(0)u′

u
+

(1)

u2
[uu′′ − u′u′ + (1)u′u′] = x

uu′′

u2
= x

u′′

u
= x

u′′ = xu

u′′ − xu = 0

u′′ − xu = 0 is Airy’s equation! This may be solved by the series method, however as this is
a renown result we omit this tedious process and consider the general solution for u as such.

u(x) = c1Ai(x) + c2Bi(x)
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2.2 Undoing the substitution

Recalling that the substitution y(x) = u′(x)
u(x)

was used to map the ODE to the Airy equation,
this intermediate function is now substituted to find the general solution to the original
problem.

y(x) =
c1Ai

′(x) + c2Bi
′(x)

c1Ai(x) + c2Bi(x)

3 Problem 3

Use Variation of parameters to solve

x2y′′ + 4xy′ − 10y = x3 sin x.

3.1 Solving homogeneous equation by the method of Frobenius

3.1.1 Substituting Frobenius power series

One considers the homogeneous differential equation x2y′′ + 4xy′ − 10y = 0 and applies the
method of Frobenius by substituting y1(x) =

∑∞
n=0 anx

n+s.

x2[
∞∑
n=0

an(n+ s)(n+ s− 1)xn+s−2] + 4x[
∞∑
n=0

an(n+ s)xn+s−1]− 10[
∞∑
n=0

anx
n+s] = 0

∞∑
n=0

an(n+ s)(n+ s− 1)xn+s] + 4[
∞∑
n=0

an(n+ s)xn+s]− 10[
∞∑
n=0

anx
n+s] = 0

[
∞∑
n=0

[an(n+ s)(n+ s− 1) + 4an(n+ s)− 10an]x
n+s = 0

∞∑
n=0

an[(n+ s)(n+ s− 1) + 4(n+ s)− 10]xn+s = 0

an[(n+ s)(n+ s− 1) + 4(n+ s)− 10] = 0

3.1.2 Calculating s

Since the trivial solution is to be avoided, we assume that a0 ̸= 0 and hence one aims to
extract the first term out of the series, equate it to 0, and ignores any contibution from a0.

a0[s(s− 1) + 4s− 10]xs−2 +
∞∑
n=0

an[(n+ s)(n+ s− 1) + 4(n+ s)− 10] = 0

Hence s(s− 1) + 4s− 10 = 0 and by solving the quadratic it follows that s = −5, 2.

s2 − 3s− 10 = 0

(s+ 5)(s− 2) = 0

s = −5, 2
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3.1.3 Calculating (an)

Taking s = −5 and equating the coefficents to 0 implies the following

an[(n− 5)(n− 6) + 4(n− 5)− 10] = 0

an[n
2 − 7n] = 0

Note that the only value of n such that n2 − 7 = 0 is n = 7; so we have deduced that
(∀n ∈ Nn ̸= 7 =⇒ an = 0). Considering our Frobenius power series, all the terms of (an)
zero out except for the 7th term, hence one has y1(x) = a7x

7−5 = a7x
2.

Now disregarding the scaling factor a7 our solution is reduced to y1(x) = x2.

3.1.4 Calculating linearly independent solution

To avoid laborious expansions of more Frobenius power series, we employ a well-known
corollary of the Abel identity to locate a linearly independent solution.

y2(x) = (x2)

∫
e−

∫
( 4
x
)dx

(x2)2
dx

= x2

∫
x−4

x4
dx

= x2

∫
x−8dx

= x2(−x−7

7
)

= −1

7
x−5

Hence by disregarding the scaling factor, one reasons that y2(x) = x−5. Now the solutions
y1(x) = x2 and y2(x) = x−5 for the homogeneous equation have been deduced!

yc(x) = c1x
2 + c2x

−5

3.2 Variation of Parameters

Thus one now employs VOP to obtain a solution to the inhomogeneous x2y′′ +4xy′ − 10y =
x3 sin x (we will need this in the standar form y′′ + 4

x
y′ − 10

x2y = x sin x), however the second-
order linear shortcut of making the ansatz y(x) = u(x)y1(x) + v(x)y2(x) leads one to the
following set of equations

u(x) = −
∫

x−5x sinx

W (y1, y2)
dx

v(x) =

∫
x−2x sinx

W (y1, y2)
dx
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, or better yet,

u(x) = −
∫

x−4 sin x

W (y1, y2)
dx

v(x) =

∫
x−1 sin x

W (y1, y2)
dx

One calculates the Wronskian as W (y1, y2) = y1y
′
2 − y2y

′
1 = (x2)(−5x−6) − (x−5)(2x) =

−5x−4 − 2x−4 = −7x−4.

u(x) = −
∫

x−5x sinx

−7x−4
dx

v(x) =

∫
x2x sinx

−7x−4
dx

, or better yet,

u(x) =
1

7

∫
sin xdx

v(x) = −1

7

∫
x7 sin xdx

Noting that the sequence of functions In =
∫
xn sin xdx follows the following recurrence

relation

In =


− cosx n = 0

−x cosx+ sinx n = 1

−xn cos x+ nxn−1 sin x− n(n− 1)Sn−2n ∈ N ∩ [2,∞)

By evaluating I0 and I7, the following results are derived

u(x) = −cos x

7

v(x) =
1

7
(x7 − 42x5 + 840x3 − 5040x) cosx− (x6 − 30x4 + 360x2 − 720) sinx

Variation of Parameters claims that the particular solution of the ODE has the form

yp(x) = u(x)y1(x) + v(x)y2(x)

Hence by substituting the calculated functions, one has the following function that barely
fits on the page.

yp(x) = [−cos x

7
][x2]+[

1

7
(x7−42x5+840x3−5040x) cosx−(x6−30x4+360x2−720) sinx][x−5]
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3.3 Linear combination of homogeneous and inhomogeneous solu-
tions

y(x) = yc(x) + yp(x)

y(x) = c1x
2+c2x

−5+[−cos x

7
][x2]+[

1

7
(x7−42x5+840x3−5040x) cosx−(x6−30x4+360x2−720) sinx][x−5]

y(x) = (c1−
cos x

7
)x2+(c2+

1

7
(x7−42x5+840x3−5040x) cos x−(x6−30x4+360x2−720) sinx)x−5

4 Problem 4

Let p, q be analytic on the interval I = (−a, a), a > 0. Show that the IVP

y′′(x) + p(x)y′(x) + q(x)y(x) = 0

, y(0) = y′(0) = 0 has y = 0 as a solution. Prove that this is the only solution on I.

4.1 y(x) = 0 is a solution to the IVP

Define y(x) = 0, to prove that it is a solution to the IVP, one must verify that it meets the
initial conditions and that it satisfies the ODE.

4.1.1 Checking initial conditions

Since the function 0 and its first derivative are the following.

y(x) = 0

y′(x) = 0

it is certainly true that y(0) = y′(0) = 0.

4.1.2 Substitution into the ODE

Now what remains is substitution into the differential equation. Noting that the following
are 0 and its first two derivatives.

y(x) = 0

y′(x) = 0

y′′(x) = 0

substitution into the ODE indeed returns 0.

(0) + p(x)(0) + q(x)(0) = 0 + 0 + 0 = 0
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4.2 Uniqueness of trivial solution on I

Since the coefficients are analytic on I, it is known that solutions of this IVP must be analytic
I, so the a power series expanded upon 0 (since 0 ∈ I) detects all functions that satisfy the
ODE on I. y(x) = 0 is the unique solution if this power series sequence is the zero sequence;
this will be proven by strong induction. The base cases a0, a1 shall be manually calculated
and shown to be 0, then under the inductive hypothesis an, an−1 are assumed to be 0, and
then an+1 must be shown to equal 0 under the inductive hypothesis.

4.2.1 Base cases

The initial conditions of y allow one to see that the first two terms of the Frobenius power
series equal 0.
When evaluating f(x) =

∑∞
n=0 anx

n at 0, one has f(0) = a0. This is because limx→0 x
0 = 1

and n > 0 =⇒ limx→0 x
n = 0. Similarly, g(x) =

∑∞
n=1 annx

n−1 =
∑∞

n=0 an+1(n+ 1)xn and
by the same reasoning g(0) = (0 + 1)a0+1 = a1.

y(0) = 0 =⇒
∞∑
n=0

an(0)
n = 0 =⇒ a0 = 0

y′(0) = 0 =⇒
∞∑
n=1

ann(0)
n−1 = 0 =⇒ a1 = 0

4.2.2 Hypothesis cases

By the hypothesis of strong induction with two base cases, the subsequent argument follows

an = an−1 = 0

Now there remains to show that ∀n ≥ 0(an = 0);

4.2.3 Inductive case

Now it must be proven that an+1 = 0. This can be done by leveraging the inductive hypoth-
esis and the closed form for the power series sequence as such.

[
∞∑
n=2

n(n− 1)anx
n−2] + p(x)[

∞∑
n=1

annx
n−1] + q(x)[

∞∑
n=0

anx
n] = 0

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=2

an−1(n− 1)p(x)xn−2 +
∞∑
n=2

an−2q(x)x
n−2 = 0

∞∑
n=2

[n(n− 1)an + an−1(n− 1)p(x) + an−2q(x)]x
n−2 = 0

n(n− 1)an + an−1(n− 1)p(x) + an−2q(x) = 0
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an = −an−1(n− 1)p(x) + an−2q(x)

n(n− 1)

Now that a recursive form for (an) is known, sufficient background is achieved to finish the
inductive proof.

an = −an−1(n− 1)p(x) + an−2q(x)

n(n− 1)

an+1 = −annp(x) + an−1q(x)

n(n+ 1)

an+1 = −(0)np(x) + (0)q(x)

n(n+ 1)

an+1 = 0

Therefore by strong induction, we have proven that ∀n ≥ 0(an = 0).

y(x) =
∞∑
n=0

anx
n =

∞∑
n=0

(0)xn = 0

5 Problem 5

Solve the ODE
x2y′′ + x(2x− 3)y′ + 4y = 0,

by the method of Frobenius.

5.1 Substituting Frobenius power series

Consider the ODE in its standard form

y′′ +
2x− 3

x
y′ +

4

x2
y = 0

. Since there exists a singularity at x = 0, one employs the Frobenius method by making
the ansatz y(x) =

∑∞
n=0 anx

n+s.

x2[
∞∑
n=0

an(n+ s)(n+ s− 1)xn+s−2] + x(2x− 3)[
∞∑
n=0

an(n+ s)xn+s−1] + 4[
∞∑
n=0

anx
n+s] = 0

∞∑
n=0

an(n+ s)(n+ s− 1)xn+s + (2x− 3)
∞∑
n=0

an(n+ s)xn+s + 4
∞∑
n=0

anx
n+s = 0

∞∑
n=0

an[(n+ s)(n+ s− 1) + 4]xn+s + (2x− 3)
∞∑
n=0

an(n+ s)xn+s = 0
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∞∑
n=0

an[(n+ s)(n+ s− 1) + 4− 3(n+ s)]xn+s + 2x
∞∑
n=0

an(n+ s)xn+s = 0

∞∑
n=0

an[(n+ s)(n+ s− 4) + 4]xn+s + 2
∞∑
n=0

an(n+ s)xn+s+1 = 0

∞∑
n=0

an[(n+ s)(n+ s− 4) + 4]xn+s +
∞∑
n=1

2an−1(n+ s− 1)xn+s = 0

∞∑
n=0

an[(n+ s)(n+ s− 4) + 4]xn+s +
∞∑
n=1

2an−1(n+ s− 1)xn+s = 0

a0[s(s− 4) + 4]xs +
∞∑
n=1

an[(n+ s)(n+ s− 4) + 4]xn+s +
∞∑
n=1

2an−1(n+ s− 1)xn+s = 0

a0[s(s− 4) + 4]xs +
∞∑
n=1

[an[(n+ s)(n+ s− 4) + 4] + 2an−1(n+ s− 1)]xn+s = 0

As a preliminary note, by equating the coefficients to 0 one has the following ∀n ≥ 1.

an[4 + (n+ s)(n+ s− 4)] + 2an−1(n+ s− 1) = 0

an = − 2an−1(n+ s− 1)

4 + (n+ s)(n+ s− 4)

This will prove useful in future when deriving a second linearly independent solution.

5.2 Calculating s

Now one equates the coefficiets to 0 to solve for s; we look at the first term. Since we disallow
a0 = 0 to avoid the trivial solution, Solving 4 + s(s − 4) = 0 implies that s = 2 (a root of
double multiplicity, which will come to haunt us later).

a0[s(s− 4) + 4] = 0

s2 − 4s+ 4 = 0

(s− 2)2] = 0

s = 2
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5.3 Calculating (an)

Recall the preliminary note that holds ∀n ≥ 1.

an = − 2an−1(n+ s− 1)

4 + (n+ s)(n+ s− 4)

Making the substitution s = 2 leads to the following.

an = − 2an−1(n+ 1)

4 + (n+ 2)(n− 2)

an = −2an−1(n+ 1)

n2

Then solving for closed form produces the following result.

an = a0
(−2)n(n+ 1)

n!

Hence by setting s = 2, subsituting the power series sequence with its closed form and
dividing out the scaling constant a0, one has

y1(x) = x2 + x2

∞∑
n=1

(−2)n(n+ 1)

n!
xn

Considerable simplification of this function can be made to reduce it to an elementary form!

y1(x) = x2 + x2

∞∑
n=1

(−2)n(n+ 1)

n!
xn

y1(x) = x2 + x2[
∞∑
n=1

(−2x)n

n!
+

∞∑
n=1

n(−2x)n

n!
]

y1(x) = x2 + x2[(e−2x − 1) +
∞∑
n=1

n(−2x)n

n!
]

y1(x) = x2 + x2[(e−2x − 1) +
∞∑
n=1

(−2x)n

(n− 1)!
]

y1(x) = x2 + x2[(e−2x − 1)− 2x
∞∑
n=1

(−2x)n−1

(n− 1)!
]

y1(x) = x2 + x2[(e−2x − 1)− 2x(e−2x)]

y1(x) = x2 + x2[e−2x − 1− 2xe−2x]

y1(x) = x2(e−2x − 2xe−2x)

y1(x) = x2e−2x(1− 2x)
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5.4 Calculating linearly independent Frobenius power series

To find a second linearly independent solution in the case of only one s, the following formula
is used.

y2(x) = y1(x) ln(x) + xs

∞∑
n=1

a′n(s)x
n

5.4.1 s-Differentiating an

It will be necessary to s-differentiate an, hence we shall recall the preliminary result from
earlier as a starting point.

an(s) = − 2an−1(n+ s− 1)

4 + (n+ s)(n+ s− 4)

an(s) =
(−2)n

∏n
k=1(k + s− 1)∏n

k=1[4 + (k + s)(k + s− 4)]
a0

ln |an(s)| = ln |(−2)na0

n∏
k=1

(k + s− 1)| − ln |
n∏

k=1

[4 + (k + s)(k + s− 4)]|

ln |an(s)| = ln |a0|+ n ln | − 2|+
n∑

k=1

ln |k + s− 1| −
n∑

k=1

ln |4 + (k + s)(k + s− 4)|

a′n(s)

an(s)
=

n∑
k=1

1

k + s− 1
−

n∑
k=1

2s+ 2k − 4

4 + (k + s)(k + s− 4)

a′n(s) = (
(−2)n

∏n
k=1(k + s− 1)∏n

k=1[4 + (k + s)(k + s− 4)]
a0)(

n∑
k=1

1

k + s− 1
−

n∑
k=1

2s+ 2k − 4

4 + (k + s)(k + s− 4)
)

Now this function is evaluated at the double root 2.

a′n(2) = (
(−2)n(n+ 1)!

(n!)2
a0)(

n∑
k=1

1

k + 1
−

n∑
k=1

2k

4 + (k + 2)(k − 2)
)

a′n(2) = (
(−2)n(n+ 1)!

(n!)2
a0)(

n∑
k=1

1

k + 1
− 2

n∑
k=1

k

k2
)

a′n(2) = (
(−2)n(n+ 1)

n!
a0)(

n+1∑
k=2

1

k
− 2

n∑
k=1

1

k
)

a′n(2) = a0
(−2)n(n+ 1)(Hn+1 − 1− 2Hn)

n!
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5.4.2 Applying the formula

A simple application of the aforementioned formula produces the desired result.

y2(x) = [x2e−2x(1− 2x)] ln(x) + a0

∞∑
n=1

(−2)n(n+ 1)(Hn − 1− 2Hn)

n!
xn+2

5.5 Linear combination of linearly independent solutions

Indeed, y(x) = c1y1(x) + c2y2(x), so therefore the following is the general solution.

y(x) = c1[x
2e−2x(1−2x)]+c2[[x

2e−2x(1−2x)] ln(x)+a0

∞∑
n=1

(−2)n(n+ 1)(Hn − 1− 2Hn)

n!
xn+2]
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