
37335 - Differential Equations Assignment 2

Zachary Zerafa - 24557656

May 15, 2025

1 Problem 1

The Laplace transform can be used to solve a wide range of problems. Use the Laplace
transform to solve the equation

y′(t)− 2

∫ t

0

y(u) cos(t− u)du = 1,

with y(0) = −1. Hint : Convolution.

1.1 Laplace transform

L{y′(t)− 2

∫ t

0

y(u) cos(t− u)du}(s) = L{1}(s),

L{y′}(s)− 2L{
∫ t

0

y(u) cos(t− u)du}(s) = L{1}(s)

L{y′}(s)− 2L{
∫ t

0

y(u) cos(t− u)du}(s) = 1

s

L{y′}(s)− 2L{y ∗ cos t}(s) = 1

s

1.1.1 Convolution theorem

L{y′}(s)− 2L{y}(s)L{cos t}(s) = 1

s

L{y′}(s)− 2L{y}(s) 1

s2 + 1
=

1

s
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1.1.2 Differentiation proposition

sL{y}(s)− y(0)− 2L{y}(s) 1

s2 + 1
=

1

s

sL{y}(s) + 1− 2L{y}(s) 1

s2 + 1
=

1

s

su+ 1− 2su

s2 + 1
=

1

s

u(s− 2s

s2 + 1
) =

1− s

s

u(s− 2s

s2 + 1
) =

−(s− 1)

s

u(s(s2 + 1)− 2s) =
−(s− 1)(s2 + 1)

s

u(s3 − s) =
−(s− 1)(s2 + 1)

s

us(s− 1)(s+ 1) =
−(s− 1)(s2 + 1)

s

u =
−(s2 + 1)

s2(s+ 1)

1.2 Inverse Laplace transform

The natural way to begin an inverse Laplace transform is to exploit any linearity of terms
as such.

y(t) = L−1{−(s2 + 1)

s2(s+ 1)
}(t)

= L−1{−(s2 + 1)

s2(s+ 1)
}(t)

= L−1{−s2 − 1)

s2(s+ 1)
}(t)

= L−1{ −s2

s2(s+ 1)
+

−1

s2(s+ 1)
}(t)

= −L−1{ s2

s2(s+ 1)
}(t)− L−1{ 1

s2(s+ 1)
}(t)

= −L−1{ 1

s+ 1
}(t)− L−1{ 1

s2(s+ 1)
}(t)
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By reversing the Laplace transform L{ 1
s+n

} = e−nt one deduces the following.

= −e−t − L−1{ 1

s2(s+ 1)
}(t)

By reversing the convolution theorem one inverses the product of two Laplace transforms as
the convolution of their respective inverses. Further noting that L{Γ(n+1)

sn+1 } = tn, one is lead
to the following.

= −e−t − (e−t ∗ t)(t)
The convolution can be represented in terms of elementary functions by the reverse product
rule.

(e−t ∗ t)(t) =
∫ t

0

(t− u)e−udu

= [−e−u(t− u)]t0 −
∫ t

0

−e−udu

= t−
∫ t

0

−e−udu

= t− [e−u]t0

= t− (e−t + 1)

= t− e−t − 1

Substituting this into the original expression gives the following.

y(t) = −e−t − (e−t + t− 1)

= 1− 2e−t − t

Hence the ODE is satisfied by the following function.

y(t) = 1− 2e−t − t

2 Problem 2

It is possible to expand periodic functions in temrs of functions other than sines and cosines.
A differentiable function f on (0, 1) can be written as

f(x) =
∞∑
k=1

AkJn(λkx), x ∈ (0, 1),

where Jn are order n Bessel functions and {λk : k ∈ N \ {0}} is the set of zeroes of Jn. That
is Jn(λk) = 0, k ∈ N \ {0}. The problem is to find Ak. We have two useful facts which you
can assume
Look carefully at how the formula for the Fourier coefficients are derived. Mimic this proce-
dure to show that

Ak =
2

(Jn+1(λk))2

∫ 1

0

xf(x)Jn(λkx)dx
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2.1 Taking x-weighted inner product

As the problem suggests, the set {Jn(λkx) : k ∈ N \ {1}} forms the basis for the function
space L1(0, 1), however interestingly this function space uses a weighted inner product, with
weight x. In a similar fashion to the Fourier series, one equates the inner product of both
sides of the equation, taken with the second argument being an arbitrary basis element
Jn(λmx).

f(x) =
∞∑
k=1

AkJn(λkx)

xf(x)Jn(λmx) =
∞∑
k=1

AkJn(λkx)Jn(λmx)x

∫ 1

0

xf(x)Jn(λmx)dx =

∫ 1

0

∞∑
k=1

AkJn(λkx)Jn(λmx)xdx

2.2 Evaluating integrals

Ideally one would like to pass the integral though the limit. The dominated convergence
theorem (DCT) ensures the ability to swap limits if on (0, 1) there is an L1(0, 1) function g
(note also that f should be in L1(0, 1) if we are integrating over it at all, which we are) that
dominates each sequence term (in this case, the partial sums). Since such a function can be
found, limit swapping is justified.∫ 1

0

xf(x)Jn(λmx)dx =
∞∑
k=1

Ak

∫ 1

0

Jn(λkx)Jn(λmx)xdx

∫ 1

0

xf(x)Jn(λmx)dx =
Am

2
[(J ′

n(λm))
2 + (1− n2

λ2
m

)(Jn(λm))
2] +

∑
k∈N\{m,0}

Ak
λkJn(λm)J

′
n(λk)− λmJn(λk)J

′
n(λm)

λ2
m − λ2

k

Noting that ∀k ∈ N \ {0}[Jn(λk) = 0], one has the following.∫ 1

0

xf(x)Jn(λmx)dx =
Am

2
[(J ′

n(λm))
2]

Am =
2

(J ′
n(λm))2

∫ 1

0

xf(x)Jn(λmx)dx

2.3 Expressing J ′
n as a Bessel function

A lemma relating n order Bessel function derivatives to Bessel functions of other orders will
now be proven. Note the following manipulation of the n order Bessel function.

Jn(x) =
∞∑

m=0

(−1)m

m!(m+ n)!
(
x

2
)2m+n
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J ′
n(x) =

∞∑
m=0

(−1)m(2m+ n)x2m+n−1

m!(m+ n)!22m+n

J ′
n(x) =

∞∑
m=0

2m
(−1)mx2m+n−1

m!(m+ n)!22m+n
+ n

∞∑
m=0

(−1)mx2m+n−1

m!(m+ n)!22m+n

J ′
n(x) =

∞∑
m=0

2m
(−1)mx2m+n−1

m!(m+ n)!22m+n
+

n

x

∞∑
m=0

(−1)m

m!(m+ n)!
(
x

2
)2m+n

J ′
n(x) =

∞∑
m=0

2m
(−1)mx2m+n−1

m!(m+ n)!22m+n
+

n

x
Jn(x)

J ′
n(x) =

∞∑
m=−1

2(m+ 1)
(−1)m+1x2(m+1)+n−1

(m+ 1)!(m+ n+ 1)!22(m+1)+n
+

n

x
Jn(x)

J ′
n(x) =

∞∑
m=0

2(m+ 1)
(−1)m+1x2(m+1)+n−1

(m+ 1)!(m+ n+ 1)!22(m+1)+n
+

n

x
Jn(x)

J ′
n(x) = −

∞∑
m=0

(−1)mx2(m+1)+n−1

m!(m+ n+ 1)!22(m+1)+n−1
+

n

x
Jn(x)

J ′
n(x) = −

∞∑
m=0

(−1)m

m!(m+ n+ 1)!
(
x

2
)2m+n+1 +

n

x
Jn(x)

J ′
n(x) =

n

x
Jn(x)− Jn+1(x)

J ′
n(x) =

n

x
Jn(x)− Jn+1(x)

Recalling that Jn(λm) = 0 and applying this lemma completes the proof.

Am =
2

(n
x
Jn(λm)− Jn+1(λm))2

∫ 1

0

xf(x)Jn(λmx)dx

Am =
2

(−Jn+1(λm))2

∫ 1

0

xf(x)Jn(λmx)dx

Am =
2

(Jn+1(λm))2

∫ 1

0

xf(x)Jn(λmx)dx
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3 Problem 3

This uses question 2 to solve an important engineering problem. We have a circular playe,
such as a stove top. Take its radius to be 1. The temperature of the plate depends only
on the distance r from the origin. The initial temperature is f(r) and the temperature at
r = 1 is kept equal to zero. The temperature u at time t will satisfy the partial differential
equation

1

k

∂u

∂t
=

∂2u

∂r2
+

1

r

∂u

∂r
,

u(1, t) = 0, u(r, 0) = f(r), |u(r, t)| < M,

for some finite M > 0. This last condition just says that the temperature is finite. k is a
constant depending on the plate. Use separatin of variables to solve this problem. That is,
let u(r, t) = R(r)T (t) and follow the procedure we used in the lectures for the heat equation.
You will need the fact that limx→0+ |Y0(x)| = ∞.

3.1 Applying separation of variables

One makes the ansatz u(r, t) = R(r)T (t)

1

k
RT ′ = R′′T +

1

r
R′T

1

k
RT ′ = T (R′′ +

1

r
R′)

T ′

T
=

kR′′ + k
r
R′

R

Since this relation holds for any setting of r, t, this implies both sides of the equation equate
to a constant. Let such a constant be denoted as µ.

T ′

T
= µ,

kR′′ + k
r
R′

R
= µ

Now one seeks to solve these two resultant ODEs.

T ′ = µT

This is a first order linear ODE with the following general solution.

T (t) = cte
µt

One now turns to the other ODE.

r2R′′ + rR′ − r2
µ

k
R = 0

This second order linear ODE can be mapped to a Bessel equation! The following lemma is
used to map this ODE to a Bessel equation.
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x2y′′ + (1− 2s)xy′ + [(s2 − r2α2) + a2r2x2]y = 0

=⇒ y(x) = c1x
sJα(ax

r) + c2x
sYα(ax

r)

Letting µ < 0 and considering that the solution must be bounded on [0, 1], one must omit
the Bessel function of the second kind from the solution, hence one has the following.

R(r) = crJ0(

√
−µ

k
r)

The Dirichlet condition u(1, t) = 0 allows the deduction of µ.

0 = crJ0(

√
−µ

k
)

One avoids the possibility that cr = 0 since this leads to the trivial solution, instead one

considers 0 = J0(
√

−µ
k
), hence the argument within J0 must be a zero of J0; this article

denotes the sequence of ascending real zeroes of J0 as (λn)n∈N\{0}. This implies the following.√
−µ

k
= λn

µ = −kλ2
n

Considering the linearity of the PDE, infinite sets of solutions, and condensing the coefficients
of R, T into one cn, the solution now turns toward the following Bessel-Fourier expansion.

u(r, t) =
∞∑
n=1

cne
−kλ2

nJ0(λnr)

3.2 Calculating Bessel-Fourier coefficients

Now one considers the condition u(r, 0) = f(r). Applying this to the unrefined solution leads
to the following.

f(r) =
∞∑
n=1

cnJ0(λnr)

By problem 2, the Bessel-Fourier coefficients for a L1([0, 1]) function is the following.

cn =
2

(J1(λn))2

∫ 1

0

rf(r)J0(λnr)dr

Therefore given k, f(r), one has the following solution to the PDE.

u(r, t) =
∞∑
n=1

2

(J1(λn))2
e−kλ2

nJ0(λnr)

∫ 1

0

rf(r)J0(λnr)dr
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