
Question 1 (5 + 10 + 5 = 20 marks).

(a) The ordinary differential equation

xy′′ + (1 + 2x)y′ + (x+ 1)y = 0,

has a solution y1(x) = e−x. Use this to find a second linearly
independent solution y2.

(b) Use Variation of Parameters to solve

x2y′′ + 3xy′ − 3y = x2 ln x.

Recall solutions of an Euler type equation are of the form y =
xa.

(c) Solve
x4y′′ + 3x3y′ + (5x2 − 1)y = 0

in terms of Bessel functions. Note that when putting the equa-
tion into the form of a general Bessel equation, the constant r
does not have to be positive.
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Question 2 (10 + 10 = 20 marks).

(a) Consider the ODE

y′′ − x2y′ − 3xy = 0.

Let y =
∑

∞

n=0
anx

n. Show that we must have a2 = 0 and

a3k =
a0

2 · 5 · 8 · · · (3k − 1)
, k ≥ 1, a3k+1 =

a1
3kk!

, k ≥ 0.

Obtain the general solution and identify the solution arising
from the a3k+1 terms as an explicit function. (Hint: Write the
solution for the a3k+1 terms in the form y = x

∑

∞

k=0
a3k+1(x

3)k.
See information at end of exam).

(b) Consider the ODE

2xy′′ + y′ − βy = 0.

Here β is a positive real number.

(i) Look for a solution of the form y = xs

∞
∑

n=0

anx
n. Show that

we must have s(2s− 1) = 0.

(ii) Show that the coefficients satisfy

an =
βan−1

(n+ s)(2n+ 2s− 1)
, n ≥ 1.

(iii) Use the recurrence relation for an to generate two linearly
independent solutions for the ODE.
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Question 3 (5 + 10 + 2 + 3 = 20 marks).

(a) Calculate the inverse Laplace transform of the function

F (s) =
s+ 7

(s2 + 9)(s2 + 4)
.

(b) Use the Laplace transform to solve the ODE

y′′ − 16y = cos t, y(0) = 2, y′(0) = 1.

(c) Let F (s) be the Laplace transform of f(t). Obtain the Laplace
transform of f(at − 1)H(at − 1) in terms of F (s), where H is
the Heaviside step function.

(d) Calculate the inverse Laplace transform of F (s) =
1

s
tanh−1

(

1

s2

)

as a series. You may need

tanh−1 x = x+
x3

3
+

x5

5
+

x7

7
+ · · · .
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Question 4 (7+3+ 10 = 20 marks).

(a) Let

f(x) =

{

x 0 ≤ x ≤ L/2

L− x L/2 < x ≤ L.

(i) Calculate the Fourier cosine series for f on [0, L).

(ii) To what values will the Fourier cosine series converge at
x = L/2 and x = −L/2? Explain your answer.

(b) You are given that
∞
∑

n=1

(−1)n+1
sin(nx)

n3
=

1

12

(

π2x− x3
)

for −π < x < π. Use this and Parseval’s Theorem to calculate
the value of the infinite series

∞
∑

n=1

1

n6
.

(c) Consider the following initial and boundary value problem for
the wave equation.

1

c2
∂2u

∂t2
=

∂2u

∂x2
, 0 ≤ x ≤ 1, t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = x(1− x), ut(x, 0) = 1.

(i) By looking for solutions of the wave equation of the form
u(x, t) = X(x)T (t) show that the functions X and T must
satisfy the problems

X ′′(x) = λX(x), X(0) = X(1) = 0,

and
T ′′(t) = λc2T (t)

for some constant λ. Show that the only values of λ which
lead to nonzero solutions of the differential equation for
X , satisfying the given conditions are λ = −n2π2, for
n = 1, 2, 3, .... Hence obtain expressions for X and T .

(ii) Obtain the explicit solution of the PDE as the sum of two
Fourier series.



Question 5 (10 + 10 = 20 marks).

(a) Construct a second order Taylor series scheme for solving
the nonlinear initial value problem

y′ = −(2 + x2)y2, y(0) = 1,

on the interval [0, 1]. Let h = 0.1. Now use your Taylor
scheme to find approximations for the value of the solution
at x = 0.1 and x = 0.2. Solve the initial value problem
exactly and determine the accuracy of your answer.

(b) Set up a finite difference scheme for solving the boundary
value problem

y′′ − 4y =
1

2
x, x ∈ [0, 1],

subject to the boundary conditions y(0) = 1, y(1) = 1.
Show that this leads to a linear system of the form Ay = b
where

A =













−4h2 − 2 1 0 · · · · · · · · · 0
1 −4h2 − 2 1 0 · · · · · · 0
0 1 −4h2 − 2 1 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · · · · · · · 1 −4h2 − 2













y =





y1
...

yn−1



 , b =





1

2
h2x1 − y0

...
1

2
h2xn−1 − yn





Solve the resulting system in the case when n = 4. i.e
h = 0.25. You may need the approximation

y′′(xi) ≈
yi+1 − 2yi + yi−1

h2
,

where yi = y(xi).

END OF EXAM



Table of integrals

∫

un du =
un+1

n + 1

∫

du√
u2 − 1

= cosh−1 u

∫

du

u
= log |u|

∫

du√
a2 + u2

= sinh−1 u

a
∫

eu du = eu = log
(

u+
√
a2 + u2

)

∫

cosu du = sin u

∫

du

1− u2
= tanh−1 u

∫

sin u du = − cosu =
1

2
log

∣

∣

∣

∣

1 + u

1− u

∣

∣

∣

∣

∫

cosech2u du = − coth u

∫

cosh u du = sinh u
∫

tan2 u du = u− tanu

∫

sinh u du = cosh u
∫

sec u tanu du = sec u

∫

tanh u du = log cosh u
∫

csc u cotu du = − csc u

∫

u dv = uv −
∫

v du
∫

du√
a2 − u2

= sin−1
u

a

∫

ln udu = u lnu− u

∫

du

a2 + u2
=

1

a
tan−1

u

a

∫

sec u du = ln(sec u+ tanu)

∫

un ln udu =
u1+n

1 + n
ln u− u1+n

(1 + n)2

∫

u sin(au)du =
sin(au)

a2
− u cos(au)

a
∫

u cos(au)du =
cos(au)

a2
+

u sin(au)

a
∫

u2 sin(au)du =
2u sin(au)

a2
− (a2u2 − 2) cos(au)

a3
∫

u2 cos(au)du =
2u cos(au)

a2
+

(a2u2 − 2) sin(au)

a3
.



Table of Laplace transforms

L(tn) = n!

sn+1

L(e−at) =
1

s + a

L(sin(at)) = a

s2 + a2

L(cos(at)) = s

s2 + a2

L(J0(t)) =
1√

1 + s2
.

Variation of parameters

Given that y1 and y2 are solutions of the ODE

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = 0,

we seek a particular solution of the ODE

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f(x),

by looking for solutions of the form yp(x) = u(x)y1(x)+v(x)y2(x). The
functions u and v must satisfy

u′y1 + v′y2 = 0,

u′y′1 + v′y′2 = f(x).

Bessel Functions

Bessel’s differential equation t2u′′ + tu′ + (t2 − α2)u = 0 may be
transformed into the equation

x2y′′ + (1− 2s)xy′ + ((s2 − r2α2) + a2r2x2r)y = 0

under the change of variables t = axr and y(x) = xsu(t).

Parseval’s Theorem gives the sum
∞
∑

n=1

1

n2
=

π2

6
.

The exponential function satisfies ez =
∞
∑

k=0

zk/k!.




