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Question 1 (8 + 10 + 7 = 25 marks).

(a) The ordinary differential equation

x(1− x)y′′ + 3xy′ − 3y = 0,

has a solution y1(x) = x. Use this to find a second linearly independent solu-
tion y2.

(b) Use Variation of Parameters to find the general solution of the ODE

x2y′′ + 2xy′ − 6y = x lnx.

The equation x2y′′ + 2xy′ − 6y = 0 has solutions of the form y = xa. Sub-
stitution into the equation will produce a quadratic satisfied by a, with two
distinct roots.

(c) Solve the equation

x2y′′ + 9xy′ −
(
9 + 4x2

)
y = 0

in terms of Bessel functions.
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Question 2 (12 + 13 = 25 marks).

(a) For the ODE
(1− x2)y′′ − 2xy′ + 12y = 0,

obtain two linearly independent solutions by letting y =
∑∞

n=0 anx
n.

(b) Consider the ODE

2xy′′ + (3− x)y′ + 6y = 0.

(i) Look for a solution of the form y = xs
∞∑
n=0

anx
n. Show that s = 0 or

s = −1/2.

(ii) Show that the coefficients satisfy

an =
(n+ s− 7)an−1

(n+ s)(2n+ 2s+ 1)
, n = 1, 2, 3, ...

(iii) Use the recurrence relation for an to generate two linearly independent
solutions of the equation. Show that one is a polynomial of degree 6.
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Question 3 (12 + 7 + 6= 25 marks).

(a) Use the Laplace transform to solve the ODE

y′′ + 4y = sin(3t), y′(0) = 0, y′(0) = 0.

(b) Let F (s) be the Laplace transform of f(t). Obtain an expression for the
Laplace transform of e−btf ′(at) in terms of F and f(0).

(c) Invert the Laplace transform

F (s) =
1

s2
e−1/s,

as an infinite series.
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Question 4 (13 + 12 = 25 marks).

(a) Consider the following initial and boundary value problem for the wave equa-
tion.

1

c2
∂2u

∂t2
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t > 0,

u(0, t) = u(1, t) = 0, u(x, 0) = 0, ut(x, 0) = x2 − x.
(i) By looking for solutions of the wave equation of the form u(x, t) =

X(x)T (t) show that the functions X and T must satisfy the problems

X ′′(x) = λX(x), X(0) = X(1) = 0,

and T ′′(t) = λT (t) for some constant λ. Determine the values of l which
lead to a nonzero solution and hence obtain expressions for X and T .

(ii) Determine the solution of the given problem for the wave equation.

(b) Set up a finite difference scheme for solving the boundary value problem

y′′ + 9y = f(x), x ∈ [0, 1],

subject to the boundary conditions y(0) = 2, y(1) = 1. Here f is a continuous
function. Show that this leads to a linear system of the form Ay = b where A
is the tridiagonal matrix

A =


9h2 − 2 1 0 · · · · · · · · · 0

1 9h2 − 2 1 0 · · · · · · 0
0 1 9h2 − 2 1 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · · · · · · · 1 9h2 − 2


y =

 y1
...

yn−1

 , b =

 h2f(x1)− 2
...

h2f(xn−1)− 1

 .

Solve the resulting system in the case when f(x) = 1
2
x and n = 4. i.e

h = 0.25. You may need the approximation

y′′(xi) ≈
yi+1 − 2yi + yi−1

h2
, yi = y(xi).
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Table of integrals∫
un du =

un+1

n+ 1

∫
du√
u2 − 1

= cosh−1 u∫
du

u
= log |u|

∫
du√
a2 + u2

= sinh−1
u

a∫
eu du = eu = log

(
u+
√
a2 + u2

)
∫

cosu du = sinu

∫
du

1− u2
= tanh−1 u∫

sinu du = − cosu =
1

2
log

∣∣∣∣1 + u

1− u

∣∣∣∣∫
cosech2u du = − cothu

∫
coshu du = sinhu∫

tan2 u du = u− tanu

∫
sinhu du = coshu∫

secu tanu du = secu

∫
tanhu du = log coshu∫

cscu cotu du = − cscu

∫
u dv = uv −

∫
v du∫

du√
a2 − u2

= sin−1
u

a

∫
lnudu = u lnu− u∫

du

a2 + u2
=

1

a
tan−1

u

a∫
un lnudu =

u1+n

1 + n
lnu− u1+n

(1 + n)2

∫
u sin(au)du =

sin(au)

a2
− u cos(au)

a∫
u cos(au)du =

cos(au)

a2
+
u sin(au)

a∫
u2 sin(au)du =

2u sin(au)

a2
− (a2u2 − 2) cos(au)

a3∫
u2 cos(au)du =

2u cos(au)

a2
+

(a2u2 − 2) sin(au)

a3
.
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Table of Laplace transforms

L(tn) =
n!

sn+1

L(e−at) =
1

s+ a

L(sin(at)) =
a

s2 + a2

L(cos(at)) =
s

s2 + a2

L(J0(t)) =
1√

1 + s2
.

Variation of parameters

Given that y1 and y2 are solutions of the ODE

y′′(x) + b(x)y′(x) + c(x)y(x) = 0,

we seek a particular solution of the ODE

y′′(x) + b(x)y′(x) + c(x)y(x) = f(x),

by looking for solutions of the form yp(x) = u(x)y1(x) + v(x)y2(x). The functions u
and v must satisfy

u′y1 + v′y2 = 0, u′y′1 + v′y′2 = f(x).

Bessel Functions

Bessel’s differential equation t2u′′ + tu′ + (t2 − α2)u = 0 may be transformed into
the equation

x2y′′ + (1− 2s)xy′ + ((s2 − r2α2) + a2r2x2r)y = 0

under the change of variables t = axr and y(x) = xsu(t).

Fourier Coefficients

a0 =
1

L

∫ L

0

f(x)dx,

an =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx,

bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.
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