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All Working Must Be Shown For Every Question.

Question 1 (4 + 6 = 10 marks).

(i) The ordinary differential equation

x3y′′ − 4xy′ + 4y = 0,

has a solution y1(x) = x. Use this to find a second linearly in-
dependent solution y2.

(ii) Use variation of parameters to find the general solution of the
ODE

y′′ − 4y′ + 4y = ex.

OVER PAGE

1



2

Question 2 (10 marks).

(a) Obtain the general solution of the ODE

y′′ + 4xy′ + y = 0,

by letting y =
∞∑
n=0

anx
n.
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Question 3 (8+2=10 marks).

(i) Look for solutions of the equation

x2y′′ + 3xy′ +

(
x+

8

9

)
y = 0,

of the form y =
∞∑
n=0

anx
n+s.

Show that the exponents are s1 = −4/3, s2 = −2/3 and that
an satisfies

an =
−9an−1

9(n+ s)(n+ s+ 2) + 8
.

Hence obtain the general solution of the ODE.

(ii) Identify the solution of the equation in (i) in terms of Bessel
functions.
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Question 4 (7+3=10 marks)

(i) Use the Laplace transform to solve the initial value problem

y′′ + 3y′ + 2y = e−3x, (0.1)

y(0) = 0, y′(0) = 0. Note that we can write

1

(s+ 1)(s+ 2)(s+ 3)
=

A

s+ 1
+

B

s+ 2
+

C

s+ 3
,

for certain constants A,B,C.

(ii) Obtain the inverse Laplace transform of

F (s) =
1

(s2 + 1)
√

1 + s2
,

as an integral. The transforms you need are in the table at the
back of the exam.
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Question 5 (3+5+2=10 marks).

(i) Calculate the Fourier sine series for the function

f(x) = 1− x, 0 ≤ x ≤ 1.

(ii) Consider the following initial and boundary value problem for
the heat equation.

1

4

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = 1− x.

By looking for solutions of the heat equation of the form u(x, t) =
X(x)T (t) show that the functions X and T must satisfy the
problems

X ′′(x) = λX(x), X(0) = X(1) = 0,

and
T ′(t) = 4λT (t)

for some constant λ. Explain how the possible values of λ are
obtained. Hence obtain an expression for X and T .

(iii) Use your answer for part (i) and part (ii) to write down the so-
lution of the given initial and boundary value problem for the
heat equation.
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Table of integrals∫
un du =

un+1

n+ 1
+ C

∫
du√
u2 − 1

= cosh−1 u+ C∫
du

u
= log |u|+ C

∫
du√
a2 + u2

= sinh−1
u

a
+ C∫

eu du = eu + C = log
(
u+
√
a2 + u2

)
+ C∫

cosu du = sinu+ C

∫
du

1− u2
= tanh−1 u+ C1∫

sinu du = − cosu+ C =
1

2
log

∣∣∣∣1 + u

1− u

∣∣∣∣+ C2∫
sec2 u du = tanu+ C

∫
coshu du = sinhu+ C∫

csc2 u du = − cotu+ C

∫
sinhu du = coshu+ C∫

secu tanu du = secu+ C

∫
tanhu du = log coshu+ C∫

cscu cotu du = − cscu+ C

∫
u dv = uv −

∫
v du∫

du√
a2 − u2

= sin−1
u

a
+ C∫

du

a2 + u2
=

1

a
tan−1

u

a
+ C
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Table of Laplace transforms

L(tn) =
n!

sn+1

L(e−at) =
1

s+ a

L(sin(at)) =
a

s2 + a2

L(cos(at)) =
s

s2 + a2

L(J0(t)) =
1√

1 + s2
.

Variation of parameters

Given that y1 and y2 are solutions of the ODE

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = 0,

we seek a particular solution of the ODE

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f(x),

by looking for solutions of the form yp(x) = u(x)y1(x)+v(x)y2(x). The
functions u and v must satisfy

u′y1 + v′y2 = 0,

u′y′1 + v′y′2 = f(x).

Bessel Functions

Bessel’s differential equation t2u′′ + tu′ + (t2 − α2)u = 0 may be
transformed into the equation

x2y′′ + (1− 2s)xy′ + ((s2 − r2α2) + a2r2x2r)y = 0

under the change of variables t = axr and y(x) = xsu(t).

bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.


