37335 Differential Equations.
Tutorial Ten Solutions.

Question One
From lectures the solution is
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Question Two
From the lecture notes we have that
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We also have
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Question Three
The solution is
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for n # 2. We also have
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n # 2. Another integration gives by = 7.
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So we have f(z) =1— %x for 0 < 2 < 1. Then for the cosine series
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For the sine series
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f(z) = Z # sin(nmz).

Question Five. Now for the odd extensions we have
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and similarly for the even extension. Thus we have for the function in
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For the cosine series
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For the function in (b)
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Question Six.

We have
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Question Seven.
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Question Eight.

For the sine series
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For the cosine series
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The Fourier series at x = 1/2 converges to the average of the left
and right values. i.e. 1/2(0+ 1) = 1/2. At —1/2 the sine series will
converge to the value the Fourier series of the odd extension converges
to at that point. This is —1/2. The cosine series will converge to 1/2.

Question Nine.

We use separation of variables as usual. u(z,y) = X(2)Y (y) and

X(0) = X(a) = 0. Now

The problem for X is identical to the heat equation. So we have

X(z) = A, sin <@>
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and \ = (y) = Ce™s" + e~ ". Now u is bounded as

y — 00 so this means that C' must equal zero, since e« — oo as
y — o0. We then for a solution

= gAn sin <7%m) e
Since u(z,0) = f(z)

= g/oaf(z) sin <%) dz
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Question Ten.
As before we use separation of variables. We let u(z,t) = X (2)T(t)
and we quickly find X (0) = X (a) = 0. Then
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So that X” + kX’ — AX = 0. Solving we find
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We can check that if k2 + 4\ > 0 then we do not obtain a non zero
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solution, as in the heat equation. So we put 4\ = —k? — 2= ™ Then we
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X(z) = e r (Acos <n7r ) + Bsin (me)) .
a a

The condition that X (a) = 0 gives A = 0. So the solutions are
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Since u(z,0) = f(z) we have

f(z) = i Bpe ™% sin (%?)
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which implies that
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